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In this paper we consider how non-Gaussianity of the primordial density perturbation and the amplitude

of gravitational waves from inflation can be used to determine parameters of the curvaton scenario for

the origin of structure. We show that in the simplest quadratic model, where the curvaton evolves as a free

scalar field, measurement of the bispectrum relative to the power spectrum, fNL, and the tensor-to-scalar

ratio can determine both the expectation value of the curvaton field during inflation and its dimensionless

decay rate relative to the curvaton mass. We show how these predictions are altered by the introduction of

self-interactions, in models where higher-order corrections are determined by a characteristic mass scale

and discuss how additional information about primordial non-Gaussianity and scale dependence may

constrain curvaton interactions.
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I. INTRODUCTION

Inflation solves the horizon problem, the flatness prob-
lem, and the monopole problem. Furthermore, it gives a
simple way to source primordial perturbations from quan-
tum vacuum fluctuations. Any light scalar field during a
period of inflation with an almost constant Hubble expan-
sion acquires an almost scale-invariant power spectrum of
fluctuations that could be the origin of primordial density
perturbations [1,2].

The curvaton is one such field which is only weakly
coupled and hence decays on a time scale much longer than
the duration of inflation [3–7]. Its lightness enables the
field to acquire super-Hubble perturbations from vacuum
fluctuations during inflation. When it decays into radiation
some time after inflation has ended, its decay can source
the perturbations in the radiation density of the universe,
and all other species in thermal equilibrium [8,9].

One of the distinctive predictions of the curvaton sce-
nario for the origin of structure is the possibility of non-
Gaussianity in the distribution of the primordial density
perturbations [10–12]. Treating the curvaton as a pressure-
less fluid one can estimate the resulting non-Gaussianity
either analytically by treating the decay of the curvaton as
instantaneous [9–11], or numerically [13,14], showing that
the non-Gaussianity parameter fNL becomes large when
the curvaton density at the decay time becomes small.

The nonlinear evolution of the field before it decays can
also contribute to the non-Gaussianity of the final density
perturbation. The authors of [15–20] look at the effect of
polynomial corrections to the quadratic curvaton potential.
In some cases the curvaton density can be significantly
subdominant at decay and still yield small fNL [17]. For
small values of fNL, the non-Gaussianity can instead be
probed by the trispectrum parameter, gNL.

Primordial gravitational waves on super-Hubble scales
are also present since they are an inevitable by-product at

some level of an inflationary expansion. Non-Gaussianity
alone could distinguish between the curvaton scenario and
the conventional inflaton scenarios for the origin of struc-
ture since a single inflaton field is not capable of sourcing
significant non-Gaussianity [21]. But non-Gaussianity and
gravitational waves together can give tight constraints on
curvaton model parameters. Nakayama et al [22] recently
studied the effects of the entropy released by the decay of a
curvaton field with a quadratic potential on the spectrum of
gravitational waves that are already subhorizon scale at the
decay and consider the possibilities of future direct detec-
tion experiments, such as BBO or DECIGO, to constrain
the parameter space. We consider self-interactions of the
curvaton field in addition to the quadratic potential [20,23].
We will restrict our attention to gravitational waves on
super-Hubble scales when the curvaton decays. This in-
cludes scales which contribute to the observed CMB an-
isotropies, where the power in gravitational waves is
typically given by the tensor-to-scalar ratio for the primor-
dial metric perturbations, rT .
In this paper we will investigate how non-Gaussianity

and gravitational waves provide constraints on curvaton
model parameters. For any value of the curvaton model
parameters we can obtain the observed amplitude of
primordial density perturbations on large scales by adjust-
ing the Hubble scale of inflation, which we assume to
be an independent parameter in the curvaton model.
However observational constraints on the tensor-to-scalar
ratio places an upper bound on the inflationary Hubble
scale, while non-Gaussianity constrains the remaining
model parameters.
We numerically solve the evolution of the curvaton field

in a homogeneous radiation-dominated era after inflation
allowing for nonlinear evolution of the curvaton field due
to both explicit self-interaction terms in the potential and
the self-gravity of the curvaton. In particular we consider
quadratic and nonquadratic potentials which reduce to a
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quadratic potential about the minimum with self-
interaction terms governed by a characteristic mass scale,
corresponding to cosine or hyperbolic-cosine potentials.
Cosine potentials arise for pseudo–Nambu-Goldstone–
boson axion fields and are often considered as candidate
curvaton fields [24–28]. The hyperbolic cosine is represen-
tative of a potential where self-interaction terms become
large beyond a characteristic scale. In each case we show
how the nonlinearity parameter, fNL, and tensor-to-scalar
ratio, rT , can be used to determine model parameters.

In Sec. II we review the perturbations generated during
inflation and how these are transferred to the primordial
density perturbation in the curvaton scenario. In Sec. III
we present the numerical results of our study for three
different curvaton potentials. We conclude in Sec. IV.

II. INFLATIONARY PERTURBATIONS
IN THE CURVATON SCENARIO

In the curvaton scenario, initial quantum fluctuations in
the curvaton field, �, during a period of inflation at very
early times give rise to the primordial density perturbation
in the subsequent radiation-dominated universe some
time after inflation and after the curvaton field has decayed
into radiation, e.g., the density perturbation in the epoch
of primordial nucleosynthesis. This primordial density
perturbation is conveniently characterized by the gauge-
invariant variable, � , corresponding to the curvature
perturbation on uniform-density hypersurfaces [29].

Throughout this paper we will use the �N formalism
[11,30–32] to compute the primordial density perturbation
in terms of the perturbation in the local integrated expan-
sion, N, from an initial spatially-flat hypersurface during
inflation, to a uniform-density hypersurface in the
radiation-dominated era

� ¼ �N ¼ N0��� þ 1

2
N00��2� þ � � � ; (1)

where ��� ¼ �� � h��i and primes denote derivatives
with respect to ��, the local value of the curvaton during
inflation.

Quantum fluctuations of a weakly coupled field on
super-Hubble scales (k=a � H) during slow-roll inflation
is well described by a Gaussian random field with two-
point function

h�~k1
�~k2

i ¼ ð2�Þ3P�ðk1Þ�3ð ~k1 þ ~k2Þ: (2)

We define the dimensionless power spectrum P �ðkÞ as

P �ðkÞ � k3

2�2
P�ðkÞ: (3)

The power spectrum of curvature perturbations is thus
given, at leading order, by

P � ðkÞ ¼ N02P ��ðkÞ (4)

and we define the spectral index as

n� � 1 � d lnP �

d lnk
; (5)

and the running of the spectral index as

�� �
d lnjn� � 1j

d lnk
: (6)

The connected higher-order correlation functions are
suppressed for a weakly coupled scalar field during slow-
roll inflation, but nonlinearities in the dependence ofN and
hence � on the initial curvaton value in Eq. (1) can lead to
significant non-Gaussianity of the higher-order correlation
functions, in particular, the bispectrum

h� ~k1
� ~k2

� ~k3
i ¼ ð2�Þ3B� ðk1; k2; k3Þ�3ð ~k1 þ ~k2 þ ~k3Þ: (7)

The bispectrum is commonly expressed in terms of the
dimensionless nonlinearity parameter, fNL, such that

B� ðk1; k2; k3Þ ¼ 6

5
fNL½P� ðk1ÞP� ðk2Þ þ P� ðk1ÞP� ðk3Þ

þ P� ðk2ÞP� ðk3Þ�: (8)

If the initial field perturbations, ���, correspond to a
Gaussian random field then it follows from Eq. (1) that fNL
is independent of the wave numbers, ki, and is given by

fNL ¼ 5

6

N00

N02 : (9)

In practice nonlinear evolution of the field can lead to non-
Gaussianity of the field perturbations on large scales and a
weak scale dependence of fNL [33–35].
Current bounds from the CMB on local-type non-

Gaussianity require �10< fNL < 74 [36]. Large-scale
structure surveys lead to similar bounds [37].

A. Isocurvature field perturbations during inflation

Perturbations of an isocurvature field, whose fluctua-
tions have negligible effect on the total energy density,
can be evolved in an unperturbed Friedmann-Robertson-
Walker (FRW) background and obey the wave equation

€��þ 3H _��þ
�
k2

a2
þm2

�

�
�� ¼ 0; (10)

where the effective mass-squared is given by m2
� ¼

@2V=@�2. During any period of accelerated expansion
quantum vacuum fluctuations on small sub-Hubble scales
(comoving wave number k > aH) are swept up to super-
Hubble scales (k < aH). For a light scalar field, �, with
effective mass much less than the Hubble rate during
inflation (m2

�� � H2�) the power spectrum of fluctuations

at Hubble exit is given by

P �� ’
�
H�
2�

�
2

for k ¼ a�H�: (11)
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On super-Hubble scales the spatial gradients can be ne-
glected and the overdamped evolution (10) for a light field
is given by

H�1 _�� ’ �����; (12)

where we define the dimensionless mass parameter

�� ¼ m2
�

3H2
: (13)

Combined with the time dependence of the Hubble rate in
Eq. (11), given by the slow-roll parameter � � � _H=H2,
this leads to a scale dependence at any given time of the
field fluctuations on super-Hubble scales [5,38]

�n� � d

d lnk
P � ’ �2�þ 2��; (14)

which is small during slow-roll inflation, � � 1, for light
fields with j��j � 1.

Self-interaction terms in the curvaton potential during
inflation only modify the predictions for the power spec-
trum and spectral tilt beyond these leading-order results in
the slow-roll approximation. However they do lead to time
dependence of the effective mass of the � field, so that the
effective mass appearing in the expression for the spectral
tilt may differ from that when the curvaton oscillates about
the minimum of its potential some time after inflation. In
particular the effective mass-squared during inflation could
be negative, leading to a negative tilt, �n� < 0, even if � is

very small.
The time dependence of both � and ��

H�1 _�� ’ 2��� � �2
�	 (15)

H�1 _� ’ �2�ð�	 � 2�Þ (16)

during slow-roll inflation driven by an inflaton field
with dimensionless mass �	 ¼ V		=3H

2 and �2
�	 ¼

ð@4V=@�3@	Þ=9H4 gives rise to a running of the spectral
index in Eq. (14) [39]

�� � d ln�n�

d lnk
’ 4�ð�2�þ �	 þ ��Þ � 2�2

�	: (17)

In the following we shall make the usual assumption that
the curvaton has no explicit interaction with the inflaton, so
that ��	 ¼ 0 and the running is second order in slow-roll

parameters and expected to be very small. Note, however,
that in the curvaton scenario the tensor-to-scalar ratio and
spectral tilt do not directly constrain the slow-roll parame-
ters � and �	 as in single-inflaton-field inflation, so they

could be relatively large.

B. Transfer to curvaton density

In the curvaton scenario, these super-Hubble fluctuations
in a weakly coupled field whose energy density is negli-
gible during inflation generates the observed primordial

curvature perturbation, � , after inflation if the curvaton
comes to contribute a non-negligible fraction of the total
energy density after inflation.
As the curvaton density becomes non-negligible one

must include the backreaction of the field fluctuations on
the spacetime curvature. However on super-Hubble scales,
k � aH, where spatial gradients and anisotropic shear
become negligible we can model the nonlinear evolution
of the field in terms of locally FRW dynamics [40]. In the
following we will employ this ‘‘separate universe’’ picture
[32] and we have

€�Lþ3HL _�LþV�L’0; H2
L’

8�G

3

�
VLþ1

2
_�2
L

�
; (18)

where �L ¼ �þ ��, HL, VL, and V�L denote the field,

Hubble rate, potential, and potential gradient smoothed
on some intermediate scale ðaHÞ�1 � L < k�1, and dots
denote derivatives with respect to the local proper time.
Once the Hubble rate drops below the effective mass

scale, the long-wavelength modes of the field, �L, oscillate
about the minimum of the potential. Any scalar field with
finite mass has a potential which can be approximated by a
quadratic sufficiently close to its minimum, and the effec-
tive equation of state, averaged over several oscillation
times, becomes that of a pressureless fluid


� ¼
�
1

2
m2

��
2
L þ 1

2
_�2
L

�
/ a�3: (19)

Thus the energy density of the curvaton grows relative to
radiation, 
� / a�4. The curvaton must eventually decay if

it is to transfer its inhomogeneous density into a perturba-
tion of the radiation density. We assume a slow, perturba-
tive decay of the curvaton at a fixed decay rate, � � m
(though we note that oscillating fields can also undergo a
nonperturbative decay, or partial decay at earlier times
[41,42]).
In this work we will numerically solve for the evolution

of the curvaton field until it begins oscillating and deter-
mine its subsequent energy density. In order to follow the
subsequent evolution and eventual decay of the curvaton
density on time scales, ���1, much longer than the oscil-
lation time, �m�1, we adopt the results of Ref. [43].
Once the curvaton field behaves as a pressureless fluid,

one can show that phase-space trajectory is determined by
the dimensionless parameter [43,44]

p � lim
�=H!0

��

ffiffiffiffiffi
H

�

s
: (20)

In practice one can only treat the curvaton field as a
pressureless fluid once it has begun to oscillate about the
minimum of its potential. Taking the density of the curva-
ton when it begins to oscillate, 
�;osc ’ m2�2

osc=2 in

Eq. (20), we can estimate p as [5]
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p ’ pLW � �2
osc

6m2
Pl

ffiffiffiffi
m

�

r
; (21)

where the subscript ‘‘osc’’ denotes the time for which

Hosc ¼ m� and mPl�ð8�GÞ�1=2’2:43�1018 GeV is the

reduced Planck mass. Although the actual time when the
curvaton begins oscillating is also not precisely defined

this need not be a problem as��

ffiffiffiffiffiffiffiffiffiffi
H=�

p
is a constant while

the curvaton is subdominant at early times, since�� / a /
t1=2 and H / t�1 for a pressureless fluid in a radiation-
dominated era, and we simply require �2

osc=6m
2
Pl � 1.

However, Eq. (20) only estimates p in terms of the
curvaton field value when the curvaton starts oscillating
and we have assumed it has a quadratic potential at this
time. More generally, to allow for self-interactions of the
curvaton field that could lead to nonlinear evolution after
inflation and could still be significant when the curvaton
begins to oscillate we define a transfer function for the field
�osc ¼ gð��Þ [13] such that

p � g2ð��Þ
6m2

Pl

ffiffiffiffi
m

�

r
; (22)

in order to relate the density of the curvaton at late times, as
it oscillates about the minimum of its potential, to the value
of the curvaton field during inflation, ��.

C. Transfer to primordial perturbation

The amplitude of the resulting primordial curvature
perturbation depends both on the perturbation in the cur-
vaton density, �
�=
�, and the energy density in the

curvaton field when it decays. To first-order in the pertur-
bations we write

� ¼ R�

�
�
�

3
�

�
osc

¼ R�

�p

3p
; (23)

where 0<R� < 1 is a dimensionless efficiency parameter

related to the fraction of the total energy density in the
curvaton field when it decays into radiation. Using the
separate universe picture, we take derivatives of the same
function gð��Þ defined in terms of the homogeneous back-
ground fields in Eq. (22) to determine the linear density
perturbation and higher-order perturbations in terms of the
field perturbations during inflation. We thus have the trans-
fer function for linear curvaton field perturbations during
inflation into the primordial curvature perturbation

� ¼ R�

1

3

p0���
p

¼ R�

2

3

g0��
g

���
��

; (24)

where primes denote derivatives with respect to ��.
Modeling the transfer of energy from the curvaton field

to the primordial radiation by a sudden decay at a fixed
value of Hdecay ¼ � gives the transfer parameter [5,9]

R� 	
�

3
�

4
total � 
�

�
decay

: (25)

However this expression is of limited use if we want to
predict the primordial curvature perturbation in terms of
the inflationary value of the curvaton field and its pertur-
bations because this expression refers to the curvaton den-
sity at the decay time. The curvaton density changes with
time and the decay time is not precisely defined since the
decay happens over a finite period of time around H � �.
More generally, the transfer parameter, R� in Eq. (23), is

a smooth function of the phase-space parameter p defined
in Eq. (20). One can determine R� as a function of p

numerically, which gives the analytic approximation [44]

R�ðpÞ ’ 1�
�
1þ 0:924

1:24
p

��1:24
: (26)

A distinctive feature of the curvaton scenario is the
possibility that the primordial curvature perturbation may
have a significantly non-Gaussian distribution even if the
curvaton field itself is well described by a Gaussian distri-
bution. This is due primarily to the fact that the energy
density of a massive scalar field when it oscillates about the
minimum of its potential is a quadratic function of the field.
Simply assuming a linear transfer (23) from a quadratic
curvaton density to radiation yields [9]

� ¼ R�

3

�
2���þ ��2

�2

�
; (27)

and hence a primordial bispectrum of local form [45]
characterized by the dimensionless parameter

fNL ¼ 5

4R�

: (28)

This provides a good estimate of the non-Gaussianity
for a quadratic curvaton with Gaussian distribution when
fNL 
 1.
Incorporating the full nonlinear transfer for a quadratic

curvaton density, while assuming the curvaton field has a
Gaussian distribution at a sudden decay, yields corrections
of order unity [10,11,13]

fNL ’ 5

4R�

� 5

3
� 5R�

6
: (29)

Numerical studies [13,14] confirm that this sudden-decay
formula for fNLðR�Þ represents an excellent approximation

to the actual exponential decay, n� / e��t=a3, where we

take R� in Eq. (29) to be the linear transfer efficiency

defined by Eq. (23). In particular we find the robust result
fNL � �5=4 for any value of R�.

More generally, if we allow for possible nonlinear evo-
lution of the local curvaton field after Hubble exit through
the function gð��Þ defined in Eq. (22), and allow for
possible variation of the transfer parameter R� with the
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value of the curvaton field (but still take the curvaton
fluctuations to be Gaussian at Hubble exit) then we
have [13]

fNL ¼ 5

4R�

��
1þ gg00

g02

�
þ R�

0ðg=g0Þ � 2R�

R�

�
: (30)

This expression follows directly from Eq. (9) when we take

N0 ¼ 2
3R�

g0
g .

If we adopt the sudden-decay approximation for R�ðpÞ
then Eq. (30) reduces to [11]

fNL ’ 5

4R�

�
1þ g00g

g02

�
� 5

3
� 5R�

6
: (31)

D. Metric perturbations during inflation

In most studies of the curvaton scenario it is assumed
that the amplitude of scalar or metric perturbations gen-
erated during inflation are completely negligible. Indeed
the original motivation for the study of the curvaton was to
show that it was possible for fluctuations in a field other
than the inflaton to completely dominate the primordial
curvature perturbation. However gravitational waves de-
scribe the free oscillations of the metric tensor, indepen-
dent (at first order) of the matter perturbations, and some
amplitude of fluctuations on super-Hubble scales is inevi-
tably generated during an accelerated expansion. The
resulting power spectrum of tensor metric perturbations
is given by

P T ¼ 8

m2
Pl

�
H�
2�

�
2
: (32)

The power spectrum of primordial gravitational waves if
they can be observed by future cosmic microwave back-
ground (CMB) experiments, such as CMBPol [46], would
give a direct measurement of the energy scale of inflation
and hence the Hubble rate, H�. In practice the amplitude
of gravitational waves is usually expressed relative to the
observed primordial curvature perturbation as the tensor-
to-scalar ratio

rT �P T

P �

’8:1�107
�
H�
mPl

�
2¼0:14�

�
H�

1014 GeV

�
2
: (33)

Current observational bounds from CMB anisotropies are
partially degenerate with bounds on the spectral index and
dependent on theoretical priors, but can be used to give
rT < 0:24 [36]. Bounds from the power spectrum of the
B-mode polarization of the CMB are less model dependent
and require rT < 0:72 [47].

The tensor perturbations are massless and the scale
dependence of the spectrum after Hubble exit (32) is
simply due to the time dependence of the Hubble rate,

nT ¼ �2�: (34)

Thus the tilt of the gravitational wave spectrum on very
large scales today gives a direct measurement of the equa-
tion of state during inflation, w ¼ �1þ ð2�=3Þ.
If inflation is driven by a light inflaton field, ’, this

inflaton field also inevitably acquires a spectrum of fluctu-
ations during the accelerated expansion, P’� ¼ ðH=2�Þ2�.
These adiabatic field perturbations [48] correspond to a
curvature perturbation at Hubble exit during inflation

P �� ¼
�
H

_’

�
2

�
P’� ¼

1

16�
P T: (35)

The scale dependence of the tensor spectrum (34) together
with the time dependence of � during inflation, given in
Eq. (16), leads to a scale dependence of the curvature
perturbation from adiabatic perturbations

n�� � 1 ¼ �6�þ 2�’; (36)

where the dimensionless inflaton mass parameter is �’ ¼
m2

’=3H
2. Note that the primordial curvature perturbation

due to canonical inflaton field perturbations is effectively
Gaussian with jfNLj� � 1 suppressed by slow-roll
parameters [21].
In the presence of a curvaton field, the adiabatic pertur-

bations during inflation represent only a lower bound on
the primordial curvature perturbation and one should add
the uncorrelated contributions to the primordial curvature
perturbation from both the curvaton field (24) and the
inflaton field (35),

P � ¼
�
2g0R�

3g

�
2
P � þ 1

16�
P T: (37)

For example, if the spectral tilt of the primordial curva-
ture perturbation from a very light curvaton field (14) is
n� � 1 	 �0:03 and primarily due to the time dependence

of the Hubble rate during inflation, n� � 1 	 nT ’ �2�,

then we have 16� 	 16� 0:015 ¼ 0:24 and hence P �� 	
4P T . Hence P �� � P � for rT � 0:3.
In the following we will assume � is large enough that

the inflaton contribution to the primordial curvature per-
turbation can be neglected even if the primordial tensor
perturbations are potentially observable.

III. NUMERICAL RESULTS

In our numerical analysis we have used the separate
universe equations (18) to evolve the local value of �L for
long-wavelength perturbations of the curvaton field. This
incorporates both the nonlinear self-interactions included
in the potential of the curvaton, Vð�LÞ, and nonlinearity of
the gravitational coupling through the dependence of the
Hubble expansion rate on the curvaton field kinetic and
potential energy density in the Friedmann equation.
We do not solve for the curvaton field evolution during

inflation or during (p)reheating at the end of inflation since
this would be model dependent. Instead we start the
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evolution with a radiation density such that the initial
Hubble rate is much larger than the effective mass of the
curvaton, consistent with our assumption that the initial
value of the curvaton field is effectively the same as its
value at the end of inflation, ��.

We evolve the curvaton until it begins to oscillate in the
minimum of its potential and can accurately be described
as a pressureless fluid, in order to exploit earlier work
which used a fluid model to study the linear [44] and
nonlinear [13] transfer of the curvaton perturbation to
radiation and hence the primordial curvature perturbation.
Thus we evolve the curvaton field until 
� / a�3. Note

that this may be sometime after the time when H ¼ m�

since the curvaton potential may have significant nonqua-
dratic corrections at this time.

We need to be able to determine the dimensionless
parameter p defined in Eq. (20) which determines the
transfer parameter R�ðpÞ. To do so we identify

p ¼
ffiffiffiffi
m

�

r
pFW; (38)

where

pFW � ��ð1���Þ�3=4

ffiffiffiffiffi
H

m

s
(39)

is constant for a pressureless fluid, �, plus radiation. It is
straightforward to check that Eq. (38) coincides with the
definition of p given in Eq. (20), which is evaluated in
the early time limit, �� ! 0. The advantage of our vari-

able, pFW, is that it can evaluated at late times, so long as
the curvaton decay is negligible, � � H, whereas at early
times the curvaton field may never actually evolve like a
pressureless fluid and we may not have a well-defined early

time limit for ��

ffiffiffiffiffiffiffiffiffiffi
H=�

p
.

In our numerical code following the curvaton field
evolution we use Eq. (18) with the rescaled time variable
� ¼ mt, implicitly setting � ¼ 0, such that

�00 þ 3h�0 þ V�

m2
¼ 0; (40)

h2 ¼ 8�

3m2
Pl

�
V

m2
þ 1

2
�02

�
: (41)

For a quadratic potential we have V�=m
2 ¼ � and

V=m2 ¼ �2=2 and hence the evolution of �ð�Þ is indepen-
dent of m. We evolve the curvaton field from an initial
value �i ¼ �� whenH2

i ¼ 100V��. This is consistent with

the usual assumption that the curvaton is a late-decaying
field with � � m. We are then able to determine pFWð��Þ
which approaches a constant as the curvaton density ap-
proaches that of a pressureless fluid at late times. We then
obtain the actual parameter p in Eq. (38) for a finite decay

rate, by multiplying by a finite value of
ffiffiffiffiffiffiffiffiffiffi
m=�

p
. Thus the

parameter p is a function of �� and m=�, but not m and �
separately.

We use the previously determined [44] transfer function
R�ðpÞ given by Eq. (26). From Eq. (11) and (24) we then

have

P � ¼
�
p0R�ðpÞ

3p

�
2
�
H�
2�

�
2
: (42)

Normalizing the amplitude of the primordial power spec-
trum to match the observed value on CMB scales, P � ’
2:5� 10�9 [36], then fixes the amplitude of vacuum
fluctuations of the curvaton field during inflation and hence
the scale of inflation

H� ¼ 9:4� 10�4

�
p

p0R�ðpÞmPl

�
mPl (43)

or, equivalently, the tensor-scalar ratio

rT ¼ 72

�
p

p0R�ðpÞmPl

�
2
: (44)

The nonlinearity parameter, fNL, is given by Eq. (30).
Note that for rT we must determine not only p but also its
first derivative, p0, with respect to the initial field value, ��.
For the nonlinearity parameter, fNL, we also need the
second derivative, p00, and to describe higher-order non-
Gaussianity we would need higher derivatives. In terms of
the parameter p, Eq. (30) becomes

fNL ¼ 5

2R�

�
pp00

p02 þ R�
0

R�

p

p0 � 1

�
: (45)
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FIG. 1 (color online). Dimensionless curvaton parameter pFW,
defined in Eq. (39) as a function of initial curvaton field value,
��, for three different potentials: quadratic potential (dotted blue
line), cosine potential with f ¼ 1018 GeV (upper red dashed
line), and hyperbolic-cosine potential with f ¼ 1018 GeV (lower
green dot-dashed line). For comparison, the solid black line
shows �2�=3m2

Pl, which provides an excellent approximation

for �� � mPl.
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A. Quadratic curvaton

We show the results in Figs. 1 and 2 for a quadratic
curvaton potential. In this case we are able to compare
our numerical result against an exact analytic expression
while the curvaton density remains negligible during the
radiation-dominated era. In this case the curvaton field is
given by

� ¼ ���
25=4�ð3=4Þ

J1=4ðmtÞ
ðmtÞ1=4 ; (46)

where J1=4ðmtÞ is the Bessel function of the first kind

of order 1=4. This has the asymptotic solution � ’
1:023�� cosðmt� 3�=8Þ=ðmtÞ3=4, and substituting this
into Eq. (20) gives

p ’ 1:046

ffiffiffiffi
m

�

r
�2�
3m2

Pl

: (47)

We see from Fig. 1 that Eq. (47) gives an excellent
approximation to the numerical results for �� � mPl.
Contour plots are given in Fig. 2 for the nonlinearity

parameter, fNL, and the inflation Hubble scale, H�, (and
hence tensor-scalar ratio, rT) for a non-self-interacting
curvaton with a quadratic potential.
Given that the analytic result for pð��Þ given in Eq. (47)

is an excellent approximation, except for �� �mPl, we
deduce that �osc ¼ gð��Þ defined by Eq. (21) is a linear

function gð��Þ ’
ffiffiffi
2

p
��. Thus the nonlinearity parameter,

fNL, is given in terms of R� in Eq. (29). We have two

regimes for the transfer function, R�ðpÞ, given by Eq. (26).
For �� 
 ð�=mÞ1=4mPl we have p 
 1 and hence R� ’ 1,

while for �� � ð�=mÞ1=4mPl we have p � 1 and hence
R� ’ 0:924p. Thus we find from Eq. (29)

fNL ’
8><
>:
�5=4 for �� 
 ð�=mÞ1=4mPl

3:9
ffiffiffi
�
m

q
m2

Pl

�2�
for �� � ð�=mÞ1=4mPl

: (48)

Potentially observable levels of non-Gaussianity (5<
fNL < 100) are found in a band of parameter space

FIG. 2 (color online). Contour plots showing observational
predictions for a curvaton field with quadratic potential as a
function of the dimensionless decay rate, log10ðm=�Þ, and the
initial value of the curvaton, log10ð��=GeVÞ. Top panel: contour
lines for the non-Gaussianity parameter, fNL (in blue). The
dotted black lines correspond to Eq. (28). Middle panel: contour
lines for inflationary Hubble scale, log10ðH�=GeVÞ. The plotted
contour lines correspond to H� ¼ 1013, 1014, 1015 GeV. The
black dotted lines correspond to the two limits of Eq. (51).
Bottom panel: contour lines for both the non-Gaussianity
parameter, fNL (blue thick solid line) and tensor-scalar ratio,
rT (red dotted line).
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�� 	 ð1–4Þ � 1017 GeV

�
�

10�6m

�
1=4

: (49)

The degeneracy between values of �� and �=m, which
would be consistent with the same value of fNL, is broken
by a measurement of the scalar to tensor-ratio, rT .
Substituting the approximation (47) in Eq. (43). We have

H� ’ 4:7� 10�4 ��
R�ðpÞ : (50)

This yields two simple expressions for H� according to
whether p 
 1 and hence R� ’ 1 or p � 1 and hence

R� ’ 0:924p. We thus have

H� ’
8><
>:
4:7� 10�4�� for �� 
 ð�=mÞ1=4mPl

1:5� 10�3
ffiffiffi
�
m

q
m2

Pl

��
for �� � ð�=mÞ1=4mPl

: (51)

Even a conservative bound on the tensor-scalar ratio
such as rT < 1 thus places important bounds on the
curvaton model parameters. First, there is the model-
independent bound on the inflation Hubble scale, H� <
2:7� 1014 GeV. In the case of a quadratic curvaton
potential this imposes an upper bound on the value of the
curvaton during inflation

�� < 5:7� 1017 GeV; (52)

which is consistent with �� <mPl required to use the
analytic approximation (47). We also find an upper bound
on the dimensionless decay rate

�

m
< 0:023

�
��
mPl

�
2
; (53)

and in any case �< 10�3m. For example, for a TeV mass
curvaton [49] we require �< 1 GeV. More generally, if
we require the curvaton to decay before big-bang nucleo-
synthesis (BBN) at a temperature of order 1 MeV,
we require �>HBBN and hence m> 103HBBN. On the
other hand if the curvaton decays before decoupling of
the lightest supersymmetric particle at a temperature of
order 10 GeV, we require �> 10�17 GeV and hence
m> 10�14 GeV.

Bounds on the curvaton decay rate due to gravitational
wave bounds were also studied recently in Ref. [22], which
also considered the case where curvaton oscillations begin
immediately after inflation has ended at H <m.

We note that bounds on the tensor-scalar ratio rule out
large regions of parameter space that would otherwise give
rise to large non-Gaussianity.

A simultaneous measurement of primordial non-
Gaussianity, fNL, and primordial gravitational waves, rT ,
for a non-self-interacting curvaton field with quadratic
potential would determine both the energy scale of infla-
tion, H�, and the expectation value of the curvaton, ��. It
would also determine the dimensionless decay rate �=m,
but not the absolute value of the mass and decay rate

separately. More optimistically, if the gravitational ampli-
tude was large enough to determine the tensor tilt, nT , and
hence �, the scale dependence of the scalar spectrumwould
determine the curvaton mass,

m2
� ¼ 3��H

2� ’ 3

2
ðn� � 1� nTÞ rT

2:0� 107
m2

Pl: (54)

However once � is known then from Eq. (35) we also
know the curvature perturbation due to inflaton perturba-
tions during slow-roll inflation, P �� ¼ ðrT=16�ÞP � . If � �
0:02, as is commonly assumed, then our assumption that
the inflaton perturbations are negligible is no longer valid
for rT � 0:3. In this case we need to consider a mixed
inflaton-curvaton model. This inflaton-curvaton model has
a much richer phenomenology [50–54] and we leave the
study of the combined non-Gaussianity and gravitational
wave bounds in this scenario to future work. Otherwise
we must assume � is sufficiently large that the inflaton-
generated perturbations remain negligible.

B. Self-interacting curvaton

We have seen that nonlinear field evolution due to
gravitational backreaction of the curvaton field with a
quadratic potential is limited to large initial values �� �
mPl, which are incompatible with bounds on the tensor-
scalar ratio in the curvaton scenario with a quadratic po-
tential. However significant nonlinear field evolution may
arise from self-interactions of the curvaton field, due to
deviations from a purely quadratic potential. Polynomial
self-interaction terms of the form Vint / �n where n � 4
have been shown to have a large effect on observational
predictions in some regions of parameter space [17,19,20].
Rather than choose a monomial correction term, we

choose a functional form that leads to significant correc-
tions at a specified mass scale. In particular we are moti-
vated by axion-type potentials where the curvaton field
has a natural range, f. Thus we consider a cosine-type
potential, with a smaller effective mass for �� � f and a
hyperbolic-cosine potential which has a much larger mass
for �� � f. In both cases the corrections lead to a finite
range �� � f for the initial curvaton field.

1. Cosine potential

We consider an axion-type potential for a weakly broken
Uð1Þ-symmetry [5,55]

Vð�Þ ¼ M4

�
1� cos

�
�

f

��
’ 1

2
m2�2 � 1

24

m2�4

f2
þ � � � ;

(55)

where m2 ¼ M4=f2 � M2 and we have an additional
model parameter corresponding to the mass scale f 
 M
which determines the relative importance of self-
interaction terms at a given curvaton field value. It also
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determines a natural expectation value for the curvaton
field, �� � f. In the following we assume f < mPl.
In Fig. 1 we show the numerical solution for pFW as a

function of ��, corresponding to p for a fixed value of
m=�. As expected we see that for �� � f we recover the
analytic result (47) as the potential is effectively quadratic
and self-interactions have a negligible effect. For larger
values of ��, the potential becomes flatter than the corre-
sponding quadratic potential and we see that pFW, and
hence p, can become much larger than would be obtained
for a quadratic correction. Note that the potential (55)
is periodic and we can identify pFWð�� þ �f=2Þ ¼
pFWð�f=2� ��Þ.
We show numerical predictions for the non-Gaussianity

parameter, fNL, and the tensor-scalar ratio, in Fig. 3.
Nonlinear evolution of the field becomes important for
�� � f. In particular we see that an upper bound on the
tensor-scalar ratio no longer places an upper bound on the
decay rate �=m as we approach the top of the potential, i.e.,
as �� ! �f.
Modest, positive values of the nonlinearity parameter,

1< fNL < 10, become possible even if the curvaton domi-
nates the energy density when it decays (p > 1) if �� >
2:5f, but we never find very large values of fNL > 100.
Because g00 > 0 in Eq. (31) we have fNL >�5=4, as in the
case of a quadratic potential, and we never find large
negative values of fNL for a cosine-type potential.

2. Hyperbolic-cosine potential

Nonlinearity of the cosine potential (55) yields a flat
potential with small effective mass during inflation for
�� � f. To consider the effect of self-interactions leading
to a larger effective mass we consider a hyperbolic-cosine
potential which becomes an exponential function of the
curvaton field at large field values, as may be expected
due to supergravity corrections,

Vð�Þ ¼ M4

�
cosh

�
�

f

�
� 1

�
’ 1

2
m2�2 þ 1

24

m2�4

f2
þ � � � :

(56)

In the following we assume f < mPl. As in the case of the
cosine potential, this also yields a natural range for �� � f.
In the case of a hyperbolic potential, the field becomes
heavy relative to the Hubble scale and evolves rapidly for
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FIG. 3 (color online). Contour plots showing observational
predictions for a curvaton field with a cosine-type potential.
The three plots show, from top to bottom, observational parame-
ters for cosine potentials with f ¼ 1017 GeV, f ¼ 1016 GeV,
and f ¼ 1015 GeV, respectively, as a function of the dimension-
less decay rate, log10ðm=�Þ, and the initial value of the curvaton,
��=GeV. Thick solid blue contour lines show bispectrum am-
plitude, fNL, decreasing from left to right. Dotted red contour
lines show the tensor-scalar ratio, rT , also decreasing from left to
right.

NON-GAUSSIANITY AND GRAVITATIONAL WAVES FROM . . . PHYSICAL REVIEW D 83, 064025 (2011)

064025-9



values of �� much larger than f. In particular the require-
ment that the curvaton has an effective mass less than
0:1H at the start of our numerical solutions imposes the
constraint �� < 5f.
In Fig. 1 we show the numerical solution for p as a

function of�� for a fixed value ofm=�. As expected we see
that for �� � f we recover the analytic result (47) when
the potential is effectively quadratic. However for the
hyperbolic potential we see that due to the steeper potential
the effective energy density when the curvaton decays,
determined by the parameter p, becomes less than the
quadratic case for �� � f.
We show numerical predictions for the non-Gaussianity,

fNL, and the inflation Hubble scale, H�, (and hence the
tensor-scalar ratio) in Fig. 4. The nonlinear correction
g00g=g02 in Eq. (31) becomes negative for �� � f and we
can obtain large negative values of fNL.
However we find that the bound on the tensor-scalar

plays an important role. Regions of parameter space which
yield large negative fNL also give large tensor-scalar ratios.
In regions where p 
 1 and the curvaton dominates when
it decays we have R� � 1 and both the tensor-scalar ratio

and the nonlinearity parameters become functions solely of
��. In this regime, we have, from Eqs. (44) and (31)

rT ’ 9

2

�
g

g0mPl

�
2
; (57)

fNL ’ 5

4

�
g00g
g02

�
; (58)

which are both clearly functions of ��. Indeed formally we
can eliminate gð��Þ and its derivatives in order to write

fNL ’ �
ffiffiffiffiffiffi
25

72

s
mPlð ffiffiffiffiffi

rT
p Þ0: (59)

Hence the contours of equal values of both rT and fNL
become horizontal on the right-hand-side of Fig. 4. For
example, with f ¼ 1016 GeV a weak bound on the tensor-
scalar ratio of rT < 1 requires fNL >�1000. A stronger
bound rT < 0:1 requires fNL >�100.
Of course ð ffiffiffiffiffi

rT
p Þ0 is not an observable parameter, but if

we assume that
ffiffiffiffiffi
rT

p
is a smooth function of ��=f we can

estimate ð ffiffiffiffiffi
rT

p Þ0 � ð ffiffiffiffiffi
rT

p Þ=f and hence
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FIG. 4 (color online). Contour plots showing observational
predictions for a curvaton field with a hyperbolic-cosine-type
potential. The three plots show, from top to bottom, obser-
vational parameters for potentials with f ¼ 1017 GeV, f ¼
1016 GeV, and f ¼ 1015 GeV, respectively, as a function of
the dimensionless decay rate, log10ðm=�Þ, and the initial value
of the curvaton, ��=GeV. Thick solid blue contour lines show
bispectrum amplitude, fNL, increasing from top to bottom.
Dotted red contour lines show the tensor-scalar ratio, rT , de-
creasing from left to right.
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fNL ��mPl

f

ffiffiffiffiffi
rT

p
: (60)

This semiempirical relation appears to hold for sufficiently
small �=m and it would be interesting to see if this is also
the case for the polynomial correction terms [17,19].

Unlike the case of a cosine-type potential we still have a
strict upper bound on the decay rate, as in the case of a
purely quadratic potential. Thus, although there are regions
of parameter space for �� � f, where the non-Gaussianity
can be small even if the curvaton is subdominant when it
decays, p � 1, we find that these regions correspond to
large values for the tensor-scalar ratio and are excluded by
bounds on primordial gravitational waves.

IV. DISCUSSION AND CONCLUSIONS

In this work we have investigated the numerical evolu-
tion of a curvaton field from its overdamped regime after
inflation until it decays into radiation. We have shown how
measurement of both the nonlinearity parameter, fNL,
and the tensor-to-scalar ratio, rT , provide complementary
constraints on the model parameters. We did this for three
different curvaton potentials: the quadratic potential,
axion-like cosine potentials, and hyperbolic potentials.
As expected both the cosine and the hyperbolic potentials
recover the quadratic regime when �� � f.

For the simplest quadratic potential for the curvaton,
bounds on the tensor-to-scalar ratio place an upper bound
on the dimensionless decay rate, ruling out large regions of
parameter space that would yield a large primordial non-
Gaussianity in the distribution of scalar perturbations.
Simultaneous measurement of both the nonlinearity pa-
rameter, fNL, and the tensor-to-scalar ratio, rT , can deter-
mine both the expectation value of the field during
inflation, ��, and the dimensionless decay rate, �=m.

In the conventional inflaton scenario for the origin of
structure we have three free parameters: the inflation scale
H� and two slow-roll parameters, � and �	. These can be

determined by power of the primordial scalar perturba-
tions, P � , the tensor perturbations, P T , and the spectral

index of the scalar spectrum, n� . The spectral index of the

tensor spectrum, if measurable, would give a valuable
consistency check [46]. Another important consistency
condition for canonical, slow-roll inflation is that the
primordial density perturbations should be Gaussian and
the nonlinearity parameter, fNL, should be much less than
unity [21].

In the curvaton scenario with a simple quadratic poten-
tial we have five free parameters: the inflation scaleH�, the
expectation value of the curvaton during inflation ��,
the decay rate of the curvaton relative to its mass, �=m,
and the slow-roll parameters � and �� ¼ m2�=3H2� . For a
curvaton, we find that H�, �� and �=m are determined by
the primordial scalar perturbations, P � , the tensor pertur-

bations, P T , and the nonlinearity parameter, fNL, but the

mass and decay rate of the curvaton are not separately
determined. The two slow-roll parameters � and �� are

then determined by the two spectral indices n� , and nT .
Another natural observable in the curvaton model is

the scale dependence of the nonlinearity parameter, defined
as [33]

nfNL �
d lnjfNLj
d lnk

: (61)

In the curvaton scenario this is given by a simple expres-
sion [28,35]

nfNL ¼ �3

g

mPlg
0

5

4R�fNL
; (62)

where we define �3 � m3
PlV

000=V. This can be rewritten in

terms of observable quantities and �3

nfNL ¼ �3

5

12
ffiffiffi
2

p
ffiffiffiffiffi
rT

p
fNL

: (63)

Thus it offers the possibility of testing the curvaton self-
interactions. Future observations may be able to detect
jfNLnfNL j> 5 [56], corresponding to j�3j ffiffiffiffiffi

rT
p

> 17. For

the quadratic potential we have the consistency condition
nfNL ¼ 0.

Deviations from a quadratic potential introduce at least
one further model parameter, f, corresponding to the mass
scale associated with the nonlinear corrections. This leads
to a degeneracy in model parameters consistent with the
five observables P � , P T , fNL, n� , and nT , but this can be

broken by a measurement of nfNL .

In the case of a cosine-type curvaton potential the self-
interaction corrections became important near the top of
the potential, i.e., when �� � �f [28] and the tensor-to-
scalar ratio no longer places an upper bound on �=m. As
for a quadratic curvaton, we still find fNL >�5=4 and
hence any large non-Gaussianity, jfNLj 
 1, has positive
fNL. But for �� � f we have�3 ��ðmPl=f

3Þ< 0, and if f
is well below the Planck scale there could be strong scale
dependence.
In the case of a hyperbolic-type potential fNL can be-

come large and negative, for �� � f. However the tensor-
to-scalar ratio again plays an important role, in this case
placing a lower bound on fNL, e.g., fNL >�100 for rT <
0:1 when f ¼ 1016 GeV. In this regime we find �3 �
ðmPl=f

3Þ> 0, which can be large, leading to strong scale
dependence for f � mPl, with nfNL < 0 for fNL < 0.

Running of either the scalar tilt, �� , or the nonlinearity,

�fNL [28], yields additional information about the higher

derivatives of the potential and, in particular, curvaton-
inflaton interactions which we have assumed are negligible
in our analysis.
Significant non-Gaussianity in the primordial perturba-

tions opens up the possibility to extract information from
the higher-order correlations in the scalar spectrum, such
as the trispectrum [13,16,19,57,58]
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T� ðk1; k2; k3; k4Þ ¼ 54

25
gNL½P� ðk2ÞP� ðk3ÞP� ðk4Þ þ 3 perms�

þ 36

25
f2NL½P� ðk13ÞP� ðk3ÞP� ðk4Þ þ 11 perms�; (64)

which is sensitive to higher-order derivatives of the expan-
sion history with respect to the curvaton field value during
inflation through gNL ¼ ð25=54ÞN000=N03. Differentiating
Eq. (30) we obtain

gNL ¼ 25

24

�
R�

00

R�
3

g2

g02
þ 2

R�
0

R�
3

�
g2g00

g03
� g

g0

�

þ 1

R�
2

�
g2g000

g03
� 3

gg00

g02
þ 2

��
; (65)

which using the sudden-decay approximation can be
written as [13,57]

gNL ¼ 25

54

�
9

4R�
2

�
g2g000

g03
þ 3

gg00

g02

�
� 9

R�

�
1þ gg00

g02

�

þ 1

2

�
1� 9

gg00

g02

�
þ 10R� þ 3R�

2

�
: (66)

gNL and its scale dependence ngNL [34,35] thus provide

additional observable parameters which then offer consis-
tency conditions for generalized curvaton models such as
the cosine or hyperbolic potentials. In practice we require
more accurate numerical simulations than those used in
this work to reliably determine the required higher deriva-
tives with respect to the initial field value across the range
of model parameters used in this paper and we leave this
for future work.
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