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We investigate the hydrostatic equilibrium of stellar structure by taking into account the modified

Lané-Emden equation coming out from fðRÞ gravity. Such an equation is obtained in a metric approach by

considering the Newtonian limit of fðRÞ gravity, which gives rise to a modified Poisson equation, and then

introducing a relation between pressure and density with polytropic index n. The modified equation results

an integro-differential equation, which, in the limit fðRÞ ! R, becomes the standard Lané-Emden

equation. We find the radial profiles of the gravitational potential by solving for some values of n. The

comparison of solutions with those coming from general relativity shows that they are compatible and

physically relevant.
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I. INTRODUCTION

Extended Theories of Gravity (ETG) [1] are a new
paradigm of modern physics aimed to address several
shortcomings coming out in the study of gravitational
interaction at ultraviolet and infrared scales. In particular,
instead of introducing unknown fluids, the approach con-
sists in extending general relativity (GR) by taking into
account generic functions of curvature invariants. These
functions can be physically motivated and capable of
addressing phenomenology at galactic, extragalactic, and
cosmological scales [2].

This viewpoint does not require to find candidates for
dark energy and dark matter at a fundamental level (not
detected up to now), but takes into account only the ob-
served ingredients (i.e., gravity, radiation and baryonic
matter), changing the left-hand side of the field equations.
Despite this modification, it is in agreement with the spirit
of GR since the only request is that the Hilbert-Einstein
action should be generalized when asking for a gravita-
tional interaction, acting, in principle, in different ways at
different scales but preserving the robust results of GR at
local and solar system scales (see [1] for a detailed dis-
cussion). This is the case of fðRÞ gravity, which reduces to
GR as soon as fðRÞ ! R.

Other issues such as, for example, the observed Pioneer
anomaly problem [3] can be framed into the same approach
[4] and then, apart from the cosmological dynamics,

a systematic analysis of such theories urges at short scales
and in the low energy limit.
On the other hand, the strong gravity regime [5] is

another way to check the viability of these theories. In
general the formation and the evolution of stars can be
considered suitable test beds for Alternative Theories of
Gravity. Considering the case of fðRÞ gravity, divergences
stemming from the functional form of fðRÞ may prevent
the existence of relativistic stars in these theories [6],
but thanks to the chameleon mechanism, introduced by
Khoury and Weltman [7], possible problems jeopardizing
the existence of these objects may be avoided [8].
Furthermore, there are also numerical solutions corre-
sponding to static star configurations with strong gravita-
tional fields [9] where the choice of the equation of state is
crucial for the existence of solutions.
Furthermore, some observed stellar systems are incom-

patible with the standard models of stellar structure.
We refer to anomalous neutron stars, the so-called
‘‘magnetars’’ [10] with masses larger than their expected
Volkoff mass. It seems that, on particular length scales, the
gravitational force is larger or smaller than the correspond-
ing GR value. For example, a modification of the Hilbert-
Einstein Lagrangian, consisting of R2 terms, enables a
major attraction while a R��R

�� term gives a repulsive

contribution [11]. Understanding which scales the modifi-
cations to GR are working on or what is the weight of
corrections to gravitational potential is a crucial point
that could confirm or rule out these extended approaches
to gravitational interaction.
The plan of this paper is the following: In Sec. II, we

review briefly the classical hydrostatic problem for stellar
structures. In Sec. III we derive the Newtonian limit
of fðRÞ gravity obtaining the modified Poisson equation.
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The modified Lané-Emden equation is obtained in Sec. IV
and its structure is compared with respect to the standard
one. In Sec. V, we show the analytical solutions of standard
Lané-Emden equation and compare them with those ob-
tained perturbatively from fðRÞ gravity. With the help of a
plot we can compare all results between them. Discussion
and conclusions are drawn in Sec. VI.

II. HYDROSTATIC EQUILIBRIUM
OF STELLAR STRUCTURES

The condition of hydrostatic equilibrium for stellar
structures in Newtonian dynamics is achieved by consid-
ering the equation

dp

dr
¼ d�

dr
�; (1)

where p is the pressure, �� is the gravitational potential,
and � is the density [12]. Together with the above equation,
the Poisson equation

1

r2
d

dr

�
r2

d�

dr

�
¼ �4�G�; (2)

gives the gravitational potential as a solution for given
matter density �. Since we are taking into account only
static and stationary situations, here we consider only time-
independent solutions.1 In general, the temperature � ap-
pears in Eqs. (1) and (2) and the density satisfies an
equation of state of the form � ¼ �ðp; �Þ. In any case,
we assume that there exists a polytropic relation between p
and � of the form

p ¼ K��; (3)

where K and � are constant. Note that �> 0 is in the
interior of the model, since we define the gravitational
potential as ��. The polytropic constant K is fixed and
can be obtained as a combination of fundamental con-
stants. However, there are several realistic cases where K
is not fixed and another equation for its evolution is needed.
The constant � is the polytropic exponent. Inserting the
polytropic equation of state into Eq. (1), we obtain

d�

dr
¼ �K���2 d�

dr
: (4)

For � � 1, the above equation can be integrated giving

�K

�� 1
���1 ¼ � ! � ¼

�
�� 1

�K

�
1=ð��1Þ

�1=ð��1Þ

¼: An�
n; (5)

where we have chosen the integration constant to give
� ¼ 0 at surface (� ¼ 0). The constant n is called the
polytropic index and is defined as n ¼ 1

��1 . Inserting the

relation (5) into the Poisson equation, we obtain a differ-
ential equation for the gravitational potential:

d2�

dr2
þ 2

r

d�

dr
¼ �4�GAn�

n: (6)

Let us define now the dimensionless variables:

z ¼ jxj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XAn�

n�1
c

2

s
wðzÞ ¼ �

�c

¼
�
�

�c

�
1=n

; (7)

where the subscript c refers to the center of the star and the
relation between � and� is given by Eq. (5). At the center
(r ¼ 0), we have z ¼ 0, � ¼ �c, � ¼ �c and therefore
w ¼ 1. Then Eq. (6) can be written as

d2w

dz2
þ 2

z

dw

dz
þ wn ¼ 0: (8)

This is the standard Lane-Emden equation describing
the hydrostatic equilibrium of stellar structures in the
Newtonian theory [12].

III. THE NEWTONIAN LIMIT OF fðRÞ GRAVITY

Let us start with a general class of Extended Theories of
Gravity given by the action

A ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½fðRÞ þXLm�; (9)

where fðRÞ is an analytic function of the curvature invari-
ant R. Lm is the minimally coupled ordinary matter
Lagrangian density. In the metric approach, the field equa-
tions are obtained by varying the action (9) with respect to
g��. We get

f0R�� � f

2
g�� � f;�� þ g��hf0 ¼ XT��

3hf0 þ f0R� 2f ¼ XT;

(10)

where the second equation is the trace of the field equa-

tions. Here, T�� ¼ �1ffiffiffiffiffi�g
p 	ð ffiffiffiffiffi�g

p
LmÞ

	g�� is the energy-momentum

tensor of matter; T ¼ T


 is the trace; f0 ¼ dfðRÞ

dR ,

h ¼ ;

;
 the d’Alembert operator and

X ¼ 8�G. We assume c ¼ 1 is adopted. The conventions
for Ricci’s tensor are R�� ¼ R


�
�; the Riemann tensor

is R�
��� ¼ ��

��;� þ . . . . The affine connections are the

Christoffel’s symbols of the metric �
�
�� ¼ 1

2g
�
ðg�
;� þ

g�
;� � g��;
Þ. The signature is ðþ ���Þ.
In order to achieve the Newtonian limit of the theory the

metric tensor g�� have to be approximated as follows:

g�� � 1� 2�ðt;xÞ þOð4Þ Oð3Þ
Oð3Þ �	ij þOð2Þ

� �
; (11)1The radius r is assumed as the spatial coordinate. It varies

from r ¼ 0 at the center to r ¼ � at the surface of the star
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where OðnÞ (with n ¼ integer) denotes the order of the
expansion (see [13] for details). The set of coordinates2

adopted is x� ¼ ðt; x1; x2; x3Þ. The Ricci scalar formally
becomes

R� Rð2Þðt;xÞ þOð4Þ: (12)

The n-th derivative of Ricci function can be developed as

fnðRÞ � fnðRð2Þ þOð4ÞÞ � fnð0Þ þ fnþ1ð0ÞRð2Þ þOð4Þ;
(13)

here RðnÞ denotes a quantity of order OðnÞ. From the
lowest order of field in Eqs. (10), we have fð0Þ ¼ 0 which
trivially follows from the above assumption (11) for the
metric. This means that the space-time is asymptotically
Minkowskian and we are discarding a cosmological con-
stant term in this analysis.3 Equation (10) at Oð2Þ-order,
that is at the Newtonian level, are

Rð2Þ
tt � Rð2Þ

2
� f00ð0Þ 4 Rð2Þ ¼ XTð0Þ

tt

�3f00ð0Þ 4 Rð2Þ � Rð2Þ ¼ XTð0Þ;
(14)

where 4 is the Laplacian in the flat space, Rð2Þ
tt ¼ �4

�ðt;xÞ and, for the sake of simplicity, we set f0ð0Þ ¼ 1.
We recall that the energy-momentum tensor for a perfect
fluid is

T�� ¼ ð�þ pÞu�u� � pg��; (15)

where p is the pressure and � is the energy density. Being
the pressure contribution negligible in the field equations in
the Newtonian approximation, we have

4�þ Rð2Þ

2
þ f00ð0Þ 4 Rð2Þ ¼ �X�

3f00ð0Þ 4 Rð2Þ þ Rð2Þ ¼ �X�;

(16)

where � is now the mass density.4 We note that for
f00ð0Þ ¼ 0 we have the standard Poisson equation
4� ¼ �4�G�. This means that as soon as the second
derivative of fðRÞ is different from zero, deviations from
the Newtonian limit of GR emerge.

The gravitational potential ��, solution of Eqs. (16),
has in general a Yukawa-like behavior depending on the
characteristic length on which it evolves [13]. Then, as is
evident, the Gauss theorem is not valid5 since the force law
is not / jxj�2. The equivalence between a spherically
symmetric distribution and pointlike distribution is not
valid and how the matter is distributed in the space is
very important [13–15].

Besides the Birkhoff theorem results modified at the
Newtonian level, the solution can only be factorized by a
space-depending function and an arbitrary time-depending
function [13]. Furthermore, the correction to the gravita-
tional potential is dependent upon only the first two
derivatives of fðRÞ in R ¼ 0. This means that different
analytical theories, from the third derivative perturbation
terms on, admit the same Newtonian limit [13,14].
Equation (16) can be considered the modified Poisson

equation for fðRÞ gravity. They do not depend on gauge
condition choice [15].

IV. STELLAR HYDROSTATIC EQUILIBRIUM
IN fðRÞ GRAVITY

From the Bianchi identity, satisfied by the field Eq. (10)),
we have

T��
;� ¼ 0 ! @p

@xk
¼ � 1

2
ðpþ �Þ @ lngtt

@xk
: (17)

If the dependence on the temperature � is negligible, i.e.
� ¼ �ðpÞ, this relation can be introduced into Eq. (16),
which becomes a system of three equations for p, � and

Rð2Þ, and can be solved without the other structure
equations.
Let us suppose that matter still satisfies a polytropic

equation p ¼ K��. If we introduce Eq. (5) into Eq. (16)
we obtain an integro-differential equation for the gravita-
tional potential ��, that is

4�ðxÞ þ 2XAn

3
�ðxÞn

¼ �m2XAn

6

Z
d3x0Gðx;x0Þ�ðx0Þn; (18)

where Gðx;x0Þ ¼ � 1
4�

e�mjx�x0 j
jx�x0j is the Green function of the

field operator4x �m2 for systems with spherical symme-
try andm2 ¼ � 1

3f00ð0Þ (for details see [14,15]). The integro-
differential nature of Eq. (18) is proof of the nonviability of
the Gauss theorem for fðRÞ gravity. Adopting again the
dimensionless variables

z ¼ jxj
�0

wðzÞ ¼ �

�c

(19)

where

�0 ¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2XAn�
n�1
c

s
(20)

is a characteristic length linked to stellar radius �. Eq. (18)
becomes

d2wðzÞ
dz2

þ 2

z

dwðzÞ
dz

þ wðzÞn

¼ m�0

8

1

z

Z �=�0

0
dz0z0

�
e�m�0jz�z0j � e�m�0jzþz0j

�
wðz0Þn;

(21)

2The Greek index runs between 0 and 3; the Latin index
between 1 and 3.

3This assumption is quite natural since the contribution of a
cosmological constant term is irrelevant at stellar level.

4Generally it is � ¼ �c2.
5It is worth noticing that if the Gauss theorem also does not

hold, the Bianchi identities are always valid so the conservation
laws are guaranteed.
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which is the modified Lané-Emden equation deduced from
fðRÞ gravity. Clearly the particular fðRÞ model is specified
by the parameters m and �0. If m ! 1 (i.e. fðRÞ ! R),
Eq. (21) becomes Eq. (8). We are only interested in the
solutions of Eq. (21) that are finite at the center, that is
for z ¼ 0. Since the center must be an equilibrium point,
the gravitational acceleration jgj ¼ �d�=dr / dw=dz
must vanish for w0ð0Þ ¼ 0. Let us assume we have solu-
tions wðzÞ of Eq. (21) that fulfill the boundary conditions
wð0Þ ¼ 1 and wð�=�0Þ ¼ 0; then according to the choice
(19), the radial distribution of density is given by

�ðjxjÞ ¼ �cw
n; �c ¼ An�c

n (22)

and the pressure by

pðjxjÞ ¼ pcw
nþ1; pc ¼ K�c

�: (23)

For � ¼ 1 (or n ¼ 1) the integro-differential Eq. (21) is
not correct. This means that the theory does not contain the
case of an isothermal sphere of ideal gas. In this case, the
polytropic relation is p ¼ K�. Putting this relation into
Eq. (17) we have

�

K
¼ ln�� ln�c ! � ¼ �ce

�=K; (24)

where the constant of integration is chosen in such a way
that the gravitational potential is zero at the center. If we
introduce Eq. (24) into Eq. (16), we have

4�ðxÞ þ 2X�c

3
e�ðxÞ=K

¼ �m2X�c

6

Z
d3x0Gðx;x0Þe�ðx0Þ=K: (25)

Assuming the dimensionless variables z¼jxj
�1

and

wðzÞ¼�
K where �1 ¼:

ffiffiffiffiffiffiffiffiffi
3K

2X�c

q
, Eq. (25) becomes

d2wðzÞ
dz2

þ 2

z

dwðzÞ
dz

þ ewðzÞ

¼ m�1

8

1

z

Z �=�1

0
dz0z0

�
e�m�1jz�z0j � e�m�1jzþz0j

�
ewðz0Þ;

(26)

which is the modified ‘‘isothermal’’ Lané-Emden equation
derived from fðRÞ gravity.

V. SOLUTIONS OF THE STANDARD AND
MODIFIED LANÉ-EMDEN EQUATIONS

The task is now to solve the modified Lané-Emden
equation and compare its solutions to those of the standard
Newtonian theory. Only for three values of n, the solutions
of Eq. (8) have the analytical expressions [12]

n ¼ 0 ! wð0Þ
GRðzÞ ¼ 1� z2

6

n ¼ 1 ! wð1Þ
GRðzÞ ¼

sinz

z

n ¼ 5 ! wð5Þ
GRðzÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

3

q :

(27)

We label these solution with GR since they agree with the
Newtonian limit of GR. The surface of the polytrope of

index n is defined by the value z ¼ zðnÞ, where � ¼ 0 and
thusw ¼ 0. For n ¼ 0 and n ¼ 1 the surface is reached for

a finite value of zðnÞ. The case n ¼ 5 yields a model of
infinite radius. It can be shown that for n < 5 the radius of
polytropic models is finite; for n > 5 they have infinite

radius. From Eq. (27) one finds zð0ÞGR ¼ ffiffiffi
6

p
, zð1ÞGR ¼ � and

zð5ÞGR ¼ 1. A general property of the solutions is that zðnÞ
grows monotonically with the polytropic index n. In Fig. 1

we show the behavior of solutions wðnÞ
GR for n ¼ 0, 1, 5.

Apart from the three cases where analytic solutions are
known, the classical Lané-Emden Eq. (8) has to be solved
numerically, considered with the expression

wðnÞ
GRðzÞ ¼

X1
i¼0

aðnÞi zi (28)

for the neighborhood of the center. Inserting Eq. (28) into
Eq. (8) and by comparing coefficients, one finds, at lowest
orders, a classification of solutions by the index n, that is

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

z

w
z

FIG. 1 (color online). Plot of solutions (blue lines) of standard

Lané-Emden Eq. (8): wð0Þ
GRðzÞ (dotted line) and wð1Þ

GRðzÞ (dashed
line). The green line corresponds to wð5Þ

GRðzÞ. The red lines are the
solutions of modified Lané-Emden Eq. (21): wð0Þ

fðRÞðzÞ (dotted

line) and wð1Þ
fðRÞðzÞ (dashed line). The blue dashed-dotted line is

the potential derived from GR (wGRðzÞ) and the red dashed-
dotted line is the potential derived from fðRÞ gravity (wfðRÞðzÞ)
for a uniform spherically symmetric mass distribution. The
assumed values are m� ¼ 1 and m�0 ¼ :4. From a rapid in-
spection of these plots, the differences between GR and fðRÞ
gravitational potentials are clear and the tendency is that at larger
radius z they become more evident.
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wðnÞ
GRðzÞ ¼ 1� z2

6
þ n

120
z4 þ . . . (29)

The case � ¼ 5=3 and n ¼ 3=2 is the nonrelativistic limit
while the case � ¼ 4=3 and n ¼ 3 is the relativistic limit of
a completely degenerate gas.

Also for the modified Lané-Emden Eq. (21), we have
an exact solution for n ¼ 0. In fact, it is straightforward
to find

wð0Þ
fðRÞðzÞ ¼ 1� z2

8
þ ð1þm�Þe�m�

4m2�2
0

�
1� sinhm�0z

m�0z

�
;

(30)

where the boundary conditions wð0Þ ¼ 1 and w0ð0Þ ¼ 0
are satisfied. A comment on the GR limit (that is
fðRÞ ! R) of solution (30) is necessary. In fact, when we
perform the limit m ! 1, we do not recover exactly

wð0Þ
GRðzÞ. The difference is in the definition of quantity �0.

In fðRÞ gravity we have the definition (20) while in GR it is

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
XAn�

n�1
c

q
, since in the first equation of (16), when we

perform fðRÞ ! R, we have to eliminate the trace equation
condition. In general, this means that the Newtonian limit
and the Eddington parameterization of different relativistic
theories of gravity cannot coincide with those of GR
(see [16] for further details on this point).

The point zð0ÞfðRÞ is calculated by imposing wð0Þ
fðRÞðzð0ÞfðRÞÞ¼

0, and by considering the Taylor expansion

sinhm�0z

m�0z
� 1þ 1

6
ðm�0zÞ2 þOðm�0zÞ4 (31)

we obtain zð0ÞfðRÞ ¼ 2
ffiffi
6

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þð1þm�Þe�m�

p . Since the stellar radius �

is given by definition � ¼ �0z
ð0Þ
fðRÞ, we obtain the constraint

� ¼
ffiffiffiffiffiffiffiffiffiffi
3�c

2�G

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1þm�
3 e�m�

q : (32)

By solving numerically the constraint,6 Eq. (32), we find
the modified expression of the radius �. Ifm ! 1 we have

the standard expression � ¼
ffiffiffiffiffiffiffi
3�c

2�G

q
valid for the Newtonian

limit of GR. Besides, it is worth noticing that in the fðRÞ
gravity case, for n ¼ 0, the radius is smaller than in GR.
On the other hand, the gravitational potential �� gives
rise to a deeper potential well than the corresponding
Newtonian potential derived from GR [14].

In the case n ¼ 1, Eq. (21) can be recast as follows:

d2 ~wðzÞ
dz2

þ ~wðzÞ ¼ m�0

8

Z �=�0

0
dz0

�
�
e�m�0jz�z0j � e�m�0jzþz0j

�
~wðz0Þ; (33)

where ~w ¼ zw. If we consider the solution of (33) as a
small perturbation to the one of GR, we have

~w ð1Þ
fðRÞðzÞ � ~wð1Þ

GRðzÞ þ e�m��~wð1Þ
fðRÞðzÞ: (34)

The coefficient e�m� < 1 is the parameter with respect to
which we perturb Eq. (33). Besides, these position ensure
us that when m ! 1 the solution converge to something

like ~wð1Þ
GRðzÞ. Substituting Eq. (34) in Eq. (33), we have

d2�~wð1Þ
fðRÞðzÞ

dz2
þ�~wð1Þ

fðRÞðzÞ

¼ m�0e
m�

8

Z �=�0

0
dz0

�
e�m�0jz�z0j � e�m�0jzþz0j

�
~wð1Þ
GRðz0Þ
(35)

and the solution is easily found to be

wð1Þ
fðRÞðzÞ �

sinz

z

�
1þ m2�2

0

8ð1þm2�2
0Þ
�
1þ 2e�m�

1þm2�2
0

� ðcos�=�0 þm�0 sin�=�0Þ
��

� m2�2
0

8ð1þm2�2
0Þ
�

2e�m�

1þm2�2
0

� ðcos�=�0 þm�0 sin�=�0Þ sinhm�0z

m�0z
þ cosz

�
:

(36)

Also in this case, for m ! 1, we do not recover exactly

wð1Þ
GRðzÞ. The reason is the same of the previous n ¼ 0 case

[16]. Analytical solutions for other values of n are not
available.
To conclude this section, we report the gravitational

potential profile generated by a spherically symmetric
source of uniform mass with radius �. We can impose a
mass density of the form

� ¼ 3M

4��3
�ð�� jxjÞ; (37)

where � is the Heaviside function and M is the mass
[14,15]. By solving field Eqs. (16) inside the star
and considering the boundary conditions wð0Þ ¼ 1 and
w0ð0Þ ¼ 0, we get

wfðRÞðzÞ ¼
�
3

2�
þ 1

m2�3
� e�m�ð1þm�Þ

m2�3

��1
�
3

2�
þ 1

m2�3

� �2
0z

2

2�3
� e�m�ð1þm�Þ

m2�3

sinhm�0z

m�0z

�
: (38)

In the limit m ! 1, we recover the GR case wGRðzÞ ¼
1� �2

0
z2

3�2 . In Fig. 1 we show the behaviors of wð0Þ
fðRÞðzÞ and

wð1Þ
fðRÞðzÞ with respect to the corresponding GR cases.

Furthermore, we plot the potential generated by a uniform
spherically symmetric mass distribution in GR and fðRÞ
gravity and the case wð5Þ

GRðzÞ.6In principle, there is a solution for any value of m.
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VI. DISCUSSION AND CONCLUSIONS

In this paper the hydrostatic equilibrium of a stellar
structure in the framework of fðRÞ gravity has been con-
sidered. The study has been performed starting from the
Newtonian limit of fðRÞ field equations. Since the field
equations satisfy in any case the Bianchi identity, we can
use the conservation law of energy-momentum tensor. In
particular, adopting a polytropic equation of state relating
the mass density to the pressure, we derive the modified
Lané-Emden equation and its solutions for n ¼ 0,1 which
can be compared to the analogous solutions coming from
the Newtonian limit of GR. When we consider the limit
fðRÞ ! R, we obtain the standard hydrostatic equilibrium
theory coming from GR. A peculiarity of fðRÞ gravity is
the nonviability of the Gauss theorem, and then the modi-
fied Lané-Emden equation is an integro-differential equa-
tion where the mass distribution plays a crucial role.
Furthermore, the correlation between two points in the
star is given by a Yukawa-like term of the corresponding
Green function.

These solutions have been matched with those coming
from GR and the corresponding density radial profiles have
been derived. In the case n ¼ 0, we find an exact solution,
while, for n ¼ 1, we used a perturbative analysis with
respect to the solution coming from GR. It is possible to
demonstrate that density radial profiles coming from fðRÞ
gravity analytic models and close to those coming from
GR are compatible. This result rules out some wrong
claims in the literature stating that fðRÞ gravity is not
compatible with self-gravitating systems. Obviously the
choice of the free parameter of the theory has to be con-
sistent with boundary conditions, and then the solutions are

parameterized by a suitable ‘‘wavelength’’ m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

3f00ð0Þ
q

that should be experimentally fixed.
The next step is to derive self-consistent numerical

solutions of the modified Lané-Emden equation and
build up realistic star models where further values of the
polytropic index n and other physical parameters, e.g.
temperature, opacity, transport of energy, are considered.
Interesting cases are the nonrelativistic limit (n ¼ 3=2) and
relativistic limit (n ¼ 3) of completely degenerate gas.
These models are a challenging task, since, up to now,
there is no self-consistent, final explanation for compact
objects (e.g. neutron stars) with masses larger than Volkoff
mass, while observational evidence widely indicates these
objects [10]. In fact, it is plausible that the gravity mani-
fests itself on different characteristic lengths and also other
contributions in the gravitational potential should be
considered for these exotic objects. As we have seen above,
the gravitational potential well results modified by higher-
order corrections in the curvature. In particular, it is pos-
sible to show that if we put in the action (9) other curvature
invariants that are also repulsive contributions can emerge
[11,15]. These situations have to be seriously taken into
account in order to address several issues of relativistic
astrophysics that seem to be out of the explanation range of
the standard theory.
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