
Imprints of the QCD phase transition on the spectrum of gravitational waves

Simon Schettler, Tillmann Boeckel, and Jürgen Schaffner-Bielich

Institut für Theoretische Physik, Universität Heidelberg, Philosphenweg 16, D-69120 Heidelberg, Germany
(Received 27 October 2010; published 23 March 2011)

We have investigated effects of the QCD phase transition on the relic GW spectrum applying several

equations of state for the strongly interacting matter: Besides the bag model, which describes a first-order

transition, we use recent data from lattice calculations featuring a crossover. Finally, we include a short

period of inflation during the transition which allows for a first-order phase transition at finite baryon

density. Our results show that the QCD transition imprints a step into the spectrum of GWs. Within the

first two scenarios, entropy conservation leads to a step-size determined by the relativistic degrees of

freedom before and after the transition. The inflation of the third scenario much stronger attenuates the

high frequency modes: An inflationary model being consistent with observation entails suppression of the

spectral energy density by a factor of & 10�12.

DOI: 10.1103/PhysRevD.83.064030 PACS numbers: 04.30.Db

Theories of inflation predict the existence of a back-
ground spectrum of gravitational waves (GWs) which has
been created in the very early Universe together with
scalar perturbations of the energy density. Since then
the GWs propagate freely through spacetime still retain-
ing information about the conditions under which they
originated. This is because their cross section is very
small: Particles with a larger cross section, such as neu-
trinos or photons, decouple much later and therefore carry
no information about the Universe at such early times and
high energies. This advantage of GWs renders their direct
detection impossible until today. However, observations
of the binary pulsar B1913þ 16 (Hulse-Taylor pulsar)
provide strong evidence for energy loss through emission
of gravitational radiation [1].

In this article we demonstrate that in spite of being
decoupled, relic GWs can show imprints of subsequent
cosmic events, e.g. phase transitions. We present the shape
of the relic GW spectrum after different scenarios of the
QCD phase transition. Before the transition, at about
200 MeV, the Universe is filled with a fluid containing
relativistic quarks (up, down and strange), gluons, leptons
and photons. After the transition, quarks are confined into
hadrons of which the pions are the only degrees of freedom
which are still relativistic. From this reduction of degrees
of freedom and the assumption of entropy conservation, the
impact of the phase transition on the spectrum of GWs can
be derived. Numerical calculations show that the shape of
the spectrum after confinement and chiral symmetry break-
ing does not strongly depend on the order of the phase
transition.

However, there are scenarios for the cosmological QCD
phase transition where entropy conservation is consider-
ably violated and the gross features of the spectrum are not
fixed by the estimates mentioned above. We will discuss a
model which includes a short period with dominating
vacuum energy density causing inflation. The melting of
this energy is associated with a large entropy release.

Within this model, the energy density in high frequency
GWs is much more diluted than within the scenarios where
entropy is approximately conserved.
We emphasize that the relic GWs, generated a long time

before the QCD transition, are not the only ones which are
of interest in our context: During a first-order transition,
bubbles of the new phase form within the old phase and
grow under certain conditions until the fluid is completely
converted into the new phase. This process involves bubble
collisions and turbulences which are a source of gravita-
tional radiation. For a standard first-order transition the
resulting GW spectra are already explored (see, for ex-
ample, [2–4] and references therein), but a careful inves-
tigation within an inflationary QCD transition is still to be
done.
The structure of this article is as follows: After having

collected a few important equations in the next two sec-
tions, we describe a model which allows for a first-order
QCD phase transition to be consistent with both observa-
tion and lattice data (Sec. III). In Sec. IV some analytic
estimates and the results of numerical calculations are
presented. The calculations have been done within the
bag model, using various parameterizations of lattice
data, and within the inflationary scenario. We conclude in
Sec. V.

I. GRAVITATIONALWAVES WITHIN
A FRW BACKGROUND

In the very early Universe, a period of inflation is
assumed to have taken place. This leads to perturbations
within a homogeneous background. The tensorial part of
these perturbations consists of GWs which are described
by the metric

ds2 ¼ a2ðd�2 � ð�ij � hijÞdxidxjÞ:
Einstein’s equation for this metric and an energy-
momentum tensor of an ideal fluid gives the equation of
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motion for a GW within a Friedmann-Robertson-Walker
background:

h00ij þ 2Hh0ij � �hij ¼ 0: (1)

H ¼ a0=a is the conformal Hubble parameter and primes
denote derivatives with respect to conformal time. Now the
expansion

hijð�;xÞ ¼
Z d3k

ð2�Þ3=2 eijðkÞhkð�Þe
ik�x; (2)

with eijðkÞ being the polarization tensor of the mode k, is

applied to (1):

h00kð�Þ þ 2Hh0kð�Þ þ k2hkð�Þ ¼ 0:

With vkð�Þ :¼ ahkð�Þ we get

v00
k þ

�
k2 � a00

a

�
vk ¼ 0 (3)

(see [5] for comparison). We solve this equation in order to
calculate the behavior of the GW spectrum during the QCD
phase transition. Therefore we need a00=a as a function of
time or temperature:

a00

a
¼ a2

�
H2 þ €a

a

�
¼ 4�G

3
a2ð�� 3pÞ;

where the Friedmann equations have been used. We see
that for our calculations we just have to know the evolution
of both the scale factor a and the trace of the energy-
momentum tensor.

II. THE BAG MODEL

A description of confinement and asymptotic freedom is
given by the bag model [6] which assigns a positive,
constant energy density B to the interior of hadrons. At
very high densities or temperatures, the hadrons might
overlap forming a single bag in which the quarks and
gluons can move almost freely. In this way, the bag model
can describe the confinement-deconfinement phase transi-
tion of strongly interacting matter.

Assuming a gas of freely moving relativistic quarks and
gluons above a critical temperature Tc and a gas of freely
moving relativistic hadrons below Tc, one can write down
the entropy density for both phases:

sðTÞ ¼ 2�2

45
gðTÞT3 with gðTÞ :¼

8<
: g1 if T � Tc

g2 if T < Tc:

g1 and g2 are the numbers of effective relativistic degrees
of freedom. For g1 ¼ 51:25 we take into account gluons,
up and down quarks, photons, electrons, positrons, (anti-)
muons and neutrinos; g2 ¼ 17:25 only includes pions in-
stead of quarks and gluons. The Maxwell relation

�
@S

@V

�
T;N

¼
�
@p

@T

�
V;N

yields

pðTÞ ¼
Z

sðTÞdT ¼
8<
:

�2

90 g1T
4 � B if T � Tc

�2

90 g2T
4 if T < Tc;

(4)

�ðTÞ ¼ sT � p ¼
8<
:

�2

30 g1T
4 þ B if T � Tc

�2

30 g2T
4 if T < Tc;

(5)

where the bag constant is fixed by Tc and the difference in
the degrees of freedom in both phases:

B ¼ �2

90
ðg1 � g2ÞT4

c :

III. AN INFLATIONARYQCD PHASE TRANSITION

Lattice QCD calculations show a crossover between the
hadronic phase and the quark-gluon plasma at temperatures
of about 150–200 MeV. However, until now LQCD makes
reliable predictions only for a small chemical potential. For
example, at chemical potentials of order �b � T the char-
acter of the transition between the two phases is unclear. In
principle, a first-order phase transition is possible in this
region of the QCD phase diagram.
Within the standard model of cosmology the baryon

chemical potential during QCD time is expected to be
well within the crossover region of the phase structure,
leading to the assumption that a cosmological first-order
transition is unlikely (see Fig. 1). More precisely, the

FIG. 1 (color online). Sketch of a possible phase diagram for
strongly interacting matter. The early Universe is generally
assumed to evolve at very small baryon chemical potential,
where lattice calculations predict a crossover. At higher �b a
first-order phase transition is possible. The evolution of the
Universe is indicated by arrows, see also [24].
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baryon asymmetry calculated from CMB and BBN data is
�b � 6 � 10�10 [7], and for small values of �b the thermo-
dynamics of a relativistic Fermi gas gives

�b �
5gq

7�2g

�b

T
;

where g is the effective number of helicity states and in gq
only quarks are accounted for. There are nevertheless
different ways to circumvent this scenario and to preserve
a first-order transition: It has been pointed out in [8] that a
high lepton asymmetry could be sufficient. Another possi-
bility is considered in [9]: If a short period of inflation
occurs during the QCD phase transition, the baryon density
could be diluted such that the corresponding chemical
potential starts at values �ðTQCDÞ � TQCD (allowing the

transition to be first-order) and nonetheless matches the
observations today. For example, the high baryon density
could be provided by an Affleck-Dine baryogenesis before
QCD time [10]. The possibility of an inflationary QCD
phase transition has also been considered in [11,12]. [13]
discusses a transition with at least strong supercooling.

We will be concerned with the effect of such an inflation
on the relic GW spectrum. We only mention that structure
formation is also influenced, primordial magnetic fields
can be produced, and new GWs can be generated through
bubble collisions and turbulences, [9,14]. Thus, the sce-
nario describes a fluid with high baryon asymmetry (see
Fig. 2) which is cooled down and reaches a quasistable
state still having a considerable amount of potential energy
compared to the ground state. This potential energy plays
the same role as the bag constant B in the bag model.

However, if the transition into the true vacuum state occurs
late, the Universe will be dominated by a vacuum energy
leading to inflation. Baryon density and thermal
energy density are both strongly diluted. Then the vacuum
energy melts and energy conservation gives the tempera-
ture after reheating. Afterwards, the fluid returns to the
conventional evolution. We will implement this scenario in
a simple way, not requiring a field theoretical description.

IV. CALCULATIONS AND RESULTS

A. Horizon entry

Superhorizon modes (k� � 1) of relic gravitational
radiation have a flat spectrum:

P super
g ðkÞ / jhkj2k3 / k0: (6)

This holds true independently of changes in the equation of
state. However, if the Universe is not inflating, modes
which have exited the horizon during inflation reenter the
horizon again. This leads to a k-dependent power spectrum
because horizon entry occurs at different times for different
modes and inside the horizon the modes start decaying:
h / 1=a. For a radiation dominated universe, we have

a / �)ð3Þv / expð�ik�Þ
(see Fig. 3). We denote the scale factor at horizon entry of
the mode k with ainðkÞ and see

ainðkÞ ¼ k

HinðkÞ / ka2inðkÞ ) ainðkÞ / 1

k
:

Therefore, the power spectrum after horizon entry is

FIG. 2 (color online). Possible track of the background fluid
through the phase diagram for strongly interacting matter.
Within this scenario the system intersects the first-order line
starting from high chemical potential. It is supercooled during
inflation after which the actual phase transition takes place and
reheating sets in. Afterwards, the evolution follows the com-
monly accepted path.

FIG. 3 (color online). Behavior of a GW entering the horizon.
For this calculation the background was assumed to be purely
radiative. A phase transition is not included. The frequency of
the mode was chosen to be the critical frequency: jkj ¼ 2���.
The dashed line indicates a function proportional to 1=a fit to the
amplitude of the GW after horizon entry.
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P sub
g ðkÞ ¼ P super

g ðkÞ
�
ainðkÞ
a

�
2 / 1

k2
: (7)

Inserting the expansion (2) into the expression for the
energy density of gravitational waves [5],

�g ¼ 1

32�G
hð@0hijÞð@0hijÞi;

we get the k dependence of their energy fraction per
logarithmic frequency interval:

�gðkÞ :¼ 1

�crit

d�g

d lnk
/ k5jhkj2 / k2P gðkÞ: (8)

�g does not depend on k after horizon entry during radia-

tion domination.

B. A step in the spectrum

The QCD phase transition imprints a step into the pri-
mordial differential energy spectrum of GWs�gðkÞ. Let us
first estimate some characterizing properties of this step.
For comparison see the discussion in [15].

The typical frequency scale. We calculate the frequency
of modes which enter the horizon at the end of the tran-
sition. The Hubble parameter for the critical temperature is

H2
c ¼ 8�G

3
�ðTcÞ ¼ 8�G

3

�2

30
g2T

4
c ;

which corresponds to a comoving wave number k� with

acHc

k�
� 1 ) k�

ac
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�3G

90
g2

s
T2
c :

In order to calculate the corresponding frequency today we
need the ratio of the scale factors today (a0) and at QCD
time (ac):

ac
a0

¼ T0

Tc

�
g0
g2

�
1=3

:

So for the physical wave number today, k�0, we obtain

k�0 ¼
k�

ac

T0

Tc

�
g0
g2

�
1=3

:

Then the frequency today is

�� ¼ 3:53
Tc

180 MeV

�
g2

17:25

�
1=6

10�9 Hz:

For this result the values T0 ¼ 2:35 � 10�4 eV and g0 ¼
3:91 have been inserted. In spite of being nonrelativistic
today the neutrinos contribute to g0 because they do not
transfer their entropy to the photons after decoupling.
Thus, there is no shift in the standard redshift relation
T / a�1.

The step-size. In order to show that �g is damped for

high frequencies by a factor of 0.7, we collect the infor-
mation of Eqs. (6)–(8) to obtain for the k dependence of�g

�gðkÞ / k2a2inðkÞ:
Next we use entropy conservation and get for radiation
dominated periods:

H / T2 ffiffiffi
g

p /
ffiffiffi
g

p
g2=3a2

¼ g�1=6a�2;

and replace k by the Hubble length at horizon entry
(k ¼ HinðkÞainðkÞ):

�gðkÞ / H2
ina

4
in / g�1=3

k :

With gk we denote the number of relativistic degrees of
freedom at horizon entry of the mode k. Assuming a
radiation dominated universe well before and after the
QCD phase transition leads to

�gð� 	 ��Þ
�gð� � ��Þ ¼

�
g2
g1

�
1=3 � 0:696:

The slope of the step. Let us revisit the question of how
the energy spectrum looks like after horizon entry. We
will do the calculation for an arbitrary equation of state
p ¼ w� with the only restriction that wðaÞ varies slowly
with a. We start from energy-momentum conservation,

d lnHðaÞ ¼ � 3

2
ð1þ wðaÞÞd lna: (9)

From this we get

d ln� ¼ d lnðHinainÞ ¼
�
� 1

2
ð1þ 3wðaÞÞd lna

�
in

which we use in

d ln�gð�Þ
d ln�

¼
�

1

� 1
2 ð1þ 3wÞ

d lnk2a2

d lna

�
in
:

We write

½k2a2
in ¼ ½H2a4
in / ½a�3ð1þwÞa4
in; (10)

noting that the proportionality is only strict if w in (9) does
not depend on a. So

d ln�ð�Þ
d ln�

¼ �2
1� 3wðainÞ
1þ 3wðainÞ : (11)

C. Bag model

To keep things as simple as possible we first employ the
bag model for a numerical calculation. So we assume a
pressure and energy density according to Eqs. (4) and (5),
which leads to

�ðTÞ � 3pðTÞ ¼
8<
: 4B if T � Tc

0 if T < Tc

(see Fig. 4). Note that within this setup, we do not account
for supercooling: We assume a phase transition beginning
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exactly at T ¼ Tc. Correspondingly, we assume that en-
tropy is conserved during the transition.

The corresponding calculation has already been done in
[15]. Our result can be seen in Fig. 7. As expected from our
estimates, the energy density of relic gravitational waves is
reduced by a factor �0:7 for modes with frequencies
higher than the critical frequency scale ��.

D. Lattice data

In order to build on a more realistic description of
strongly interacting matter we take into account results
from LQCD in this section. In particular, we use data
published by the Bielefeld-BNL/RIKEN-Columbia col-
laboration in [16] which are based on calculations includ-
ing three quarks (u, d, and s) with physical strange quark
mass and two degenerate light quark masses being one
tenth of the strange quark mass. The equation of state has
been calculated for two different improved staggered fer-
mion actions, the asqtad and p4 actions. They are both
Oða2Þ where a is the lattice spacing. The published results
are mostly extracted from calculations on lattices of size
323 � 8 where N ¼ 32 is the spatial extent and N� ¼ 8 is
the temporal extent. We have also calculated with data
published by the Wuppertal-Budapest collaboration in
[17,18] which are obtained using a different type of stag-
gered fermion action, the stout action.

The only things we use as input in our calculations are
the parameterizations of the trace anomaly given in
[16,18]. In order to better account for the low temperature
physics, data from hadron resonance gas calculations
have been incorporated over a range of temperatures

100 MeV< T < 130 MeV. They slightly reduce the
peak in the transition region. The label ‘‘HRG’’ is given
to the quantities resulting from this procedure. In the
‘‘stout’’ case, the parameterization is chosen such that it
also reflects the HRG results in this region.
The pressure of the medium is given by

pðTÞ
T4

� pðT0Þ
T4
0

¼
Z T

T0

dT0 �� 3p

T05

which, together with the parameterizations of the trace
anomaly, also fixes the energy density. The temperature
dependence of both quantities is shown in Figs. 5 and 6.
Knowing the energy density and the trace anomaly as

functions of temperature we can now calculate the spec-
trum of relic GWs after a QCD transition described by
lattice data. The result displayed in Fig. 7 looks very similar
to the one we have found within the bag model: In both
calculations we find a step at similar frequencies with
almost the same step-size, which is what we have expected.
The step-size is not exactly the same: This is, because in the
bag model calculation we have assumed g1 ¼ 51:25 and
g2 ¼ 17:25 degrees of freedom before and after the tran-
sition, respectively. Doing so we have taken the strange
quarks to be nonrelativistic and the pions to be fully rela-
tivistic. However, strange quarks and pions have masses of
about the temperature scale at the transition, sowe certainly
oversimplified the situation with our assumptions.

FIG. 4 (color online). The trace anomaly of strongly interact-
ing matter, normalized to the temperature. Within the bag model,
the only contribution comes from the bag constant B. The dashed
curves depict parameterizations of results of lattice calculations.
More explanation is provided in the text.

FIG. 5 (color online). The pressure of strongly interacting
matter, normalized to the temperature. The dashed lines cor-
respond to lattice data. For bag model 1 we included pions in
the low temperature phase and we excluded strange quarks
from the high temperature phase: gquarks ¼ 37, ghadrons ¼ 3. For

bag model 2 it is the opposite way around: gquarks ¼ 47:5,

ghadrons ¼ 0. The lattice results tend to the Stefan-Boltzmann
limit of bag model 2.
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This discussion reveals that if we only restrict ourselves
to calculate solely the effect of the QCD phase transition
with given g1 and g2, the step-size is given by 0.7. If we
include the evolution before and after the transition, every
loss of relativistic degrees of freedom heightens the step.
For example, including relativistic strange quarks and let-
ting the pions become completely nonrelativistic leads to a
step of size

�
gwithout �2

gwith s1

�
1=3 ¼

�
14:25

61:75

�
1=3 ¼ 0:613:

These extreme cases are chosen in Figs. 5 and 6 where we
see that the lattice results lie in between. Note that in these
diagrams only strongly interacting particles are considered.
The total energy density and pressure are bigger by the
amount of photons and leptons.
After all we should state that the step-size calculatedwith

lattice data depends on the temperature of the system at the
time when the calculation ends (T2). The displayed p4 and
asqtad curves are obtained for T2 � 50 MeV. As T2 is
varied from 10 MeV to 100 MeV, the damping factor
sweeps out a range of less than 1% (for the p4 and asqtad
parameterizations) and of about 2%, respectively, (for
the p4þ HRG and asqtad+HRG parameterizations).
Unfortunately, the interpretation of our findings is not quite
as straightforward as claimed above: The parameterizations
for the trace anomaly in [16] diverge for T ! 0 and cer-
tainly lose reliability below 50 MeV. Maybe this is the case
well above that temperature: Even in the HRG case, no
calculation at temperatures T < 100 MeV is taken into
account. At 100 MeV, though, the trace anomaly is still
not zero, which implies that strong interactions are not
negligible. For lack of data in this low temperature region,
we decided to extrapolate the given parameterizations to
T ¼ 0 using a simple power law dependence. At the least,
this guarantees radiation domination far away from the
QCD scale.
The stout parameterization reflects the HRG results also

for T < 100 MeV and yields reliable results down to zero
temperature. In this case, we ended our calculation at T2 ¼
10 MeV. (The step-size stays the same at least down to
T2 ¼ 1 MeV; however, the computing effort for a whole
spectrum would have been much bigger.)

E. Inflationary scenario

Since, until now, we have no field theoretical implemen-
tation of the inflationary scenario at hand, we return to the
bag model and introduce the important features by hand:
We start with the same temperature dependence of energy
density and pressure as in the bag model calculation,

�ðTÞ ¼ �2

30
g1T

4 þ B; pðTÞ ¼ �2

90
g1T

4 � B;

and let the system evolve without undergoing a transition.
In this way we account for the demand that it is trapped in a
false vacuum which is characteristic for a first-order phase
transition. Below the temperature

Tinfl ¼
�

30

g1�
2
B

�
1=4

a period of inflation sets in. During this time the tempera-
ture falls proportional to 1=a, further supercooling the
system. After some e-folds, the thermal part of the energy

FIG. 6 (color online). The energy density of strongly interact-
ing matter within the bag model and according to lattice data.
More information is provided in the caption of Fig. 5.

FIG. 7 (color online). The energy density of GWs per loga-
rithmic frequency interval after different types of QCD phase
transition. Modes with high frequency are damped by a factor of
�0:7 compared to low frequency modes. The solid line repre-
sents the result of a bag model calculation with Tc ¼ 180 MeV.
The dashed curves are calculated using lattice data. In three
cases the hadron resonance gas ansatz has also been taken into
account.
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density is negligibly small in comparison with the vacuum
contribution B which we then force to decay into the
conventional particle spectrum at about 160 MeV: As in
the bag model calculation, we take into account g2 ¼
17:25 relativistic degrees of freedom. The temperature
after this reheating is given by the bag constant and the
degrees of freedom,

Tr ¼
�

30

g2�
2
B

�
1=4

:

It lies above the temperature when inflation started, but
below the critical temperature Tc:

Tr ¼
�

30

g2�
2
B

�
1=4

<

�
90

ðg1 � g2Þ�2
B

�
1=4 ¼ Tc;

which is important if we want to avoid a transition back to
the deconfined phase. The last statement holds true if g2 >
g1=4. This relation is fulfilled even if the pions are not
included after the transition. In our case, the numerical
value of Tr is 162 MeV. After reheating we let the system
evolve without further manual input. Figure 8 illustrates
the evolution of energy density and pressure during the
subsequent periods described above.

The result of this procedure can be seen in Fig. 9. The
inflationary period dilutes the energy density in GWs much
more than an ordinary phase transition.

For modes with � < 10�9 Hz or � > 10�5 Hz,�gð�Þ is
constant. This is because the modes with � < 10�9 Hz stay
outside the horizon until the radiation dominated era after

the little inflation, whereas the modes with � > 10�5 Hz
enter the horizon already before the little inflation and stay
inside until the end of the calculation.
The modes with 10�9 Hz< �< 10�8 Hz have wave-

lengths of order the Hubble horizon when the short period
of inflation begins. They slightly dip into the horizon and
are the first to be driven out again where they no longer
experience damping. So they are much less suppressed
than the modes with higher frequencies that are already
well within the horizon when inflation begins and need
more time to reach superhorizon scales. During our calcu-
lation, the intermediate modes with frequencies of roughly
5 � 10�9 Hz< �< 5 � 10�6 Hz cross the horizon 3 times:
We set the initial conditions when all modes have wave-
lengths � > 1=H; then the intermediate and the high fre-
quency modes enter the horizon in the radiative universe
before the QCD transition; the short period of inflation
stretches the intermediate modes again to superhorizon
scales. After reheating, the Universe is radiation dominated
again, letting the Hubble horizon grow faster than the
wavelengths: The calculation is continued until all modes
are inside the horizon again. In order to estimate the final
shape of the power spectrum P g at intermediate frequen-

cies, the effects of all three horizon crossings must be taken
into account:

P ð1Þ
super !radiation

P ð1Þ
sub !inflation

P ð2Þ
super !radiation

P ð2Þ
sub: (12)

After the thermal contributions to � and p have become
small compared to the bag constant B, the equation of state
of the medium is p ¼ ��. This leads to

aexðkÞ ¼ k

HexðkÞ / k

FIG. 8 (color online). Energy density and pressure during a
QCD phase transition with a short period of inflation. The total
energy density decreases proportional to a�4 until the bag
constant B � ð250 MeVÞ4 is no longer negligible. When the
vacuum contribution is dominant, the total energy density does
not depend on the scale factor a. The same is true for the
pressure which is negative during inflation: p ¼ �B. The radia-
tive energy density becomes negligible soon after inflation
begins.

FIG. 9 (color online). The energy spectrum of GWs after a
QCD phase transition with a short period of inflation. The
inflationary phase leads to a much stronger dilution than an
ordinary bag model transition.
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during the little inflation. We denote the scale parameter at

the first horizon entry with að1Þin and the one at the second

horizon entry with að2Þin and calculate

P ð2Þ
subðk; aÞ ¼ P ð2Þ

superðkÞ
�
að2Þin ðkÞ

a

�
2

¼ P ð1Þ
subðk; ainflÞ

�
ainfl
aexðkÞ

�
2
�
að2Þin ðkÞ

a

�
2

¼ P ð1Þ
superðkÞ

�
að1Þin ðkÞ
ainfl

ainfl
aexðkÞ

að2Þin ðkÞ
a

�
2

¼ P ð1Þ
superðkÞ 1

a2
1

k6
/ 1

k6
: (13)

With ainfl we denote any scale parameter for which the
considered mode is still inside the horizon after the first
horizon entry. Since �gðkÞ :¼ k2P gðkÞ, we obtain

d ln�gð�Þ
d ln�

¼ �4;

which is in agreement with our numerical result plotted in
Fig. 9. In our calculation inflation lasts until the scale factor
has grown by a factor of 1000. Since the Hubble parameter
H is constant during that time and the physical wavelength
of the modes is stretched proportional to a, the modes
being driven out of the horizon have a frequency range
of 3 orders of magnitude. This leads to an overall damping
of the high frequency modes in �g by a factor of

ð103Þ�4 ¼ 10�12, affirming again the numerical outcome.
This result can also be obtained by noting that

�gðaÞ / a�4 (14)

because gravitational radiation is redshifted in the same
way as light.
Now we should discuss the origin of the oscillations in

�g for the modes with intermediate frequencies: When a

mode exits the horizon, it stops oscillating. If this occurs
while hkðtÞ � 0, the mode is frozen at a very small value. If
this occurs while hkðtÞ has a maximum, the mode is fixed at
a large value. This phase effect is similar to the one dis-
cussed in [19] for scalar perturbations. We illustrate the
effect of an inflation on GWs in Fig. 10.We expect a related
mechanism to cause the slight oscillation in the spectrum
after a normal bag model phase transition (see Fig. 7).

F. Towards a field theoretical implementation

We would like to extend our studies of an inflationary
scenario for the QCD phase transition: In order to approach
our aim of a field theoretical implementation, we introduce
a scalar field 	 whose potential energy replaces the bag
constant. During the transition, the field passes from a false
vacuum state into the true vacuum with zero potential
energy. This corresponds to setting the vacuum energy
density B after the transition to zero.
We calculate within a strongly simplified model: Before

the transition, we take the dilaton field to be constant at a
value associated with high potential energy, i.e. we calcu-
late within the bag model. After the short period of infla-
tion, we let the potential energy transform into kinetic
energy (kination). Doing so, we assume a transition to a
state where the dilaton oscillates within a potential well
with negligible potential energy. Since

� ¼ 1

2
_	2 þ Vð	Þ and p ¼ 1

2
_	2 � Vð	Þ;

we get an equation of state with w ¼ 1 ) � / a�6.
However, most probably the oscillating dilaton field is
suppressed even much faster because, during preheating,
it decays into other fields on time scales which are very
small compared to the Hubble time during the QCD era
(� 10�5 seconds). In this case, the ‘‘oscillation domi-
nated’’ period would last too short a time in order to be
discernible in the GW spectrum. In our calculation, we
assume that the oscillation of the dilaton is only damped by
Hubble expansion over a period of time which is long
enough to be resolved in the spectrum. Afterwards, the
remaining energy is converted into a suitable spectrum of
relativistic particles, in the same way as it has been done
within the previous calculation. This scenario allows us to
get a better feeling for the signature of a sequence of
periods dominated by different kinds of energy densities.
Since, once more, reheating is put in by hand, we can freely
decide when it should occur. The measure will be the ratio
by which the energy density of oscillation is diluted. The
sequence (12) is now modified as follows:

FIG. 10 (color online). Temporal evolution of two modes
during a QCD phase transition with a period of inflation. The
mode with frequency �1=�2 is at maximal/small displacement
when leaving the horizon. Therefore, the former appears as a
maximum in the spectrum and the latter as a minimum.
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P ð1Þ
super !radiation

P ð1Þ
sub !inflation

P ð2Þ
super !oscillation or radiation

P ð2Þ
sub:

From Eq. (10) we have

aoscin / 1ffiffiffi
k

p (15)

during oscillation domination. This leads to a power spec-
trum

P ð2Þ
subðk; aÞ ¼ P ð1Þ

superðkÞ 1
a2

1

k5
;

as can be seen from Eq. (13). We therefore expect the
energy spectrum to be proportional to ��3. If the oscil-
lation dominated period lasts until the modes with fre-
quencies � & 10�9 Hz enter the horizon, the shape of
the low frequency spectrum follows from Eq. (11):
�gð�Þ / �. These expectations are confirmed by our nu-

merical results shown in Figs. 11 and 12. Figure 11 dis-
plays the spectrum of primordial GWs after an
inflationary QCD phase transition with an oscillation
dominated period. It lasts until the energy density is
diluted by a factor 10�4 � 10�s, where, for later use,
we have defined the parameter s to be the negative
decadic logarithm of this factor. Correspondingly, the

scale parameter grows by a factor 10s=6 ¼ 102=3. As can
be seen from Eq. (15), the modes which enter the horizon
during this time cover an interval corresponding to a

factor 10s=3 ¼ 104=3. In Fig. 11, this interval roughly
lies between 10�7 Hz and 3 � 10�4 Hz, where the spec-
trum shows the expected behavior. The second horizon
entry of the lower frequencies happens during radiation

domination and, consequently, the resulting spectrum is
proportional to ��4. In Fig. 12 we compare GW spectra
corresponding to scenarios with various durations of the
oscillation dominated period. The result without the os-
cillatory period is also displayed. The five further curves
result from computations including oscillation dominated
periods with durations given by the respective value of s.
In the cases s ¼ 12 and s ¼ 15 we also see the behavior
�gð�Þ / � for the modes which did not enter the horizon

before the little inflation. This is consistent with the
analytical estimate (11) which was obtained from
energy-momentum conservation and the fact that GWs
decay as 1=a after horizon entry. The slope of the spec-
trum is positive, because the rate of entering modes is
higher than during radiation domination: This leads to a
stronger damping of low frequency modes since they
enter the horizon earlier.

V. CONCLUSIONS AND OUTLOOK

We have considered the gravitational background radia-
tion assuming a flat spectrum before the cosmological
QCD phase transition and calculated the spectrum after-
wards. A few different scenarios have been taken into
consideration: First, we calculated within the bag model;
then we made use of lattice data for zero chemical poten-
tial; finally, we explored the consequences of a QCD
transition including a short period of inflation.
We have seen that the loss in relativistic degrees of

freedom imprints a step in the energy density spectrum
of GWs. In the case of negligible entropy production
during the transition, the step-size is determined by the
ratio of degrees of freedom in the two phases. In contrast,

FIG. 11 (color online). The energy spectrum of GWs after a
QCD phase transition including a little inflation followed by a
period which is dominated by the kinetic energy density of a
scalar field. The spectrum of modes which reenter the horizon
during this stage falls like ��3, whereas the energy density in
modes which reenter during the subsequent radiation dominated
epoch is proportional to ��4.

FIG. 12 (color online). Energy spectra of relic GWs after
different types of QCD transition. The parameter s indicates
the duration of the oscillation dominated period within the
corresponding scenario. In the case s ¼ 0 there is no oscillation
domination included.
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the large entropy release within the inflationary model
accompanies a very different shape of the spectrum:
Inflation much more attenuates the energy density of
modes inside the horizon than is expected in the case of
entropy conservation.

We now work at field theoretical models which imply
the inflationary scenario [20]. Within such a model we
could calculate the evolution of energy density and trace
anomaly in order to use it in the computation of the
resulting spectrum. But there is an even more important
purpose: A consistent model within the framework of
effective field theory certainly increases the reliability of
the scenario. For example, an important point addressed in
[20] is whether it is possible to trap the system until such
time as inflation has lasted long enough to dilute the
baryon density down to the numbers required by
observation.

We neglect the possible production of perturbations by
amplification of vacuum fluctuations. This is because their
spectrum is suppressed as ð�QCD=mPlÞ2 with respect to a

corresponding spectrum created at energies around the
Planck scale. But an important point is the GW production
during the phase transition by bubble collisions and sub-
sequent turbulences within the plasma.

In Fig. 13, we have displayed possible GW spectra
after a first-order QCD phase transition. The characteristic
amplitude hc is defined from the energy density per
logarithmic frequency interval (which we previously
used) as

hcð�Þ :¼ 0:9 � 10�18 Hz

�

h

0:7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð�Þ

q
;

where h is the Hubble parameter today in units of
100 km=ðs �MpcÞ. The upper panel shows the character-
istic amplitude of GWs generated during inflation and
their spectrum after an additional inflationary period at
QCD time. Likewise, the result of a calculation including
both inflation and oscillation domination is presented.
Assuming an extreme value of s ¼ 15, we might hope
that even the spectrum of primordial GWs could be
measured by SKA. However, a scenario with a dilaton
field being stable for more than a Hubble time seems to
be far from realistic.

The GWs which are produced during the transition can
be seen in the lower panel of Fig. 13. The dominant
contributions come from bubble collisions and from the
turbulences thereafter. The spectra displayed here are ob-
tained from parameterizations given in [3,4]. They show
the maximal GW production consistent with PPTA mea-
surements. Ref. [4] assumes the presence of magnetic
fields in the turbulent plasma. The most important devia-
tion between the spectra is the different behavior in the
high frequency regime: [3] includes multibubble collisions
and therefore obtains a flatter spectrum / ��1 for high
frequencies. This result is also confirmed in the more

recent work [2] where, however, turbulences are not ac-
counted for. Neither one of the parameterizations includes
an inflationary period. A corresponding spectrum still has
to be calculated.
We also display the sensitivity of three relevant GW

detectors [21]: PPTA (Parkes Pulsar Timing Array) is al-
ready running and has constrained the spectrum emanating
from the transition. SKA (Square Kilometre Array) and
LISA (Laser Interferometer Space Antenna) will further
push down the limits for GW production at QCD time. In
the more remote future, even some features of the shape of
the relic spectrum could be revealed by combining mea-
surements of Planck [22] at �� 10�18 Hz and of the
proposed Big Bang Observer (BBO [23]) at �� 1 Hz.

FIG. 13 (color online). GWs after the QCD transition and
their detectability. The (predicted) sensitivities of three GW
detectors are displayed. PPTA (Parkes Pulsar Timing Array)
already constrains the GW production during the QCD phase
transition. The corresponding spectrum is displayed on the basis
of [3] (Kamionkowski et al.) and [4] (Caprini et al.). See also
[21,25]. For the amplitude of relic GWs, we use the largest
amplitude consistent with the COBE constraint given in [26].
The solid line in the upper panel sketches the result of a
calculation including a little inflation and a subsequent oscilla-
tion dominated period with s ¼ 15.

SCHETTLER, BOECKEL, AND SCHAFFNER-BIELICH PHYSICAL REVIEW D 83, 064030 (2011)

064030-10



Given that the Planck mission succeeds in finding imprints
of relic GWs, BBO could potentially discriminate between
the standard QCD crossover and an inflationary phase
transition.
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11 (2010) 77.

[19] C. Schmid, D. J. Schwarz, and P. Widerin, Phys. Rev. Lett.
78, 791 (1997).

[20] T. Boeckel and J. Schaffner-Bielich (unpublished).
[21] M. Kramer, D. C. Backer, J.M. Cordes, T. J.W. Lazio,

B.W. Stappers, and S. Johnston, New Astron. Rev. 48, 993
(2004).

[22] The Planck Collaboration, arXiv:astro-ph/0604069.
[23] V. Corbin and N. J. Cornish, Classical Quantum Gravity

23, 2435 (2006).
[24] M. J. Fromerth and J. Rafelski, arXiv:astro-ph/0211346.
[25] T. Kahniashvili, A. Kosowsky, G. Gogoberidze, and Y.

Maravin, Phys. Rev. D 78, 043003 (2008).
[26] B. Allen, in Some Topics on General Relativity and

Gravitational Radiation, edited by J. A. Miralles, J. A.
Morales, and D. Saez (Cambridge University Press,
Cambridge, England,1997) pp. 373.

IMPRINTS OF THE QCD PHASE TRANSITION ON THE . . . PHYSICAL REVIEW D 83, 064030 (2011)

064030-11

http://dx.doi.org/10.1088/1475-7516/2008/09/022
http://dx.doi.org/10.1088/1475-7516/2008/09/022
http://dx.doi.org/10.1103/PhysRevD.49.2837
http://dx.doi.org/10.1103/PhysRevD.49.2837
http://dx.doi.org/10.1103/PhysRevD.82.063511
http://dx.doi.org/10.1103/PhysRevD.82.063511
http://dx.doi.org/10.1016/S0370-1573(99)00102-7
http://dx.doi.org/10.1103/PhysRevD.9.3471
http://dx.doi.org/10.1016/S0370-2693(03)00800-1
http://dx.doi.org/10.1088/1475-7516/2009/11/025
http://dx.doi.org/10.1088/1475-7516/2009/11/025
http://dx.doi.org/10.1103/PhysRevLett.105.041301
http://dx.doi.org/10.1103/PhysRevLett.105.041301
http://dx.doi.org/10.1103/RevModPhys.76.1
http://dx.doi.org/10.1002/asna.2113110502
http://dx.doi.org/10.1007/BF01565617
http://dx.doi.org/10.1007/BF01565617
http://dx.doi.org/10.1088/0954-3899/26/6/302
http://dx.doi.org/10.1088/0954-3899/26/6/302
http://dx.doi.org/10.1088/0954-3899/37/9/094005
http://dx.doi.org/10.1088/0954-3899/37/9/094005
http://dx.doi.org/10.1142/S0217732398002941
http://dx.doi.org/10.1103/PhysRevD.80.014504
http://dx.doi.org/10.1007/JHEP09(2010)073
http://dx.doi.org/10.1007/JHEP09(2010)073
http://dx.doi.org/10.1007/JHEP11(2010)077
http://dx.doi.org/10.1007/JHEP11(2010)077
http://dx.doi.org/10.1103/PhysRevLett.78.791
http://dx.doi.org/10.1103/PhysRevLett.78.791
http://dx.doi.org/10.1016/j.newar.2004.09.020
http://dx.doi.org/10.1016/j.newar.2004.09.020
http://arXiv.org/abs/astro-ph/0604069
http://dx.doi.org/10.1088/0264-9381/23/7/014
http://dx.doi.org/10.1088/0264-9381/23/7/014
http://arXiv.org/abs/astro-ph/0211346
http://dx.doi.org/10.1103/PhysRevD.78.043003

