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We investigate the occurrence of various exotic spacelike singularities in the past and the future

evolution of k ¼ �1 Friedmann-Robertson-Walker model and loop quantum cosmology using a suffi-

ciently general phenomenological model for the equation of state. We highlight the nontrivial role played

by the intrinsic curvature for these singularities and the new physics which emerges at the Planck scale.

We show that quantum gravity effects generically resolve all strong curvature singularities including big

rip and big freeze singularities. The weak singularities, which include sudden and big brake singularities,

are ignored by quantum gravity when spatial curvature is negative, as was previously found for the

spatially flat model. Interestingly, for the spatially closed model there exist cases where weak singularities

may be resolved when they occur in the past evolution. The spatially closed model exhibits another novel

feature. For a particular class of equation of state, this model also exhibits an additional physical branch in

loop quantum cosmology, a baby universe separated from the parent branch. Our analysis generalizes

previous results obtained on the resolution of strong curvature singularities in flat models to isotropic

spacetimes with nonzero spatial curvature.
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I. INTRODUCTION

A fundamental limitation of the cosmological models
based on general relativity (GR) is the occurrence of
singularities. Perhaps one of the simplest examples is the
case of an expanding homogeneous and isotropic universe
filled with a matter satisfying strong energy condition such
as dust or radiation. Independent of the intrinsic geometry
of the universe, be it closed, flat or open, the past evolution
of such a universe from arbitrary initial conditions leads to
an initial singularity: the big bang, where the classical
dynamical equations break down and the physics stops.
Another example is the case of an inflationary universe in
which even though the evolution is almost de Sitter, the
classical spacetime is past incomplete [1].

In recent years, various new singularities have been
found in classical cosmology [2–9]. Unlike the big bang
and big crunch singularities, these singularities do not
occur when the scale factor vanishes. These occur either
at finite values of the scale factor or when it diverges.
Recall that for the matter satisfying weak energy condition,
the latter is not possible as the spacetime curvature goes to
zero when the scale factor goes to infinity. However, if
matter violates the weak energy condition, for example, in
the case of phantom fields, then spacetime curvature will
diverge as the scale factor becomes infinite. For homoge-
neous and isotropic models with matter equation of state in
the form of a perfect fluid these exotic singularities come in

four types. Following Refs. [6,7] these are classified as:
Big rip (type I) where the energy density and pressure
diverge along with a divergence in the scale factor, sudden
singularity (type II) occurring at a finite value of the scale
factor and energy density with a divergence in pressure, big
freeze (type III) where energy density and pressure diverge
at a finite value of the scale factor, and big brake (type IV)
singularity where scale factor, energy density and pressure
are finite but there is a divergence in the time derivative of
the pressure or rate of change of energy density.1

Lack of successful resolution of these singularites ren-
ders classical cosmological models incomplete. It is gen-
erally believed that existence of these singularities is a
result of assuming the validity of GR even in the regime
of large spacetime curvature where the effects due to
quantum gravity may become important and lead to sig-
nificant departures from the classical theory. It is thus
hoped that incorporation of quantum gravitational effects
may result in a possible resolution of these singularities.
Loop quantum gravity (LQG) is one of the candidate

theories of quantum gravity which attempts to address this
issue. It is a nonperturbative and background independent
quantization, with a key prediction that the continuum dif-
ferential geometry of the classical theory is replaced by a
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1In certain modified gravity scenarios, it is also possible to
obtain solutions with a type V singularity where equation of state
matter diverges even though pressure and energy density remain
finite (see for e.g. [8]). To our knowledge such a solution is yet to
be found in loop quantum cosmology and will not be considered
in the present analysis.
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discrete quantum geometry in the quantum theory. Perhaps
one of the best illustrations of the novel effects of quantum
geometry is captured in loop quantum cosmology (LQC)
which is a quantization of homogeneous spacetimes based
on LQG [10–12]. A key prediction of LQC is that the big
bang singularity is replaced by a big bounce, which is a direct
consequence of the underlying quantum geometry [13–16].
These results which were first obtained for homogeneous
and isotropicmodels (for all values of spatial curvature) with
a massless scalar field have been extended to inflationary
potential [17], anisotropic spacetimes [18,19], and also
certain inhomogeneous situations [20]. Further, using an
exactly solvablemodel it has been shown that the expectation
values of energy density have a universal upper bound for a
dense subspace in the physical Hilbert space [21]. There are
strong constraints on the change in relative fluctuations
of quantum observables across the bounce [22]. Recently,
much stronger constraints on the change in dispersions have
been obtained by Kaminski and Pawlowski [23]. These
results show that a universe like ours, i.e. macroscopic at
late times, bounces froma similar universe at very early times
(in the contracting branch,) and the universe recalls almost of
all its state through the bounce.

Interestingly, the loop quantum dynamics admits an
effective description on a continuum spacetime which
can be obtained using coherent state techniques [24,25].
An important feature of this analysis is that one can obtain
an effective Hamiltonian from which one can obtain modi-
fied Friedmann and Raychaudhuri equations as the
Hamilton’s equations. The modified set of dynamical equa-
tions inherit quantum geometric effects via higher order
nonperturbative corrections which vanish at small space-
time curvatures. It is important to note that various numeri-
cal simulations have shown that effective equations capture
the underlying quantum evolution very accurately for uni-
verses which become macroscopic at late times. These thus
prove to be useful tools to understand the physics in LQC,
such as whether the underlying theory has well-defined
ultraviolet and infrared limits. It turns out that even though
there exist various quantization ambiguities, there is a
unique quantization leading to a consistent unambiguous
physical description [26,27] (the improved dynamics
[15,16]: which is being considered here).

Using effective equations, we can ask various questions
regarding the generality of singularity resolution in LQC.
For example, one can ask whether spacetime curvature is
always bounded in LQC? Here we should note that a
universal bound on energy density (as in LQC), does not
imply that the spacetime curvature is also bounded. This is
easy to understand for the classical cosmology, where the
Ricci scalar, which provides us with complete information
about the spacetime curvature in the homogeneous and
isotropic spacetime, depends both on the energy density
and pressure. Though for most matter-energy configura-
tions, the behavior of equation of state is such that an upper

bound in energy density is sufficient to control the diver-
gence in pressure and hence the spacetime curvature, it is
not difficult to come up with counter examples with a more
general equation of state [28,29]. Hence, an upper bound in
energy density is not sufficient to prevent a divergence in
the spacetime curvature.
A pertinent question is whether this divergence signals

the end of spacetime in LQC. In order to answer this
question, we recall that even in GR we encounter events
where spacetime curvature blows up but there is no associ-
ated physical singularity. This can happen if the tidal forces
are not strong enough to cause a complete destruction of in-
falling objects into the singularity and geodesics can be
extended beyond such events. It turns out that the events
where spacetime curvature diverges in flat isotropic LQC
are weak singularities and geodesics can be extended be-
yond them. In flat isotropic LQC, the divergence of space-
time curvature occurs only for sudden singularities which
are caused by a divergence in pressure at a finite scale factor
and energy density. It is straightforward to show that the
expansion parameter in this case is bounded and the space-
time is geodesically complete in the flat isotropic LQC [29].
In this paper we take the first step to generalize the above

result by including intrinsic curvature in the spacetime.
This is done by considering the effective dynamics of loop
quantized spatially closed and open models in the
Robertson-Walker geometry. In the classical Friedmann
dynamics, the intrinsic curvature term enters in the form
of a 1=a2 term in the dynamical equations. Thus it is quite
straightforward to understand the expected modifications
from the results in the spatially flat model. In LQC, the
quantization of intrinsic curvature brings nontrivial
modifications to the effective description and makes
the resulting form of effective dynamical equations less
straightforward to analyze. Though one expects that at
small intrinsic curvatures one recovers the results of flat
isotropic LQC, physics may bring up surprises when in-
trinsic curvature is large. As we will show, this is indeed
what happens in the case of k ¼ �1 models in LQC.
Our analysis will be based on considering a sufficiently

general phenomenological model for the equation of state
which was proposed in Ref. [7]. This model allows a study
of all of the exotic singularities by the choice of different
parameters and was earlier used for investigation of reso-
lution of strong curvature singularities in the flat isotropic
LQC [29]. As we will see, the effective dynamical equa-
tions of spatially curved models approximate those of the
flat model in LQC at large volumes because the contribu-
tion from intrinsic curvature becomes negligible in this
limit. Thus for future singularities, at large volumes, the
resulting physics is similar for models with or without
spatial curvature in LQC. However for certain values of
parameters the spatially closed model in LQC permits two
separate physical branches, a short-lived baby universe at
small volume and a parent universe which evolves to a
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macroscopic size. This branch is absent in the classical
theory and has a pure quantum geometric origin.

To completely capture the new physics from inclusion
of intrinsic curvature, it is important to study exotic singu-
larities in the past evolution when they occur at small
volumes. Our analysis of past and future exotic singular-
ities shows that all strong curvature singularities are re-
solved in k ¼ �1 isotropic LQC. The scale factors at
which big rip and big freeze singularities occur are ex-
cluded from the allowed range by loop quantum effects. As
in the flat model, the spacetime curvature can diverge in
spatially curved LQC, however whenever this happens one
has a weak singularity which is known to be harmless. In
almost all cases these singularities are ignored by LQC.
The only exception to this occurs in spatially closed model
where weak singularities occurring in the past evolution
may be resolved. This occurs purely because of the non-
trivial role of intrinsic curvature effects in LQC.

We organize our paper as follows: In Sec. II we revisit
the classical equations for a spatially curved model in
classical cosmology and introduce the phenomenological
ansatz of the equation of state. To facilitate the reader in
following the derivation of effective equations in LQC, we
derive the Friedmann and Raychaudhuri equations in the
Hamiltonian framework. In Sec. III, we derive the effective
equations for spatially curved LQC starting from the ef-
fective Hamiltonian [16,30,31]. Using these modified
equations, we numerically obtain solutions and discuss
the new physics in Sec. IV. Here we show that all exotic
strong curvature singularities, irrespective of whether they
occur in the past or the future, are resolved in spatially
curved LQC. We summarize our results in Sec. V.

II. CLASSICAL THEORY

A. Hamiltonian cosmology

The fundamental equations of cosmology describe the
evolution of the scale factor a in proper time t. These
equations can be derived in a simple Hamiltonian frame-
work. To this purpose, consider the conjugate variables
ðc; pÞ where c is the Ashtekar-Barbero connection and p
is the triad (which without any loss of generality will be
chosen with positive orientation). These are related to the
metric variables as

c ¼ � _aþ k p ¼ a2; (1)

with the relation between c and _a valid only in the classical
theory and it modifies when quantum gravity effects are
considered. Here _a ¼ da=dt, k ¼ 0, �1 is the normalized
intrinsic curvature and � 2 R is the Barbero-Immirzi pa-
rameter.2 The conjugate variables satisfy the following
Poisson bracket

fc; pg ¼ 8�G

3
�: (2)

In these variables, the Hamiltonian for gravity in a homo-
geneous and isotropic spacetime becomes

H g ¼ � 3

8�G
��2 ffiffiffiffi

p
p ½ðc� kÞ2 þ k�2�: (3)

We introduce a generic matter field with Hamiltonian

H m ¼ p3=2�, where � is the matter-energy density. The
total Hamiltonian of the system H ¼ H g þH m is con-

strained to vanish.
The dynamics is given by the Hamilton’s equation

_p ¼ fp;H g ¼ �fc; pg@H
@c

¼ 2��1 ffiffiffiffi
p

p ðc� kÞ: (4)

Since the Hamiltonian is a constraint, namely H � 0, we
find that

ðc� kÞ2 ¼ 8�G

3
�2p�� k�2: (5)

We can now recover the usual Friedmann equation as

H2 ¼
�
_a

a

�
2 ¼

�
_p

2p

�
2 ¼

�
c� k

�
ffiffiffiffi
p

p
�
2 ¼ 8�G

3
�� k

p
: (6)

In order to obtain the Raychaudhuri equation for the ac-
celeration, we compute the equation of motion for c

_c ¼ fc;H g ¼ fc; pg @H
@p

¼ �ðc� kÞ2 þ k�2

2�
ffiffiffiffi
p

p þ 8�G�

3

@H m

@p

¼ � 4�G�

3

ffiffiffiffi
p

p ð�þ 3PÞ (7)

where we have introduced the thermodynamic pressure P
as the derivative of H m with respect to the volume. This
gives @Hm=@p ¼ � 3

2

ffiffiffiffi
p

p
P. From (4) and (6) we compute

€p ¼ 16�G

3
p�� 2kþ 2

�

ffiffiffiffi
p

p
_c (8)

and we obtain3

_H ¼ €p

2p
¼ 4�G

3
ð�� 3PÞ � k

p
(9)

which yields the Raychaudhuri equation

2The value of � can be fixed by computing the black hole
entropy in LQG. In our numerical analysis we set � � 0:2375
[32].

3Equivalently, one can obtain _H using 2H _H ¼ 8�G
3 _�þ 2H k

p
and _� ¼ �3Hð�þ PÞ. The conservation equation will hold also
in the case with quantum gravity modifications, since it results
from the Hamilton’s equation for the matter part, without in-
volving the gravitational part.
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€a

a
¼ _H þH2 ¼ � 4

3
�Gð�þ 3PÞ: (10)

Note that a divergence in � and/or P can lead to a diver-
gence in the Ricci scalar

R ¼ 6

�
_H þ 2H2 þ k

p

�
: (11)

Analogously, a divergence in _P, the derivative of the
pressure, can lead to a divergence in the derivative of the
curvature

_R ¼ 6

�
€H þ 4H _H � 2H

k

p

�
: (12)

Divergences can similarly be computed for the higher
derivatives.

B. Phenomenological model

Different types of singularities are categorized depend-
ing upon whether the divergences appear in the scale factor
a, in the energy density �, in the pressure P or in its
derivative _P. For our investigation we choose a specific
expression for the pressure

P ¼ ��� AB�2��1

A���1 þ B
(13)

that allows to obtain various singularities by varying the
parameters of the model A, B and � [7]. The derivative of
the pressure is given by the expression

_P ¼ 3Hð�þ PÞ
�
1þ ð2�� 1ÞAB�2��2

A���1 þ B

þ ð1� �ÞA2B�3��3

ðA���1 þ BÞ2
�
: (14)

The equations of motion of the model can be integrated and
the scale factor can be expressed as a function of the energy
density � as

a ¼ ao exp

�ð2Aþ B�2Þ�1��

6ABð1� �Þ
�
: (15)

Here ao is an integration constant, and for the singularities
at finite scale factor, it corresponds to the value where the
singularity appears. Inverting this expression we obtain

� ¼
0
@�A

B
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

B2
� 6ð�� 1ÞA ln

�
a

ao

�s 1
A1=ð1��Þ

: (16)

The following table summarizes the relation between the
parameters of the model and the quantities that diverge,
while the other quantities remain finite.

Singularity Divergences Parameters

Type I a ! 1, � ! 1, P ! 1 3=4<�< 18A, B

Type II P ! 1 �< 0 or A=B > 1

Type III � ! 1, P ! 1 �> 18A, B

Type IV _P ! 1 0<�< 1=28A, B

In the classical theory, singularities can appear in the
past or in the future, depending on the choice of the
parameters A and B. If A and B have different sign, they
always give rise to a sudden singularity. The other singu-
larities depend on the value of �, irrespectively on the
value of A and B. No exotic singularity appears for 1=2<
�< 3=4.
In Sec. IV we study these singularities, in particular, by

showing the behavior of the Hubble rate, the Ricci curva-
ture, and its derivative, since these quantities are closely
related to the energy density, the pressure, and its
derivative.

III. EFFECTIVE DYNAMICS IN LQC

The underlying dynamics in LQC captures the quantum
discreteness of LQG and is dictated by a quantum differ-
ence equation with a uniform step size in the volume
representation. However, using suitably chosen coherent
states, one can obtain an effective continuum spacetime
description which leads to a modified Friedmann (differ-
ential) dynamics capturing the underlying quantum geo-
metric effects. Such an analysis has been carried out for
different types of matter and an effective Hamiltonian has
been obtained using the so-called embedding approach
[24,25]. In this approach, the Hilbert space is treated as a
quantum phase space on which the quantum dynamics
generates a Hamiltonian flow. The quantum phase space
has a fiber bundle structure with the base space as the
classical phase space. One can then obtain an embedding
of the classical phase space in to the quantum phase space
by finding an approximately horizontal section preserved
under the time evolution. This procedure can be performed
under controlled approximations which results in an effec-
tive Hamiltonian, whose solutions can then be compared
with the expectation values of operators in the quantum
theory.
Extensive numerical simulations show that the effective

dynamics is an excellent approximation to full quantum
dynamics for states which correspond to a macroscopic
universe at late times [15–17] (where macroscopic here
refers to large compared to the Planck size). As an example
of the efficiency of the effective dynamics, let us consider a
closed universe sourced with a massless scalar field having
p� � 5000ℏ, resulting in a maximum value of the scale

factor as approximately 25 times the Planck length. Even
for such a universe, effective Friedmann equations repro-
duce the underlying quantum dynamics and the bounce at
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approximately 15‘Pl to an extraordinary accuracy [16].
Further, the universe undergoes a very large number of
cycles of expansion and contraction without losing coher-
ence and the quantum state remaining peaked on the
effective dynamical trajectory with relative fluctuations
remaining small. For more general matter, it turns out
that until one is probing scales larger than the Planck
length, even though at Planck curvature, effective
Friedmann equations as derived in the embedding ap-
proach are very reliable to study singularity resolution
[24,25]. The effective Hamiltonian we will be working
with will be under this approximation and it be valid up
to terms of the order of square of relative fluctuations
(which are very small).

The nonlocal quantum gravitational effects originating
from the underlying quantum geometry primarily modify
the gravitational part of the Hamiltonian. The matter part
of the Hamiltonian constraint remains unaffected. (This is
consistent with our underlying approximation as discussed
later in a remark at the end of this section). The effective
Hamiltonian can be written as [15,16,24,25,30,31]:

H eff :¼ AðvÞ
16�G

½sin2ð ��ðc� kÞÞ � k�� þHM (17)

where

�� 2p ¼ 4
ffiffiffi
3

p
��‘2Pl ¼: � (18)

and � has different expressions for k ¼ 1 and k ¼ �1
geometries. For k ¼ 1 it is given by [16]

� :¼ sin2 ��� ð1þ �2Þ ��2 (19)

and for k ¼ �1 it becomes [30,31]

� :¼ ��2 ��2: (20)

In above equations, � denotes the minimum eigenvalue
of the area operator in LQG and v denotes the eigenvalues

of the volume operator V̂ ¼ p̂3=2 in LQC.4 Without any
loss of generalization we restrict ourselves to the positive
eigenvalues of the volume oeprator.

V ¼ p3=2 ¼ a3 ¼
�
8��

6

�
3=2 v

K
(21)

with K ¼ 2=3
ffiffiffiffiffiffiffiffiffi
3

ffiffiffi
3

pp
.

For v > 1, the expression for AðvÞ yields [15]

AðvÞ ¼ � 27K‘Pl

2�3=2

ffiffiffiffiffiffiffi
8�

6

s
jvj ¼ � 6p1=2

��2�2
(22)

where in the last step we have used Eq. (21). Thus, the
effective Hamiltonian becomes

H eff ¼� 3

8�G�2

ffiffiffiffi
p

p
��2

ðsin2ð ��ðc�kÞÞ�k�ÞþHM: (23)

The vanishing of the Hamiltonian constraint, H eff � 0,
leads to

sin 2ð ��ðc� kÞÞ ¼ 8�G

3

�2 ��2ffiffiffiffi
p

p HM þ k� ¼ �

�crit

þ k�

(24)

where we have defined the critical energy density �crit as

�crit ¼ 3

8�G�2�
: (25)

The modified Friedmann equation can be obtained from
the effective Hamiltonian (23), by computing the
Hamilton’s equation for p:

_p ¼ fp;H effg ¼ 2

� ��

ffiffiffiffi
p

p
sinð ��ðc� kÞÞ cosð ��ðc� kÞÞ:

(26)

The Hubble rate H2 ¼ _a2=a2, then becomes

H2 ¼
�

_p

2p

�
2 ¼ 1

�2�
sin2ð ��ðc� kÞÞð1� sin2ð ��ðc� kÞÞÞ

¼
�
8

3
�G�þ k�

�2�

��
1� �

�crit

� k�

�
: (27)

This equation can be rewritten as

H2 ¼ 8�G

3
ð�� �1Þ

�
1

�crit

ð�2 � �Þ
�

(28)

where �1 and �2 are defined as

�1 :¼ �3k�

8�G�2�
¼ �k��crit (29)

and

�2 :¼ �critð1� k�Þ: (30)

In the classical limit, � ! 0, we obtain

� ! ��2 ��2;

�1 ! 3k

8�Gp
and

1

�crit

ð�2 � �Þ ! 1:

(31)

Thus we recover back the classical Friedmann equation in
the limit � ! 0.
Similarly, using the Hamilton’s equation for c, we can

obtain the modified Raychaudhuri equation:

€a

a
¼ � 4�G

3
ð�þ 3PÞ þ 16�G

3

�
�

�crit

þ k�

��
�þ 3

2
P

�

þ k�

�2�

�
�

�crit

þ k�

�
� 2�k

�2�

�
�

�crit

þ k�� 1

2

�
(32)

where

4Note that the value of K is different from various previous
works. This is due to change in the expression for the area gap
in LQC [19]. In comparison to Ref. [15], we have ��2p2 ¼
4

ffiffiffi
3

p
��‘2Pl.
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� :¼ sin2ð ��Þ � �� sinð ��Þ cosð ��Þ: (33)

Using Eqs. (32) and (27) we obtain the equation for the rate
of change of the Hubble rate

_H ¼
�
�4�Gð�þ PÞ þ kð� � �Þ

�2�

��
1� 2

�
�

�crit

þ k�

��
:

(34)

It is then straightforward to verify that the conservation law

_�þ 3Hð�þ PÞ ¼ 0 (35)

remains unchanged in the effective dynamics of LQC.
We can now write down the expression for the Ricci

scalar which captures the complete behavior of the space-
time curvature for the homogeneous and isotropic model:

R ¼ 6

�
H2 þ €a

a
þ k

a2

�

¼ 6

�
4�G

3
ð�� 3PÞ þ 8�G

3

�
�

�crit

þ k�

�
ð�þ 3PÞ

þ k�

�2�
� 2�k

�2�

�
�

�crit

þ k�� 1

2

�
þ k

a2

�
: (36)

Further, as for the case of modified Friedmann equation,
the modified Raychaudhri (32), _H (34) equations and Ricci
scalar go to the classical GR versions in the limit � ! 0.

It is important to point out a notable difference between
the Ricci scalar in the classical theory and LQC. In the
classical theory, the expression for R is independent of the
curvature index k

R ¼ 8�Gð�� 3PÞ: (37)

Whereas in LQC, the Ricci scalar is dependent on the
curvature index. The expression for the Ricci scalar is
different for flat, open, and closed models in LQC. We
will see in the next section that it leads to interesting
distinctions for singularity resolution for different spatial
geometries in LQC.

We conclude this section with following remarks:
Remark 1: In the derivation of effective equations we

have worked under the approximation that contributions
from the inverse scale factor effects are negligible. The
approximation is well motivated due to two reasons. First,
from insights gained from various numerical simulations
which show that in LQC, modifications originating
from the nonlocal field strength of Ashtekar-Barbero con-
nection, which results in the trigonometric function in
Eq. (17), significantly overwhelm the modifications origi-
nating from inverse scale factor [15,16,30]. Second, for
v > 1 inverse scale factor effects are in any case negligible
(in the fundamental representation of the theory).5 This

corresponds to a > 1:5‘Pl from (21). In our analysis we
will only consider scale factors large than this value. Thus
in our analysis it will be safe to make this approximation.
We expect the results to hold true in general as inverse
scale factor effects tend to weaken the strength of gravity
(or make it effectively more ‘‘repulsive’’), thus aiding
singularity resolution.
Remark 2: It is to be emphasized that the effective

Hamiltonian (17) is not obtained from the classical
Hamiltonian (3) by the so-called ‘‘polymerization’’ which
amounts to c ! sinð	cÞ=	. It can be easily seen that such a
‘‘polymerization,’’ which is sometimes discussed in the
literature as a shortcut to write an effective Hamiltonian
in loop quantization, does not lead to (17) starting from (3).
The effective Hamiltonian for the closed model, in par-
ticular, shows that the effective Hamiltonian obtained from
the quantum constraint can be much richer than as ex-
pected from a naive polymerization of the connection.
Further, it turns out that an effective Hamiltonian obtained
from polymerization of connection for the closed model
has serious problems with singularity resolution [37].

IV. PHENOMENOLOGICAL MODEL:
NUMERICAL RESULTS

The phenomenological model introduced in Sec. II B
allows us to study different kinds of singularities by choos-
ing appropriate values for various parameters in Eq. (13). If
A and B have a different sign, then there is always a sudden
singularity independently of the value of�. If A and B have
the same sign, then we obtain the following classification:
(i) Type I singularity (Big Rip): A > 0 and 3=4<

�< 1.
Type II singularity (Sudden): �< 0

(ii) Type III singularity (Big Freeze): �> 1
Type IV singularity (Big Brake): 0<�< 1=2

If � ¼ 0 or 3=4<�< 1, there are no type I-IV singu-
larities. Further, apart from the type I singularity which
occurs with an associated divergence in the scale factor,
type II-IV singularities can occur both in the past or the
future of an expanding branch in the classical FRW model.
Using the effective loop quantum dynamics as elabo-

rated in the previous section, we carried out extensive
numerical simulations for various parameters with the
phenomenological equation of state (13). Below we dis-
cuss various exotic singularities and show the representa-
tive results for different cases. (We use Planck units to
show results in various plots.)

A. Type I singularity: The big rip

A type I singularity is also called ‘‘Big Rip’’ because
there exists a finite time in which the scale factor, energy
density, and pressure diverge, tearing apart the universe.
The dominant energy condition is broken and the equation
of state converges to w ¼ �1 when approaching the
singularity.

5The situation changes when one is considering higher repre-
sentations where inverse scale factor effects can lead to novel
phenomenological effects (see for e.g. Refs. [33–35]). See,
however Ref. [36] for subtleties in dealing with higher
representations.
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In LQC, the energy density is bounded by a maximal
value, therefore all type I singularities are resolved by the
quantum theory. The energy density grows as in the clas-
sical theory as the singularity is approached, but when it
reaches close to �crit, quantum effects lead to significant
modifications to the dynamical trajectory. The acceleration
€a becomes negative and the Hubble rate goes to zero
(Fig. 1). Instead of ripping apart in finite time, the loop
quantum universe recollapses and the evolution continues.
The presence of a maximal density affects also the curva-
ture invariants. In particular the Ricci scalar and its deriva-
tives remain bounded during the whole evolution.

This behavior which was first noted in the k ¼ 0 model
[29] (see also Refs. [38,39] for earlier results) remains
essentially the same in the k ¼ 1 and k ¼ �1, as is shown
by Fig. 1. This is not surprising because type I singularities
occur in the future in the expanding branch where the scale
factor is very large and the effects due to intrinsic curvature
are expected to be negligible. (We will see below that
effects due to intrinsic curvature can indeed produce sur-
prising results for other exotic singularities).

The only notable difference between the k ¼ 0 and
k ¼ �1 cases is that the exact value of the density at the
bounce changes, but the correction is small (of the order of
‘2Pl=a

2
min) and has no effect on the qualitative behavior of

the trajectory. The three cases differ only around the value
ao of the scale factor as shown in Fig. 2. As one would
expect for this equation of state, at large scale factors the

evolution in the k ¼ �1 model mimics that in the flat
model and the type I singularity is resolved.

B. Type II singularity: The sudden singularity

In the type II singularity, the energy density does not
diverge. The singularity is caused by a divergence in the
pressure which results in a divergence in spacetime curva-
ture at a finite value of the scale factor. To understand this
singularity in more detail, let us consider Eq. (13): the

pressure diverges when the energy density is � ¼ �s �
ð�A=BÞ�ð1=ð��1ÞÞ. Inserting this expression into (15) we
find that the singularity appears for a ! ao. It is important
to note that in LQC, quantum geometric effects do not
regulate any divergence in pressure and the spacetime
curvature can diverge [29]. It turns out that such a diver-
gence for the type II singularity does not signal the end of
spacetime. Geodesics can be extended beyond this singu-
larity. Sudden singularity also turns out to be a weak
singularity because the tidal forces are not strong enough
to cause a complete destruction of arbitrary detectors
[6,29]. Thus weak singularities signal neither a breakdown
of the underlying theory nor the end of spacetime.
In Fig. 3, we show the evolution of the Hubble rate for

different values of spatial curvature index for the type II
singularity occurring in the future of an expanding branch.
We see that both in the classical theory (dashed curves) and
LQC (solid curves), the Hubble rate vanishes in a finite
time for all values of the spatial curvature at scale factor
a ¼ ao. In contrast, the plot of the Ricci scalar shows that it
diverges at this value of the scale factor for all values of the
spatial curvature in the classical theory as well as in LQC.
As is clear from Fig. 3, the results about future sudden

singularity are on expected lines of the k ¼ 0 model when
the scale factor is very large, where the effects due to
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FIG. 1 (color online). Type I future singularity: Hubble rates
for k ¼ 0, �1 models are shown. Dashed curves correspond to
the classical theory and the solid ones to LQC. (Curves for
different values of the curvature index coincide with each other
for the resolution in the plot). In the classical theory, the Hubble
rate diverges in a finite time with a ! 1. We see that the
effective LQC curves behave similarly to the classical ones for
small values of the scale factor a when the energy density is very
small compared to the Planck scale. As the energy density
increases, departures from classical trajectories become signifi-
cant and we see a quantum recollapse. In this figure the parame-
ters are ao ¼ 1000, A ¼ 0:1, B ¼ 1 and � ¼ 0:8.
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FIG. 2 (color online). Zoom of the Hubble rate around
ao ¼ 1000. The curves are, respectively, thin (blue) for
k ¼ �1 on the left, black for k ¼ 0, and thick (red) for k ¼
þ1 on the right. The parameters are the same as in Fig. 1. This
zoom reveals the differences for evolution in Hubble rates in the
region around ao, which corresponds in this case to the ‘‘initial
point’’ of cosmic evolution.
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intrinsic curvature become negligible. However, a surpris-
ing result emerges for the k ¼ 1 model. Our numerical
analysis shows that, for certain values of the parameters,
there exists an additional baby evolutionary branch sepa-
rated from the main evolutionary branch. For k ¼ þ1, H2

is positive in two disjoint intervals. Consequently there
exist two disjoint branches corresponding to real solutions
of the Friedmann equation. The extra branch occurs at
small scale factors and signifies the nontrivial new physics
which emerges from the quantization of intrinsic curvature
in LQC. The new branch, that we can see in the Fig. 3, is
bounded both in the Hubble rate and in the spacetime
curvature.

Another interesting feature which can be seen from
Fig. 3 is that for k ¼ 1 model, the classical curve (shown

with a dotted curve) depicts that there is no initial singu-
larity. The Hubble rate vanishes both in the past and the
future of the classical evolution. The classical universe
faces a sudden singularity in future, but since it is a weak
singularity, the classical k ¼ 1 universe is geodesically
complete for the considered equation of state. This does
not hold true for the k ¼ 0 and k ¼ �1 case, and these
classical spacetimes are past incomplete.
Figure 4 shows the plot of Hubble rate and Ricci scalar

for different values of curvature index when the sudden
singularity occurs in past. In such a case the effects due to
intrinsic curvature lead to novel features in the physics of
singularity resolution. We find that classically the Hubble
rate vanishes for all values of k at a ¼ ao and the Ricci
scalar diverges. However in LQC, though the Hubble rate
vanishes for values of k, the divergence in Ricci scalar does
not occur for a closed universe. It turns out that as the scale
factor approaches ao, the Ricci scalar increases to large
values but it does not diverge for the allowed values of the
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FIG. 3 (color online). Type II future singularity: Hubble rate
and Ricci scalar for k ¼ 0 in black, k ¼ þ1 in thick (red), and
k ¼ �1 in thin (blue) curves are shown. Classical curves are
dashed and LQC curves are solid. The Hubble rate goes to zero
both in the classical theory and LQC for all values of the
curvature index at a ¼ ao ¼ 100. The Ricci scalar diverges at
ao in the classical theory and LQC. (Since Ricci scalar is
independent of the value of curvature index in the classical
model, there is only curve for the classical theory). For
k ¼ þ1 there exist two disjoint solutions of the Friedmann
equation, and the further branch appearing there is bounded
both in the Hubble rate and in the spacetime curvature. The
parameters are A ¼ �0:1, B ¼ 10 and � ¼ 1=4.
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FIG. 4 (color online). Type II past singularity: Hubble rate and
Ricci scalar for k ¼ 0 and k ¼ �1 are shown. Classical curves
are dashed and LQC curves are solid. k ¼ 0 is in black, k ¼ þ1
is the thick (red) curve, and k ¼ �1 in thin (blue) curve. The
singularity is at ao ¼ 2, where the Ricci scalar diverges. Note
that for k ¼ þ1 the universe begins at a > ao, and the Ricci
scalar is always finite. In this figure the parameters are A ¼ 0:1,
B ¼ �10 and � ¼ 1=4.
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scale factor. (The divergence occurs in the forbidden region
of effective LQC dynamics where the Hubble rate is
imaginary). This result implies that in the closed model
for the parameters considered here, quantization of intrin-
sic curvature leads to a resolution of the past sudden
singularity. This is a direct consequence of the way intrin-
sic curvature terms enter in to the expression of the
Ricci scalar in LQC. We emphasize that type II singular-
ities whether in future or past, even though they are
harmless, are not resolved in LQC for k ¼ 0 and k ¼ �1
models. In contrast we find that these singularities are
resolved, for a certain choice of parameters, when occur-
ring in the past for k ¼ 1 model.

C. Type III singularity: The big freeze

A type III singularity occurs at a finite value of scale
factor where both the Hubble rate and the Ricci scalar
diverge. In LQC, the presence of a maximal energy density

�crit bounds the Hubble rate, giving rise to a recollapse
when the singularity is approached. Also €a=a and the Ricci
scalar are bounded and finite. Thus type III singularities are
generically resolved in LQC for all values of the curvature
index.
This can be seen from the plots in Fig. 5, where we have

shown the plots of theHubble rate and the Ricci scalar when
the big freeze singularity occurs in the past at a ¼ ao. We
see that in the classical theory, Hubble rate and Ricci scalar
diverge as a ! ao in the classical theory. On the other hand,
in LQC the Hubble rate vanishes in the past showing that
there is a bounce. Further, the Ricci scalar remains finite for
all the values of the curvature index.
We now make an interesting observation for the k ¼ �1

case. For a certain choice of parameters which lead to a
type III singularity in the past, we find that there exists an
additional classical branch at the small scale factors. The
additional branch faces a big bang singularity in the past of
classical evolution and is free from singularity in future
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FIG. 5 (color online). Type III past singularity: Classical
(dashed) and effective LQC (solid) Hubble rate and Ricci scalar
are shown. The curves are, respectively, thick (red) for k ¼ þ1
starting on the left, black for k ¼ 0 in the middle, and thin (blue)
for k ¼ �1 stating a bit more on the right. In the classical case
there is a divergence of both H and R at ao ¼ 1 while the curves
for LQC remain bounded (in the figure the Ricci scalar for
k ¼ �1 is covered by the black line of the k ¼ 0 case). Here
the parameters used are A ¼ �100, B ¼ �1 and � ¼ 2.
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FIG. 6 (color online). This figure shows the additional branch
occurring at small scale factors in the k ¼ �1 model for equa-
tion of state leading to a type III past singularity in Fig. 5. The
additional branch occurs for certain values of parameters both in
the classical theory (dashed curve) and LQC (solid curve) when
the scale factor is below the value ao, where the big freeze occurs
classically. Note that, also in this case, only LQC is immune
from primordial singularity. The parameters used are A ¼ �100,
B ¼ �1 and � ¼ 2.
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evolution (as is shown by the dashed curves for the Hubble
rate and the Ricci scalar in Fig. 6). However the additional
branch occurs in LQC when the scale factor is less than the
Planck length. Since the length scale involved is below
where we expect the effective dynamics in LQC to be valid,
a more detailed analysis is needed, by including modifica-
tions pertaining to the inverse scale factor, in order to
understand the physics emerging from LQC in this special
case. Nevertheless, if we assume the validity of the effec-
tive Hamiltonian in this regime, then LQC resolves the past
singularity in the additional branch (as depicted by the
solid curves for the Hubble rate and the Ricci scalar in
Fig. 6).

The type III singularity is also resolved for all values of
the spatial curvature when it occurs in the future. This is on
the expected lines, as the effects due to intrinsic curvature
become small at large scale factors. In Fig. 7 we depict
results from such an evolution. In the classical theory, there
is a big freeze singularity in the future where the Hubble

rate and the Ricci scalar diverge. For the k ¼ �1 universe,
there also exists a singularity (big bang) in the past evolu-
tion. We can see that in LQC there is no type III singularity
as the Hubble rate vanishes at a ¼ ao and Ricci scalar
reaches a finite value. Further, the past big bang singularity
in the k ¼ �1 case, as pointed above, is also resolved. The
LQC universe is bounded for all values of the curvature
index for the equation of state which leads to a type III
singularity in the classical theory.
After performing various numerical simulations we

reach the conclusion that type III singularities, irrespective
of them occurring in the past or the future, are always
resolved in LQC for all values of the spatial curvature
index.

D. Type IV singularity: The big brake

Type IV singularity is a derivative-curvature-singularity
where none of the curvature invariants diverge. (In this
sense, it does not qualify as a curvature singularity).
Though the energy density and pressure remain finite, a
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FIG. 7 (color online). Type III future singularity: Classical
(dashed) and effective LQC (solid) Hubble rate and Ricci scalar
with k ¼ 0, �1 are compared. In the classical case there is a
divergence of both H and R at ao while the curves for LQC
remain bounded. Notice that LQC cures also the initial singu-
larity in the curve case, and, in particular, the thin (blue) solid
curves (k ¼ �1) shows a characteristic ‘‘tilt’’ for small a. The
parameters are ao ¼ 1000, A ¼ 100, B ¼ 1 and � ¼ 2.
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FIG. 8 (color online). Type IV past singularity: Hubble rate
and Ricci scalar for k ¼ 0, �1. The singularity is at ao ¼ 2,
where the Ricci scalar diverges for k ¼ 0 and k ¼ �1. Note that
for k ¼ þ1 (dotted line for the classical solutions and thick red
line for LQC effective solutions) the universe begins at a > ao,
thus the Ricci scalar is always finite. The parameters are
A ¼ 0:01, B ¼ 1 and � ¼ 1=4.

PARAMPREET SINGH AND FRANCESCAVIDOTTO PHYSICAL REVIEW D 83, 064027 (2011)

064027-10



higher derivative of the curvature diverges as a ! ao. The
value of � determines the order of derivative which blows
up [7].

As in the type II case, the geodesic equations are well-
behaved since the Hubble rate is finite at a ¼ ao.
The singularity is weak because it occurs at a finite volume
and the theory is geodetically complete since the
Hubble rate is bounded. Quantum geometric effects have
little influence on this harmless extremal event beyond
which geodesics can be extended even in the classical
theory [6,29].

The behavior of the curves is very similar to the type II
case. In Fig. 8 we have shown the results from the past
singularity. (We have chosen � ¼ 1=4 so that the diver-
gence appears in _R). We find that the Hubble rate vanishes
at a ¼ ao both in the classical theory and LQC. However,
_R diverges except for the spatially closed model in
LQC. This result is similar to what we obtain for type II

singularity. It turns out that LQC resolves the type IV weak
singularity when occurring in the past for the closed model
for certain choices of parameters. As in the type II case,
this result highlights the surprises which quantization of
intrinsic curvature may bring in comparison to earlier
studies [29]. For the k ¼ 0 and k ¼ �1 model, this weak
singularity is ignored by the quantum geometry for all
values of the parameters.
We show the results for type IV singularity occurring in

future evolution in Fig. 9. Here we find that for all the
values of spatial curvature, the Hubble rate vanishes at
a ¼ ao with a divergence in _R for both the classical theory
and LQC. We see that not only the LQC curves have no big
bang, but this happens also classically for the closed uni-
verse (Fig. 9, dotted line). Furthermore, for k ¼ þ1 it is
possible to obtain a baby universe for an appropriate choice
of the parameters, as for type II singularity (see Fig. 3). In
this case _R is strongly negative but bounded, thus there is
no singularity in the past and in the future.

V. SUMMARY

A fundamental question in quantum gravity is whether
spacelike singularities of the classical theory are resolved.
Since not all such singularities signal end of the spacetime,
it is important to understand the role of quantum gravita-
tional effects in the resolution of strong singularities (those
beyond geodesics can not be extended) and weak singu-
larities (those beyond which geodesics can be extended).
These issues were addressed in the loop quantization of
cosmological models which are spatially flat and it was
found that the nonperturbative loop quantum effects re-
solve all strong singularities and ignore weak singularities
[29].
The aim of the present analysis was to investigate these

issues for spatially curved models using the phenomeno-
logical model of equation of state permitting exotic singu-
larities such as big rip, sudden singularities, big freeze
singularity, and the big brake singularity. As we pointed
out earlier, in certain models of modified gravity one also
has the possibility to obtain w-singularities where equation
of state diverges but pressure and energy density are regu-
lar. Such a solution is so far unkown in LQC and was not
considered here. In any case, these singularities are weak
curvature singularities and are harmless [9].
In order to capture the role of intrinsic curvature, we

considered exotic singularities both in the future and the
past evolution. To our knowledge, even in the classical
theory exotic singularities had not been studied earlier
for the spatially curved model. For the singularities occur-
ring in the future, the contribution of the intrinsic curvature
is expected to become very small and we expect results to
agree with the spatially flat case. This turns out to be true.
However, more interesting are cases where the exotic
singularities occur in past. Here one would expect effects
due to quantization of intrinsic curvature to play a
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FIG. 9 (color online). Type IV future singularity: Comparison
of Hubble rates and _R for the classical theory and LQC (in the
figure LQC curves overlap). The singularity appears in the future
at ao ¼ 1000. The LQC universes (solid lines) do not have
primordial singularity. Interestingly, for k ¼ 1 this happens
also classically (dotted line). In this picture there are no baby
universes, but they can be obtained for k ¼ 1 for a different
choice of the parameters. Here the parameters are A ¼ �0:1,
B ¼ �1 and � ¼ 1=4.
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nontrivial role. In fact we encounter some surprising
results. Though strong singularities are always resolved
in LQC, it turns out that for the closed model weak
singularities occurring in the past evolution may also be
resolved. Thus LQC does not always ignore weak singu-
larities. This is an intriguing result which deserves further
investigation.

Another peculiar feature of the curved models is the
appearance of a small branch for type II and type IV
singularities for certain values of the parameters. This
‘‘baby universe’’ is bounded, and is devoid of any singu-
larities. It will be interesting to analyze these additional
branches which we find for both spatially open and closed
models in more detail, in particular, by taking into account
inverse scale factor effects which may play some role when
scale factor is below the Planck length.

Our results extend to earlier results on generic resolution
of strong curvature singularities in a spatially flat model in
LQC to the spatially curved models. They also bring some
important lessons, the primary one being that quantization
of intrinsic curvature may throw some novel unexpected
results and we need to gain more insights on when quantum

gravity may ignore or resolve a weak curvature singularity.
Another lesson is that as for the spatially flat model, space-
time curvature invariants may diverge for the spatially
curved models and yet there may be no physical
singularity.
These results strengthen the case for a generic resolution

of strong singularities in LQG. To achieve this goal, the
next step will be to include anisotropies and then inhomo-
geneities. The latter will require us to go beyond the
minisuperspace approximation considered here. This
brings up additional challenges such as the complete clas-
sification of the strong and weak singularities in inhomo-
geneous situations. Two promising avenues where such an
analysis can be undertaken would be the Gowdy models
[20] and in the spinfoam paradigm [40]. We hope that these
studies will also provide insights on the deeper relation of
these frameworks with LQC.
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