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We study black hole phase transitions in (deformed) Hořava-Lifshitz (H-L) gravity, including the

charged/uncharged topological black holes and KS black hole. Stability analysis and state space geometry

are both used. We find interesting phase structures in these black holes, some of the properties are never

observed in Einstein gravity. Particularly, the stability properties of black holes in H-L gravity with small

radius change dramatically, which can be considered as a leak of information about the small scale

behavior of spacetime. A new black hole local phase transition in H-L gravity which cannot be revealed by

thermodynamical metrics has been found. There is an infinite discontinuity at the specific heat curve for

charged black hole in H-L gravity with hyperbolic event horizon. However, this discontinuity does not

have a corresponding curvature singularity of thermodynamical metrics. Our results may provide new

insights towards a better understanding of the H-L gravity, as well as black hole thermodynamics.
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I. INTRODUCTION

Because of the celebrated work of Bekenstein [1] and
Hawking [2] on black hole physics, it is widely accepted
that black holes are thermodynamic systems. The four laws
of black hole thermodynamics [3] have been put on solid
fundamentals. It is also believed that some kinds of un-
known microscopic degrees of freedom are coming into
play since every black hole has a temperature proportional
to the surface gravity on the black hole event horizon and
an entropy proportional to the area of event horizon.

Phase transition is an important phenomenon in ordinary
thermodynamics. It is therefore natural to ask whether
there are some phase transitions in black hole thermody-
namics. The pioneering work of Hawking and Page proved
that there is a global phase transition between thermal AdS
state and AdS black hole in four dimensions as the tem-
perature changes [4]. It means that thermal radiation in
AdS space becomes unstable at a certain temperature,
and eventually collapses to form a black hole. However,
a physical difference in the microscopic structure in
different phases is still unclear. Witten reconsidered
Hawking-Page phase transition in the spirit of AdS/CFT
correspondence, and interpreted it as a transition between
low-temperature confining and high temperature deconfin-
ing phase in the dual field theory [5]. The research of black
hole phase transition has been extended and indicates that
there may exist different phase transitions in various cir-
cumstance [6–19]. The signal of a phase transition is
typically characterized by the sign change of a capacity,
such as the specific heat, charge capacitance or moment of
inertia, by going through either zero or infinity. Davies
argued that the points that the specific heat with fixed

charge and/or angular momentum passing from negative
to positive values through an infinite discontinuity are
commonly associated with phase transitions [6,7]. These
divergences in the phase space are denoted as Davies
curves now. We should also note that this type of thermo-
dynamical phase transition is based on the local stability
analyses and is generally different from the global
Hawking-Page phase transition. In this paper, we shall
keep an eye on distinguishing the local and global stabil-
ities of black hole thermodynamic ensembles.
The study of phase transition has been extended in

various directions, e.g., to black holes with nonspherical
event horizon topologies [22,23], to black holes including
more conserved quantities such as charges and angular
momenta [6–10] or to higher dimensional black holes
[10]. The research can also be generalized to gravity
theories with high derivatives of curvature terms, such
as Gauss-Bonnet gravity [11,12,18], Born-Infeld gravity
[15–17] and Lovelock gravity etc. [13,14,19]. In these
cases, phase transitions and critical phenomena are more
complicated.
Weinhold [24] and Ruppeiner [25,26] introduced ther-

modynamical metrics to study thermodynamic systems. A
thermodynamic system is described by some thermody-
namical quantities, and these quantities are all related to
each other. Weinhold took internal energy M as a function
of entropy S and other extensive variables Na which are
necessary to describe the thermodynamic system.
Denoting the collection of all the other thermodynamical
quantities exceptM as fSig � fS;Nag, then M ¼ fðSiÞ. He
constructed a metric ds2ðMÞ ¼ hijdS

idSj, where hij ¼
@2fðSiÞ=ð@Si@SjÞ is the Hessian matrix of fðSiÞ. In a
similar way, Ruppeiner later introduced a new metric
ds2ðSÞ by using the entropy as a generating function de-
pending on other extensive variables [25]. Remarkably, the
curvature of Ruppeiner metric could be related to interac-
tions in the underlying statistical system and scaled as the
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correlation volume. It is divergent at critical points of
second-order phase transitions. It has been proved that
Weinhold and Ruppeiner metrics are conformally equiva-
lent to the inverse of the temperature as the conformal
factor. There are large amounts of works to be done in
discussing the relationship of black hole phase transitions
and Ruppeiner/Weinhold metrics [27–30]. The Ruppeiner
and Weinhold metrics indeed reveal some signals of black
hole phase transitions, but sometimes they fail to work to
the Davies curve [29].

Inspired by Weinhold and Ruppeiner, a framework was
proposed to identify all of the phase transition points in
black hole thermodynamics [31]. The authors of [31] in-
troduced metrics based on all thermodynamical potentials
generated by Legendre transformations of the black hole
energy or entropy, and found that the collection of all phase
transition points are in one-to-one correspondence to the
collection of curvature singularities of those thermody-
namical metrics. This work clarified that the divergences
in the associated set of thermodynamical geometries can
reveal the threshold points of all capacities completely. A
natural question is ‘‘what is range of application of the
correspondence between curvature singularities of the gen-
eralized thermodynamical metrics and phase transition
points in black hole thermodynamics?’’ or ‘‘is the corre-
spondence valid for all thermodynamical systems? , e.g.
black hole solutions among different gravity theories such
as Born-Infeld gravity and Lovelock gravity etc.’’? Though
various black holes with spherical topology of horizon and
black rings in five dimensions with single angular momen-
tum were investigated in [31], it is far from complete proof
of the correspondence between curvature singularities of
thermodynamical metrics and phase transition signals. It
will be very interesting to investigate some black holes in
other gravity theories or with nonspherical topology of
horizon that may provide counterexamples to this corre-
spondence, which may help to identify the correspond-
ence’s range of application.

Recently, a new theory of gravity at a Lifshitz point was
proposed by Hořava, which may be regarded as a UV
complete candidate for general relativity [32–34]. The
Hořava-Lifshitz (H-L) theory has been intensively inves-
tigated. Some kind of black hole solutions for H-L gravity
have been found [35–38]. The thermodynamic analysis of
H-L gravity black holes is a nontrivial task and has been
done in [36,39]. Nevertheless, the charged black hole in
H-L gravity has not been studied from the thermodynamic
perspective. Moreover, in [40,41], the authors examined
the thermodynamical geometry of the topological black
hole in H-L theory and KS black hole, respectively. Their
papers only constructed the Ruppeiner and Weinhold met-
rics. However, the new metric based on free energy, which
was introduced in [31], should be included for a full
analysis. These prompt us to study the stability of black
holes and their phase transitions in H-L gravity. It is also

necessary to construct their whole set of thermodynamical
metrics and calculate the associated Ricci scalars, and to
examine the correspondence mentioned in the previous
paragraph.
In this paper, we investigate possible black hole phase

transitions in H-L gravity carefully, including the charged/
uncharged topological black hole in H-L gravity and a KS
black hole. We discuss stability of these black holes as well
as the phase transition signals using both analytical and
graphical techniques, especially in the ensemble with
fixed charge parameters. The phase structures are vivid
in these kinds of black holes in H-L gravity, which are
very different from the black holes in Einstein gravity.
Thermodynamic properties of the topological black holes
in H-L gravity are reexamined, and new observations have
been made. We analyze the specific case with dynamical
coupling constant � ¼ 1 carefully, for black holes with
hyperboloid topology. It turns out that there is a phase
transition going from small to large black holes at a critical
temperature, of first order. For a charged black hole in H-L
gravity, in the ensemble with fixed charge parameters, we
found that the black holes with sphere or flat topology have
no phase transition in the canonical ensemble with fixed
charge, since the specific heat with fixed charge CQ is

positive definite. However, the thermodynamic behavior
of RN AdS black holes is different and there can be three
branches of RNAdS black holes with a small fixed charge;
the middle radius branch is unstable, with temperature
increases, and small black holes can phase transition to
large black holes [7,8]. The charged black hole in H-L
gravity with hyperboloid topology is extremely interesting.
There are three branches of black holes. The branch with
the middle radius is local unstable while the small and
large branches are local stable. This signifies a local phase
transition at the point with divergent specific heat, but there
is no global phase transition here since the branch with the
largest radius always have minimum free energy at all
temperatures. For a KS black hole, it is obvious to see
that the high derivative terms in the H-L gravity action play
an important role. Their influences on the KS black hole
thermodynamic properties reduced to a chargelike parame-
ter, and make it thermodynamically behave like a RN black
hole. Compared to the Schwarzschild black hole it has a
new stable phase with a small radii, and phase transition
comes up.
The thermodynamical metrics of black holes in H-L

gravity are also constructed, and the corresponding Ricci
scalars are calculated for the purpose of investigating their
curvature singularities. We found that all the cases we
discussed in this paper are almost consistent with the
framework proposed in [31], except that there is an infinite
discontinuity at the specific heat curve for a charged black
hole with hyperbolic event horizon in H-L gravity,
while this discontinuity does not have corresponding cur-
vature singularities of thermodynamical metrics. This is a

QIAO-JUN CAO, YI-XIN CHEN, AND KAI-NAN SHAO PHYSICAL REVIEW D 83, 064015 (2011)

064015-2



probable counterexample to the correspondence between
local phase transition points and curvature divergences of
thermodynamical geometries. This also indicates that the
thermodynamical metrics cannot reveal all of the local
phase transition signals in H-L gravity. The violation of
this correspondence in charged black holes with a hyper-
bolic event horizon in H-L gravity may be related to the
nonspherical topology of its event horizon. The ultraviolet
behavior of spacetime in H-L gravity serves as the reason
for all of those strange properties in black hole thermody-
namics. Our results may provide new insights towards a
better understanding of the Hořava-Lifshitz gravity, as well
as black hole thermodynamics.

This paper is organized as follows. In Sec. II, we focus
on the thermodynamic properties of topological black
holes in H-L gravity, and recall the stability analyses by
using their heat capacity and free energy. In Sec. III, we
consider the charged topological black holes in H-L
gravity. Their stability and the phase transition signals

are examined carefully. Both the specific heats CQ and

C�, and charge capacitances ~CT and ~CS are calculated. The
threshold points where these quantities change sign
through zero or infinite discontinuity are compared with
the divergent points of the Ricci scalar curvatures for
Weinhold metric ds2ðMÞ, Ruppeiner metric ds2ðSÞ
and the free-energy metric ds2ðFÞ. We found that not all
threshold points in the four C’s match precisely to those
singularities in the three metrics. In Sec. IV, the thermo-
dynamical properties of KS black holes were investigated.
It thermodynamically behaves like a RN black hole, and
phase transition comes up. We see that all possible phase
transitions found from the four C’s correspond to curvature
singularities of certain thermodynamical metrics, which
are very consistent to the framework proposed by [31].
Section V includes a summary and discussions. In the
Appendix, we examine the thermodynamical properties
of KS black holes by defining the mass and the entropy
in an alternative way.

FIG. 1 (color online). Temperature for topological black holes vs horizon radius rþ, with c ¼ l ¼ G ¼ � ¼ �k ¼ 1 and s ¼ 1
2 . For

k ¼ 1, the negative temperature region rþ < 1ffiffi
3

p is unphysical, only the positive temperature region have physical significance, the zero

temperature point is where the black hole is extremal. In the case of k ¼ �1, the behavior of the temperature is similar to
Schwarzschild AdS black hole. (See text for discussion of this case.)
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II. TOPOLOGICAL BLACK HOLE IN
HO �RAVA-LIFSHITZ GRAVITY

Thermodynamic properties of the topological black
holes in H-L gravity have been examined in [39,40]. We
review it briefly in this section and make some new ob-
servations. For general dynamical coupling constant � in
H-L gravity action, the solution of the topological black
holes in H-L gravity was first obtained in [36]. The metric
can be written as

ds2 ¼ � ~N2fðrÞdt2 þ dr2

fðrÞ þ r2d�2
k; (1)

where d�2
k denotes the line element for two-dimensional

Einstein space with constant scalar curvature 2k. We can
take (without loss of generality) k ¼ 0, �1 for plane,
sphere or hyperboloid 2-space, respectively. The function
fðrÞ is given by

fðrÞ ¼ k��r2 � �rs; ~N ¼ �r1�2s; (2)

where

s ¼ 2�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3�� 1Þp

�� 1
; (3)

and � and � are both integration constants. The black hole
horizon is at r ¼ rþ, which is defined by the largest real
positive root of fðrÞ ¼ 0. There are two branches of solu-
tions according to the sign in (3). It is reasonable to choose
the negative branch since the physical meaning of the
positive branch is not very clear [39]. The range of s is
ð�1; 2Þ for the negative branch when � > 1=3.

It should be noticed that the asymptotic behavior of
those solutions are complicated. They are neither asymp-
totically flat nor asymptotically AdS, so we have to use the
canonical Hamiltonian method to define their mass.
Defining l2 ¼ � 1

� , the thermodynamical quantities are

collected as [39]

T ¼ �

8�rþ
ð��r2þð2� sÞ � skÞ

¼ �

4�r2sþ

��
rþ
l

�
2ð2� sÞ � ks

�
; (4)

S ¼ ��2�2�kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3�� 1Þp

�
k lnð

ffiffiffiffiffiffiffiffiffi
��

p
rþÞ þ 1

2
ð

ffiffiffiffiffiffiffiffiffi
��

p
rþÞ2

�
þ S0;

(5)

M¼
ffiffiffi
2

p
�2�2�k

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3��1

p ��2¼
ffiffiffi
2

p
�2�2�k�

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3��1

p ðk��rþÞ2
r2sþ

: (6)

Using

c ¼ �2�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1� 3�

s
¼

�
2� s

1þ s

��
�2�

4
ffiffiffi
2

p
l

�
(7)

one may rewrite

M ¼ c3

16�G

�
1þ s

2� s

�
ð��kl

2�2sÞ
�
kþ ðrþl Þ2
ðrþl Þs

�
2
;

S ¼ c3

4G

�
1þ s

2� s

�
ð�kl

2Þ
�
k ln

�
rþ
l

�
2 þ

�
rþ
l

�
2
�
þ S0:

(8)

It is easy to confirm that the above thermodynamical
quantities satisfy the first law of thermodynamics
dM ¼ TdS.
Two points should be noticed here which did not appear

in the analyses of Schwarzschild AdS black holes in [4],
viz., the expression of mass (8) is not monotonously in-
creasing with rþ when k ¼ �1, and there is a logarithmic
term in the entropy expression. Unless k ¼ 0, one cannot
fix the integration constant S0 here. The sign of the specific
heat for the topological black holes in H-L gravity is
different from the sign of the local slope of the TðrþÞ
curve. We should be careful about them in the following
discussion.
It is instructive to plot the temperature as a function of a

horizon radius for the topological black holes inH-L gravity
(see Fig. 1). In these figures, we have taken the parameters
c ¼ l ¼ G ¼ � ¼ �k ¼ 1 and s ¼ 1

2 (� ¼ 1). As can be

seen from Fig. 1(c), the temperature for k ¼ �1 has a
minimum,which locates at rþ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�3sþs2
p . Above themini-

mum temperature, there are two black holes with a different
radius associated to the same temperature. Below this tem-
perature, no black hole exists. Those facts may indicate
that there is a phase transition at this point. Checking the

FIG. 2 (color online). Phase structure for topological black
holes with k ¼ �1 and 0< s < 1. Black holes only exist in
the right side of the curve of minimum temperature, i.e. above a
certain temperature.
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expression of temperature Eq. (4), one can see that the
minimum temperature only exists for 0< s < 1. Figure 2
depicts the phase structure for topological black holes with
k ¼ �1. As shown in Fig. 2, those black holes only exist
above a minimum temperature. This is qualitatively similar
to the familiar case of the Schwarzschild AdS black holes
studied in [4]. It should be emphasized that this is not all of
the story of black holes discussed here. This is because the
expressions of mass and entropy do not monotonously
increase with horizon radius when k ¼ �1, and we cannot
conclude that the black hole with smaller radii is unstable
while the larger one is stable. To bemore precise, the sign of
the specific heat C ¼ @M

@T ¼ T @S
@T , which determines the

local stability of a thermodynamic system, cannot be in-
ferred from the local slope of the TðrþÞ curve for the
topological black holes inH-L gravity. This is very different
from the Hawking-Page transition. The local stability

properties of those black holes should be analyzed by using
the specific expression of specific heat.
It is also worth mentioning another interesting issue: the

temperature behaviors of the topological black holes in
H-L gravity with k ¼ 1, 0 and �1 are very similar to the
black holes with k ¼ �1, 0 and 1 in Einstein’s general
relativity, respectively, which has been first emphasized in
[36].
To study the local stability of topological black holes in

H-L gravity, we need to calculate the heat capacity:

C�¼@M

@T

���������

¼c3l�2sr2sðrlÞ�2sðkl2þr2Þð1þsÞðr2ð�2þsÞþkl2sÞ�k

4Gð�2þsÞðr2ð�2þsÞð�1þsÞþkl2s2Þ :

(9)

FIG. 3 (color online). Heat capacity for topological black holes vs horizon radii rþ, with c ¼ l ¼ G ¼ � ¼ �k ¼ 1 and s ¼ 1
2 . For

k ¼ 1, the heat capacity changes from negative values to positive values through a zero point has nothing to do with phase transition,
the negative region rþ < 1ffiffi

3
p is unphysical, and the zero point is associated with a extremal black hole. The divergence in the last graph

is associated with the minimum temperature in Fig. 1(c). There are three branches of black holes, the middle branch is local unstable
with negative values of heat capacity, while the small and large branches are local stable.
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If we set � ¼ 1, it reduces to the expression discussed in
[36]. We show the special case of s ¼ 1

2 ð� ¼ 1Þ in Fig. 3.

From Fig. 3(c), we see that there is a divergent point of
the heat capacity for k ¼ �1. The divergent point, rþ ¼

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2�3sþ2

p , coincides with the value of rþ for the minimum

temperature. Across this point, the local stability of a black
hole changes. In order to study the phase structure and
global stability, we must observe the free energy, it can be
obtained as follows:

F ¼ M� TS ¼ � c3ð1þ sÞ�ðr�2sðkl2 þ r2Þ2 þ r�2sðr2ð�2þ sÞ þ kl2sÞðr2 þ kl2 lnðr2
l2
ÞÞÞ�k

16Gl2�ð�2þ sÞ : (10)

To see its properties, we plot the free energy for s ¼ 1
2

(� ¼ 1) in Fig. 4. The maximum point of the free energy
for k ¼ �1 in Fig. 4(c) is rþ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�3sþs2
p , which coincides

with the point for the minimum temperature and divergent
heat capacity.

The free energy as a function of temperature for k ¼ �1
is shown in Fig. 5. There are no black holes below a certain

temperature T1 (T1 ¼
ffiffi
3

p
4� in the plot). Above T1, two black

holes can exist and the small branch is more stable than the
middle branch. As the temperature increases, at tempera-
ture T2 (T2 ¼ 1

2� in the plot), the large branch takes the

place of the middle branch, but the free energy of the small
branch is still more negative than that of the large branch.
As the temperature increases further, the small and large
branches have the same free energy at T3 (T3 is about 0.406
in the plot), above this temperature, the large branch takes
over the physics. This signifies a phase transition as it goes
from small to large rþ black holes. At T3, the free energy is
continuous, but its first derivative is discontinuous. This is
a typical first order phase transition .
The above results can be interpreted as follows. For our

specific choice s ¼ 1
2 , the thermodynamic properties of the

FIG. 4 (color online). Free energy for topological black holes vs horizon radii rþ, with c ¼ l ¼ G ¼ � ¼ �k ¼ 1 and s ¼ 1
2 .
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topological black holes in H-L gravity with different hori-
zon topologies are very different from each other. For
k ¼ 1, the free energy decreases steadily in the physical
region. Any nonextremal black holes have positive heat
capacity, and the black holes are stable. Thermodynamical
behavior of the k ¼ 0 case is just like the k ¼ 1 case. The
story is very different for k ¼ �1 case. It can be informed
from Fig. 3(c) that there are three branches of black holes.
The middle branch is unstable, while the small and large
branches are stable. The branch with the smallest radii is
new in H-L gravity, and does not appear in the
Schwarzschild AdS black hole. Also notice that the middle
branch has the highest free energy, and is relatively
unstable.

We have found interesting phase structures in the topo-
logical black holes in H-L gravity, some of the properties
are never observed in Einstein gravity. The H-L gravity is
regarded as a UV complete candidate for general relativity,
and the ultraviolet behavior of spacetime changed dramati-
cally, maybe, this is why there is a branch of stable black
hole with a small radii appear in the k ¼ �1 case. Pursuing
its deep reason goes beyond the scope of this paper, and we
will leave settling of this interesting issue to a future date.
For general dynamical coupling constant �, the heat ca-
pacity for three cases with different horizon topologies can
all have positive and negative values, which means that

there always exist locally thermodynamically stable phases
and unstable phases in suitable parameter regimes. This
indicate phase transitions at certain threshold points.
Relevant results can be found in [39].
In [40], the authors obtained the Ruppeiner metric for

these kind of black holes by taking � and M as variables.
Weinhold metric was also calculated there. However, in
Hořava-Lifshitz gravity, � represents a dynamical coupling
constant, susceptible to quantum corrections; it is not a
conserved charge, and a convincing reason is needed for
why it can be taken as a variable in constructing thermo-
dynamic metrics. Taking this argument into account, one
can see that the thermodynamical metric of the uncharged
black hole is one dimensional, so we do not study the
various properties of the scalar curvatures.

III. CHARGED BLACK HOLE IN
HO �RAVA-LIFSHITZ GRAVITY

Phase transitions in charged black holes such as
Reissner-Nordström black holes have been studied in
[6–8,20,42]. In this section we extend the discussion of
phase transitions to charged black holes in H-L gravity. For
simplicity and clearness we set � ¼ 1. The charged topo-
logical black hole solution in H-L gravity for � ¼ 1 has
been given in [36], the metric is

ds2 ¼ � ~NðrÞ2fðrÞdt2 þ dr2

fðrÞ þ r2d�2
k; (11)

fðrÞ ¼ kþ x2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0x� q2

2

s
; x ¼

ffiffiffiffiffiffiffiffiffi
��

p
r; (12)

where ~N ¼ N0 could be set to one. The event horizon
radius is determined by xþ (note xþ is not the horizon
radius), which is the largest positive root of fðxÞ ¼ 0.
Denoting l2 ¼ � 1

� as well, the thermodynamical quanti-

ties computed in [36] are

T ¼ 6x4þ þ 4kx2þ � 2k2 � q2

16kl2�xþ þ 16l2�x3þ
; (13)

S ¼ ��2�2�k

4
ðx2þ þ 2k lnðxþÞÞ þ S0; (14)

� ¼ q

xþ
þ�0; (15)

Q ¼ �2�2�k

16l2
q; (16)

M ¼ �2�2�k

16l2
c0; (17)

where c0 ¼ 2k2þq2þ4kx2þþ2x4þ
2xþ

. As we can see, the mass of

the charged topological black hole in H-L gravity is also

T1 T2
T3

0.3 0.4 0.5 0.6
T

0.5

0.4

0.3

0.2

0.1

F

FIG. 5 (color online). Free energy for topological black holes
with k ¼ �1 vs temperature, with c ¼ l ¼ G ¼ � ¼ �k ¼ 1
and s ¼ 1

2 . The thick dotted curve is for the middle branch, while

the dashed and solid curves are associated with the small and
large branches, respectively. Note that the origin coordinates are
(0.2, 0).
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not increasing monotonously with xþ. It is more compli-
cated than the uncharged one, since the charge parameter q
comes into play. The charge parameter q does not appear
explicitly in the expression of entropy S. It is consistent
with the fact that black hole entropy is a function of
horizon geometry. It is easy to verify that the first law of
thermodynamic dM ¼ TdSþ�dQ is satisfied.

When q2 ¼ 2ð�k2 þ 2kx2þ þ 3x4þÞ, or xþ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� k

3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k2þ3q2

p
3
ffiffi
2

p
r

, Hawking temperature T ¼ 0, and the

black hole becomes an extremal one. In order for this black
hole to be nonextremal we must assume

q2 < 2ð�k2 þ 2kx2þ þ 3x4þÞ:
We exhibit the temperature vs xþ curve in Fig. 6, with
parameters c ¼ l ¼ G ¼ � ¼ �k ¼ 1 and q ¼ 2.
(Parameters are chosen in the same way in all the graphical
analysis in this section, but the general properties of the

physical quantities are not changed if we choose other
parameters.) We can see that each of the three graphs
have negative values of Hawking temperature at some
ranges of xþ, i.e. q2 > 2ð�k2 þ 2kx2þ þ 3x4þÞ, which cor-
respond to unphysical regions and have no physical sig-
nificance. There is an infinite discontinuous point
xþ ¼ xc ¼ 1 in the case of k ¼ �1 [Fig. 6(c)]. When
xþ > xc, the temperature behaves just like the other two
temperature curves in Figs. 6(a) and 6(b), gradually in-
creasing with xþ. Another interesting property is that in the
case of k ¼ �1, for ‘‘small’’ black holes (with radius
0< xþ < 1), the temperature has a minimum value at the
point xþ ¼ 1ffiffi

3
p . Remarkably, this point does not depend on

the charge parameter q. We plot the phase structure of
small black holes in Fig. 7.
As emphasized in Sec. II, the temperature vs xþ curve

cannot reveal all the information of the phase structure, but
it tells us that the small black holes only exist above a
minimum temperature, as shown in Fig. 7.

FIG. 6 (color online). Temperature of charged topological black holes vs xþ, the values c ¼ l ¼ G ¼ � ¼ �k ¼ 1 and q ¼ 2 have
been used here. Each of these three graphs has unphysical regions with negative Hawking temperatures. The unusual things appeared
in the last graph with k ¼ �1. See text for the discussion about this.
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The charged topological black holes in H-L gravity have
two conserved quantities Q andM parameterized by q and
xþ, just like the RN AdS black holes. The RN AdS black
holes phase transitions were studied in [7,8]. Two
complementary thermodynamic ensembles were studied
there, which are the grand canonical ensemble with fixed
background potential and the canonical ensemble with
fixed charge. In the canonical ensemble, if the fixed charge
is below a critical value, with the temperature increases,
small black holes tend to become large black holes with a
jump in the entropy. This is a first order phase transition
with a release of ‘‘latent heat’’. Above the critical value of
the charge, there is no phase transition. This is very similar
to the van derWaals-Maxwell liquid-gas model. This phase
transition is characterized by the divergence of the specific
heat with fixed charge CQ. Recently, a new type of phase

transition for the RN AdS black hole associated with the
divergence of the specific heat with fixed potential C� was
suggested in [43]. The authors argued that study of
Ehrenfest’s equations and the thermodynamical metrics
indicate the existence of a new glassy type transition.

Now, let us proceed to do the stability analysis for
charged topological black holes in H-L gravity.
Thermodynamic stability could be studied in many differ-
ent ways, depending on which thermodynamic function we
choose to use. Different choices will reveal thermody-
namic stability in different ensembles. A physically trans-
parent way is to examine the sign of specific heats and
other capacities. For charged topological black holes in
H-L gravity in hand, four kinds of capacities can be con-
structed. They are

CQ � T
@S

@T

��������Q
; C� � T

@S

@T

���������
;

~CT � @Q

@�

��������T
; ~CS � @Q

@�

��������S
:

(18)

The first two, i.e., the specific heats at constant electric
charge or potential, determine the thermal stability of the
black holes. They are positive (negative) if the black hole is
thermodynamically stable (unstable) to a thermal fluctua-
tion. The last two quantities are charge capacitances at
fixed temperature or entropy. They are negative (positive)
if the black hole is electrically unstable (stable) to electri-
cal fluctuation.
Following the standard thermodynamic definition of

specific heat, we calculate the specific heat of the topo-
logical charged black hole in H-L gravity for constant
charge Q:

CQ � T
@S

@T

��������Q
¼ @M

@T

��������Q

¼ ��ðkþ x2þÞ2ðq2 þ 2ðk� 3x2þÞðkþ x2þÞÞ�2�2�k

2�1ðq2 þ 2ðkþ x2þÞ2Þ
;

(19)

where

�1 ¼ ðkþ 3x2þÞ: (20)

Note that the expressions ofCQ and T share the same factor

q2 þ 2ðk� 3x2þÞðkþ x2þÞ in their numerator, and the non-
extremal condition will make CQ positive definite in the

physical parameters region when k ¼ 0, 1, which means
they are thermodynamically stable locally.
The specific heat for constant potential � is given by

C��T
@S

@T

���������

¼��ðkþx2þÞ2ð�q2þ2ðk�3x2þÞðkþx2þÞÞ�2�2�k

2�2
;

(21)

where

�2 ¼ ð2k3 � kq2 þ 10k2x2þ þ q2x2þ þ 14kx4þ þ 6x6þÞ:
(22)

We can also calculate the charge capacitances at fixed
temperature or entropy

~C T � @Q

@�

��������T
¼ 1

16l2

�
xþ þ 2q2xþðkþ x2þÞ

�2

�
�2�2�k;

(23)

~C S � @Q

@�

��������S
¼ 1

16l2
xþ�2�2�k: (24)

FIG. 7 (color online). Phase structure of small (0< xþ < 1)
topological black holes for k ¼ �1.
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We plot CQ in Fig. 8, with parameters c ¼ l ¼ G ¼
� ¼ �k ¼ 1 and q ¼ 2. As we can see from Fig. 8(c), the
specific heat passes from positive to negative values
through an infinite discontinuity, and then passes across
the horizontal ordinate again continuously (a small range
of xþ bigger than xþ ¼ 1 is unphysical since the Hawking
temperature is negative). The first threshold point is asso-
ciated with a local phase transition, and the latter happens
at Hawking temperature T ¼ 0 where the black hole be-
comes an extremal one. The latter threshold point also
occur in the cases of k ¼ 1 and k ¼ 0. These points are
not associated with phase transitions. However, they define
the unphysical range of xþ, where the temperature acquires
a negative value and the curve does not have any physical
significance. The strange behavior of the specific heat for
k ¼ �1 should be emphasized. CQ has a divergent point in

the case of k ¼ �1 at �1 ¼ 0, i.e., xþ ¼ 1ffiffi
3

p , which is

consistent with the minimum of temperature. This indi-
cates a local phase transition.
For brevity, we are not going to show all the other three

C’s in graphs. We can see that CQ, C� and ~CT all can have

both positive and negative values in certain parameter
regions, and they will change signs in the threshold points.
The threshold points are at a certain value of xþ, p and k
which satisfy the condition

�1 ¼ 0 or �2 ¼ 0:

These threshold points signal the change of local stabilities
and hence are typically associated with certain local phase

transitions. ~CS is positive definite, so it may not be relevant
to phase transition.
The free energy can reveal global stability properties of

black holes. It is straightforwardly calculated as

FIG. 8 (color online). Specific heat for constant charge Q vs xþ, with c ¼ l ¼ G ¼ � ¼ �k ¼ 1 and q ¼ 2. CQ is positive definite
in the physical region of parameters when k ¼ 0, 1, and it can change its sign at a parameter q independent threshold point xþ ¼ 1ffiffi

3
p in

the case of k ¼ �1.

QIAO-JUN CAO, YI-XIN CHEN, AND KAI-NAN SHAO PHYSICAL REVIEW D 83, 064015 (2011)

064015-10



F ¼ M� TS ¼ �2�2�kð4k3 þ 14k2x2þ þ 3q2x2þ � 2x6þ þ 2k lnðxþÞð2k2 þ q2 � 4kx2þ � 6x4þÞ þ 2kðq2 þ 4x4þÞÞ
64l2xþðkþ x2þÞ

:

(25)

We plot the free energy as a function of xþ in Fig. 9, with
c ¼ l ¼ G ¼ � ¼ �k ¼ 1 and q ¼ 2. For k ¼ 0, 1, the
free energy decreases steadily in the physical region. Any
nonextremal black holes have positive heat capacity, and
the black holes are stable. Now, let us focus on Fig. 9(c).
For ‘‘small’’ black holes in the case of k ¼ �1, the free
energy has a maximum at xþ ¼ 1ffiffi

3
p , which is also the point

of minimum temperature and divergent heat capacity CQ.
As we can see from Fig. 8(c), there are three branches of
black holes. In the region 1ffiffi

3
p < xþ < 1, the middle branch

nonextremal black holes have negative value of CQ, and
they are local unstable, while the small and large branches
are local stable. One may suspect that there is a global

phase transition between the small and large xþ black
holes. This does not take place since the large branch of
black holes persist to dominate the thermodynamics at all
temperatures. As we can see from Fig. 10, at all tempera-
tures the large branch (solid curve in the graph) has the
most negative value of free energy, and a global phase
transition cannot come up.
An alternative way to study thermodynamics is using

thermodynamical metrics, which have been introduced in
Sec. I. Next, we are going to study the properties of the
corresponding state space geometry. The Ruppeiner and
Weinhold metrics, and the thermodynamical metric de-
rived from the free-energy F ¼ M� TS are defined by

FIG. 9 (color online). Free energy for constant charge Q vs xþ, the values c ¼ l ¼ G ¼ � ¼ �k ¼ 1 and q ¼ 2 have been used
here; see text for discussion.
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~M ¼ fMig � fM;Nag; gðSÞij � @2SðM;NaÞ
@Mi@Mj ; (26)

~S ¼ fSig � fS;Nag; gðMÞ
ij � @2MðS;NaÞ

@Si@Sj
; (27)

~T ¼ fTig � fT;Nag; gðFÞij � @2FðT;NaÞ
@Ti@Tj : (28)

The Ricci scalars of the above thermodynamical metrics
can be calculated parallel to [31]. The thermodynamical
curvatures are too complicated to present, so we only give
the denominators of the Ricci scalars here, which are
enough for us to analyze their singular behaviors.
The denominators of the Ricci scalars, denoted by DðRÞ,
are given by

DðRðSÞÞ¼�2��
2�2�kðkþx2Þð8þq2�8x2þ�6x4þÞ4

�ð2þq2�4x2þ�6x4þÞ4ð2þ3x2þþx4þÞ2
�ðq2ð�1þx2þÞþ2ð1þx2þÞ2ð1þ3x2þÞÞ2
�ðq2ð�2þx2þÞþ2ð2þx2þÞ2ð2þ3x2þÞÞ2; (29)

DðRðMÞÞ ¼ �2�2�k

l2
�2ðq2ð�1þ x2þÞ þ 2ð1þ x2þÞ2

� ð1þ 3x2þÞÞ2ðq2ð�2þ x2þÞ þ 2ð2þ x2þÞ2
� ð2þ 3x2þÞÞ2; (30)

DðRðFÞÞ ¼ �2�2�k

l2
ðq2 þ 2ð1þ x2þÞ2Þ4

� ðq2 þ 2ð2þ x2þÞ2Þ4: (31)

We can see that the curvature singularity of these metrics
are related to the local phase transition associated with the
vanishing of �2, not �1. In the cases discussed in [31], the
curvature singularity of the Ricci scalar for the free-energy

metric RðFÞ is associated with the divergence of the specific
heat at �1 ¼ 0. However, this does not happen in the case of
a topological charged black hole in H-L gravity. The

denominator of CQ and RðFÞ indeed share the same factor

�3 ¼ q2 þ 2ðkþ x2þÞ2: (32)

But �3 does not vanish unless we set q ¼ 0, which reduces
to the uncharged case discussed in Sec. II. So we have to
declare that one exception to the framework in [31] has
been found. The specific heatCQ of a charged black hole in

H-L gravity with k ¼ �1 is divergent at xþ ¼ 1ffiffi
3

p , but none

of the three Ricci scalars have singularity at this point. The
violation of the correspondence only exists when k ¼ �1.
This happens because the topology of its event horizon is
nonspherical. This is a very interesting feature of H-L
gravity.
In closing this section, we would like to stress the

unusual features we have found here. The phase structures
is vivid in the charged topological black holes in H-L
gravity, which are very different from the RN AdS black
holes in Einstein gravity. For the charged black holes with
sphere topology in H-L gravity, there is no phase transition
in the canonical ensemble with a fixed charge, since the
specific heat with fixed charge CQ is positive definite, and

all the nonextremal black holes can stably exist locally at
all temperatures—while this is not the performance of RN
AdS black holes. Another difference is that the thermody-
namical metrics cannot reveal all of the local phase tran-
sition signals in H-L gravity, such as the charged black
holes in H-L gravity with a nonspherical event horizon.
One should also note that this is a local phase transition and
global phase transitions do not take place in the canonical
ensemble with a fixed charge for the charged topological
black holes in H-L gravity. As we have declared at the end
of Sec. II, the ultraviolet behavior of spacetime in H-L
gravity serves as the reason for all of those strange prop-
erties in black hole thermodynamics.

IV. KIHAGIAS-SFETOSOS BLACK HOLE

The action of the IR modified Hořava-Lifshitz gravity is

obtained by adding a term �4Rð3Þ to the original Hořava-
Lifshitz action [37], in order to get a Minkowski vacuum in
IR. The Kihagias-Sfetosos (KS) black hole is a solution of
the IR modified (or deformed) Hořava-Lifshitz gravity,
which was originally obtained in [37]. The thermodynam-
ical properties of this kind of black holes has been studied
in [41,44–46]. In this section, we shall study phase tran-
sitions in KS black holes. Stability analysis and state space
geometry will both be used. The solution of a KS black
hole is defined by the line element

ds2 ¼ �N2ðrÞdt2 þ 1

fðrÞdr
2 þ r2ðd�2 þ sin2�d	2Þ;

(33)

1 2 3 4 5
T

3.0

2.5

2.0

1.5

1.0

0.5

F

FIG. 10 (color online). Free energy for charged topological
black holes with k ¼ �1 vs temperatures with c ¼ l ¼ G ¼
� ¼ �k ¼ 1 and q ¼ 2. The dotted curve is for the middle
branch, while the dashed and solid curves are associated with
the small and large branches, respectively.
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where

N2 ¼ f ¼ 1þ!r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð!2r3 þ 4!mÞ

q
; (34)

and ! ¼ 16�2

�2 is a combined parameter of the original

parameters � and � in H-L gravity action. The quantityffiffiffiffiffi
1
2!

q
behaves as a chargelike parameter. We denote

P ¼
ffiffiffiffiffi
1
2!

q
and consider it as a new parameter in the black

hole thermodynamics. Now, we can rewrite (34) as

N2ðr;PÞ¼fðr;PÞ¼1þ r2

2P2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4

4P4
þ2mr

P2

s
: (35)

The horizons of a KS black hole is determined by
fðr; PÞ ¼ 0, which gives

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � P2

p
: (36)

The KS black hole is asymptotically flat, and its thermo-
dynamic properties will change dramatically from the
charged topological black holes in H-L gravity. The mass
parameter m and temperature of the KS black hole can be
expressed, respectively, as

m ¼ rþ
2

þ P2

2rþ
¼ rþ þ r�

2
; (37)

T ¼ f0ðrÞ
4�

��������r¼rþ
¼ r2þ � P2

4�rþð2P2 þ r2þÞ
¼ rþ � r�

4�rþðrþ þ 2r�Þ :
(38)

The KS black hole becomes an extreme one when rþ ¼
r�, i.e., m ¼ rþ ¼ jPj. If one regards m as the mass of a
KS black hole, using the first law dm ¼ TdS, the entropy
can be obtained via integration:

S ¼ �r2þ þ 2�P2 lnr2þ þ S0: (39)

This is an entropy with a logarithmic term. There are many
discussions for Eq. (39). In [41], the authors regard the
existence of a logarithmic term in the entropy as a unique
feature of the Hořava-Lifshitz gravity. In [45] it was sug-
gested that this logarithmic term can be interpreted as the
GUP-inspired black hole entropy, and a duality between
the entropy of the KS black hole and the GUP-inspired
Schwarzschild black hole has been shown. On the other
hand, one may treat m as a mass parameter and use the
ADM mass to write its first law of thermodynamics. The
authors of [47,48] argued that one should use the area-law

entropy and ADMmass, which also satisfies the first law of
thermodynamics. Here, we examine the thermodynamical
properties of KS black holes by using the first idea, and the
latter idea will be adopt in the Appendix for completeness.
If we take P as the KS black hole charge, the potential�

that corresponds to P is

�¼Pð2P2þr2þþðP�rþÞðPþrþÞ ln½r2þ�Þ
2P2rþþr3þ

: (40)

Those thermodynamical quantities also satisfy the first law
of thermodynamic dm ¼ TdSþ�dP.
The Hawking temperature of a KS black hole behaves

very similar to a RN black hole. As depicted in Fig. 11, the
KS black hole has a maximum temperature for P � 0,
when 2P4 þ 5P2r2þ � r4þ ¼ 0, i.e.,

rþ ¼ rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5þ ffiffiffiffiffiffi

33
p ÞP2

2

s
; (41)

which satisfies dT=drþ ¼ 0. And we will find that it is just
the threshold point for specific heat changing from nega-
tive to positive values through an infinite discontinuity.
Hence, for P � 0, the point at rm may signal a local phase
transition.We plot the phase structure for KS black holes in
Fig. 12. We find that there is another similarity between RN
black holes and KS black holes in that both of these black
holes can exist at all temperatures.
Taking P and rþ as variables, we can calculate the

specific heat for either constant P or constant potential
�, and charge capacitances defined in (18). They are given
by

CP � T
@S

@T

��������P
¼ @m

@T

��������P
¼ 2�ð�4P6 þ 3P2r4þ þ r6þÞ


1

; (42)

C� � T
@S

@T

���������
¼ ð2�ð2P2 þ r2þÞð�4P6 þ 12P4r2þ þ 9P2r4þ þ r6þ þ ð2P6 þ 7P4r2þ þ 4P2r4þ � r6þÞ lnðr2þÞÞÞ

ðP2 � r2þÞ
2

; (43)

FIG. 11 (color online). Temperature of KS black holes.
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~CT �@Q

@�

��������T
¼4P6rþþ12P4r3þþ3P2r5þ�r7þ

ðP2�r2þÞ
2

; (44)

~C S � @Q

@�

��������S
¼ ðrþð2P2 þ r2þÞ3Þ


3

; (45)

where


1 ¼ 2P4 þ 5P2r2þ � r4þ; (46)


2 ¼ 4P4 þ 16P2r2þ þ r4þ þ ð2P4 þ 5P2r2þ � r4þÞ lnðr2þÞ;
(47)


3 ¼ ð2P2 þ r2þÞ3 þ lnðr2þÞð4P6 þ 24P4r2þ þ 9P2r4þ
� r6þ þ 2ð2P6 þ 5P4r2þ � P2r4þÞ lnðr2þÞÞ: (48)

Since r2þ > P2 for a nonextremal KS black hole, the
numerator ofCP is positive definite, and it is divergent only
when 
1 ¼ 0. This happens at xþ ¼ xm which is just the
maximum point of temperature, as we showed in Eq. (41)
and Fig. 11. A graph of specific heatCP is shown in Fig. 13.
One can see from Fig. 13 that there always exists threshold
points when P � 0. A more recent paper argued that the
divergent points of CP is associated to a second-order
phase transition [49].

We also plot the free energy

F¼m�TS¼4P4þ7P2r2þþr4þþ2lnðr2þÞðP4�P2r2þÞ
4ð2P2rþþr3þÞ

;

(49)

in Fig. 14. We see that the free energy for P � 0 has a local
maximum at 
1 ¼ 0.
The above results can be interpreted as follows. The

specific heat with constant P is positive for small radius
KS black holes, while negative for a larger one. This in-
dicates that the small KS black holes are thermodynami-
cally stable, while the largeKS black holes are unstable. It is
nothing out of ordinary for an asymptotically flat black hole
to have negative specific heat, since the Schwarzschild
black hole in Einstein gravity is asymptotically flat space-
time, it has negative specific heat and is unstable. However
it is unusual that the small KS black holes are stable. This
conclusion is also supported by Fig. 14, since the unstable
large KS black holes have positive free energy while the
stable small KS black holes can have negative free energy

when the radius is small enough. P ¼
ffiffiffiffiffiffiffiffi
�2

32�2

q
� 0 is the

crucial condition for this interesting phase structure in KS
black holes, which means the high derivative term in the
H-L gravity action comes into play, and changes the ther-
modynamic properties of an asymptotically flat black holes.
The other three C’s all can have both positive and

negative values in suitable parameter regions. The thresh-
old points are at a certain value of P and rþ, which satisfy
the condition

FIG. 12 (color online). Phase structure of KS black holes. KS
black holes can exist at all temperatures.

FIG. 13 (color online). Heat capacity of KS black holes.

FIG. 14 (color online). Free energy of KS black holes.
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2 ¼ 0 or 
3 ¼ 0:

The behaviors of C�, ~CT , and ~CS will reveal thermody-
namic stability in different ensembles. Interesting phase
structures in the KS black holes can be found by examining
these quantities.

Thermodynamical metrics can be constructed as we did
in Sec. III, and it is straightforward to calculate Ricci
scalars of thermodynamical metrics. Considering the com-
plexity of the expression of those Ricci scalars, we only
show the denominators. They are given by

DðRðSÞÞ ¼ �
2
2; (50)

DðRðMÞÞ ¼ ðP� rþÞ2ðPþ rþÞ2ð2P2 þ r2þÞ
2
2; (51)

DðRðFÞÞ ¼ 
2
1


2
3: (52)

We see that all possible phase transitions correspond to
curvature singularities of certain thermodynamical met-
rics, which are consistent to the framework proposed
by [31].

V. CONCLUSION

Black hole phase transitions have been extensively
studied since the discovery of Hawking-Page phase tran-
sition and Witten’s interpretation of the transition in the
frame of AdS/CFT correspondence. However, the lack of
exact knowledge about the microscopic statistical frame-
work underlying black hole thermodynamic renders the
issue of phase transitions in black holes far from being
completely settled. In spite of these difficulties, some local
and global stability properties were examined in the con-
structed canonical ensemble or microcanonical ensemble.
Local stability in the canonical ensemble is equivalent to
the positivity of the heat capacity. However, the local
stability is not sufficient enough to ensure global stability,
and regions do exist which are locally stable but globally
unstable, as we found in this paper.

In this paper, we have studied black hole phase transi-
tions in (deformed) Hořava-Lifshitz gravity though stabil-
ity analyses, including the uncharged/charged topological
black hole and KS black hole. Some interesting observa-
tions have been made. Compared to the Einstein gravity,
the phase structure of black holes in H-L gravity changed
dramatically, and the stability of small radius black holes
are essentially different. Pursuing the deep reason of this
will help us to gain some information about how gravity
works in small scale spacetime.

The framework proposed in [31] is also associated with
the local stability analyses to black hole phase transitions.
It is still unclear whether this framework can uncover some
global stability properties of black holes. We found a
probable counterexample to this framework. There is an
infinite discontinuity at the specific heat curve for a
charged black hole with a hyperbolic event horizon in

H-L gravity. However, this discontinuity does not have a
corresponding curvature singularities of thermodynamical
metrics. The violation of the correspondence in H-L grav-
ity may be due to the nonspherical topology of their event
horizons. We guess that the topology of the event horizon
and the dimension of the spacetime may influence the
validity of the correspondence. One should also note that
this is associated with a local phase transition, not a global
phase transition.
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APPENDIX

For a KS black hole, there is another idea in defining the
mass and entropy. One can treatm as a mass parameter, and
to use the one quarter area entropy and ADMmass [47,48],
In this Appendix, we will adopt this idea to investigate the
thermodynamic properties of KS black holes. The expres-
sions of entropy and ADM mass are given by

S ¼ A

4
¼ �r2þ; (A1)

M ¼ rþ
2

� 3tan�1ð ffiffiffiffi
!

p
rþÞ

4
ffiffiffiffi
!

p þ 3�

8
ffiffiffiffi
!

p : (A2)

The mass parameter m is Eq. (37), and temperature for-
mula is the same as Eq. (38), discussions about this can be
found in Sec. IV.
The potential V corresponding to the chargelike parame-

ter P is computed as

V ¼ � 3ðð1þ!r2þÞtan�1ð ffiffiffiffi
!

p
rþÞ �

ffiffiffiffi
!

p
rþ

2
ffiffiffi
2

p ð1þ!r2þÞ
þ 3

ffiffiffi
2

p
�

8
;

(A3)

which satisfy the Smarr law

M ¼ 2TSþ VP; (A4)

and first law of thermodynamics

dM ¼ TdSþ VdP: (A5)

Furthermore, one can calculate the specific heats for
constant P or constant potential V:
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CP ¼ T
@S

@T

��������P
¼ @M

@T

��������P
¼ 2�r2þð�2P4 þ P2r2þ þ r4þÞ

2P4 þ 5P2r2þ � r4þ
; (A6)

CV ¼ @M

@T

��������V
¼

�rþð3
ffiffiffi
2

p
�� 6

ffiffiffi
2

p
tan�1ð

ffiffiffiffiffiffiffiffi
1=P2

p
rþffiffi

2
p Þ þ 4

ffiffiffiffi
1
P2

q
rþÞð2P2 þ r2þÞ

2
ffiffiffiffi
1
P2

q
ðP2 � r2þÞ

: (A7)

The capacitances at a fixed temperature or entropy are
given, respectively, by

~CT ¼ @P

@V

��������T
¼

ffiffiffiffi
1
P2

q
Pð2P2 þ r2þÞð2P4 þ 5P2r2þ � r4þÞ

3r3þðP2 � r2þÞ
;

(A8)

~C S ¼ @P

@V

��������S
¼

ffiffiffiffi
1
P2

q
Pð2P2 þ r2þÞ2

3r3þ
: (A9)

The feature of the heat capacity can be seen from Fig. 15.
CP also has a pole when 
1 ¼ 0, which agrees with what
we get from Eq. (42). Also note that the divergence ofCP is
associated with the vanishing of ~CT . But the other three C’s
are very different from what we discussed in Sec. IV. CV

and ~CT both have singularity at P2 ¼ r2þ, or P2 ¼ m2

where the black hole is extremal, which may be the critical
point for a phase transition from extremal to nonextremal
black hole. ~CS is not divergent in the physical region of
parameters, and is not relevant to a KS black hole phase
transition.

The free energy

F ¼ M� TS

¼ 1

8

�3 ffiffiffi
2

p
�� 6

ffiffiffi
2

p
tan�1ð

ffiffiffiffiffiffiffiffi
1=P2

p
rþffiffi

2
p Þ þ 4

ffiffiffiffi
1
P2

q
rþffiffiffiffi

1
P2

q

þ 2rþðP2 � r2þÞ
2P2 þ r2þ

�

¼ 1

8

�
3

ffiffiffi
2

p jPj
�
�� 2tan�1

�
rþffiffiffi
2

p jPj
��

þ 4rþ

þ 2rþðP2 � r2þÞ
2P2 þ r2þ

�
(A10)

is plotted in Fig. 16. The minimum of free energy corre-
sponds to the divergent point of CP, and the maximum
point of temperature.
The Ricci scalars of the Ruppeiner and Weinhold met-

rics and the thermodynamical metric derived from the free
energy are given by

RðSÞ ¼ 0; (A11)

RðMÞ ¼ � 2ð2P4 þ r4þÞ
rþðP2 � r2þÞ2

; (A12)

RðFÞ ¼ � 4ð2P2 þ r2þÞ2ð2P4 þ r4þÞ
rþð�2P4 � 5P2r2þ þ r4þÞ2

: (A13)

FIG. 15 (color online). Heat capacity for a KS black hole with
area entropy.

FIG. 16 (color online). Free energy for a KS black hole with
area entropy.
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It is not a surprise that the Ruppeiner curvature RðSÞ van-
ishes, since we have been treating the KS black hole
similar to the RN black hole, while the Ruppeiner curva-
ture for the latter is zero.

We see that the divergent point of RðMÞ corresponds to
the divergent point of CV and ~CT , and that the divergent

point of RðFÞ correspond to the divergent point of CP. The
results also agree with the analysis in [31].
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