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This is the second of two companion papers on computing the self-force in a radiation gauge; more

precisely, the method uses a radiation gauge for the radiative part of the metric perturbation, together with

an arbitrarily chosen gauge for the parts of the perturbation associated with changes in black-hole mass

and spin and with a shift in the center of mass. In a test of the method delineated in the first paper, we

compute the conservative part of the self-force for a particle in circular orbit around a Schwarzschild black

hole. The gauge vector relating our radiation gauge to a Lorenz gauge is helically symmetric, implying

that the quantity h��u
�u� must have the same value for our radiation gauge as for a Lorenz gauge; and we

confirm this numerically to one part in 1014. As outlined in the first paper, the perturbed metric is

constructed from a Hertz potential that is in a term obtained algebraically from the retarded perturbed

spin-2 Weyl scalar, c ret
0 . We use a mode-sum renormalization and find the renormalization coefficients by

matching a series in L ¼ ‘þ 1=2 to the large-L behavior of the expression for the self-force in terms of

the retarded field hret��; we similarly find the leading renormalization coefficients of h��u
�u� and the

related change in the angular velocity of the particle due to its self-force. We show numerically that the

singular part of the self-force has the form fS� ¼ hr��
�1i, the part of r��

�1 that is axisymmetric about a

radial line through the particle. This differs only by a constant from its form for a Lorenz gauge. It is

because we do not use a radiation gauge to describe the change in black-hole mass that the singular part of

the self-force has no singularity along a radial line through the particle and, at least in this example, is

spherically symmetric to subleading order in �.
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I. INTRODUCTION

We present here a first self-force computation in a
radiation gauge, following the method outlined in a com-
panion paper [1] (henceforth paper I). The computation has
been done previously by Barack and Sago [2] and by
Detweiler [3], and gauge-invariant quantities associated
with the conservative part of the self-force are compared
in their joint paper [4]. A radiation-gauge approach has the
advantage that one can use the Teukolsky equation to
compute the perturbed metric and the self-force for orbits
in a Kerr background, and the present paper serves as a test
of methods described in paper I for that problem.

The use of a radiation gauge for the self-force problem
has been delayed in part because the MiSaTaQuWa renor-
malization prescription [5,6] was developed for a Lorenz
gauge and in part because, in a radiation gauge, the line-
arized metric of a point particle is singular along a ray

through the particle. One can avoid a singularity of this
kind by restricting the use of a radiation gauge to the part of
the perturbation determined by the gauge-invariant Weyl
scalar c 0 (or c 4). The part of the metric perturbation that
describes the change in mass and angular momentum of the
spacetime can then be added in any convenient gauge. The
perturbed metric obtained from c 0 is constructed as a sum
of angular and time harmonics, defined for r > r0 and for
r < r0, with r0 the Schwarzschild radial coordinate of the
particle.
Although the ‘ � 2 part of the metric perturbation can

be computed more simply in a radiation gauge, an analytic
computation of the singular field that is to be subtracted is
significantly more difficult. We avoid the difficulty by
replacing the analytic computation by a numerical deter-
mination of the renormalization coefficients that are sub-
tracted in a mode-sum renormalization of the self-force. As
a result, the efficacy of the method depends on the numeri-
cal accuracy with which these coefficients can be com-
puted. We describe the numerical methods used and report
tests of their accuracy.
As noted in paper I, recent work by Gralla [7], following

an earlier derivation of the self-force equations by Gralla
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and Wald [8], shows that the first order correction to the
geodesic equation,

u�r�u
� ¼ aren�; (1)

is obtained from

aret� ¼ �ðg�� � u�u�Þðr�h
ret
�� � 1

2r�h
ret
��Þu�u�; (2)

by an angle average in locally inertial coordinates, over a
sphere of geodesic radius � about the particle:

aren� ¼ lim
�!0

Z
S�

aret�d�: (3)

The equation holds in any gauge for which the leading part
of hren�� is Oð��1Þ and has even parity. Paper I showed that

the even-parity condition was satisfied in a radiation gauge.
Taking the angle average is equivalent to subtracting a field
as (the singular part of the acceleration)

aren� ¼ aret� � as�; (4)

if as� satisfies the conditions (i) The limiting angle average
of as, defined as in Eq. (3), vanishes; and (ii) aret� � as� is
continuous at the particle.

The numerical determination of as� from aret� shows,
with an accuracy close to machine precision, that as� is
proportional to hr���1i and hence is spherically symmet-
ric. The result also implies that the singular field can be
identified with its leading and subleading terms in its
mode-sum expression as a power series in L ¼ ‘þ 1=2.
It remains an open question whether this unexpectedly
simple behavior of the singular part of a� holds for generic
orbits or for a Kerr background.

This paper is organized as follows. The perturbed metric
is constructed from the Weyl scalar c ret

0 , computed as a

sum over spin-weighted spherical harmonics, and Sec. II
details the numerical method used to compute the retarded
radial and angular functions that comprise the sum. In
particular, radial integrations using the Teukolsky radial
equation and the Sasaki-Nakamura form are used and
compared. Section III describes the computation of the
retarded metric and the retarded expression for the self-
force from the values of c 0 for each harmonic. The con-
servative part of the self-force has only a radial component,
fr, and it is renormalized by matching a power series in L
to the sequence of contributions fr½‘� from successive
angular harmonics. We find that the singular field obtained
in this way is the angular decomposition of hr���1i, with
� the geodesic distance orthogonal to the particle’s
trajectory.

Associated with the perturbed metric of a particle in
circular orbit is a set of related quantities that are invariant
under helically symmetric gauge transformations. The
Sago et al. comparison paper [4] tabulated values of one
of these quantities, and we add the values from our
radiation-gauge computation to their comparison table.

II. COMPUTATION OF c ret
0

A. Formalism

We begin with a brief review of the formalism used in
paper I. We consider a particle of mass m in circular orbit
about a Schwarzschild black hole of mass M. We use
Schwarzschild coordinates, with the particle at radial co-
ordinate r0 in the � ¼ �=2 plane. The particle’s four-
velocity is

u� ¼ utðt� þ�	�Þ; (5)

with t� and 	� timelike and rotational Killing vectors,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M=r30

q
, and ut ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3M=r0

p
. With a � function

normalized by
R
�4ðx; zÞ ffiffiffiffiffiffijgjp

d4x ¼ 1, its stress-energy
tensor is given by

T��¼mu�u�
Z
�4ðxa�zað
ÞÞd


¼m
u�u�

utð�gÞ1=2�ðr�r0Þ�ðcos�Þ�ð	��tÞ; (6)

where a change of coordinates from 
 to t in the integral for
stress-energy tensor is used to obtain the second equality.
From the addition theorem for spin-weighted spherical
harmonics, we have

T�� ¼ X
‘;m

mu�u�

r20u
t

�ðr� r0ÞsY‘mð�;	Þs �Y‘mð�=2;�tÞ:

(7)

The Kinnersley tetrad vectors have components

ðl�Þ ¼ ð1=fðrÞ; 1; 0; 0Þ; ðn�Þ ¼ 1

2
ð1;�fðrÞ; 0; 0Þ;

ðm�Þ ¼ 1ffiffiffiffiffi
2r

p ð0; 0; 1; i= sin�Þ; (8)

where fðrÞ :¼ 1� 2M=r; and we denote by D, �, and �
the derivative operators along the tetrad vectors l, n, andm,
respectively. The nonvanishing spin-coefficients associated
with this tetrad are

% ¼ �1=r; � ¼ �� ¼ cot�

2
ffiffiffi
2

p
r
;

� ¼ � �

2r3
; and � ¼ M

2r2
;

(9)

where � ¼ r2 � 2Mr.
The perturbed Weyl scalar c 0 ¼ �C����l

�m�l�m�

satisfies the Bardeen-Press equation (the Teukolsky equa-
tion for a ¼ 0),�
r4

�
@2t � 4

�
Mr2

�
� r

�
@t ���2 @

@r

�
�3 @

@r

�
� �ðð

�
c 0

¼ 4�r2T; (10)

where
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T :¼ �2ð�� 2�Þ�T11 þ 4ðD� 4%Þð�� 2�ÞT13 � 2ðD� 5%ÞðD� %ÞT33 ¼ Tð0Þ þ Tð1Þ þ Tð2Þ: (11)

The superscripts indicate the maximum number of radial derivatives in each term. Explicitly,

Tð0Þ ¼ �X
‘;m

mut

r40
�ðr� r0Þ½ð‘� 1Þ‘ð‘þ 1Þð‘þ 2Þ�1=22Y‘mð�;	Þ �Y‘m

�
�

2
;�t

�
; (12a)

Tð1Þ ¼ X
‘;m

m�ut

r20

�
2i�0ðr� r0Þ þ 2m�

f0
�ðr� r0Þ

�
½ð‘� 1Þð‘þ 2Þ�1=22Y‘mð�;	Þ1 �Y‘m

�
�

2
;�t

�
; (12b)

Tð2Þ ¼ X
‘m

m�2ut
�
�00ðr� r0Þ þ

�
6

r0
� 2im�

f0

�
�0ðr� r0Þ �

�
m2�2

f20
þ 6im�

r0f0
þ 2imM�

r20f
2
0

�
�ðr� r0Þ

�

� 2Y‘mð�;	Þ2 �Y‘m

�
�

2
;�t

�
; (12c)

where f0 ¼ 1� 2M=r0 and �0 ¼ r20f0.
The Weyl scalar has the harmonic decomposition

c 0 ¼
X
‘m

e�i!mtR0‘!m
ðrÞ2Y‘mð�;	Þ; !m :¼ m�: (13)

Its radial functions R0‘!m
and the corresponding radial functions R4‘!m

of %�4c 4 satisfy (‘ and!m subscripts suppressed)

�R00
0 þ 6ðr�MÞR0

0 þ
�
!2r4

�
þ 4i!r2ðr� 3MÞ

�
� ð‘� 2Þð‘þ 3Þ

�
R0 ¼ 0; (14)

�R00
4 � 2ðr�MÞR0

4 þ
�
!2r4

�
� 4i!r2ðr� 3MÞ

�
� ð‘� 1Þð‘þ 2Þ

�
R4 ¼ 0; (15)

where the prime denotes a derivative with respect to the
radial coordinate r. Solutions to the above equations are
related by

R0 ¼
�R4

r4f2
; (16)

in this relation, however, R0 and R4 differ by a relative
normalization from the radial functions of components c 0

and c 4 of the same vacuum Weyl tensor.

We denote by RH and R1 solutions to Eq. (14) that are
regular at the horizon and at infinity, respectively, and will
write ð0Þ :¼ d

dr . As shown in Sec. Vof paper I, the solution

to Eq. (10) is given by

c 0 ¼ c ð0Þ
0 þ c ð1Þ

0 þ c ð2Þ
0 ; (17)

where the three terms, corresponding to the three source
terms of Eq. (12), have the form

c ð0Þ
0 ¼ 4�mut

�2
0

r20

X
‘m

A‘m½ð‘� 1Þ‘ð‘þ 1Þð‘þ 2Þ�1=2RHðr<ÞR1ðr>Þ2Y‘mð�;	Þ �Y‘m

�
�

2
;�t

�
; (18a)

c ð1Þ
0 ¼ 8�im�ut�0

X
‘m

A‘m½ð‘� 1Þð‘þ 2Þ�1=22Y‘mð�;	Þ1 �Y‘m

�
�

2
;�t

�
f½im�r20 þ 2r0�RHðr<ÞR1ðr>Þ

þ�0½R0
Hðr0ÞR1ðrÞ�ðr� r0Þ þ RHðrÞR01ðr0Þ�ðr0 � rÞ�g; (18b)

c ð2Þ
0 ¼ �4�m�2ut

X
‘m

A‘m2Y‘mð�;	Þ2 �Y‘m

�
�

2
;�t

�
f½30r40 � 80Mr30 þ 48M2r20 �m2�2r60 � 2�2

0

� 24�0r0ðr0 �MÞ þ 6im�r40ðr0 �MÞ�RHðr<ÞR1ðr>Þ þ 2ð6r50 � 20Mr40 þ 16M2r30 � 3r0�
2
0

þ im��0r
4
0Þ½R0

Hðr0ÞR1ðrÞ�ðr� r0Þ þ R01ðr0ÞRHðrÞ�ðr0 � rÞ� þ r20�
2
0½R00

Hðr0ÞR1ðrÞ�ðr� r0Þ
þ R001ðr0ÞRHðrÞ�ðr0 � rÞ þW½RHðrÞ; R1ðrÞ��ðr� r0Þ�g: (18c)
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Here the Wronskian-related quantity,

A‘m :¼ 1

�3ðRHR
01 � R1R0

HÞ
; (19)

is a constant, independent of r.

B. Numerical method

To compute c ret
0 , we use a seventh order Runge-Kutta

routine to integrate the radial Teukolsky equation, match-
ing the radial function to a power series expansion near the
horizon and infinity. Because our renormalization method
relies on numerical extraction of the renormalization
coefficients, we work to high numerical precision and
check the results by comparing independent codes based
on the Teukolsky form of the radial Eq. (14) and on the

Sasaki-Nakamura form. We find the spin-weighted spheri-
cal harmonics sY‘mð�2 ; 0Þ to similarly high precision.

Because one of solutions for R0 diverges at the horizon,
we integrate R4 from the horizon and R0 from infinity. We
match near the horizon and at large r, respectively, to the
series expansions

RH
4 ¼ ei!r�

X
n

an

�
r

M
� 2

�
n
; (20)

R01 ¼ ei!r�
X
n

bn
ðr=MÞnþ5

; (21)

where r� ¼ rþ 2M logðr=2M� 1Þ. The expansion coef-
ficients are found from a 3-term recurrence relation,

an ¼ �2iM!ðn� 5Þan�2 þ ð‘2 þ ‘� 6þ 5n� n2 � 8inM!þ 20iM!Þan�1

2nðn� 2þ 4iM!Þ ; (22)

bn ¼ i

2nM!
ðð6þ 8nþ 2n2Þbn�2 þ ð‘2 þ ‘� 2� 3n� n2Þbn�1Þ; (23)

obtained by substitutions in Eqs. (14) and (15). The inte-
grations from the horizon and from infinity yield the two
independent solutions to the homogenous Teukolsky equa-
tion that we have labeled RH and R1. By using the out-
going wave solution at the event horizon as an initial
condition for RH

4 , we get the correct boundary condition
(ingoing at horizon) for s ¼ þ2 radial solution on using
Eq. (16), i.e.

RH
0 � e�i!r�

r4f2
: (24)

The numeric results are compared with the numerical
solution obtained from Sasaki-Nakamura equation for con-
sistency. In this case, we integrate

d2X‘;m;!

dr�2
¼ UðrÞX‘;m;!; (25)

where

UðrÞ ¼ 12M2 � 2Mrð‘2 þ ‘þ 3Þ þ r2ð‘2 þ ‘� r2!2Þ
r4

:

(26)

The function X‘;m;! is related to the homogenous solution

of the s ¼ �2 radial, Teukolsky equation by

4R‘;m;! ¼ 2�ðr� 3Mþ ir2!Þ
�r

X0
‘;m;!

þ
�
lðlþ 1Þ�

�r
� 6M�

�r2

� 2r!ð3iM� irþ r2!Þ
�

�
X‘;m;!; (27)

where� ¼ ðl� 1Þlðlþ 1Þðlþ 2Þ � 12iM!. We use a sev-
enth order Runge-Kutta routine to integrate Eq. (25) with
the boundary conditions

XH
‘;m;! ¼ ei!r�X

n

cn

�
r

M
� 2

�
n
; (28)

X1
‘;m;! ¼ e�i!r�X

n

dn
ðr=MÞn ; (29)

where cn ¼ dn ¼ 0 for n < 0. The values of cn and dn are
calculated from the following recurrence relations:

cn¼� iðn�3ÞM!

2nðnþ4iM!Þcn�3

þ‘2þ‘�ðn�2Þðn�3þ12iM!Þ
4nðnþ4iM!Þ cn�2;

þ‘2þ‘�2n2þ5n�6�12iðn�1ÞM!

2nðnþ4iM!Þ cn�1; (30)
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dn ¼ �i
ðn� 3Þðnþ 1Þ

2nM!
dn�2

� i
ð‘þ nÞð‘� nþ 1Þ

2nM!
dn�1: (31)

The outgoing (ingoing) boundary condition at infinity
(event horizon) is used in combination with Eq. (16) which
relates the s ¼ 2 and s ¼ �2 radial solutions.

The accuracy of the homogenous solutions is monitored
by the constancy of A�1

‘m ¼ �3WðRH; R1Þ. Table I shows

the fractional standard deviation (f.s.d.), or the departure of
�3W from its average value. A comparison of the s ¼ �2
radial functions given by the Teukolsky equation and the
Sasaki-Nakamura equation [Eqs. (14) and (15)] are in-
cluded. Measured in this way, direct integration of the
Teukolsky form yields 13-digit accuracy. Table II reports
a second check of numerical accuracy by directly compar-
ing the radial functions computed from the two forms of
the radial equation.
To calculate sY‘m to high precision, we used the follow-

ing analytical forms of spin-weighted harmonics at � ¼
�=2. Introducing the symbol

e‘;m :¼
�
1 ‘þm even

0 ‘þm odd;

we can write

TABLE I. Accuracy of radial integration measured by frac-
tional standard deviation (f.s.d) of �3W from its average value,
for specified ‘ and !. The third and fourth columns list the f.s.d.
obtained by integrating the Teukolsky and Sasaki-Nakamura
forms of the radial equation, respectively. The frequencies are
chosen to lie between the maximum and minimum of m�,
between the value M! ¼ ‘=63=2 at the ISCO and M!�
1=1503=2, at r0 � 150M, m ¼ 1. The f.s.d. in the region
r ¼ 6M to 20M is usually twice the average shown above.

‘ M! f.s.d. (T-eq.) f.s.d. (SN-eq.)

3 0.001 4:2� 10�14 2:8� 10�14

2 0.136 083 2:8� 10�14 9:7� 10�13

5 0.000 353 553 4:4� 10�14 2:7� 10�14

5 0.340 207 3:5� 10�14 1:3� 10�12

10 0.00 108 866 5:6� 10�14 4:3� 10�14

9 0.61 2372 4:3� 10�14 1:0� 10�12

14 0.00 0715 542 6:2� 10�14 5:5� 10�14

15 1.02 062 5:1� 10�14 1:1� 10�12

20 0.000 929 429 7:8� 10�14 7:4� 10�14

21 1.42 887 5:9� 10�14 1:4� 10�12

25 0.000 707 107 9:2� 10�14 9:7� 10�14

25 1.70 103 7:2� 10�14 1:1� 10�12

30 0.002 1:0� 10�14 1:2� 10�13

31 2.10 928 8:0� 10�14 1:6� 10�12

35 0.000 544 331 1:2� 10�13 1:2� 10�13

34 2.31 341 8:9� 10�14 1:1� 10�12

40 0.000 988 212 1:3� 10�13 1:5� 10�13

40 2.72 166 9:6� 10�14 1:6� 10�12

45 0.000 603 682 1:5� 10�13 1:7� 10�13

46 3.1299 1:1� 10�13 1:3� 10�12

50 0.000 353 553 1:6� 10�13 1:8� 10�13

50 3.40 207 1:2� 10�13 1:5� 10�12

55 0.00 067 466 1:8� 10�13 2:0� 10�13

55 3.74 228 1:3� 10�13 1:1� 10�12

60 0.001 2:0� 10�13 2:3� 10�13

61 4.15 052 1:3� 10�13 1:5� 10�12

65 0.000 544 331 2:1� 10�13 2:5� 10�13

64 4.35 465 1:4� 10�13 1:5� 10�12

71 0.000 494 106 2:3� 10�13 2:8� 10�13

70 4.7629 1:7� 10�13 1:4� 10�12

75 0.000 637 528 2:5� 10�13 3:1� 10�13

74 5.03 506 1:8� 10�13 1:5� 10�12

80 0.00 0471 818 2:8� 10�13 3:5� 10�13

80 5.44 331 1:9� 10�13 1:5� 10�12

85 0.000 707 107 3:0� 10�13 3:9� 10�13

85 5.78 352 2:1� 10�13 1:0� 10�12

TABLE II. For each listed value of ‘, m and r0, we give the
fractional difference between the radial functions at r0, obtained
by integrating the Teukolsky and the Sasaki-Nakamura forms of

the radial equation, with frequency ! ¼ m� ¼ mM1=2r�3=2
0 .

r0=M ‘ m Fractional difference

100 2 1 5:9� 10�13

10 2 2 4:6� 10�15

6 2 1 1:9� 10�13

80 75 75 1:7� 10�15

80 20 1 3:2� 10�15

13 5 4 1:6� 10�14

10 3 1 2:3� 10�14

8 15 14 5:0� 10�15

8 12 6 1:5� 10�14

70 3 2 1:8� 10�15

6 4 1 4:1� 10�13

50 4 1 1:0� 10�13

6 10 9 4:7� 10�13

70 9 8 1:7� 10�15

6 25 1 4:3� 10�16

7 25 25 2:5� 10�15

75 19 18 5:0� 10�15

6 20 20 2:0� 10�14

72 85 78 1:5� 10�15

6 85 85 2:4� 10�14

7 85 5 4:3� 10�14

60 75 1 4:4� 10�16

10 75 71 2:2� 10�15

15 50 38 1:4� 10�15

6 40 25 7:1� 10�15

6 25 15 7:1� 10�15

30 25 1 6:1� 10�16

20 25 25 7:8� 10�15

10 2 1 3:9� 10�14
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Y‘m

�
�

2
; 0

�
¼ ð�1Þð‘þmÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2‘þ 1Þð‘�mÞ!ð‘þmÞ!p
ffiffiffiffiffiffiffi
4�

p ð‘�mÞ!!ð‘þmÞ!! e‘;m; (32)

1Y‘m

�
�

2
; 0

�
¼ ð�1Þð‘þmÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð‘�mÞ!ð‘þmÞ!

4�‘ð‘þ 1Þ

s �
me‘;m

ð‘�mÞ!!ð‘þmÞ!!�
ie‘;mþ1

ð‘�m� 1Þ!!ð‘þm� 1Þ!!
�
; (33)

2Y‘m

�
�

2
; 0

�
¼ ð�1Þð‘þmÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð‘�mÞ!ð‘þmÞ!
4�ð‘� 1Þ‘ð‘þ 1Þð‘þ 2Þ

s �½2m2 � ‘ð‘þ 1Þ�e‘;m
ð‘�mÞ!!ð‘þmÞ!! � 2ime‘;mþ1

ð‘�m� 1Þ!!ð‘þm� 1Þ!!
�
: (34)

In this way, we obtain values of c ret
0 with accuracy of 1

part in 1013.

III. METRIC PERTURBATION AND SELF-FORCE

We use the outgoing radiation gauge (ORG) satisfying
the conditions

h��n
� ¼ 0; h ¼ 0: (35)

We find the retarded perturbed metric from a Hertz poten-
tial �ret satisfying

8c ret
0 ¼ ð4 ��ret þ 12M@t�

ret; (36)

whose algebraic solution for each angular harmonic is
given by

TABLE III. The first column shows the radius of the orbiting particle in terms of background Schwarzschild coordinate r. The
second and the third columns show the leading and the subleading regularization parameters that we get by a numerical matching.
The fourth and the fifth columns show the fractional difference between the numerical and the analytic values. We use <10�16 to
indicate that the difference is less than the double precision machine accuracy.

r0=M Aþ B j Aþ
Aþ
analytic

j � 1 j B
Banalytic

j � 1

6 �1:96 4 185 503 296 099� 10�2 �9:719 920 769 918 032� 10�3 �6:8� 10�14 �5:0� 10�11

7 �1:542 712 134 731 597� 10�2 �7:595 781 032 643 107� 10�3
3:7� 10�14 �3:0� 10�11

8 �1:235 264 711 003 273� 10�2 �6:072 295 959 309 139� 10�3 <10�16 �5:7� 10�12

9 �1:00 802 047 0281 125� 10�2 �4:954 081 856 693 618� 10�3 1:8� 10�14 �3:3� 10�12

10 �8:36 660 026 534 0854� 10�3 �4:113 353 788 131 433� 10�3
1:2� 10�14 �7:3� 10�12

11 �7:047 957 565 474 786� 10�3 �3:467 126 055 149 815� 10�3 8:9� 10�15 �3:7� 10�12

12 �6:014 065 304 058 753� 10�3 �2:960 554 843 842 139� 10�3 2:5� 10�14 �1:1� 10�11

13 �5:189 692 421 934 956� 10�3 �2:556 541 533 529 994� 10�3 �2:4� 10�14 6:5� 10�12

14 �4:522 475 818 510 165� 10�3 �2:229 391 187 912 286� 10�3 8:4� 10�14 �2:9� 10�11

15 �3:975 231 959 999 661� 10�3 �1:960 906 506 358 998� 10�3 8:9� 10�15 �3:6� 10�12

16 �3:521 046 167 445 508� 10�3 �1:737 934 146 698 723� 10�3 5:8� 10�14 �1:7� 10�11

17 �3:140 087 242 121 197� 10�3 �1:550 788 700 414 580� 10�3 �4:6� 10�15 �6:7� 10�15

18 �2:817 502 867 825 028� 10�3 �1:392 217 662 603 554� 10�3 3:5� 10�14 �1:1� 10�11

19 �2:542 002 591 363 557� 10�3 �1:256 707 170 227 638� 10�3 3:1� 10�15 9:4� 10�13

20 �2:304 886 114 323 209� 10�3 �1:140 007 036 978 271� 10�3 5:7� 10�15 1:8� 10�12

25 �1:500 933 043 143 495� 10�3 �7:437 542 878 990 537� 10�4 1:6� 10�15 �3:0� 10�14

30 �1:054 092 553 389 464� 10�3 �5:230 319 186 714 355� 10�4 4:2� 10�15 �1:1� 10�12

35 �7:805 574 591 571 754� 10�4 �3:876 932 093 890 911� 10�4 2:6� 10�14 �6:5� 10�12

40 �6:011 057 519 272 318� 10�4 �2:987 922 074 634 742� 10�4 3:8� 10�15 �8:5� 10�13

45 �4:770 823 620 144 716� 10�4 �2:372 891 353 438 443� 10�4 9:3� 10�15 �2:5� 10�12

50 �3:878 143 885 933 070� 10�4 �1:929 854 912 525 034� 10�4 1:8� 10�15 �2:3� 10�13

55 �3:214 363 205 318 354� 10�4 �1:600 201 924 066 196� 10�4 6:9� 10�15 �1:7� 10�12

60 �2:707 442 873 558 057� 10�4 �1:348 310 298 624 353� 10�4 4:2� 10�15 �9:6� 10�13

65 �2:311 598 761 671 936� 10�4 �1:151 520 162 987 173� 10�4 2:0� 10�16 �8:0� 10�14

70 �1:996 605 675 599 292� 10�4 �9:948 607 781 191 319� 10�5 �2:0� 10�16 �5:0� 10�14

75 �1:741 859 372 645 818� 10�4 �8:681 200 066 822 863� 10�5 1:3� 10�15 �3:4� 10�13

80 �1:532 923 192 995 987� 10�4 �7:641 384 666 121 239� 10�5 2:7� 10�15 �5:6� 10�13

85 �1:359 438 646 187 131� 10�4 �6:777 766 234 583 098� 10�5 �3:0� 10�16 2:9� 10�13
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�‘m¼8
ð�1Þmð‘þ2Þð‘þ1Þ‘ð‘�1Þ �c ‘;�mþ12imM�c ‘m

½ð‘þ2Þð‘þ1Þ‘ð‘�1Þ�2þ144m2M2�2
;

(37)

where � ¼ P
‘;m�‘mðrÞ2Y‘mð�;	Þe�im�t and c 0 ¼P

‘;mc ‘mðrÞ2Y‘mð�;	Þe�im�t.

The ORG form of the metric perturbation h�� is

h�� ¼ r4fn�n�ð ��þ 2�Þð ��þ 4�Þ
þ �m� �m�ð�þ 5�� 2�Þð�þ�� 4�Þ
� nð� �m�Þ½ð ��þ 4�Þð�þ�� 4�Þ
þ ð�þ 4�� 4�Þð ��þ 4�Þ�g�þ c:c:; (38)

where the spin coefficients are given by Eq. (9). After
writing � in terms of ð, the tetrad components take the form

h11 ¼ r2

2
ð�ð2�þ ð2 ��Þ; (39)

h33 ¼ r4
�
@2t � 2f@t@r þ f2@2r

4
� 3ðr�MÞ

2r2
@t

þ fð3r� 2MÞ
2r2

@r þ r2 � 2M2

r4

�
�; (40)

h13 ¼ � r3

2
ffiffiffi
2

p
�
@t � f@r � 2

r

�
�ð�: (41)

Finally, the self-acceleration,

a�¼�ðg���u�u�Þ
�
r�h

ren
���

1

2
r�h

ren
��

�
u�u�; (42)

written in terms of these tetrad components, is given by

ar ¼ ðutÞ2
�
f20

�
1

16
f0Dþ 3

8
�þ i

8
�ðð� �ðÞ � 1

2

M

r20

�
h11

þ f0

��
1

8

M

r0
D� 1

4

M

r0f0
�þ 1

2

M

r20

�
h33

þ
�
� iffiffiffi

2
p �r0�þ 1

4
ffiffiffi
2

p M

r20
ðð� �ðÞ

þ i

2
ffiffiffi
2

p �

�
h13 þ c:c:

��
: (43)

The harmonic decomposition, � ¼ P
‘m�

�‘mðrÞ2Y‘mð�;	Þe�im�t, of the Hertz potential gives a

corresponding decomposition of ar. The contribution to
ar from the harmonic�‘m, however, is not a single angular
harmonic because the particle’s velocity u� involves
the Killing vector 	�, an axial ‘ ¼ 1 vector field on the
2-sphere; and u� occurs quadratically in Eq. (42) for ar.
Instead, the terms in Eq. (43) include terms from h11 and
�ðh13 proportional to Y‘m; terms from ðh11 and h13 propor-
tional to 1Y‘m; and terms from ðh13 and h33 proportional to

2Y‘m. A virtue of our numerical renormalization procedure

is that we need not rewrite these latter terms as sums of
spin-weight zero harmonics.
We organize the computation by writing the right side

of Eq. (43) as a sum of six terms for which the magnitude
jsj of the spin-weight increases from one square bracket to
the next:

ar ¼
�
ðutÞ2f20

�
1

16
f0Dþ 3

8
� 1

2

M

r20

�
h11 � 1

4
ffiffiffi
2

p ðutÞ2 Mf0
r20

� ð�ðh13 þ ðh14Þ
�
þ

�
i

8
ðutÞ2f20�ðð� �ðÞh11

� iffiffiffi
2

p ðutÞ2�f0

�
r0 � 1

2

�
ðh13 � h14Þ

�

þ
�

1

4
ffiffiffi
2

p ðutÞ2 f0M
r20

ððh13 þ �ðh14Þ þ ðutÞ2 Mf0
r0

�
�
1

8
D� 1

4f0
þ 1

2r0

�
ðh33 þ h44Þ

�
; (44)

¼ X6
i¼1

ari : (45)

The subscript i (i ¼ 1; . . . ; 6) in the symbol ari refers to the
location of the term on the right side of Eq. (44). We denote
by ar½‘� the contribution to ar from the restriction of � to
the ‘ subspace, writing

ar½‘� ¼ X6
i¼1

ari ½‘�: (46)

The harmonics ari ½‘� have finite limits as r ! r�0 . We

evaluate ar at a particle position P with coordinates t ¼ 0,
� ¼ �=2, and 	 ¼ 0, where the value of sY‘m is real. The

harmonics then have at P (for either choice of limit) the
forms
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ar1½‘� ¼ � 1

8
½ð‘� 1Þ‘ð‘þ 1Þð‘þ 2Þ�1=2ðutÞ2f20r20

�
�2@t þ f0

�
@r þ 2

r

�
þ 4

M

r20

�X
m

Reð�‘mÞY‘m; (47a)

ar2½‘� ¼
1

8
½ð‘� 1Þ‘ð‘þ 1Þð‘þ 2Þ�1=2ðutÞ2Mr0f0

X
m

�
m�Imð�‘mÞ �

�
f0@r þ 2

r0

�
Reð�‘mÞ

�
Y‘m; (47b)

ar3½‘� ¼ � 1

8
‘ð‘þ 1Þ½ð‘� 1Þð‘þ 2Þ�1=2ðutÞ2f20r20�

X
m

Imð�‘mÞð1Y‘m þ �1Y‘mÞ; (47c)

ar4½‘� ¼
1

4
½ð‘� 1Þð‘þ 2Þ�1=2ðutÞ2f0r40�

�
@2t � 2f@t@r þ f20@

2
r � 3

r0
ð1þ f0Þ@t þ 2f0

r0

�
3� 2

M

r0

�
@r þ 2

r20
ð1þ 2f0Þ

�
�X

m

Im�‘m1Y‘m; (47d)

ar5½‘� ¼
1

8
ð‘� 1Þð‘þ 2ÞðutÞ2f0Mr0

X
m

ðm�Imð�‘mÞ � f0@r Reð�‘mÞ � 2=rReð�‘mÞÞ2Y‘m; (47e)

ar6½‘� ¼
1

8
ðutÞ2f0Mr30

�
@2t @r � 2f0@t@

2
r þ f20@

3
r þ 6

r0
@2t � 2ð9� 13M=r0Þ@t@r þ 12

f0
r0

ð1�M=r0Þ@2r � 6

r20
ð5� 4M=r0Þ@t

þ 2

r20
ð17� 32M=r0 þ 8M2=r20Þ@r þ

16

r30
ð1�M2=r20Þ

�X
m

Reð�‘mÞ2Y‘m: (47f)

The mode-sum renormalization of the self-acceleration
is given by

arenr ¼ lim
‘max!1

X‘max

‘¼0

ðaretr½‘� � asr½‘�Þ; (48)

with asr½‘� the singular part of aretr½‘�. As described in
paper I, one can identify as�½‘� with the leading and
subleading terms in L in the large-L expansion of aret�.
This expansion has the (direction-dependent) form

aretr½‘� ¼ A�
�
‘þ 1

2

�
þ Bþ X1

k¼1

~E2k

L2k
þ arenr‘ ; (49)

where ~a‘ falls off at large ‘ faster than any power of ‘, and
the superscript � refers to the limit r ! r�0 . Because we

find that the singular field can be identified with its leading
and subleading terms, the remaining part of the power
series expansion in L must sum to zero, and we reorder
the higher-order terms in the power series, replacing Lk by
a sequence of polynomials Pkð‘Þ that individually sum to
zero and whose leading term is Lk (see Eq. (74), below).
We find the singular field numerically by matching a power
series of this form, truncated at a finite value kmax of k, to
the sequence aret½‘�, computed using Eqs. (46) and (47).
Since the ‘-mode expansion of the singular field agrees
with the large-‘ expansion of the retarded field, one can
extract the regularization parameters by the above method.
Though we find the singular field c s

0 to order Oð��1Þ in the
previous paper, one can see that it takes a heavy amount of
analytic work to calculate each of the asri ½‘�which requires
a careful analysis of more than 200 terms! Hence, we
employ this numerical matching method to extract the
renormalization coefficients in the radiation gauge.

A striking feature of the numerically determined singular
field is that the first three terms in the L expansion of the

conservative part fr of the self-force coincide with the
expression for asr obtained from the power series expansion
of hrr��1i. That is, the average over � of @r 1

� is given by

h@r��1i ¼ X
‘

½A�Lþ B� þOð�Þ; (50)

with A� and B given by [9]

A�
analytic¼�ð1�3M=r0Þ1=2

r20
; (51a)

Banalytic¼�ðð1�3M
r0
Þð1�2M

r0
ÞÞ1=2

r20

�
F1=2�1

2

1�3M=r0
1�2M=r0

F3=2

�
;

(51b)

where

Fp ¼ 2

�

Z �=2

0

�
1� M

r0 � 2M
sin2�

��p
d�: (52)

Table III shows the agreement between the regulariza-
tion coefficients that we get in a radiation gauge and the
ones in the Lorenz gauge. The renormalized self-force is
given by fr ¼ mar, with

arenr ¼ X1
‘¼0

ðaretr½‘� � A�L� BÞ: (53)

We can add parts of the perturbation corresponding to a
change in mass, and angular momentum in any convenient
gauge. They, together with an even-parity l ¼ 1 gauge
transformation outside r0 that accounts for a change in
the center of mass, have been computed in a Lorenz gauge
by Poisson and Detweiler, and we use their results. Note
that the singular part of the self-force is given by the
coefficients in the large-L expansion of the metric and is
therefore independent of the choice of gauge for ‘ ¼ 0 and
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‘ ¼ 1. Our results for the self-force, expressed as the self-
acceleration ar ¼ fr=m, are tabulated in Table IV.

IV. GAUGE-INVARIANT QUANTITIES

The perturbed metric of a particle in circular orbit in a
Schwarzschild spacetime is helically symmetric: The heli-
cal Killing vector k� ¼ t� þ�	� of the background
spacetime Lie derivyou.es the particle’s trajectory and is a
Killing vector of the linearized metric hret�� in a Lorenz,

Regge-Wheeler, or radiation gauge. As Detweiler noted
[3,10], the quantity H :¼ h��u

�u�=2 is invariant under

gauge transformations generated by a gauge vector 
�

that shares this symmetry,

Lk

� ¼ 0: (54)

A quick covariant derivation follows from the background
geodesic equation in the form u�r�u

� ¼ 0 and the relation

u� ¼ utk�, where ut is the scalar u�r�t. The change in H
under a gauge transformation is given by �
H ¼
u�u�r�
�. Then

u�u�r�
� ¼ �utu�
�r�k
� ¼ �u�
�r�u

� ¼ 0;

(55)

where Eq. (54) is used in the first equality and the geodesic
equation, together with k�r�ðutÞ ¼ 0, is used to obtain the
second.
In this section we describe the computation of the renor-

malized invariant H and, in effect, compare its values at
different orbital radii to the values computed in two differ-
ent gauges by Barack and Sago and by Detweiler. As we
show in Appendix A of paper I, the transformation from a
Lorenz gauge to the partial radiation gauge we use is
generated by a helically symmetric gauge vector; the value
ofHren in our radiation gauge must therefore coincide up to
numerical error with its value for a Lorenz gauge. The
‘ ¼ 0 part of the gauge transformation from aLorenz gauge
to the Regge-Wheeler gauge, however, is not helically
symmetric, and we must take account of the gauge change
in H to compare our value to the Regge-Wheeler value.
As we discuss below, instead of H itself, Sago et al.

tabulate a related gauge-invariant quantity that they term
�U, which is given in terms of H and the background
geometry. To facilitate the comparison to their work, we
use �U as the quantity to tabulate.
To compute Hren at the position of the particle, we use

the harmonic decomposition of the metric to write

Hret ¼ X
‘m

H‘mY‘mð�=2; 0Þ: (56)

We then match the sequence of values,

Hret
‘ ¼ X

m

H‘mY‘mð�=2; 0Þ; (57)

to a power series in ‘ of the form

E0þ E2

ð‘�1=2Þð‘þ3=2Þ
þ E4

ð‘�3=2Þð‘�1=2Þð‘þ3=2Þð‘þ5=2Þþ			 : (58)

Because the series is obtained fromHret, the renormalization
coefficientsEk are again invariant under helically symmetric
gauge transformations, and we compare in Table V the
leading term E0 to an analytic form derived by Detweiler,

E0 analytic ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� 3M

r2ðr� 2MÞ

s
2F1

�
1

2
;
1

2
; 1;

M

r� 2M

�
: (59)

WhenHret is decomposed as a mode sum, the information of
the singular part is stored in higher ‘s. We obtain the leading
term by matching Hret

‘ to a power series in ‘ from ‘ ’ 15
to 85. The method of matching is explained in Sec. V below.
Table V shows the fractional error with which the lead-

ing coefficient E0 differs from its analytic form for a set of
different radii.
In comparing quantities that we compute in a radiation

gauge to those computed by Barack and Sago in a Lorenz
gauge and by Detweiler in a Regge-Wheeler gauge,

TABLE IV. The radial self-force for a particle in circular orbit
around a Schwarzschild black hole. The first column lists the
Schwarzschild radial coordinate of the orbit; the second gives the
radial component of the self-force per unit mass square.

r0=M Fr=�2

6 0.031 741 815

7 0.024 314 669

8 0.019 541 501

9 0.016 137 918

10 0.013 580 536

11 0.011 595 880

12 0.010 019 806

13 0.0 087 455 255

14 0.0 076 999 148

15 0.0 068 310 918

16 0.0 061 012 423

18 0.0 049 526 422

20 0.0 040 997 900

25 0.0 027 292 140

30 0.0 019 459 393

35 0.0 014 569 286

40 0.0 011 313 990

45 0.00 090 387 369

50 0.00 073 864 055

60 0.00 051 979 901

70 0.00 038 553 381

80 0.00 029 728 330

90 0.00 023 619 526
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we follow the terminology in Sago et al. [4], using the
abbreviations BS and SD to refer to quantities computed in
the two different gauges. We have already mentioned that
the comparison requires a correction arising from the lack
of helical symmetry in the l ¼ 0 gauge vector, but there is
an additional difference between the BS and SD computa-
tions: BS parametrize the perturbed trajectory by proper
time 
 with respect to the background metric, while SD
uses proper time 
̂ with respect to the renormalized per-
turbed metric.1 From the relations

û � ¼ u�
d


d
̂
; ðg�� þ hren��Þû�û� ¼ 1 ¼ g��u

�u�;

(60)
we have, to linear order in the perturbation,

d


d
̂
¼ 1� 1

2
hren��u

�u�: (61)

Because we, like BS, use proper time with respect to the
background metric, we have chosen a Lorenz gauge for the
l ¼ 0 and l ¼ 1 parts of the perturbation so that our ut will
coincide with that of BS. In comparing to SD, we then need

both corrections—from the l ¼ 0 gauge transformation
and from the reparametrization of the trajectory, as given
in Sago et al. [4]. The ‘ ¼ 0 gauge transformation has
gauge vector 
� ¼ �tt�, with

� ¼ m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 � 3MÞ

q
: (62)

The relation between ut in our modified radiation gauge
and in a Lorenz gauge (normalized by proper time with
respect to the background metric) and ût in a Regge-
Wheeler gauge (normalized by proper time with respect
to the perturbed metric) is then

û t ¼ utð1þ ��HrenÞ þOðm2Þ; (63)

where Hren, given by

Hren ¼ 1
2h

ren
��u

�u�; (64)

is computed in our modified radiation gauge. Because Hret

is invariant under helically symmetric gauge transforma-
tions, Hren is similarly invariant.
Following Sago et al., we write U ¼ ût and construct

from it another quantity that is invariant under helically
symmetric gauge transformations by expressing the unper-
turbed U as a function of �: With

U 0ð�Þ :¼ð1�3M=RÞ�1=2; R :¼
�
M

�2

�
1=3

; (65)

the unperturbed values U0 and �0 satisfy

U0 ¼ U0ð�0Þ: (66)

Then �U is defined as the difference

�U :¼ U�U0ð�Þ ¼ U� ð1� 3M=RÞ�1=2; (67)

where the angular velocity that appears in U0ð�Þ is the
angular velocity of the perturbed trajectory. One can ex-
press�U in terms ofH using the changes �� and �U in�
and U due to a self-force whose only component is radial,
fr ¼ mar, namely

�� ¼ ���0 ¼ ��0

r20ð1� 3M=r0Þ
2M

ar þOðm2Þ;
(68)

�U¼U�U0¼U0

�
�Hren�r0

2
ar

�
þOðm2Þ; (69)

to obtain

�U ¼ �ð1� 3M=r0Þ�1=2Hren: (70)

Note that �U is gauge invariant in the standard sense
that it has the same value when h�� is replaced by h�� þ
L
g�� (in this case, when 
� is helically symmetric).

Detweiler and Sago et al. [3,4,10] also use the term
‘‘gauge invariant’’ to refer to the finite quantities U and
�. Their terminology is motivated by the fact that� andU

TABLE V. The first column shows the radius of the orbiting
particle in terms of the background Schwarzschild coordinate.
The second column shows the fractional error in E0, �E0=E0 ¼
jE0numerical � E0analyticj=E0analytic. We use 10�16 to indicate

that the difference is less than the double precision machine
accuracy.

r0=M j�E0=E0j
6 3:8� 10�14

7 1:6� 10�14

8 9:3� 10�16

9 9:0� 10�15

10 1:1� 10�15

11 5:6� 10�15

12 6:0� 10�16

13 2:5� 10�15

14 1:1� 10�15

15 3:4� 10�15

16 2:7� 10�15

18 3:5� 10�16

20 2:1� 10�15

25 2:3� 10�15

30 1:4� 10�15

40 6:6� 10�16

50 1:2� 10�15

60 1:7� 10�15

70 9:2� 10�17

80 4:8� 10�16

1To maintain a notation consistent with the extreme mass-ratio
inspiral literature and with our previous papers, we denote by u�

the four-velocity normalized with respect to the background
metric, with 
 the corresponding background proper time.
Sago et al. use ~u� and ~
 for these quantities and their quantities
with no tilde correspond to proper time with respect to the
perturbed metric.
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are physically meaningful: In particular, � can be mea-
sured by an observer at infinity from the periodicity of
received signals sent at equally spaced proper times from
the orbiting particle.

One must be careful, however, because �� and �U are
not gauge invariant. With the standard definition of the
change of a scalar on spacetime under a gauge transforma-
tion generated by a gauge vector 
�, they change by

�� ! ��þL
�; �U ! �UþL
U: (71)

Note, in particular, that Sago et al. use symbols �
� and

�
U whose meaning is different from the change in� and

U under a gauge transformation, while their symbol �
h��
does have the meaningL
g��. We discuss the terminology

and the reason �U is invariant under helically symmetric
gauge transformations in the Appendix.

Because we have used the Lorenz gauge for the ‘ ¼ 0
and ‘ ¼ 1 parts of the metric perturbation (derived by
Detweiler and Poisson), and the gauge transformation
from a Lorenz gauge to the Regge-Wheeler gauge of
Detweiler is not helically symmetric, we need to make
the same gauge adjustment made by BS to our �U to
compare its the value to that of Detweiler, namely

�UD ¼ ð1� 3M=r0Þ�1=2

�
r0 � 2M

r0 � 3M
��Hren;RG

�
: (72)

In the comparison table, Table VI below, �U is given in
the Regge-Wheeler gauge used by Detweiler. The table
reports results of the computation performed in the three
gauges, radiation, Regge-Wheeler, and Lorenz.

V. NUMERICAL MATCHING

As mentioned in paper I, we find the singular part of the
self-force by matching a power series to its numerically
computed large-L behavior. Explicitly, we match the se-
quence of values aret½‘� to successive terms in a series of
the form

ALþ Bþ Xkmax

k¼1

~E2k

P2kð‘Þ ; (73)

where the polynomial,

P2kð‘Þ¼
Yk
i¼1

�
‘�k�1

2
þ i

�Yk
j¼1

�
‘þkþ3

2
�j

�
; (74)

satisfies

X1
‘¼0

1

P2kð‘Þ ¼ 0: (75)

When one matches the above series to the numerical
series aret½‘� over a range ‘min 
 ‘ 
 ‘max, the accuracy
with which A and B are obtained depends on the value of
kmax chosen—on the number of parameters E2k used in the
matching. We choose kmax to minimize the difference
ðAðkmaxþ1Þ � Akmax

Þ=Akmax
as a function of kmax. For ‘max

infinite and no numerical error, Aðkmaxþ1Þ � Akmax
would

converge to zero as kmax ! 1. For finite ‘max only a finite
number of parameters can be extracted, and we approxi-
mate the value of kmax for which A and B are most accu-

rately determined by the value ~k of kmax that minimizes
Aðkmaxþ1Þ � Akmax

.

TABLE VI. In this table we compare our values of �U with
BS and SD. The first column shows the radius of the orbiting
particle in terms of background Schwarzschild coordinate. The
second, third and fourth columns show the values of �U com-
puted in a radiation gauge, Regge-Wheeler gauge (SD) and
Lorenz gauge (BS). We use 10�16 to indicate that the difference
is less than the double precision machine accuracy.

r0=M �U �Uðfrom SDÞ �UðfromBSÞ
6 �0:29 602 751 �0:2 960 275 �0:296 040 244
7 �0:22 084 753 �0:2 208 475 �0:220 852 781
8 �0:17 771 974 �0:1 777 197 �0:177 722 443
9 �0:14 936 061 �0:1 493 606 �0:149 362 192

10 �0:12 912 227 �0:1 291 222 �0:129 123 253
11 �0:11 387 465 �0:1 138 747 �0:113 875 315
12 �0:10 193 557 �0:1 019 355 �0:101 936 046
13 �0:092 313 311 �0:09 231 331 �0:092 313 661
14 �0:084 381 953 �0:08 438 195 �0:084 382 221
15 �0:077 725 319 �0:07 772 532 �0:077 725 527
16 �0:072 055 057 �0:07 205 505 �0:072 055 223
18 �0:062 901 899 �0:06 290 189 �0:062 902 026
20 �0:055 827 719 �0:05 582 771 �0:055 827 795
25 �0:043 599 843 �0:04 359 984 �0:043 599 881
30 �0:035 778 314 �0:03 577 831 �0:035 778 334
40 �0:026 339 677 �0:02 633 967 �0:026 339 690
50 �0:020 844 656 �0:02 084 465 �0:020 844 661
60 �0:017 247 593 �0:01 724 759 �0:017 247 596
70 �0:014 709 646 �0:01 470 964 �0:014 709 648
80 �0:012 822 961 �0:01 282 296 �0:012 822 962
90 �0:011 365 316 �0:01 136 531 �0:011 365 317

7 8 9 10 11 12 13
kmax

5. 10 15

1. 10 14

1.5 10 14

2. 10 14

2.5 10 14

FIG. 1 (color online). The solid curve is a plot of jE0ðkmaxþ1Þ �
E0kmax

j=E0kmax
vs kmax. The dashed curve is a plot of jE0analytic �

E0~kj=ðE0analyticÞ as a function of kmax. Both are for orbital radius

r0 ¼ 10M.

CONSERVATIVE, GRAVITATIONAL SELF-FORCE FOR A . . . PHYSICAL REVIEW D 83, 064018 (2011)

064018-11



We check this approximation by using our knowledge of
the analytic form of the leading renormalization parameter
E0 in the quantity h��u

�u� ¼ 2H:

2Hsing ¼ E0 þ
Xkmax

k¼1

E2k

P2kð‘Þ : (76)

In Fig. 1, we compare ~k to the value of kmax that minimizes
the error in E0. The graph shows for a particular orbital
radius that the error in E0 is a minimum at a value of kmax in

the interval ~k� 1.
Table VII shows for a set of orbital radii the minimum

value of jE0ðkmaxþ1Þ � E0kmax
j=E0kmax

, its value at kmax ¼ ~k;

that is compared to the value of jE0analytic �
E0kmax

j=E0analytic, again at kmax ¼ ~k. One can infer from

the table that, by minimizing Aðkmaxþ1Þ � Akmax
, one obtains

values of the renormalization parameters to a fractional
precision of 10�13 or better. Similar accuracy was reported
in paper I for the leading renormalization parameter in the
axisymmetric part of c 0.
The accuracy with which the values of Ek are obtained

also depends on the values of ‘min and ‘max. For fixed ‘max,
there is an optimal value of ‘min that minimizes the error in
the regularization parameters. For higher ‘min, contribu-
tions of the higher-order E2k are too small to extract; for
small ‘min the Hret½‘� (or aretr½‘�) will depart from its
large-L behavior. Tables VIII and IX and show the behav-
ior of the regularization parameters for different choice of
‘min (for a fixed ‘max ¼ 84) at two different radii.
Increasing ‘max, of course, increases the accuracy of the
computation.
The number of renormalization parameters needed to

attain machine accuracy is small, because the errors in the
mode sums are of order

X1
‘¼85

1

P10ð‘Þ �
X1
‘¼84

1

ð‘þ 1=2Þ10 � 10�19;

X1
‘¼85

1

P8ð‘Þ �
X1
‘¼84

1

ð‘þ 1=2Þ8 � 10�15

(77)

and the jreg parameterj< 1. We work to a fractional error
of order 1013, terminating the sum over k in Eq. (78) at
kmax ¼ 3.
Figure 2 shows the result of subtracting successive terms

in the numerically-determined large-L expansion of the
self-force, using aretr ¼ fretr=m, for a particle at
r0 ¼ 10M.
Each successive subtraction should reduce the slope of

the log‘ vs logfretr½‘� curve by an integer, and the com-
puted graphs shows the expected behavior for the first four
renormalization coefficients.
The accuracy with which the higher-order renormaliza-

tion coefficients can be computed can be used to estimate
the accuracy with which Hren and frenr are computed. In
addition, once the E2k have been found, the terms in the

TABLE VII. The first column shows the radius of the orbiting
particle in terms of background Schwarzschild coordinate r. The
second column shows the minimum of jE0ðkmaxþ1Þ �
E0kmax

j=E0kmax
as a function of kmax. Let that kmax be denoted

as ~k. The third column shows the quantity jE0analytic �
E0~kj=ðE0analyticÞ. ‘min ¼ 15.

r0=M Minimum of
E0ðkmaxþ1Þ�E0kmax

E0kmax

E0analytic�E0~k

E0analytic

6 1:4� 10�14 1:4� 10�14

7 1:5� 10�15 1:1� 10�14

8 1:7� 10�15 1:3� 10�15

9 3:4� 10�16 8:4� 10�15

10 2:0� 10�16 3:0� 10�15

11 8:2� 10�16 3:8� 10�15

12 5:3� 10�17 2:7� 10�15

13 2:6� 10�16 4:8� 10�16

14 2:3� 10�16 5:1� 10�15

15 1:8� 10�16 8:8� 10�16

16 2:5� 10�17 1:7� 10�15

18 1:8� 10�16 1:8� 10�16

20 7:6� 10�17 2:0� 10�15

25 3:8� 10�17 2:5� 10�15

30 4:3� 10�16 6:4� 10�16

40 3:2� 10�16 4:8� 10�16

50 1:7� 10�16 1:1� 10�15

60 6:0� 10�16 1:5� 10�15

70 9:2� 10�17 2:8� 10�16

80 1:6� 10�16 1:7� 10�17

TABLE VIII. This table shows the first five fractional differences between successive regularization parameters in the singular part
of 2H for five different values of ‘min, with kmax ¼ ~k. The second, third, fourth, fifth, and sixth columns list the fractional differences
(jEn;~kþ1 � En;~kj=En;~k) for n ¼ 0,�2,�4,�6,�8, respectively. The seventh column gives the fractional difference between E0analytical

and E0~k. The last column gives ~k. All values are for orbital radius r0 ¼ 15M.

‘min 0 �2 �4 �6 �8
E0analytical�E0~k

E0analytical

~k

5 5� 10�13 1� 10�9 9� 10�7 4� 10�4 1� 10�3 6� 10�13 10

10 4� 10�17 8� 10�13 2� 10�9 4� 10�6 5� 10�5 7� 10�16 11

15 2� 10�16 7� 10�12 4� 10�8 1� 10�4 4� 10�3 8� 10�16 10

20 2� 10�15 9� 10�11 6� 10�7 3� 10�3 1� 10�1 2� 10�15 7

25 7� 10�16 4� 10�11 3� 10�7 1� 10�3 6� 10�2 2� 10�15 6
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mode sum can be grouped as a rapidly convergent numeri-
cal sum and an analytically known sum. We have

fren;r¼X1
‘¼0

½fretr‘ �Að‘þ1=2Þ�B�

¼
�X‘max

‘¼0

þ X1
‘maxþ1

��
fretr‘ �Að‘þ1=2Þ�B� ~E2

Q2ð‘Þ

�			�
~E2kmax

Q2kmax
ð‘Þ

�
þX1

‘¼0

� ~E2

Q2ð‘Þþ			þ
~E2kmax

Q2kmax
ð‘Þ

�

¼X‘max

‘¼0

�
fretr‘ �Að‘þ1=2Þ�B� ~E2

Q2ð‘Þ�			

�
~E2kmax

Q2kmax
ð‘Þ

�
þX1

‘¼0

� ~E2

Q2ð‘Þþ			þ
~E2kmax

Q2kmax
ð‘Þ

�

þO

�
1

‘2kmaxþ1
max

�
; (78)

where the terms Q2kð‘Þ represent any polynomials in ‘
whose first term is ‘2k. The polynomials can be chosen to
allow the second sum on the right side of Eq. (78) to be

computed analytically. When the polynomials P 2k can be
used, as in our calculation, the second sum vanishes.

VI. DISCUSSION

The work here gives a first example of the successful use
of a (modified) radiation gauge to compute the self-force
on a particle in circular orbit. In comparing the renormal-
ized perturbed metric component h��u

�u�, we obtain

agreement to high numerical accuracy with previous cal-
culations in other gauges. The work shows that the singular
field can be identified with the singular field in a Lorenz
gauge. We verify the coincidence numerically to high
precision. It follows analytically from (1) the expression
derived in the companion paper [1] for the gauge vector 
�

that relates a Lorenz and radiation gauge and (2) the fact
that the gauge transformation of the self-force for a particle
in circular orbit involves no derivatives of the gauge vector.
In extending the method to circular orbits in Kerr and

then to more general orbits, additional subtleties arise.
Although spheroidal harmonics decouple in the
Teukolsky equation for c 0 and c 4, the lack of spherical
symmetry means that angular harmonics with different
values of ‘ no longer decouple in the perturbed metric or
in the expression for the self-force. This significantly
changes the way one computes the contribution to the
perturbed metric associated with the change in the center
of mass—a perturbation that is purely ‘ ¼ 1 for a
Schwarzschild background. A second complication for
noncircular orbits, arises from the existence of a region
between periastron and apastron, a region where the time
and angular harmonics of c 0 have a nonzero source. Ways
to handle each of these complications will be discussed in a
subsequent paper.
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TABLE IX. Entries are as in Table VIII, with r0 ¼ 10M.

‘min 0 �2 �4 �6 �8
E0analytical�E0~k

E0analytical

~k

5 2� 10�13 9� 10�9 4� 10�6 7� 10�3 2� 10�3 7� 10�12 10

10 6� 10�18 9� 10�14 1� 10�10 1� 10�6 2� 10�6 3� 10�15 11

15 2� 10�16 6� 10�12 2� 10�8 4� 10�4 2� 10�3 3� 10�15 8

20 2� 10�16 7� 10�12 4� 10�8 2� 10�3 2� 10�2 3� 10�16 9

25 1� 10�15 5� 10�11 3� 10�7 9� 10�3 7� 10�2 2� 10�15 7

5020 30 70
ln l

10 11

10 8

10 5

0.01

ln residual

FIG. 2 (color online). This figure shows a plot of logaretr‘ (and
subsequent subtractions of the singular terms) vs log‘. The
topmost curve is aretr‘ � ‘. The second curve (from the top) is

ðaretr‘ � Að‘þ 1=2ÞÞ � ‘0. The third curve shows ðaretr‘ � Að‘þ
1=2Þ � BÞ � ‘�2. The fourth, fifth and sixth curves show the
subsequent cumulative subtractions of E2=P2ð‘Þ, E4=P4ð‘Þ and
E6=P6ð‘Þ from the third.
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APPENDIX: GAUGE INVARIANTS

As we mentioned in Sec. IV, the symbols �
� and �
U
used in Refs. [3,4,10] in describing U and � as gauge
invariant are not the standard definitions of the change in a
scalar function under a gauge transformation. The differ-
ence in definitions arises because the four-velocity of a
single particle does not conform to the framework used to
describe perturbations of a set of physical fields on space-
time. The change in the trajectory of a single particle
involves a four-velocity that is defined only on a single
trajectory, and the trajectory is different for the perturbed
and unperturbed spacetimes.

Note that Detweiler and Sago et al. are careful to
distinguish a lack of gauge invariance of �� :¼ ���0

and �U :¼ U�U0 from the invariance of � and U. The
number� can be measured, for example, by an observer at
infinity from waves received from the orbiting particle: It is
in this sense gauge invariant. However, when� is regarded
as a function of trajectories or as a function on a
Schwarzschild spacetime that assigns to each point of
spacetime the frequency of a circular orbit through that
point, it becomes gauge dependent. In particular, in the
active description of a gauge transformation, an infinitesi-
mal diffeo changes the metric at a point of spacetime by
L
g��, and the frequency of a geodesic through that point

then changes by L
�. (In the passive description of a

gauge transformation, with � regarded as a function of
the coordinates, an infinitesimal coordinate transformation
correspondingly changes the functional dependence of �
on the coordinates.)

We give here a brief review of general relativistic per-
turbation theory and gauge transformations. We describe
linearized perturbation in terms of a family of fields, with
gauge transformations described in the active sense of
diffeos (diffeomorphisms). We begin with a family of
metrics g��ð�Þ, defining �g�� as the change in the metric

to first order in � as the quantity

�g�� ¼ d

d�
g��ð�Þj�¼0: (A1)

When no other fields are present, the metric g�� is physi-

cally equivalent to the diffeomorphically related metric
c �g��, where c is a diffeo (a diffeomorphism) and c �

is the pullback, whose components are given by

c �g��ðPÞ ¼ @c �

@x�
@c 


@x�
g�
½c ðPÞ�: (A2)

A gauge transformation is defined by considering a smooth
family of diffeos c �, with c 0 the identity. We denote by

� the vector field tangent at each point P to the orbit � �
c �ðPÞ of P. That is, to linear order in �, a point with
coordinates x� is mapped to a point with coordinates
c �ðPÞ ¼ x� þ �
�ðPÞ. The family of metrics g��ð�Þ is
then physically equivalent to the family c �

�g��ð�Þ, and the

metric perturbation �g�� is physically equivalent to the

gauge-related metric perturbation

�g�� þ ��g�� :¼ d

d�
c �

�g��ð�Þj�¼0

¼ d

d�
g��ð�Þj�¼0 þ d

d�
c �

�g��ð0Þj�¼0

¼ �g�� þL�g��: (A3)

When other physical fields ½T1; . . . ; TN� are present,
the families of fields ½g��ð�Þ; T1ð�Þ; . . . ; TNð�Þ� and

½c �
�g��; c

�
�T1; . . . ; c

�
�TN� describe the same physical sys-

tem. The corresponding physical equivalence of the per-
turbed fields, linearized about � ¼ 0, is the equivalence of
�T and �T þL
T, for each physical field T, where

�T ¼ d

d�
Tð�Þj�¼0;

�c �
�T ¼ d

d�
½c �

�Tð�Þ�j�¼0 ¼ �T þ �
T; and

��T ¼ L�T:

(A4)

In particular, if T is a scalar, c �
�T ¼ T � c �, implying

TðPÞ ¼ c �
�T½c�1

� ðPÞ�: (A5)

A scalar f constructed locally from a set of tensor fields
T1; . . .Tk, with

f ¼ FðT1; . . .TkÞ; with fðPÞ ¼ F½T1ðPÞ; . . .TkðPÞ�;
(A6)

satisfies

c f ¼ FðcT1; . . . cTkÞ; (A7)

implying, for any vector field 
�,

L
f¼ d

d�
FðT1þ�L
T1; . . . ;Tkþ�L
TkÞj�¼0: (A8)

One also uses a set of reference fields—basis vectors or
coordinates, for example—that are independent of � and
are not changed by the diffeo that maps the set of physical
fields to the physically equivalent set. For example, with t�

the vector @t, the gauge transformation �
gtt of a compo-

nent g��t
�t� is

��gtt ¼ L�gtt ¼ ðL�g��Þt�t� � L�ðg��t�t�Þ: (A9)

We now turn to the problem at hand, the behavior of U
and � under gauge transformations. These are defined in
terms of the four-velocity u�. To define them and u� as
fields, to write a change �u� as a vector at a point using the
definition (A4), and to define the Lie derivative L
u

�, one

must introduce a set of nearby orbits. In the problem
considered here, one can define an unperturbed vector field
u� by taking u�ðPÞ to be the four-velocity of the circular
orbit through P. The perturbed vector field at P is then the
four-velocity of the perturbed circular orbit through P. The
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scalar U of Sec. IV is constructed locally from g��, �, t�,

and 	�:

U ¼ U½g��ðt� þ�	�Þðt� þ�	�Þ��1=2

¼: Uðg��;�; t�; 	�Þ: (A10)

Here t� and 	� are reference fields, defined as the vectors
@t and @	 tangent to the coordinate lines, so that they have

the same values for the perturbed and unperturbed metric.
(Note that they are not Killing fields of the perturbed
metric, and cannot be defined in this way.) If 
� is helically
symmetric with respect to k� ¼ t� þ�ðPÞ	�, for a given
fixed P, then

��UðPÞ ¼ d

d�
Uðg�� þ �L
g��;�

þ �L
�; t�; 	�Þj�¼0

¼ L�UðPÞ: (A11)

Similarly,

���ðPÞ ¼ L��ðPÞ: (A12)

Finally, defining U0 as in Eq. (66), we have

��½U�U0ð�Þ� ¼ ½L�U�L�U0�j�¼0

¼ L�U0 �L�U0 ¼ 0: (A13)

That, is, U�U0ð�Þ is gauge invariant in the usual sense,
for helically symmetric gauge vectors.

If we denote by �̂�U and �̂�� the changes in U and �

introduced by Sago et al., Eqs. (A11) and (A12) are
equivalent to writing

�̂�U ¼ 0; �̂�� ¼ 0: (A14)

Although any scalar constructed locally from physical
fields alone has this behavior, Eqs. (A11) and (A12) [or,
equivalently, (A14)] are not trivial relations, because they
involve reference fields that do not change under gauge
transformations.

The difference between �� and �̂� is the change asso-

ciated with a second kind of gauge freedom, mentioned in
Appendix A.2 of paper I, namely, an infinitesimal change
(by a displacement 
�) in the background geodesic to
which one compares a geodesic in the perturbed spacetime.
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