
A topologically flat thick 2-brane on higher dimensional black hole backgrounds

Viktor G. Czinner*

Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa
Department of Theoretical Physics, MTA KFKI Research Institute for Particle and Nuclear Physics,

Budapest 114, P.O. Box 49, H-1525, Hungary
(Received 27 October 2010; published 17 March 2011)

We present a numerical solution for a topologically flat two-dimensional thick brane on a higher

dimensional, spherically symmetric black hole background. The present solution is the last, missing part

of the complete set of solutions for the thickness corrected brane-black hole problem in an arbitrary

number of dimensions. We show that the two-dimensional case is special compared to all the higher

dimensional solutions in the topologically Minkowskian family as being nonanalytic at the axis of the

system. We provide the numerical solution in the near horizon region and make a comparison with the

infinitely thin case.
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I. INTRODUCTION

The study of higher dimensional black holes, branes, and
their interactions is an active field of research in several
different areas of modern theoretical physics [1–4]. One
interesting direction, which has been first introduced by
Frolov [2], is to consider a brane-black hole (BBH) toy
model for studying merger and topology changing transi-
tions in higher dimensional classical general relativity
[5,6] or in certain strongly coupled gauge theories [3,7]
through the AdS/CFT correspondence [8]. Generalizations
of the BBH model by studying thickness corrections to the
Dirac-Nambu-Goto effective brane action [9–11] from
higher order curvature terms have also been studied re-
cently, first by perturbative approaches [12,13] and later
within an exact description [14].

The results of the perturbative approaches concluded
that there is a ’’symmetry breaking’’ between the two
topologically different solution families, as regular pertur-
bative solutions do not exist for Minkowskian embedding
topologies except in the special case of a 2-brane. The
problem, on the other hand, can be solved regularly for any
brane dimensions in the black hole embeddings. This
virtual symmetry breaking phenomenon obtained a simple
resolution in Ref. [13], where it was pointed out that
perturbative thick solutions break down around their thin
counterparts for Minkowski topologies, because the thin
solutions are not analytic at the axis of the system.
Motivated by this observation, in Ref. [14], a general
family of thick solutions could be provided for both top-
ologies within a nonperturbative numerical approach for
all but one exceptional case. The exception, mysteriously,
turned out to be the same case where the regular perturba-
tive solution existed, namely, the two-dimensional, topo-
logically flat case.

The above findings of Ref. [14] naturally raised the
question: How can a regular perturbative solution exist in
the same single case where the regular nonperturbative
solution cannot be found?
In the present paper, we provide the answer to this

question and obtain the so-far missing solution of the
topologically flat 2-brane in an arbitrary number of bulk
dimensions for the thick-BBH system. By including this
solution, we complete the full set of solutions of the prob-
lem that we started presenting first with a perturbative
approach in Ref. [13] and continued with a nonperturbative
description in Ref. [14]. The present work, therefore, is
the final part of the series of papers we addressed to the
thickness corrected BBH problem, and we kindly refer the
reader also to Refs. [13,14] for the more detailed model
setups and for all those definitions, notations, and results
that might be missing here and would make the present
paper completely self-contained.
The plan of the paper is as follows. In Sec. II, we provide

a short overview on the thin- and thick-BBH model setups.
In Sec. III, we obtain the special case of the 2-brane
equation, and in Sec. IV, we analyze its regularity condi-
tions for flat topology. In Sec. V, we provide the non-
perturbative, numerical solution of the problem in the
near horizon region, and in Sec. VI, we draw our
conclusions.

II. THE BRANE-BLACK HOLE SYSTEM

Let us overview quickly the most important properties of
the thin-BBH system introduced by Frolov in Ref. [2] and
its thickness corrected generalization provided in Ref. [13].

A. The thin model

We consider static brane configurations in the back-
ground of a static, spherically symmetric bulk black hole.
The metric of an N-dimensional, spherically symmetric
black hole spacetime is*czinner@rmki.kfki.hu
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ds2 ¼ gabdx
adxb ¼ �fdt2 þ f�1dr2 þ r2d�2

N�2; (1)

where f ¼ fðrÞ and d�2
N�2 is the metric of an (N � 2)-

dimensional unit sphere. One can define coordinates �i
(i ¼ 1; . . . ; N � 2) on this sphere with the relation

d�2
iþ1 ¼ d�2iþ1 þ sin2�iþ1d�

2
i : (2)

The explicit form of f is not important; it is only assumed
that f is zero at the horizon r0, and it grows monotonically
to 1 at the spatial infinity r ! 1, where it has the asymp-
totic form [15]

f ¼ 1� r0
rN�3

: (3)

In the zero thickness case, the test brane configurations
in an external gravitational field can be obtained by solving
the equation of motion coming from the Dirac-Nambu-
Goto (DNG) action [9–11]:

S ¼
Z

dD�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det���

q
; (4)

where ��� is the induced metric on the brane

��� ¼ gab
@xa

@��
@xb

@��
; (5)

and �� (� ¼ 0; . . . ; D� 1) are coordinates on the brane
world sheet. The brane tension does not enter into the brane
equations; thus for simplicity it can be put equal to 1. It is
also assumed that the brane is static and spherically sym-
metric, and its surface is chosen to obey the equations

�D ¼ � � � ¼ �N�2 ¼ �=2: (6)

With the above symmetry properties the brane world sheet
can be defined by the function �D�1 ¼ �ðrÞ, and we shall
use coordinates �� on the brane as

�� ¼ ft; r; �1; . . . ; �ng with n ¼ D� 2: (7)

The parameter n denotes the number of dimensions in
which the brane is rotationally symmetric. In this paper,
we consider the special case of n ¼ 1, i.e. a three-
dimensional brane world sheet, that is, a two-dimensional,
axisymmetric brane embedded into the higher dimensional
black hole spacetime.

With this parametrization the induced metric on the
brane is

���d�
�d�� ¼ �fdt2 þ

�
1

f
þ r2 _�2

�
dr2 þ r2sin2�d�2

n;

(8)

where, and throughout this paper, a dot denotes the deriva-
tive with respect to r and the action (4) reduces to

S ¼ �tAn

Z
L0dr; (9)

L 0 ¼ rnsinn�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fr2 _�2

q
; (10)

where �t is the interval of time and An ¼ 2�n=2=�ðn=2Þ
is the surface area of a unit n-dimensional sphere.

B. Thickness corrections

In the case of a thick brane, the curvature corrected
effective brane action was obtained by Carter and
Gregory in Ref. [16], and the corrections to the thin
DNG action are induced by small thickness perturbations
as

S ¼
Z

dD�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det���

q �
� 8�2

3‘
ð1þ C1Rþ C2K

2Þ
�
;

(11)

where R is the Ricci scalar, K is the extrinsic curvature
scalar of the brane, and the coefficients C1 and C2 are
expressed by the wall thickness parameter ‘ as

C1 ¼ �2 � 6

24
‘2; C2 ¼ � 1

3
‘2: (12)

The parameter � is related to the thickness by

‘ ¼ 1

�
ffiffiffiffiffiffi
2�

p ; (13)

which originates from a field theoretical domain-wall
model where� is the mass parameter and � is the coupling
constant of the scalar field.
After integrating out the spherical symmetric part and

the time dependence on the introduced static, spherically
symmetric, higher dimensional black hole background,
one obtains (see also [13])

S ¼ �tAn

Z
Ldr; (14)

L ¼ � 8�2

3‘
L0½1þ "	�; (15)

where we introduced the notations

" ¼ ‘2

L2
; 	 ¼ aK2 þ bQ; (16)

with

Q ¼ Ka
bK

b
a; a ¼ �2 � 14

24
L2; b ¼ 6� �2

24
L2:

(17)

Here L is the relevant dynamical length scale of the system
which has to be large compared to the thickness parameter
‘ in order for (11) to remain valid. The explicit expressions
of the curvature scalars K and Q are given in Eqs. (35) and
(36) of Ref. [13].
For a detailed introduction of both the thin- and thick-

BBH systems, please refer to Refs. [2,13].
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III. THE 2-BRANE EQUATION

From this section on, we will focus only on the case of
the topologically flat or Minkowskian 2-brane. In two
dimensions ‘‘topologically flat’’ is synonymous with
‘‘topologically Minkowskian,’’ and we retain both terms
for the sake of elegant variation.

In order to obtain the 2-brane equation of motion, first
we observe that the thickness corrected DNG-brane action
is a function of the second derivative of �, and thus the
Euler-Lagrange equation of the problem has the form (see,
for example, [17])

d2

dr2

�
@L

@ €�

�
� d

dr

�
@L

@ _�

�
þ @L

@�
¼ 0: (18)

From (18) the actual equation of motion becomes

�ð4Þ þ T1�
ð3Þ þ T2ð €�; _�; �; fð3Þ; €f; _f; f; rÞ ¼ 0; (19)

where, in the two-dimensional (n ¼ 1) case

T1 ¼ 1

rfF2
½6fþ 4r _fþ 2rf cot� _�� r2fð4fþ r _fÞ _�2

þ 2r3f2 cot� _�3 � 10r3f2 _� €��; (20)

with

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fr2 _�

q
; (21)

and T2 is given in the appendix.
As it is immediate to see, (19) is a 4th-order, highly

nonlinear equation, and it is probably impossible to present
its solutions in closed, analytic form. Hence, the goal of
this paper is to provide a regular, numerical solution of (19)
in arbitrary bulk dimensions for flat topology.

IV. REGULARITYAND BOUNDARY CONDITIONS

It was pointed out first in Ref. [13] that the brane
solutions obtained by Frolov in Ref. [2] are regular but
not analytic (or smooth) at the axis of the thin-BBH
system for the Minkowski embedding branch. In fact,
they are not even differentiable at that point and thus
belong to the class of C0 functions only. According to
this property, and since we found that the perturbative
approach broke down around these solutions for the thick
case, we concluded that the thick brane solutions must
behave significantly differently at the axis of the system;
namely, we expected them to be smooth there. It was
surprising, however, that in the single case of the 2-brane
a regular perturbative solution existed. We gave a detailed
analysis of this solution in Ref. [13].

In Ref. [14], approaching the problem by a new, non-
perturbative numerical method, we looked for the missing
solutions of the Minkowski branch in the class of analytic
functions. We obtained regular boundary conditions at the
axis of the system by considering the series expansion of
the exact 4th-order equation of motion around � ¼ 0. With

this method we successfully provided all the missing,
topologically Minkowskian solutions of the thick-BBH
system, except in the curious case of the 2-brane again.
It was obvious, of course, that a perturbative solution

cannot exist without the existence of a nonperturbative
solution, and also, since explicitly constructed, field theo-
retical domain-wall solutions [18,19] clearly exist in the
case of the 2-brane, we suspected that the lack of this
solution must lie somewhere in the validity of the applied
method. Nevertheless, we were so enthusiastic with pro-
viding the whole family of the missing solutions in the C1
class at the axis, that it did not occur in our mind at the time
that the two-dimensional case might be special in the
topologically Minkowskian family as being the only one
which is nonanalytic at the axis.
The main result of the present paper is the observation

that the two-dimensional solution of the thick-BBH system
is, in fact, a special one in the topologically Minkowskian
family as being C0 (or, as we will soon see, maximum C1)
function at the axis of the system. All the other dimensional
solutions are C1. This also explains why it was only the
two-dimensional case where a perturbative solution could
exist around the thin solution.
In the remainder of this section, we analyze the asymp-

totic behavior of (19) near the axis of the system.We obtain
the necessary boundary conditions from regularity require-
ments and show that these conditions can always be ful-
filled in order to obtain a regular solution.

Asymptotic analysis

We know from the above considerations that a regular
solution of the problem must exist although an analytic
solution could not be found at the axis of the system. Thus
the point r1 on the axis, where �ðr1Þ ¼ 0, must be a regular
singular point of the differential equation (19). Even
though (19) is highly nonlinear, general results from the
theory of local analysis of linear differential equations can
be applied, because we know from physical considerations
that (19) should not develop any nontrivial singular points
in its domain.
Hence, if a solution is not analytic at a regular singular

point (see, e.g., [20]), its singularity must be either a pole
or an algebraic or logarithmic branch point, and there is
always at least one solution of the form

�ðrÞ ¼ ðr� r1Þ
AðrÞ; (22)

where
 is a number called the indical exponent and AðrÞ is
a function which is analytic at r1 and has a convergent
Taylor series.
In the general case,
 can be any number that solves (19).

In our specific case, however, the thin solution, around
which a regular perturbative solution existed, had the
asymptotic form near r1 (see [2,13])

�ðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� r1

p þ � � � ; (23)
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and, similarly, the corresponding perturbative solution
(see [13]) near the same point had the asymptotic form

�thick � �thin þ "’ ¼ ð�þ "�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� r1

p þ � � � ; (24)

where ’ is the perturbation function and � and � are
coefficient functions defined in Ref. [13]. Thus, in order
to obtain the nonperturbative thick solution, we also chose

 to be 1=2, in accordance with the perturbative results.
This choice will also have the advantage of naturally fixing
the free boundary condition in the next section for a unique
numerical solution.

With 
 ¼ 1=2, from (22) we obtain that the asymptotic
form of �ðrÞ near the axis is
�ðrÞ ¼ A1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� r1

p þ A2ðr� r1Þ3=2 þ A3ðr� r1Þ5=2
þ A4ðr� r1Þ7=2 þ � � � : (25)

Plugging this expression and its derivatives into (19), one
can obtain the following asymptotic behavior:

c5

ðr�r1Þ5=2 þ
c3

ðr�r1Þ3=2
þ c1ffiffiffiffiffiffiffiffiffiffiffiffi

r�r1
p þc0þ���¼0; (26)

where the coefficient functions ci are polynomial expres-
sions of Ai with dependences

c1 ¼ c1ðA1; A2; A3; A4Þ; c3 ¼ c3ðA1; A2; A3Þ;
c5 ¼ c5ðA1; A2Þ:

In order to obtain a regular solution, we need to require for
the ci coefficient functions to disappear at r1. From the
explicit forms of ci, one can find that the coefficient A1 can
be chosen freely, and once it is fixed, the remaining co-
efficients A2, A3, and A4 can be computed from the require-
ments that ciðr1Þ ¼ 0. Consequently, the solution is
uniquely determined by the parameter r1 (i.e. the minimal
distance parameter), and the explicit values of the coeffi-
cients A2, A3, and A4 can be immediately obtained from the
ciðr1Þ ¼ 0 equations. (This procedure is, of course, neces-
sary before the numerical setup.) For the question of
existence, the ciðr1Þ ¼ 0 equations are always soluble, as
it turns out that these are linear equations for the Ai

coefficients. The explicit forms of the coefficients A2, A3,
and A4 as successive functions of A1 and r1 are given in the
appendix.
In conclusion, we found that a regular two-dimensional

solution can always be given for the exact problem, and a
unique solution is completely determined by the regularity
requirements once the coefficient A1 is fixed. Since we are
free to choose A1, it can also be put to 0, for example. In
this case the asymptotic form (25) starts with

�ðrÞ ¼ A2ðr� r1Þ3=2 þ � � � ; (27)

whose solution is a C1 function; however, in all other cases
the solution of (19) is C0 at r1.

V. NUMERICAL SOLUTION NEAR THE HORIZON

For illustrating the obtained results, we provide the
numerical solution of the two-dimensional flat problem.
With the experiences we gained from the analysis of the
thick-BBH system in Refs. [13,14], it is not too difficult to
obtain the numerical solution here, after the initial con-
ditions for this specific case have been clarified.
As we discussed earlier, we are free to choose the

coefficient A1 in the asymptotic solution (25).
Nevertheless, in order to be completely consistent with
our previous perturbative results in the flat 2-brane case,
we make the choice

A1 ¼ �þ "� (28)

that was forced upon us by regularity requirements for the
perturbations. Having fixed this freedom, the remaining
three conditions A2, A3, and A4 are determined, as dis-
cussed in the previous section, and the corresponding
numerical solution is unique.
In obtaining the numerical solution we used the

MATHEMATICA� NDSOLVE function. The integration range

went from r1 until 1000 to check the accordance with the
corresponding perturbative solution.
The configurations of the perturbative thick 2-brane

solutions in the near horizon region have been presented
in Ref. [13]. Since the effects of the nonlinearities are
really small even in the gravitationally strong, near horizon
region, the overall global picture of the thickness corrected
brane configurations remains very similar to the perturba-
tive case. To make, however, the small effects visible, we
plot in Figs. 1 and 2 the difference function

��ðrÞ ¼ �ðrÞ � �DNGðrÞ;
of the present thick and the original thin solutions in 4 and
5 dimensions. ��ðrÞ is the exact analog of the perturbation
function "’ðrÞ defined in (24).
Comparing the results with the corresponding plots of

the perturbative solutions in Ref. [13], we find that the
general behavior of the ��ðrÞ curves is essentially the
same. This is, of course, what one expects. On the other
hand, one also expects some differences coming from the

2 3 4 5
r

0.0005

0.0004

0.0003

0.0002

0.0001

FIG. 1 (color online). The picture shows a sequence of near
horizon ��ðrÞ curves in 4 dimensions with the minimum horizon
distance range 1:01 � r1 � 2.
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nonlinear regime of (19), and those are also present if we
enlarge the very near horizon region of the individual
curves. The main features of these differences are plotted
in Figs. 3 and 4.

In Fig. 3, an interesting nonlinear effect appears com-
pared to the perturbative solution. Instead of monotonically
decreasing down to its global minimum, as ’ does in the
perturbative case, the��ðrÞ curve has an extra local pattern
near the minimum horizon distance r1. The extra pattern is
that the curve goes through some additional local extrema
in this region before it finally tends to reach the global
minimum, which is similar to the one in the perturbative

case. During these local differences, however, ��ðrÞ re-
mains negative in this whole region.
On the qualitatively similar curve in Fig. 4, the essential

difference compared to Fig. 3 is that ��ðrÞ develops a sign
change in this region; that is, there are several intersections
in the very near horizon region between the thick and thin
solutions compared to the single intersection that is present
in the case of the perturbative solution (see Fig. 6 in [13]).
With increasing horizon distance r, the above nonline-

arities decay quickly, and the solution agrees very well
with the perturbative results.

VI. CONCLUSIONS

In the present work, we studied the problem of a topo-
logically flat 2-brane in a higher dimensional, thickness
corrected BBH system. We provided a regular, nonpertur-
bative, numerical solution for this special case based on
earlier perturbative considerations [13]. The main result of
this paper is the observation that the two-dimensional case
of the problem is a special one as being nonanalytic at the
axis of the system. This property makes it unique in the
family of thick solutions, as in all other dimensions both
the Minkowski and black hole embedding solutions are
analytic in their entire domain.
We analyzed the asymptotic behavior of the solution and

obtained that it is at most a C1, but in the general case it is
only a C0 function at the axis, just like the corresponding
thin solutions. The initial conditions of the problem are not
uniquely fixed by regularity requirements, and thus the
solution we provided here is not unique. It is, however,
perfectly consistent with our earlier perturbative results.
With the present paper, we have provided the complete

set of solutions of the thick-BBH problem in a series of
three consecutive papers. First, in Ref. [13], we obtained
all possible perturbative solutions, and later, in Ref. [14],
all nonperturbative solutions were given except the case of
the flat 2-brane. The present work completes the set.
In Ref. [13], we analyzed the properties of a topology

changing, quasistatic phase transition in the thick-BBH
system. The obtained results in the present case, however,
do not change our previous findings, and thus we do not
consider the phase transition in this paper.
The result that thickness corrections change the analytic

properties of the brane solutions at the axis of the system
might have some physical consequences. Infinitely thin
brane solutions, naturally, are very important in higher
dimensional physics, but considering the present problem,
one has the intuition that the thickness corrections, which
are in agreement with field theoretic domain-wall models,
made the thin-BBH system more stable in the sense
that regular, analytic solutions could be provided in essen-
tially all cases. Since small physical perturbations to any
system are usually proportional to the derivatives of the
unperturbed solution, it is very possible that the thin-BBH
solutions are not entirely stable against small perturbations

2 3 4 5
r

0.0004

0.0003

0.0002

0.0001

FIG. 2 (color online). The same sequence of��ðrÞ curves as in
Fig. 1 in 5 dimensions.

1.21 1.22 1.23
r

5. 10 6

4. 10 6

3. 10 6

2. 10 6

1. 10 6

FIG. 3 (color online). Near horizon nonlinear effects on a
��ðrÞ curve in 4 dimensions with minimum horizon distance
r1 ¼ 1:19744.

1.28 1.30 1.32
r

6. 10 6

4. 10 6

2. 10 6

2. 10 6

FIG. 4 (color online). Near horizon nonlinear effects on a
��ðrÞ curve in 4 dimensions with minimum horizon distance
r1 ¼ 1:2538.
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in the Minkowski branch. (Stability properties of the BBH
system for the analytic black hole embedding solutions
have been studied, for example, in Ref. [21].) This property,
however, has been cured by the thickness corrections, and it
is somehow in accordance with our physical expectations.

The special case of the 2-brane as ‘‘remaining’’
nonanalytic after thickness corrections, thus, is an unex-
pected property, which makes it physically interesting.
So much the more that thick 2-branes, i.e. thin walls on
black hole backgrounds in standard four-dimensional
general relativity, are certainly real, physical objects.

The fact that these solutions are essentially different
from the corresponding ones in higher dimensions is
remarkable.
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APPENDIX: COEFFICIENT FUNCTIONS

T2 ¼ 1

64ðaþ bÞ"f2r4F4
½ð" _f3r6 _�3ð�8ð10aþ 7bÞ þ 18ð2aþ 3bÞfr2 _�2 þ 6ð2aþ bÞf2r4 _�4 þ ðaþ bÞf3r6 _�6Þ

� 2" _f2r3ð�12ð10aþ 7bÞ _�þ 2ð126aþ 109bÞfr2 _�3 þ 90af2r4 _�5 þ 3ð13aþ 5bÞf3r6 _�7 þ 2ð3aþ bÞf4r8 _�9

� 4ð18aþ 17bÞr €�þ ð5aþ bÞf3r7 _�8 cot�þ 2r _�2ð3ð46aþ 43bÞfr2 €�þ ð�26a� 7bÞ cot�Þ
� f2r5 _�6 csc�ð�23ðaþ bÞ cos�þ ð5aþ bÞfr2 €� sin�Þ � 2fr3 _�4 csc�ðð17a� 4bÞ cos�
þ 3ð7aþ 10bÞfr2 €� sin�ÞÞ � 4 _frðf4r9ð2a"þ 2ð8aþ 3bÞ"fþ r2 þ ðaþ bÞ" €fr2Þ _�9 � 12ð2aþ bÞ"f4r8 _�8 cot�
� 4"ð3ð20aþ 19bÞfr2 €�þ b cot�Þ þ 2r _�ðr2 � 4ð2aþ bÞ" €fr2 þ 180ðaþ bÞ"f2r4 €�2 þ 7a"cot2�

� b"cot2�� 2"fð6ð5aþ 4bÞ þ ð28aþ 19bÞr2 €� cot�Þ � 8a"csc2�Þ

þ f3r7 _�7ð16a"þ 4b"þ 18ð5aþ 2bÞ"fþ 5r2 þ ð9aþ 5bÞ" €fr2 þ 5a"cot2�þ b"cot2�� 4a"csc2�Þ
þ fr3 _�3ð17a"þ 7b"þ 7r2 þ 12b" €fr2 � 60ðaþ bÞ"f2r4 €�2 þ 38a"cot2�þ 2"fð2ð82aþ 63bÞ
� ð47aþ 26bÞr2 €� cot�Þ � 41a"csc2�� 3b"csc2�Þ þ 2"f2r4 _�4 csc�ðð�127a� 55bÞ cos�
þ ð29a� 7bÞfr2 €� sin�Þ þ 2"f3r6 _�6 csc�ðð�49a� 18bÞ cos�þ 6ð2aþ bÞfr2 €� sin�Þ
þ 6"fr2 _�2 csc�ð�15ð2aþ bÞ cos�þ 2ð47aþ 43bÞfr2 €� sin�Þ þ f2r5 _�5 csc�ðð2a"þ 8b"þ 9r2

þ 24ðaþ bÞ" €fr2Þ sin�þ 3"fð2ð3aþ 4bÞr2 €� cos�þ 3ð23aþ 7bÞ sin�ÞÞÞ � 8ð� cot�ðr2 � 2a" €fr2

þ ðaþ bÞ"cot2�� 2a"csc2�� 2b"csc2�Þ � frðr €�ð�r2 þ 2ð10aþ 9bÞ" €fr2 þ ð�7aþ bÞ"cot2�þ 8a"csc2�Þ
þ r _�2 cot�ð3a"� b"þ 4r2 þ ð5aþ 4bÞ" €fr2 þ 4ðaþ bÞ"cot2�� 9a"csc2�� 9b"csc2�Þ þ _�ð12ð3aþ 2bÞ" €fr2

þ 2ð2aþ bÞ"fð3Þr3 þ 1=2ðð9aþ bÞ"� 3r2 þ ðð�7aþ bÞ"þ 3r2Þ cosð2�ÞÞcsc2�ÞÞ
þ 2f5r7 _�6 csc�ð3ð2aþ bÞ"r _�2 cos�� 3ð2aþ bÞ" _� sin�þ r2ð2a"þ b"þ r2 þ a" €fr2Þ _�3 sin�
� 3ð2aþ bÞ"r €� sin�Þ � f2rðr2ð�2a"� 6b"� 11r2 þ 2ð24aþ 13bÞ" €fr2

þ 2ð5aþ 2bÞ"fð3Þr3Þ _�3 þ r _�2ðr2ð4a"� 8b"� 3r2 þ 6ðaþ bÞ" €fr2Þ €�þ 3ð15aþ 7bÞ" cot�Þ
þ 6" _�ðaþ bþ ð15aþ 11bÞr2 €� cot�Þ þ r3 _�4 cot�ð4ð5aþ 2bÞ" €fr2 � 3=2ð5a"þ 9b"� 2r2

þ ða"� 3b"þ 2r2Þ cosð2�ÞÞcsc2�Þ þ 6ðaþ bÞ"r €� csc�ð2r2 €� cos�þ 9 sin�ÞÞ � 1=2f4r5 _�2ð240ðaþ bÞ"r2 _� €�2

þ 240ðaþ bÞ"r3 €�3 � 4" _�3ð�9bþ ð20aþ 17bÞr2 €� cot�Þ þ 2r2 _�5ð�26a"� 16b"� 9r2

þ 3ð�aþ bÞ" €fr2 þ 2a"fð3Þr3 � 2a"cot2�� 8b"cot2�þ 6b"csc2�Þ � 2r _�4ð2ð22aþ 13bÞ" cot�
þ r2 €�ð8a"þ 8b"þ r2 þ 4a" €fr2 � 2ða� bÞ"cot2�þ 4a"csc2�ÞÞ

VIKTOR G. CZINNER PHYSICAL REVIEW D 83, 064026 (2011)

064026-6



� 12"r _�2 €� csc�ð8ðaþ bÞr2 €� cos�þ ð�8a� 11bÞ sin�Þ þ r3 _�6 cot�csc2�ð�2a"� 6b"þ r2

� ð2a"� 2b"þ r2Þ cosð2�Þ þ 8a" €fr2sin2�ÞÞ � 1=2f3r3ð�600ðaþ bÞ"r2 _� €�2 � 40ðaþ bÞ"r3 €�3
þ 2" _�3ð�3ð37aþ 29bÞ þ 2ð25aþ 16bÞr2 €� cot�Þ � 2r _�4ðð�13a� bÞ" cot�þ r2 €�ð16a"þ 16b"þ 3r2

þ 6ð3aþ 2bÞ" €fr2 þ 3ðaþ bÞ"cot2�ÞÞ þ 2r2 _�5ð�35a"� 23b"� 15r2 þ ð11aþ 5bÞ" €fr2 þ 2ð4aþ bÞ"fð3Þr3
� 6a"cot2�� 12b"cot2�þ 3a"csc2�þ 9b"csc2�Þ � 2"r _�2 €� csc�ð36ðaþ bÞr2 €� cos�þ ð295aþ 271bÞ sin�Þ
� r3 _�6 cot�csc2�ð9a"þ 21b"� 4r2 þ ð5a"� 7b"þ 4r2Þ cosð2�Þ � 2ð17aþ 4bÞ" €fr2sin2�ÞÞÞÞ�; (A1)

A4 ¼ 1

188 697 600A5
1ðaþ bÞ"r6 ½32A

3
1r

3ð�15 263 640A3
2ðaþ bÞ"r3 þ 1260A2

1"rð�491aA2 � 608A2b

þ 2573aA3rþ 2540A3brÞ � 5040A1A2"r
2ðA2ð497aþ 503bÞ � 4606A3ðaþ bÞrÞ

þ 420A5
1rð�65a"� 38b"þ 6r2Þ þ A9

1r
3ð�6a"� 34b"þ 7r2Þ þ 14A7

1r
2ð46a"þ 40b"þ 15r2Þ

þ 21A6
1A2r

3ð222a"� 38b"þ 65r2Þ � 630A3
1ð2ð71aþ 176bÞ"þ A2

2r
3ð27a"� 41b"þ 17r2ÞÞ

þ 210A4
1r

2ðA3rð983a"þ 1067b"� 21r2Þ þ A2ð490a"þ 160b"þ 93r2ÞÞÞ þ ð1=ðf3ÞÞ7ð�33 177 600ðaþ bÞ"
þ A1rð90A1" _frð�512ð616aþ 601bÞ � 128A2

1ð611aþ 581bÞ _fr2

�32A4
1ð67aþ119bÞ _f2r4þ40A6

1ð3aþbÞ _f3r6�A8
1ðaþbÞ _f4r8Þþ15fð�1536ð4A1ð646aþ631bÞ"

þ7383A2ðaþbÞ"rþA3
1rð19ðaþbÞ"þ r2ÞÞþA2

1r
2ð768A1ð267aþ248bÞ" €frþ6A6

1ðaþbÞ" _f4r6ð4A1þ15A2rÞ
þA4

1"
_f3r4ð�48A1ð47aþ17bÞþ8ð5aðA3

1�96A2Þþ ðA3
1�150A2ÞbÞrþ21A3

1ðaþbÞ €fr3Þþ16 _fð120A3
1r

3

þ3A3
1ð491aþ685bÞ" €fr3�8"ð9138aA1þ8802A1bþ253aA3

1rþ28668aA2rþ163A3
1brþ28038A2brÞÞ

þ 8A2
1
_f2r2ð240A1ð9a� 5bÞ"� 48A2ð137aþ 148bÞ"r� 3A3

1ð83aþ 29bÞ" €fr3 � 4A3
1rð53a"þ 55b"þ 9r2ÞÞÞÞ

þ 4A5
1f

3r4ð90A2
1"

_f2r2ðA2
1ð41aþ 15bÞ þ 15A1A2ð25aþ 9bÞrþ 5ð18A2

2 þ 5A1A3Þð3aþ bÞr2Þ
þ 3 _fð16A6

1ð2aþ bÞ"r2 � 24 480A2
2ð2aþ bÞ"r2 þ 720A1"rð87aA2 þ 36A2b� 14A3ð2aþ bÞrÞ

þ 60A4
1rð5a"þ 2b"þ 9r2Þ þ 30A3

1r
2ð25A3rð2a"þ r2Þ þ 4A2ð97a"þ 41b"þ 30r2ÞÞ

þ 180A2
1ð�8ð2aþ bÞ"þ 15A2

2ð2a"r3 þ r5ÞÞ þ 15A2
1"r

3ð2 €fð3A2
1ð20aþ 7bÞ

þ 30A1A2ð7aþ 3bÞrþ 5ð18A2
2 þ 5A1A3Þðaþ bÞr2Þ þ A1rðA1ðaþ bÞfð4Þrþ 2fð3ÞðA1ð11aþ 5bÞ

þ 15A2ðaþ bÞrÞÞÞÞ þ rð90A3
1"

€f2r3ðA1ð9aþ 5bÞ þ 15A2ðaþ bÞrÞ þ €fð135A4
1ðaþ bÞ"fð3Þr4

þ 270A3
1r

3ð2A1 þ 5A2rÞ þ 4"ð1080A2
1ð3aþ bÞ þ 15A1ð52aA3

1 � 1788aA2 þ 15A3
1b� 828A2bÞr

þ að8A6
1 þ 2235A3

1A2 � 12 240A2
2 � 5040A1A3Þr2ÞÞ þ 15A1rð�192aA1"f

ð4Þrþ fð3Þð�48A1ð19aþ 6bÞ"
� 2208aA2"rþ A3

1ð38a"rþ 3r3ÞÞÞÞÞ � A1f
2rð384ð270A2

1ð249aþ 239bÞ"

þ 619 200A2
2ðaþ bÞ"r2 þ 30A1"rð15A2ð697aþ 683bÞ � 6682A3ðaþ bÞrÞ þ 30A4

1rð77a"þ 55b"� 3r2Þ
þ 15A3

1A2r
2ð247a"þ 203b"þ 7r2Þ � A6

1r
2ð23a"þ 3b"þ 10r2ÞÞ þ A2

1r
2ð90A4

1ðaþ bÞ" _f3r4ð6A2
1 þ 90A2

2r
2

þ 5A1rð12A2 þ 5A3rÞÞ þ A2
1"

_f2r2ð8ð�360A2
1ð8aþ 3bÞ þ 30A1ð5aA3

1 � 939aA2 þ A3
1b� 339A2bÞr

þ ðA6
1 þ 195A3

1A2 � 1530A2
2 � 630A1A3Þð5aþ bÞr2Þ þ 135A3

1ðaþ bÞr3ðA1f
ð3Þrþ €fð8A1 þ 30A2rÞÞÞ

þ 240A1rð15A1ð49aþ 39bÞ"fð3Þrþ €fð24A1ð52a� 15bÞ"� 6A2ð457aþ 587bÞ"r� 3A3
1ð19aþ 7bÞ" €fr3

� 2A3
1rð76a"þ 50b"þ 9r2ÞÞÞ þ 6 _fð�720A3

1r
3ð2A1 þ 9A2rÞ � 16"ð60A2

1ð105a� 4bÞ þ 20A1ð25aA3
1
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� 330aA2 þ 6A3
1b� 261A2bÞrþ ðað7A6

1 þ 1080A3
1A2 � 30 060A2

2 þ 38 265A1A3Þ þ 3ð3A6
1 þ 190A3

1A2

� 9780A2
2 þ 13 085A1A3ÞbÞr2Þ þ 5A3

1"r
3ð�24A1ð19aþ 7bÞfð3Þrþ €fð�48A1ð51aþ 19bÞ þ 8ð5aA3

1 � 588aA2

þ A3
1b� 204A2bÞrþ 9A3

1ðaþ bÞ €fr3ÞÞÞÞÞ � 24A5
1f

4r3ð4ð2aþ bÞ"ð�180A2
1 þ 1620A1A2rþ ð2A6

1 þ 165A3
1A2

� 3060A2
2 � 1260A1A3Þr2 � 75A2

1ð18A2
2 þ 5A1A3Þr3Þ � 60A2

1r
3ð3A2

1 þ 90A2
2r

2 þ 5A1rð9A2 þ 5A3rÞÞ
� 15A2

1"r
2ð2ð8aþ 3bÞ _fðA2

1 þ 90A2
2r

2 þ 5A1rð6A2 þ 5A3rÞÞ þ rð2 €fð2A2
1ð11aþ 3bÞ þ 15A1A2ð14aþ 3bÞr

þ 10að18A2
2 þ 5A1A3Þr2Þ þ A1rð2aA1f

ð4Þrþ fð3Þð3A1bþ 20aðA1 þ 3A2rÞÞÞÞÞÞÞÞ�jr1 ; (A2)

A2 ¼ 1

26 880A1ðaþ bÞ"fr2 ½ð�14 592ðaþ bÞ"þ A2
1rð3" _frð�16ð29aþ 35bÞ þ 8A2

1ð5aþ bÞ _fr2

� A4
1ðaþ bÞ _f2r4Þ24A2

1f
2rð2A2

1r
3 þ 2ð2aþ bÞ"ð12þ A2

1rÞ þ A2
1"r

2ðð8aþ 3bÞ _fþ 2a €frÞÞ
þ 4fð�8ð6ð31aþ 28bÞ"þ A2

1rð19a"þ 7b"þ 3r2ÞÞ þ 3A2
1r

2ð" €frð�32aþ A2
1ðaþ bÞ _fr2Þ

þ _fð�48ð2aþ bÞ"þ A2
1ð3aþ bÞ" _fr2 þ A2

1rð2a"þ r2ÞÞÞÞÞÞ�jr1 ; (A3)

A3 ¼ 1

1 140 480A3
1ðaþ bÞ"r4 ½ð15"ð56 576ðaþ bÞ þ 384A2

1ð74aþ 69bÞ _fr2 þ 32A4
1ð37aþ 57bÞ _f2r4

� 8A6
1ð10aþ 3bÞ _f3r6 þ A8

1ðaþ bÞ _f4r8ÞÞ=f2 þ 120A5
1fr

3ð6A2
1r

3ðA1 þ 5A2rÞ � 2ð2aþ bÞ"ð12A1 þ A3
1r

� 84A2r� 15A2
1A2r

2Þ þ A2
1"r

2ðð8aþ 3bÞ _fð2A1 þ 15A2rÞ þ rð2aA1f
ð3Þrþ €fð14aA1 þ 3A1bþ 30aA2rÞÞÞÞ

þ ð1=fÞ5A1rð64ð30A1ð101aþ 95bÞ"þ 9372A2ðaþ bÞ"rþ A3
1rð79a"þ 67b"� 9r2ÞÞ

þ A2
1r

2ð�144A1ð35aþ 33bÞ" €fr� 3A4
1ðaþ bÞ" _f3r4ð4A1 þ 15A2rÞ þ A2

1"
_f2r2ð24A1ð37aþ 13bÞ

� 4ðA3
1 � 42A2Þð5aþ bÞr

� 9A3
1ðaþ bÞ €fr3Þ þ 16 _fð12A1ð�30aþ 13bÞ"þ 3A2ð517aþ 523bÞ"rþ 12A3

1ð3aþ bÞ" €fr3

þ A3
1rð40a"þ 34b"þ 9r2ÞÞÞÞ þ 4A2

1r
2ð4ð180A2

1ð25aþ 32bÞ"þ 180A1A2ð173aþ 172bÞ"r
þ 123 480A2

2ðaþ bÞ"r2 þ 30A3
1A2r

2ð37a"þ 65b"� 7r2Þ þ 30A4
1rð30a"þ 16b"þ 3r2Þ

þ A6
1r

2ð6a"� 14b"þ 5r2ÞÞ þ 5A3
1r

2ð3A2
1"

_f2r2ðA1ð25aþ 9bÞ þ 15A2ð3aþ bÞrÞ þ 3 _fð8A1ð29aþ 12bÞ"
� 336A2ð2aþ bÞ"rþ 15A2

1A2r
2ð2a"þ r2Þ þ 4A3

1rð7a"þ 3b"þ 2r2Þ þ A2
1"r

3ðA1ðaþ bÞfð3Þr
þ €fð2A1ð7aþ 3bÞ þ 15A2ðaþ bÞrÞÞÞ þ rð�144aA1"f

ð3Þrþ €fð�72A1ð7aþ 3bÞ"� 672aA2"r

þ 3A3
1ðaþ bÞ" €fr3 þ A3

1ð22a"rþ 3r3ÞÞÞÞÞ�jr1 : (A4)
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