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We generalize the factorized resummation of multipolar waveforms introduced by Damour, Iyer, and

Nagar to spinning black holes. For a nonspinning test particle spiraling a Kerr black hole in the equatorial

plane, we find that factorized multipolar amplitudes which replace the residual relativistic amplitude f‘m
with its ‘th root, �‘m ¼ f1=‘‘m , agree quite well with the numerical amplitudes up to the Kerr-spin value

q � 0:95 for orbital velocities v � 0:4. The numerical amplitudes are computed solving the Teukolsky

equation with a spectral code. The agreement for prograde orbits and large spin values of the Kerr black-

hole can be further improved at high velocities by properly factoring out the lower-order post-Newtonian

contributions in �‘m. The resummation procedure results in a better and systematic agreement between

numerical and analytical amplitudes (and energy fluxes) than standard Taylor-expanded post-Newtonian

approximants. This is particularly true for higher-order modes, such as (2,1), (3,3), (3,2), and (4,4),

for which less spin post-Newtonian terms are known. We also extend the factorized resummation of

multipolar amplitudes to generic mass-ratio, nonprecessing, spinning black holes. Lastly, in our study we

employ new, recently computed, higher-order post-Newtonian terms in several subdominant modes and

compute explicit expressions for the half and one-and-half post-Newtonian contributions to the odd-parity

(current) and even-parity (odd) multipoles, respectively. Those results can be used to build more accurate

templates for ground-based and space-based gravitational-wave detectors.
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I. INTRODUCTION

An international network of kilometer-scale laser-
interferometric gravitational-wave detectors, consisting
of the Laser-Interferometer Gravitational-wave
Observatory (LIGO) [1] and Virgo [2] are currently oper-
ating at the best sensitivity ever in the frequency range
10–103 Hz. We expect that in the next decade the Laser-
Interferometer Space Antenna (LISA) [3] will be also
operating but in the frequency range 10�4 � 10�1 Hz.

Binary black holes are among the most promising
sources for those detectors. During the last 30 years, the
search for gravitational waves from coalescing black-hole
binaries with LIGO, Virgo, and LISA has prompted the
development of highly-accurate, analytical template fam-
ilies to be employed in matched-filtering analysis. Those
template families are based on the post-Newtonian (PN)
approximation of the two-body dynamics and gravitational
radiation [4,5]. In PN theory, the multipolar waveforms are
derived as a Taylor expansion in v=c (v being the binary
characteristic velocity and c the speed of light). More
recently, Damour, Iyer, and Nagar [6,7] have proposed a
resummation of the multipolar waveforms in which the
Taylor-expanded multipolar waveforms computed in PN
theory are rewritten in a factorized, resummed form as

h‘m ¼ h
ðN;�pÞ
‘m Ŝ

ð�pÞ
eff T‘me

i�‘mf‘m: (1)

The several factors in the above h‘m have the following

meaning. The factor h
ðN;�pÞ
‘m is the leading Newtonian term;

Ŝ
ð�pÞ
eff is the relativistic conserved energy or angular mo-

mentum of the effective moving source; T‘m resums an
infinite number of leading logarithms entering the tail
effects; ei�‘m is a supplementary phase which contains
phase effects which are not contained in the complex
T‘m; and, finally, f‘m contains residual terms which can
be carefully resummed to improve its behavior as function
of ‘. The better agreement of the factorized multipolar
waveforms to the exact numerical results suggests that
the factors entering the h‘m’s can capture effects, such as
the presence of a pole in the effective source for quasicir-
cular orbits and the inclusion of all leading logarithms in
tail terms, that are missed when expanded in a PN series
and truncated at a certain PN order.
In Refs. [6,8], the factorized waveforms for a test particle

orbiting around a Schwarzschild black hole were computed,
including also the case of comparable-mass nonspinning
black holes. It was found that factorized waveforms agree
better with numerical (exact) results than Taylor-expanded
waveforms. In particular, in the test-particle limit, Ref. [6]
compared the analytical factorized ðl; mÞ modes and
gravitational-wave energy flux to the numerical results
obtained by Berti [9], solving the Teukolsky equation.
The factorized waveforms have been also employed in the
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effective-one-body formalism and compared to waveforms
computed in numerical-relativity simulations [8,10,11].
Also in this case, the agreement of the factorized waveforms
to the numerical waveforms is better than the one of the
Taylor-expanded waveforms, especially during the last
stages of inspiral and plunge, and close to merger.

In this paper, we extend the factorized multipolar wave-
forms to the case of a test particle orbiting around a Kerr
black hole on the equatorial plane. In the case of a test
particle orbiting around a Schwarzschild black hole,
the Taylor-expanded multipolar waveforms were derived
through the PN order needed to compute the 5.5PN energy
flux [12], although their explicit formulas were not avail-
able in the literature. In the case of a test particle orbiting
around a Kerr black hole on the equatorial plane, spin
terms in the Taylor-expanded multipolar waveforms were
derived through the PN order needed to compute the 4PN
energy flux [13], but their explicit formulas were not
published. Motivated by this work, Tagoshi and Fujita
[14] have recently computed the spinning and nonspinning
Taylor-expanded multipolar waveforms up to 4PN and
5.5PN order (see Table I for a summary), respectively.
Also, recently, Fujita and Iyer [15] have independently
computed the nonspinning Taylor-expanded multipolar
waveforms up to 5.5PN order.

Since, as said above, explicit expressions of the Taylor-
expanded multipolar waveforms are not available in the
literature, even at lower PN orders [12,13], we write those
expressions explicitly in this paper (see Appendix A),
decomposing them in �2 spin-weighted spheroidal
harmonics. Then, we apply the transformation from �2
spin-weighted spheroidal harmonics to �2 spin-weighted
spherical harmonics and build the factorized multipolar
waveforms decomposed in�2 spin-weighted spherical har-
monics. The latter decomposition is the one commonly used
in the fields of numerical relativity and gravitational-wave
data analysis. Finally, we compare the factorizedwaveforms
to numerical (exact) waveforms for a test particle orbiting

around aKerr black hole, on the equatorial plane, solving the
Teukolsky equation [16–18]. Finally, we derive the factor-
ized multipolar waveforms for spinning, nonprecessing
black holes of comparable masses. Those factorized wave-
formswere recently used in the spinning effective-one-body
model of Ref. [19] and compared to numerical-relativity
simulations of spinning, nonprecessing equal-mass black
holes from the Caltech-Cornell-CITA collaboration.
This paper is organized as followed. In Sec. II, we work

out the factorized waveforms decomposed in �2 spin-
weighted spherical harmonics for a test particle orbiting
a Kerr black hole, on the equatorial plane. In Sec. III, we
compare the gravitational-wave energy flux and the ðl; mÞ
modes of analytical factorized waveforms to numerical
waveforms. The numerical results are obtained solving
the Teukolsky equation [16–18]. In Sec. IV, we derive
the factorized waveforms for generic mass-ratio spinning,
nonprecessing black holes. Section V summarizes our
main conclusions. In Appendix A, we write the Taylor-
expanded multipolar waveforms in the test-particle limit
through the PN order currently known. In Appendices B,
C, D, and E, we give the complete expressions of the f‘m’s,
C‘m’s, �‘m’s, and �‘m’s for 4< l � 8. Finally, in
Appendix F, we compute the l and m dependence of the
spin terms in the mass and current-multipole moments at
0.5PN order and 1.5PN order, respectively.

II. FACTORIZED MULTIPOLAR WAVEFORMS
FOR ATEST PARTICLE ORBITING AROUND

A KERR BLACK HOLE

We consider a nonspinning test particle orbiting around
a Kerr black hole and extend the factorized waveforms of
Ref. [6] to the case where the motion is quasicircular and
confined to the equatorial plane, that is the spinning, non-
precessing case. The factorized multipolar waveforms are

built as the production of a leading-order term h
ðN;�pÞ
‘m and a

higher-order correction term ĥ‘m consisting four factors [6]

TABLE I. PN orders currently available in the multipolar waveforms C‘m (in the adiabatic approximation C‘m ¼ �m2�2h‘m).

In the first two rows, we list the nonspin and spin PN orders beyond the leading-order Newtonian term CðN;0Þ
22 . In the next two rows, we

list the nonspin and spin PN orders beyond the leading-order term for each mode C
ðN;�pÞ
‘m . In the last two rows, we list the PN orders

beyond the leading-order term for each mode C
ðN;�pÞ
‘m that are needed to compute the nonspin 5.5PN-energy flux and the spin 4PN-

energy flux. For each C‘m, the two columns refer to the parity of the multipolar waveform �p ¼ 0 and ¼ 1.

C2m C3m C4m C5m C6m C7m C8m

0 1 0 1 0 1 0 1 0 1 0 1 0 1

PN orders beyond CðN;0Þ
22 (nonspin) 5.5 6 5 5.5 4.5 5 4 4.5 3.5 4 3 3 3 3.5

PN orders beyond CðN;0Þ
22 (spin) 4 4 4 4 4 4 4 4 4 4 4 4 4 4

PN orders beyond C
ðN;�pÞ
‘m (nonspin) 5.5 5.5 4.5 4.5 3.5 3.5 2.5 2.5 1.5 1.5 0.5 0.5 0 0

PN orders beyond C
ðN;�pÞ
‘m (spin) 4 3.5 3.5 3 3 2.5 2.5 2 2 1.5 1.5 1 1 0.5

PN orders beyond C
ðN;�pÞ
‘m needed for nonspin 5.5PN-flux 5.5 4.5 4.5 3.5 3.5 2.5 2.5 1.5 1.5 0.5 0.5 0 0 0

PN orders beyond C
ðN;�pÞ
‘m needed for spin 4PN-flux 4 3 3 2 2 1 1 0 0 0 0 0 0 0
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h‘m ¼ h
ðN;�pÞ
‘m ĥ‘m ¼ h

ðN;�pÞ
‘m Ŝ

ð�pÞ
eff T‘me

i�‘mf‘m; (2)

where �p denotes the parity of the multipolar waveform.

In the quasicircular case, �p is the parity of ‘þm: �p ¼
�ð‘þmÞ. Henceforth, we use natural units G ¼ c ¼ 1.

The leading term h
ðN;�pÞ
‘m in Eq. (2) is the Newtonian order

waveform

h
ðN;�pÞ
‘m ¼ M�

R
n
ð�pÞ
‘m c‘þ�pð�Þvð‘þ�pÞY‘��p;�m

�
�

2
; �

�
; (3)

where v is the orbital velocity, Y‘mð�;�Þ are the scalar

spherical harmonics, n
ð�pÞ
‘m are

nð0Þ‘m¼ðimÞ‘ 8�

ð2‘þ1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ1Þð‘þ2Þ

‘ð‘�1Þ

s
; (4a)

nð1Þ‘m¼�ðimÞ‘ 16�i

ð2‘þ1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ1Þð‘þ2Þð‘2�m2Þ
ð2‘�1Þð‘þ1Þ‘ð‘�1Þ

s
; (4b)

and c‘þ�pð�Þ are functions of the symmetric mass-ratio

� � m1m2=M
2, with M ¼ m1 þm2:

c‘þ�ð�Þ ¼
�
1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p �
‘þ��1

þ ð�Þ‘þ�

�
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p �
‘þ��1

: (5)

Although in this section, we consider the test-particle limit
m1 � M � m2 � �, that is � ! 0, the above relations
will be used for generic � in Sec. IV and Appendix F.

We shall define the source factor Ŝ
ð�pÞ
eff and the tail factors

T‘m in Sec. II B. In Secs. II B and II Cwe compute the
imaginary and real PN spin effects in the ei�‘m’s and
f‘m’s, respectively. We shall obtain those quantities by
requiring that when we Taylor expand the factorized
waveforms (2) the results coincide through 4PN order,
for the spin terms, and 5.5PN order, for the nonspinning
terms, with the Taylor-expanded waveforms given in
Sec. II A and Appendix A.

A. Taylor-expanded multipolar waveforms

The Newman-Penrose scalar �4 ¼ �ð €hþ � i €h�Þ
can be decomposed in either �2 spin-weighted spherical

harmonics �2Y‘mð�;�Þ � �2P‘mð�Þeim�, or �2 spin-

weighted spheroidal harmonics �2S
a!0

‘m ð�Þeim� as

r�4 ¼
X
‘

X‘
m¼�‘

C‘m�2Y‘mð�;�Þei!0ðr��tÞ;

¼ X
‘

X‘
m¼�‘

C‘m
�2P‘mð�Þffiffiffiffiffiffiffi

2�
p ei!0ðr��tÞþim�;

¼ X
‘

X‘
m¼�‘

Z‘m!0

�2S
a!0

‘m ð�Þffiffiffiffiffiffiffi
2�

p ei!0ðr��tÞþim�; (6)

where a is the spin of the Kerr black hole, having the
dimension of length (while we also define q � a=M) and
!0 ¼ m� is a multiple of the orbital frequency �. Since
�2 spin-weighted spheroidal harmonics are eigenfunc-
tions of the Teukolsky equation, it is natural to expand
its solution in the spheroidal basis. In the fields of numeri-
cal relativity and gravitational-wave data analysis,
however, the �2 spin-weighted spherical harmonics are
commonly used because they do not depend on the spin
and the frequency as the �2 spin-weighted spheroidal
harmonics do.
The �2 spin-weighted spherical and spheroidal har-

monic bases are related by

�2S
a!0

‘m ð�Þ ¼ �2P‘mð�Þ þ a!0

X
‘0
c‘

0
‘m�2P‘0mð�Þ

þ ða!0Þ2
X
‘0
d‘

0
‘m�2P‘0mð�Þ þOða!0Þ3: (7)

The coefficients c‘
0
‘m and d‘

0
‘m are given in Ref. [13] as

c‘
0
‘m¼

8>>><
>>>:

2
ð‘þ1Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þ3Þð‘�1Þð‘þmþ1Þð‘�mþ1Þ
ð2‘þ1Þð2‘þ3Þ

q
; ‘0 ¼‘þ1

� 2
‘2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þ2Þð‘�2Þð‘þmÞð‘�mÞ
ð2‘þ1Þð2‘�1Þ

q
; ‘0 ¼‘�1

0; otherwise

; (8)

and if ‘0 ¼ ‘ we have

d‘
0

‘m ¼ � 1

2
½ðc‘þ1

‘m Þ2 þ ðc‘�1
‘m Þ2�; (9)

while if ‘0 � ‘ we have

d‘
0

‘m ¼ 1

	0ð‘Þ � 	0ð‘0Þ

8<
:�½2mþ 	1ð‘;mÞ�½�‘0‘þ1c

‘þ1
‘m þ �‘0‘�1c

‘�1
‘m � �‘0‘	2ð‘;mÞ�

� 4c‘þ1
‘m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 3

2‘0 þ 1

s
h‘þ 1;m; 1; 0j‘0;mih‘þ 1;2;1; 0j‘0;2i � 4c‘�1

‘m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘� 1

2‘0 þ 1

s
h‘� 1;m; 1; 0j‘0;mih‘� 1;2;1;0j‘0; 2i

þ 2

3

2
4�‘0‘ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

2‘0 þ 1

s
h‘;m; 2; 0j‘0;mih‘;2; 2; 0j‘0; 2i

3
5
9=
;; (10)
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where hj1; m1; j2; m2jJ;Mi is a Clebsch-Gordan coefficient
and

	0ð‘Þ ¼ ð‘� 1Þð‘þ 2Þ; (11)

	1ð‘;mÞ ¼ �2mð‘2 þ ‘þ 4Þ=ð‘2 þ ‘Þ; (12)

	2ð‘;mÞ ¼ �2ð‘þ 1Þðc‘þ1
‘m Þ2 þ 2‘ðc‘�1

‘m Þ2 þ 2

3

� 2

3

ð‘þ 4Þð‘� 3Þð‘2 þ ‘� 3m2Þ
‘ð‘þ 1Þð2‘þ 3Þð2‘� 1Þ : (13)

In the nonspinning case, �2S
a!0

‘m ð�Þ reduces to �2P‘mð�Þ,
which has the closed expression

�2P‘mð�Þ¼ ð�1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞ!ðl�mÞ!ð2lþ1Þ

2ðlþ2Þ!ðl�2Þ!

s

� sin2l
�
�

2

�Xlþ2

r¼0

lþ2

r

 !
l�2

r�2�m

 !
ð�1Þl�rþ2

�cot2r�2�m

�
�

2

�
: (14)

The �2 spin-weighted spherical harmonic basis is ortho-
normal in the sense that

Z �

0
�2P‘mð�Þ�2P‘0m0 ð�Þ sin�d� ¼ �‘‘0�mm0 : (15)

To explicitly write the modes C‘m and Z‘m!0
expanded

in v, we find it convenient to introduce the following
notation:

C‘m ¼ C
ðN;�pÞ
‘m Ĉ‘m; (16)

Z‘m!0
¼ Z

ðN;�pÞ
‘m!0

Ẑ‘m!0
; (17)

where C
ðN;�pÞ
‘m and Z

ðN;�pÞ
‘m!0

represent the Newtonian contri-

butions and, as said above, �p denotes the parity of the

multipolar waveform. In the adiabatic limit, C‘m ¼
�m2�2h‘m. Therefore, whereas the Newtonian contribu-
tion to C‘m and h‘m differ by a factor of �m2�2, the PN

corrections are the same, i.e., Ĉ‘m ¼ ĥ‘m. The Newtonian
contributions in the C‘m’s or Z‘m!0

’s are [see Eq. (3)],

C
ðN;�pÞ
‘m ¼ Z

ðN;�pÞ
‘m!0

¼ �m2�n
ð�pÞ
‘m c‘þ�pð�Þvð‘þ�pþ6ÞY‘��p;�mð�=2; �Þ;

(18)

where we define v ¼ ðM�Þ1=3. In Refs. [12,13], the
Taylor-expanded multipolar waveforms were calculated
at the PN order needed to compute the nonspinning

5.5PN-energy flux and spin 4PN-energy flux, respectively.
For the purpose of the present paper, Tagoshi and Fujita
[14] extended the computation of the multipolar wave-
forms at higher PN order. Although those new PN correc-
tions are not sufficient for computing the energy flux at the
next order (6PN and 4.5PN order in the nonspinning and
spinning cases, respectively), they do improve our knowl-
edge of the multipolar waveforms, as we shall discuss
below. In Table I, we list the PN orders available to us in
each multipolar waveform C‘m, while the explicit Taylor-

expanded waveforms Ẑ‘m!0
’s are given in Appendix B.

We compute the Ĉ‘m’s from the Ẑ‘m!0
’s by applying

Eq. (7) and the orthogonality condition of the �2 spin-
weighted spherical harmonics

C‘m ¼
Z
S2
d�r�4�2Y

�
‘me

�i!0ðr��tÞ

¼
Z
S2
d�

X
‘0

X‘0
m0¼�‘0

Z‘0m0!0

�2S
a!0

‘0m0�2P
�
‘m

2�
eiðm0�mÞ�;

¼
Z �

0
sin�d�

X
‘0
Z‘0m!0

�
�2P‘0m þ a!0

X
‘00
c‘

00
‘0m�2P‘00m

þ ða!0Þ2
X
‘00
d‘

00
‘0m�2P‘00m��2P

�
‘m;

¼ Z‘m!0 þ a!0

X
‘0
c‘‘0mZ‘0m!0 þ ða!0Þ2

X
‘0
d‘‘0mZ‘0m!0

þOða!0Þ3: (19)

We notice that the mixing of spheroidal waveforms
happens among modes with the same m and different ‘.
The C‘m modes are computed in perturbation theory

[12,13,20,21] using a coordinate system different from
the one used in PN calculations [22,23]. When expressing
both modes in terms of the orbital frequency they should
coincide. However, the presence of tail terms in both
calculations demands a careful treatment. In PN calcula-
tions, the tail terms contain a freely specifiable constant
r0 that corresponds to the difference in the origins of the
retarded time in radiative coordinates and in harmonic
coordinates in which the equations of motion are given
(see e.g., Eq. (3.16) in Ref. [23]). This constant can be
absorbed into the phase of the PNmodes (see e.g., Eq. (8.8)
in Ref. [23]) once it is traded with x0 (or v0) [22] as

logx0 � 2 logv0 � 11

18
� 2

3

E � 4

3
log2� 2

3
logðr0=MÞ;

(20)

where 
E ¼ 0:577215 . . . is the Euler’s constant, and
throughout the paper, we use ‘‘log’’ to denote the
natural logarithm. In perturbation-theory calculations,
Schwarzschild or Boyer-Lindquist coordinates are used.
The waveforms at infinity are naturally expressed with
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the tortoise coordinate, and the relation between the
Schwarzshild or Boyer-Lindquist coordinate and the
tortoise coordinate has an arbitrary constant which in
Refs. [12,13,20,21] is fixed to �2M logð2MÞ [24].

We find that to recover the PN results we need to express
some of the 
E’s in the perturbation-theory modes [14] in
terms of x0 and r0 using Eq. (20) and set r0 ¼ 2M=

ffiffiffi
e

p
.

More specifically, we replace some of the 
E’s using the
following equation [22]

logv0 � 11

36
� 1

3

E � 2

3
log2� 1

3
logð2e�1=2Þ: (21)

We notice that the constant r0 will appear later in our
definition of the tail term T‘m of the factorized resummed
waveforms. In fact, since the T‘m term resums all tail
integrals that contain r0 at known orders, it is the only
term in the resummed waveforms that depends on r0.
Finally, to ease the notation, we follow Ref. [6] and in-
troduce eulerlogmðv2Þ ¼ 
E þ log2þ logmþ 1=2 logv2

into our C‘m expressions.

Below we list the Ĉ‘m’s through l ¼ 4 and give the
expressions for 4< ‘< 8 in Appendix B. The differences

between the Ĉ‘m’s and Ẑ‘m!0
’s concern only spin terms.

We obtain

Ĉ 22 ¼ Ẑ22!0
� 20q

189
v5 þ 40q2

567
v6 þ 386q

1701
v7 þ

�
� 40�q

189
þ 7720q2

83349
þ 20

63
iq� 80

63
iq log

�
v

v0

��
v8; (22a)

Ĉ 21 ¼ Ẑ21!0
� q

63
v3 þ 8q

189
v5 �

�
�q

63
� 271q2

4536
�
�
1

45
þ 2

63
log2

�
iqþ 2

21
iq log

�
v

v0

��
v6 �

�
607q

12474
þ q3

378

�
v7; (22b)

Ĉ 33 ¼ Ẑ33!0
� 3q

20
v5 þ 3q2

32
v6 þ 117q

220
v7; (22c)

Ĉ32 ¼ Ẑ32!0
þ 4q

3
v� 31q

9
v3 þ

�
8�q

3
� 46q2

27
þ 16iq log

�
v

v0

��
v4 þ

�
� 7694q

4455
þ 4q3

3

�
v5

þ
�
� 2683q2

810
� 62�q

9
þ iq

5
� 124

3
iq log

�
v

v0

��
v6; (22d)

Ĉ31 ¼ Ẑ31!0
þ 32q

9
v3 � 16q2

3
v4 � 79q

36
v5 þ

�
32�q

9
� 4349q2

2592
� 16

9
ð1þ 4 log2Þiqþ 64

3
iq log

�
v

v0

��
v6

þ
�
286q3

27
� 16�q2

3
þ 8iq2

3
þ 32

3
iq2 log2� 3935q

3564
� 32iq2 log

�
v

v0

��
v7; (22e)

Ĉ 44 ¼ Ẑ44!0
� 224q

1375
v5 þ 672q2

6875
v6; (22f)

Ĉ43 ¼ Ẑ43!0
þ 5q

4
v� 1396q

275
v3 þ

�
� 17q2

8
þ 15�q

4
� 21iq

4
þ 15

2
iq log

�
3

2

�
þ 45

2
iq log

�
v

v0

��
v4

þ
�
15q3

8
þ 51567q

28600

�
v5; (22g)

Ĉ 42 ¼ Ẑ42!0
þ 3qv3 � 6q2

7
v4 � 17953q

2750
v5 þ

�
� 3562709q2

673750
þ 6�q� 9iqþ 36iq log

�
v

v0

��
v6; (22h)

Ĉ41 ¼ Ẑ41!0
þ 5q

4
v� 919q

275
v3 þ

�
�191q2

56
þ 5�q

4
� 7iq

4
� 5

2
iq log2þ 15

2
iq log

�
v

v0

��
v4 þ

�
110711q

28600
� 95q3

56

�
v5; (22i)

where the Ẑ‘m’s can be found in Appendix A. We notice that whereas the Ẑ‘m’s contain 0.5PN spin terms (relative
to ZN

‘m’s), the Ĉ‘m’s do not, except for Ĉ21. The spin terms in the multipolar waveforms (22a)–(22i) agree with the currently
known spin terms computed in Ref. [25] and with the 0.5PN and 1.5PN spin terms in the odd and even-parity modes
computed in Appendix F.

POST-NEWTONIAN FACTORIZED MULTIPOLAR . . . PHYSICAL REVIEW D 83, 064003 (2011)

064003-5



B. Source and tail terms

In the limit of a nonspinning test particle of mass �
orbiting around a Kerr black hole of mass M in a quasicir-
cular equatorial orbit, the energy and orbital angular mo-
mentum, in Boyer-Lindquist coordinates, read [26]

EðrÞ
�

¼ 1� 2M=rþ aM1=2=r3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3M=rþ 2aM1=2=r3=2

q ; (23)

LðrÞ
�M

¼
ffiffiffiffiffi
r

M

r
1� 2aM1=2=r3=2 þ a2=r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3M=rþ 2aM1=2=r3=2

q ; (24)

where r ¼ ð1� av3Þ2=3=v2. The source term in the factor-
ized waveform (2) is

Ŝ
ð�Þ
eff ¼

8<
:

EðrÞ
� ; � ¼ 0;
LðrÞ

ð�M=vÞ ; � ¼ 1;
(25)

where �M=v is the Newtonian angular momentum.
We use the resummed tail factor T‘m given in Eq. (19)
of Ref. [6]

T‘m ¼ �ð‘þ 1� 2i ^̂kÞ
�ð‘þ 1Þ e�

^̂ke2i
^̂k logð2kr0Þ; (26)

where k ¼ m�,
^̂k ¼ Hrealk, and the real Hamiltonian in

the test-particle limit reduces toHreal ¼ M. Once again, we
emphasize that the constant r0 must take a fixed numerical
value, 2M=

ffiffiffi
e

p
[27], to reproduce the correct test-particle

limit waveforms. We notice that there is no spin contribu-
tion to T‘m since the latter resums the corrections to the
waveform when traveling through a long-range Coulomb-
type potential generated by the mass M [28,29]. Spin
effects generate a short-range potential, thus they do not
contribute to T‘m.

We compute the phase correction factors ei�‘m in Eq. (2)
by Taylor expanding the factorized waveforms h‘m given
in Eq. (2), comparing the result with the C‘m waveforms
derived in Sec. II A (in the circular-orbit, adiabatic ap-
proximation C‘m ¼ �ðm�Þ2h‘m), and collecting all
imaginary terms into �‘m. We obtain

�22 ¼ 7

3
v3 þ

�
428�

105
� 4q

3

�
v6 þ 20q

63
v8

þ
�
1712�2

315
� 2203

81

�
v9; (27a)

�21 ¼ 2

3
v3 þ

�
107�

105
� 17q

35

�
v6 þ 3q2

140
v7

þ
�
214�2

315
� 272

81

�
v9; (27b)

�33 ¼ 13

10
v3 þ

�
39�

7
� 81q

20

�
v6 þ

�
78�2

7
� 227827

3000

�
v9;

(27c)

�32 ¼ 2

3
v3 þ 4qv4 þ

�
52�

21
� 136q

45

�
v6

þ
�
208�2

63
� 9112

405

�
v9; (27d)

�31 ¼ 13

30
v3 þ

�
61q

20
þ 13�

21

�
v6 � 24q2

5
v7

þ
�
26�2

63
� 227827

81000

�
v9; (27e)

�44 ¼ 14

15
v3 þ

�
25136�

3465
� 464q

75

�
v6; (27f)

�43 ¼ 3

5
v3 þ 11q

4
v4 þ 1571�

385
v6; (27g)

�42 ¼ 7

15
v3 þ

�
212q

75
þ 6284�

3465

�
v6; (27h)

�41 ¼ 1

5
v3 þ 11q

12
v4 þ 1571�

3465
v6: (27i)

Notice that the nonspinning terms in the �‘m already
appeared in Ref. [6], except for the terms at 3PN order
(v6) [Ref. [6] did compute �22 at 3PN order]. We find that
those 3PN-order terms in the �‘m are necessary to obtain
full agreement between the factorized waveforms and the

nonspinning Ĉ‘m waveforms through 3PN order. We note
that the nonspinning terms at 3PN order in the �‘m’s are the
same as the 3PN phase terms in Z‘m!0

in Ref. [21]. This

happens because in the test-particle limit the PN expansion
of T‘m does not contain imaginary terms at 3PN. Thus, for
q ¼ 0, the phase corrections �‘m at 3PN order do not
contain any additional terms other than the 3PN phase
terms in Z‘m!0

. We further note that some of the above

�’s can be obtained directly in the standard PN and test-
particle limit calculations. For example, the terms propor-
tional to �v6 and �2v9 (for q ¼ 0) are the same as the
phase factors in the asymptotic amplitude in the test-
particle limit calculations (e.g., Eqs. (30)–(32) in
Ref. [21] and Eq. (4.17) in Ref. [30]).
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C. Taylor-expanded residual terms
and their resummation

In the circular-orbit, adiabatic approximation
C‘m ¼ �ðm�Þ2h‘m. By Taylor expanding the factorized
waveforms h‘m given in Eq. (2), comparing the result
with the C‘m waveforms derived in Sec. II A, and
factoring out the imaginary terms in the �‘m of
Eqs. (27a)–(27i), we derive the f‘m’s in Eq. (2). We notice
that in the case of even-parity modes, the determination of

the f‘m is unique. In the case of odd-parity modes,
it depends on the choice of the source which, as explained
above, can be either the energy or the angular momentum.
We denote with fL‘m and fH‘m the odd-parity modes

computed with the energy and angular-momentum
sources, respectively. [Since in both cases the source
is a real quantity, the phases �‘m’s remain the same.]
We obtain through ‘ ¼ 4 (see Appendix C for modes
with 4< ‘ � 8)

f22 ¼ 1� 43

21
v2 � 4q

3
v3 þ

�
q2 � 536

189

�
v4 � 118q

63
v5 þ

�
8q2

63
� 856 eulerlog2ðv2Þ

105
þ 21428357

727650

�
v6 þ 1562q

189
v7

þ
�
232q2

189
þ 36808 eulerlog2ðv2Þ

2205
� 5391582359

198648450

�
v8 þ

�
458816 eulerlog2ðv2Þ

19845
� 93684531406

893918025

�
v10; (28a)

fL21 ¼ 1� 3q

2
v� 59

28
v2 þ 61q

12
v3 þ

�
�3q2 � 5

9

�
v4 þ 3

16
qð4q2 � 27Þv5 þ

�
4163q2

252
� 214 eulerlog1ðv2Þ

105
þ 88404893

11642400

�
v6

þ
�
�2593q3

168
þ 107

35
q eulerlog1ðv2Þ � 11847887q

1058400

�
v7 þ

�
6313 eulerlog1ðv2Þ

1470
� 33998136553

4237833600

�
v8

þ
�
214 eulerlog1ðv2Þ

189
� 214752050459

21794572800

�
v10; (28b)

f33 ¼ 1� 7

2
v2 � 2qv3 þ

�
3q2

2
� 443

440

�
v4 þ 2q

3
v5 þ

�
� 7q2

4
� 78eulerlog3ðv2Þ

7
þ 147471561

2802800

�
v6 þ

�
6187q

330
� q3

�
v7

þ ð39 eulerlog3ðv2Þ � 53641811

457600

�
v8; (28c)

fL32 ¼ 1� 164

45
v2 þ 2q

3
v3 þ

�
q2 þ 854

495

�
v4 � 1148q

135
v5 þ

�
4q2

3
� 104 eulerlog2ðv2Þ

21
þ 110842222

4729725

�
v6

þ
�
17056 eulerlog2ðv2Þ

945
� 97490306

1702701

�
v8; (28d)

f31 ¼ 1� 13

6
v2 � 2qv3 þ

�
1273

792
� 5q2

2

�
v4 þ 38q

9
v5 þ

�
43q2

12
� 26 eulerlog1ðv2Þ

21
þ 400427563

75675600

�
v6

þ
�
11q3

3
� 2657q

594

�
v7 þ

�
169 eulerlog1ðv2Þ

63
� 12064573043

1816214400

�
v8;

(28e)

f44 ¼ 1� 269

55
v2 � 8q

3
v3 þ

�
2q2 þ 63002

25025

�
v4 þ 262q

55
v5 �

�
2203q2

495
þ 50272 eulerlog4ðv2Þ

3465
� 11985502766

156080925

�
v6; (28f)

fL43 ¼ 1� 111

22
v2 þ

�
3q2

2
þ 225543

40040

�
v4 � 12113q

1540
v5 þ

�
11337315611

277477200
� 3142 eulerlog3ðv2Þ

385

�
v6; (28g)

f42 ¼ 1� 191

55
v2 � 8q

3
v3 þ

�
2q2 þ 76918

25025

�
v4 þ 368q

55
v5 �

�
97q2

495
þ 12568 eulerlog2ðv2Þ

3465
� 5180369659

312161850

�
v6; (28h)
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fL41 ¼ 1� 301

66
v2 þ

�
3q2

2
þ 760181

120120

�
v4 �

�
10q3

3
þ 20033q

13860

�
v5 þ

�
4735160051

2497294800
� 3142 eulerlog1ðv2Þ

3465

�
v6; (28i)

where, as introduced above, we have defined
eulerlogmðv2Þ ¼ 
E þ log2þ logmþ 1=2 logv2 with
m ¼ 1; 2; 3; . . . . Note that all the nonspinning terms in
Eqs. (28a)–(28i) appear at even powers of v and the spin
terms at odd powers of v. Moreover, except for the (2,1)
odd-parity mode, all the other odd-parity modes do not
have a spin contribution at 0.5PN order. This is consistent
with the results of Appendix F.

As emphasized in Ref. [6], the decomposition of the
Taylor-expanded multipolar waveform into several factors
[see Eq. (2)] is in itself a resummation procedure. In fact,
the factorization of T‘m has absorbed powers of m�,
which introduce large coefficients in the Taylor-expanded
waveform. Moreover, in the quasicircular case assumed
here, the factorization of the energy or angular-momentum
sources has extracted the pole located at the light-ring

position v ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
M=rlr

p
with rlr ¼ 2M½1þ cos½2=3 arccos

ð�a=MÞ�� (where � refers to prograde and retrograde
orbits, respectively), which causes the coefficient of v2n

in any PN-expanded quantity to grow as rnlr as n ! 1. As

we shall see in Sec. III, despite those improvements, the
f‘m’s above are not close enough to the exact results for
large velocities.

As we shall discuss in detail in Sec. III, the f‘m’s in the

form of Taylor-expanded power series f‘m ¼ PN‘m

k¼0 f
ðkÞ
‘mv

k

can be further improved by applying the Padé summation
and/or the � resummation [6]. In the Padé summation, we
replace f‘m with its Padé approximant, i.e. with the rational
function ðPM

k¼0 akv
kÞ=ðPN

k¼0 bkv
kÞ, with a0 ¼ b0 ¼ 1 and

Mþ N ¼ N‘m. The � resummation consists in finding the

polynomial function �‘m ¼ PN‘m

k¼0 �
ðkÞ
‘mv

k such that the

Taylor-expanded power series of its ‘th power ð�‘mÞ‘
agrees with f‘m through order N‘m.
The motivation for the � resummation is to reduce the

magnitude of the 1PN-order nonspinning coefficient fð2Þ‘m of

f‘m, which grows linearly with ‘ (see Sec. IID of Ref. [6]).

In the nonspinning case, since �ð1Þ
‘m ¼ fð1Þ‘m ¼ 0, we have

�ð2Þ
‘m ¼ fð2Þ‘m=‘ and the linear dependence of ‘ is removed

from �ð2Þ
‘m. We find that such dependence on ‘ does also

affects the 1.5PN spin terms in the even-parity modes
computed as function of ‘ and m in Appendix F. In fact,
we find that heven‘m ¼ �2‘qv3=3, and so feven‘m ¼
�2‘qv3=3. Thus, we apply the � resummation also to
the spin terms and find (see Appendix D for modes with
4< ‘ < 8)

�22 ¼ 1� 43

42
v2� 2q

3
v3þ

�
q2

2
� 20555

10584

�
v4� 34q

21
v5þ

�
89q2

252
� 428eulerlog2ðv2Þ

105
þ 1556919113

122245200

�
v6þ

�
q3

3
þ 18733q

15876

�
v7

þ
�
�q4

8
þ 18353q2

21168
þ 9202eulerlog2ðv2Þ

2205
� 387216563023

160190110080

�
v8þ

�
439877eulerlog2ðv2Þ

55566
� 16094530514677

533967033600

�
v10;

(29a)

�L
21 ¼ 1� 3q

4
vþ

�
�9q2

32
� 59

56

�
v2 þ

�
1177q

672
� 27q3

128

�
v3 �

�
47009

56448
þ 865q2

1792
þ 405q4

2048

�
v4

�
�
98635q

75264
� 2031q3

7168
þ 1701q5

8192

�
v5 þ

�
�15309q6

65536
þ 3897q4

16384
þ 9032393q2

1806336
� 107eulerlog1ðv2Þ

105
þ 7613184941

2607897600

�
v6

þ
�
�72171q7

262144
þ 18603q5

65536
� 55169q3

16384
þ 107

140
q eulerlog1ðv2Þ� 3859374457q

1159065600
Þv7

þ
�
6313 eulerlog1ðv2Þ

5880
� 1168617463883

911303737344

�
v8 þ

�
5029963 eulerlog1ðv2Þ

5927040
� 63735873771463

16569158860800

�
v10; (29b)

�33 ¼ 1� 7

6
v2 � 2q

3
v3 þ

�
q2

2
� 6719

3960

�
v4 � 4q

3
v5 þ

�
5q2

36
� 26 eulerlog3ðv2Þ

7
þ 3203101567

227026800

�
v6 þ

�
q3

3
þ 5297q

2970

�
v7

þ
�
13 eulerlog3ðv2Þ

3
� 57566572157

8562153600

�
v8; (29c)

PAN et al. PHYSICAL REVIEW D 83, 064003 (2011)

064003-8



�L
32 ¼ 1� 164

135
v2 þ 2q

9
v3 þ

�
q2

3
� 180566

200475

�
v4 � 2788q

1215
v5 þ

�
488q2

405
� 104 eulerlog2ðv2Þ

63
þ 5849948554

940355325

�
v6

þ
�
17056 eulerlog2ðv2Þ

8505
� 10607269449358

3072140846775

�
v8; (29d)

�31 ¼ 1� 13

18
v2� 2q

3
v3þ

�
101

7128
� 5q2

6

�
v4þ 4q

9
v5þ

�
�49q2

108
� 26eulerlog1ðv2Þ

63
þ 11706720301

6129723600

�
v6þ

�
q3

9
� 2579q

5346

�
v7

þ
�
169eulerlog1ðv2Þ

567
þ 2606097992581

4854741091200

�
v8; (29e)

�44¼ 1�269

220
v2�2q

3
v3þ

�
q2

2
�14210377

8808800

�
v4�69q

55
v5þ

�
217q2

3960
�12568eulerlog4ðv2Þ

3465
þ16600939332793

1098809712000

�
v6; (29f)

�L
43 ¼ 1� 111

88
v2 þ

�
3q2

8
� 6894273

7047040

�
v4 � 12113q

6160
v5 þ

�
1664224207351

195343948800
� 1571 eulerlog3ðv2Þ

770

�
v6; (29g)

�42 ¼ 1� 191

220
v2 � 2q

3
v3 þ

�
q2

2
� 3190529

8808800

�
v4 � 7q

110
v5 þ

�
2323q2

3960
� 3142 eulerlog2ðv2Þ

3465
þ 848238724511

219761942400

�
v6; (29h)

�L
41 ¼ 1� 301

264
v2 þ

�
3q2

8
� 7775491

21141120

�
v4 þ

�
�5q3

6
� 20033q

55440

�
v5 þ

�
1227423222031

1758095539200
� 1571 eulerlog1ðv2Þ

6930

�
v6: (29i)

Lastly, we may use EðrÞ instead of jLj as the source term in
Eq. (2) for the odd-parity modes. The corresponding fH‘m
and �H

‘m expressions are given in Appendices C and D,
respectively.

In the next section, we shall investigate the numerical
(exact) �‘m’s and compare them with the analytical
ones. We shall find that the agreement between the nu-
merical and analytical �‘m is quite good, except for
some modes. Guided by the comparison with numerical
results, we shall apply the Padé summation to the �‘m’s
and also work out an improved resummation which
consists in factoring out the lower-order PN terms in the
Taylor-expanded �‘m’s. We find that this factorization
brings the zeros of the analytical �‘m closer to the numeri-
cal (exact) ones.

III. COMPARISON BETWEEN ANALYTICAL
AND NUMERICAL RESULTS FOR THE

TEST-PARTICLE LIMIT CASE

We have two goals to achieve in this section. The
first is to accurately model the amplitude of the ðl; mÞ
modes for several values of the spin parameter q and
velocity v. The second is to obtain the best agreement
between the numerical (exact) and analytical energy
fluxes without introducing adjustable parameters in the
analytical model.

The numerical values of the energy flux used in this
paper are obtained with a high precision numerical
code which solves the Teukolsky equation [16–18]. The

homogeneous solution of the radial Teukolsky equation is
obtained numerically by using a formalism developed
by Mano, Suzuki, and Takasugi [31]. In this method, the
homogeneous solutions are expressed in terms of series of
two kinds of special functions, hypergeometric functions
and confluent hypergeometric functions. In Refs. [16,17],
it was shown that the series converges very fast and one
can compute numerically the homogeneous solutions very
accurately. The homogeneous solution obtained with this
method was applied to the numerical calculation of gravi-
tational waves emitted by a particle in a quasicircular and
equatorial orbit around a Kerr black hole [16,17]. In this
paper, for the comparison with analytical formulas, we
compute the Z‘m!0

(and thus the C‘m) as well as

ðdE=dtÞ‘m for various q and �. The computation is done
with the double precision accuracy, and the estimated
accuracy of Z‘m!0

(and thus the C‘m) as well as

ðdE=dtÞ‘m is about 14 significant figures. As in Ref. [16],
the accuracy is estimated by comparing the energy flux
with that of Ref. [32], in which the accuracy was estimated
as about 20 significant figures.

A. Hierarchy between the ðl;mÞ’s modes

In Fig. 1, we study the hierarchy among the numerically-
computed modes and plot jh‘mj=jh22j versus v for the
representative spin cases: q ¼ 0:95, 0, and �0:95. The
parameter v varies between 0.1 and vLSOðqÞ, where we
denote with the last stable orbit (LSO) for a test particle in
the Kerr geometry.
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The strain waveforms h‘m’s are computed from the
C‘m’s under the quasicircular adiabatic assumption, i.e.,
h‘m ¼ �C‘m=ðm�Þ2. As we shall discuss in Sec. III C, the
energy flux for quasicircular adiabatic orbits can be com-
puted through the well-known relation

FðvÞ ¼ 1

16�

X
‘

X‘
m¼�‘

ðm�Þ2jh‘mðvÞj2: (30)

Thus, when analyzing the contribution of the _h‘m’s to the

energy flux, we need to remember that _h‘m ¼ iC‘m=ðm�Þ.
Thus, the dependence of _h‘m ’s on m is different than the
one of h‘m ’s, and, as a consequence, the hierarchy of the
modes in the energy flux is different.

Denoting by jh‘mj=jh22j the relative strain amplitude

and by j _h‘mj2=jh22j2 the relative radiation power, we find
the following trends. In the antialigned case q ¼ �0:95
and the nonspinning case, the (3,3), (2,1), and (4,4) modes
are the largest subdominant modes in terms of strain am-
plitude. In terms of radiation power, they are also among
the largest subdominant modes although their hierarchy
changes. The (4,4) mode contributes more power than the
(2,1) mode because of its larger m. For the same reason, in
the nonspinning case, the (5,5) mode contributes more
power than the (2,1) mode and becomes the third strongest
subdominant mode. In fact, in the antialigned and non-
spinning cases, relative to the (2,2) mode, the (3,3) mode
contributes >10% of radiation power at the LSO, only the
(3,3) and (4,4) modes contribute >1%, and the (5,5) mode
contributes 1% only in the nonspinning case. In the aligned
case q ¼ 0:95, we plot in Fig. 1 the relative strain ampli-
tudes of 8 modes that are larger than 5% at the LSO. In
terms of the relative radiation power, the (3,3), (4,4), (5,5),
(6,6), (7,7), and (8,8) modes are the largest subdominant
modes. The (3,3), (4,4), and (5,5) modes each contributes
>10% relative to the (2,2) mode at the LSO. In particular,
the (3,3) mode contributes>30% relative to the (2,2) mode

to both the strain amplitude and the radiation power.
Accurate modeling of its amplitude is therefore crucial in
modeling the full gravitational-wave waveform and the
energy flux.

B. Comparison between the analytical
and numerical modes

We now examine the amplitude agreement of the nu-
merical and analytical waveforms, focusing mainly on the
dominant modes: (2,2), (2,1), (3,3), (3,2), (4,4), and (5,5).
In Figs. 2 and 3, we show several numerical �‘m’s versus

x � v2 for three representative spin cases: q ¼ �0:95, 0,
0.95. Since the latter are real, the numerical �‘m’s are
obtained using Eq. (2) with f‘m ¼ �‘

‘m, that is dividing

the numerical jh‘mj1=‘ by ðjT‘mjŜð�ÞeffÞ1=‘. The numerical h‘m
are computed from the numerical C‘m through the relation
h‘m ¼ �C‘m=ðm�Þ2
Using the 0.5PN (1.5PN) order spin terms in the odd

(even)-parity modes computed in Appendix F for generic
‘ and m and the nonspinning 1PN terms derived in
Refs. [6,22], we have

feven‘m ðxÞ ¼ 1�
�
1� 1

‘
þ m2ð‘þ 9Þ

2‘ð‘þ 1Þð2‘þ 3Þ
�
‘x

� 2

3
‘qx3=2 þOðx2Þ; (31)

and

fL‘mðxÞ ¼ 1� 3

2
qx1=2�‘2�m1 �

�
1þ 1

‘
� 2

‘2

þ m2ðlþ 4Þ
2‘ð‘þ 2Þð2‘þ 3Þ

�
‘xþOðx3=2Þ: (32)

Note that the 1.5PN spin terms in the odd-parity modes are
not known for generic ‘ and m, but they are available
through ‘ ¼ 6 in this paper.
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FIG. 1 (color online). Hierarchy of the numerically-computed modes h‘m relative to that of the dominant h22 mode. The spin values
in the three panels from left to right are q ¼ 0:95, 0, �0:95, respectively. The x axis ranges between 0 and vLSOðqÞ.
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Reference [6] pointed out that because the 1PN order
term in the feven‘m and fL‘m scale as ‘ and is negative, for

large ‘ it can cause the f‘m to go to zero even before
reaching the LSO. For example, if we consider the LSO

in Schwarzschild, xLSOð0Þ ¼ 1=6 (vLSOð0Þ ¼ 1=
ffiffiffi
6

p ’
0:4082), f66 at 1PN order has a zero at v ¼ 0:3634 [6].
In the even-parity case, the inclusion of the 1.5PN spin
term with q > 0 can cause the zero to occur even at smaller
values of v. In particular, for q ¼ 0:95, f66 has a zero at
v ¼ 0:3362 (vLSOð0:95Þ ¼ 0:6497). By contrast, the cases
with q < 0 can push the zero to negative or imaginary
values, or to values of v above the LSO, thus making it
harmless. For example, for q ¼ �0:95, f66 has a zero at
v ¼ 0:4075 (vLSOð�0:95Þ ¼ 0:3373). Similarly, when
considering the odd-parity modes for large ‘, e.g., the fL65
mode, we find that in the nonspinning case the 1PN term
causes fL65 to have a zero at v ¼ 0:3602 and the inclusion

of 1.5PN spin term causes the zero to move to v ¼ 0:3502
for q ¼ 0:95 and to v ¼ 0:3717 for q ¼ �0:95.

In the spin case, the above problem can be even worse
than in the nonspinning case for lower values of ‘.
For example, the 1PN term causes a zero in the f33 at
v ¼ 0:5345 which is above vLSOð0Þ, but the inclusion of
the 1.5PN spin term moves the zero to v ¼ 0:4764 for
q ¼ 0:95 which is quite below vLSOð0:95Þ.
Motivated by the above discussion and the result in

Appendix F that shows that the even-parity 1.5PN spin
terms scale as ‘ (feven‘m ¼ �2‘qv3=3), we adopt the �
resummation also for the spin terms. The �‘m’s through
1.5PN order read:

�even
‘m ðxÞ ¼ 1�

�
1� 1

‘
þ m2ð‘þ 9Þ

2‘ð‘þ 1Þð2‘þ 3Þ
�
x

� 2

3
qx3=2 þOðx2Þ; (33)

and
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FIG. 3 (color online). We plot the �‘m’s extracted from the numerical data as function of x � v2. The upper panels (blue colors) refer
to q ¼ 0:95, the lower panels (red colors) to q ¼ �0:95. The variable x ranges between 0< x< xLSOðaÞ.
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�L
‘mðxÞ ¼ 1� 3

2

1

‘
qx1=2�‘2�m1 � 9

8

‘� 1

‘2
q2x�‘2�m1

�
�
1þ 1

‘
� 2

‘2
þ m2ðlþ 4Þ

2‘ð‘þ 2Þð2‘þ 3Þ
�
xþOðx3=2Þ:

(34)

We notice that the 1PN and 1.5PN terms in �66 cause a zero
at v ¼ 0:8902 for q ¼ 0 and at v ¼ 0:7577 for q ¼ 0:95.
The zero in �33 occurs at v ¼ 0:9258 for q ¼ 0 and at
v ¼ 0:7765 for q ¼ 0:95. All these numbers are larger
than vLSOðqÞ. Note however that the � resummation may
be less effective for q > 0:95, since at q ¼ 1, the zero in
�66 occurs at v ¼ 0:7530 and the zero in �33 occurs at
v ¼ 0:7713, both smaller than vLSOð1Þ ¼ 0:7937. Of
course all this discussion does not take into account the
higher-order PN terms, which can also move the zero to

lower or higher values. However, as we shall see below, the
behavior of the numerical �‘m is captured by the 0.5PN,
1PN, and 1.5PN terms.
In Figs. 2 and 3, we plot the ‘ ¼ 2, 3, 4, 5, 6 (m ¼

‘; ‘� 1; . . . ; 1) numerical modes versus x. First, as ob-
served in Ref. [6] for the nonspinning case, also for the
spin case, the behavior of the �‘m is reasonably simple. In
particular, except for the (2,1) case which shows a special
shape due to the presence of the 0.5PN term (

ffiffiffi
x

p
), all the

other modes are well represented by (broken) straight
lines with one or two changes in the slope at high fre-
quency. As in the nonspinning case, but less pronounced
here, for each value of ‘, the (negative) slopes of the
dominant m ¼ ‘ (even-parity) and subdominant
m ¼ ‘� 1 (odd-parity) modes are close to each other,
and these slopes become somewhat closer as ‘ increases.
This property is reproduced by the analytical �‘m’s
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truncated at 1.5PN order through ‘ ¼ 6 modes, whose
1.5PN terms are known.

In Figs. 4 and 5, we compare the numerical and analyti-
cal �22 and �33, respectively. We use the following notation
for the analytical models. We indicate with TN½�‘m� the
�‘m expanded in Taylor series of v through vN . We in-
dicate with PMN ½�‘m� the Padé-summed �‘m with M and N
denoting the order of the polynomial in v in the numerator
and denominator, respectively. When applying the Padé
summation in presence of logarithms (i.e., logðvÞ) we treat
the latter as constants. We indicate with �f

‘m an improved

resummation of the Taylor-expanded �‘m’s, which consists
in factoring out their 0.5PN, 1PN, and 1.5PN order terms,
that is we write

�f
‘m ¼ ð1þ c‘m1=2vþ c‘m1 v2 þ c‘m3=2v

3Þð1þ d‘m2 v4 þ 	 	 	Þ;
(35)

where the coefficients c‘m1=2, c
‘m
1 , and c‘m3=2 are the 0.5PN,

1PN, and 1.5PN order terms in the �‘m, and the coefficients
d‘mi with i 
 2 in Eq. (35) are obtained by imposing that

the Taylor-expanded �f
‘m coincides with �‘m. We shall

motivate the introduction of the �f
‘m’s in the discussion

below, but basically we find that the first factor on the right-
hand side of Eq. (35) can capture reasonably well the zeros
of the numerical (exact) �‘m’s.

For the modes ‘ < 4, we find the following �f
‘m’s:

�f
22 ¼

�
1� 43

42
v2 � 2q

3
v3

��
1þ

�
q2

2
� 20555

10584

�
v4 � 34q

21
v5 þ

�
� 428 eulerlog2ðv2Þ

105
þ 109q2

126
þ 656928119

61122600

�
v6

þ
�
2q3

3
� 14069q

7938

�
v7 þ

�
�q4

8
þ 4751q2

7056
þ 6877264829389

800950550400

�
v8 þ

�
� 856 eulerlog2ðv2Þq

315
þ 34q3

27

þ 245281097q

45841950

�
v9 þ

�
439877 eulerlog2ðv2Þ

55566
þ 319q4

1008
� 1312819q2

2667168
� 179558258690231

8409980779200

�
v10

�
; (36a)

�fL
21 ¼

�
1� 3q

4
vþ

�
� 9q2

32
� 59

56

�
v2 þ

�
1177q

672
� 27q3

128

�
v3

��
1þ

�
� 405q4

2048
� 865q2

1792
� 47009

56448

�
v4 þ

�
� 729q5

2048

� 141q3

1792
� 12137q

6272

�
v5 þ

�
� 107 eulerlog1ðv2Þ

105
� 18225q6

32768
� 9477q4

57344
þ 2534545q2

903168
þ 2662510933

1303948800

�
v6

þ
�
� 54675q7

65536
þ 837q5

114688
� 734519q3

602112
� 1240566577q

521579520

�
v7 þ

�
� 321 eulerlog1ðv2Þq2

1120
� 898857q8

1048576
� 4617q6

229376

� 915459q4

1605632
þ 139532257q2

27165600
þ 1799642241599

2071144857600

�
v8 þ

�
� 963 eulerlog1ðv2Þq3

2240
þ 125939 eulerlog1ðv2Þq

70560

� 1043199q9

1048576
þ 12393q7

262144
þ 380169q5

3211264
� 107920920827q3

41726361600
� 494887939808057q

91130373734400

�
v9

þ
�
� 2889 eulerlog1ðv2Þq4

7168
þ 195061eulerlog1ðv2Þq2

188160
þ 5029963 eulerlog1ðv2Þ

5927040
� 39031389q10

33554432
þ 34610733q8

58720256

� 18644823q6

51380224
þ 7997241271q4

14836039680
þ 838234689365819q2

145808597975040
� 1133240747153

386613706752

�
v10

�
; (36b)

�f
33 ¼

�
1� 7

6
v2 � 2q

3
v3

��
1þ

�
q2

2
� 6719

3960

�
v4 � 4q

3
v5 þ

�
� 26 eulerlog3ðv2Þ

7
þ 13q2

18
þ 688425313

56756700

�
v6

þ
�
2q3

3
� 1073q

1188

�
v7 þ

�
7066253659

951350400
� 5q2

108

�
v8

�
; (36c)

�fL
32 ¼

�
1� 164
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v2 þ 2q

9
v3 þ

�
q2

3
� 180566

200475

�
v4

��
1� 2788q

1215
v5 þ

�
� 104 eulerlog2ðv2Þ
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þ 488q2
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þ 5849948554

940355325

�
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v7 þ

�
107912q2
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þ 3002382469466

731462106375

�
v8

�
; (36d)
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�f
31 ¼

�
1� 13

18
v2 � 2q

3
v3

��
1þ

�
101

7128
� 5q2

6

�
v4 þ 4q

9
v5 þ

�
2942362219

1532430900
� 26 eulerlog1ðv2Þ

63
� 19q2

18

�
v6

�
�
4q3

9
þ 1625q
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�
v7 þ

�
16469528659

8562153600
� 151q2
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�
v8

�
; (36e)

�f
44¼

�
1�269

220
v2

��
1�2q

3
v3þ

�
q2

2
�14210377

8808800

�
v4�683q

330
v5�

�
12568eulerlog4ðv2Þ

3465
�1319q2
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�7216765000811

549404856000

�
v6

�
;

(36f)

�fL
43 ¼ 1� 111
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v2 þ

�
3q2

8
� 6894273

7047040

�
v4 � 12113q

6160
v5 þ

�
1664224207351

195343948800
� 1571 eulerlog3ðv2Þ

770

�
v6; (36g)

�fL
42 ¼

�
1�191

220
v2�2q

3
v3

��
1þ

�
q2

2
�3190529

8808800

�
v4� 7q

110
v5þ

�
�3142eulerlog2ðv2Þ

3465
þ2021q2

1980
þ1947834451721

549404856000

�
v6

�
;

(36h)

�fL
41 ¼

�
1� 301
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v2 þ

�
3q2

8
� 7775491

21141120

�
v4

��
1þ

�
� 5q3

6
� 20033q

55440

�
v5 þ

�
1227423222031

1758095539200
� 1571 eulerlog1ðv2Þ

6930

�
v6

�
:

(36i)

We notice that for a few modes, it is convenient to factor
out even the 2PN order term. The procedure of factoring
out zeros of �‘m can be improved in the future by introduc-
ing appropriate adjustable parameters and calibrate them
to the numerical result.

In Figs. 4 and 5, we also show results when adopting the
Padé summation. We find that the diagonal and nearest-
diagonal Padé summation improve the agreement with the
numerical results not only for the (3,1) mode but also for
the (3,1) and (4,2) modes. An even better agreement for
several modes is obtained when using the farthest-diagonal
Padé summation. However, this quite interesting result
suffers by the presence of spurious poles appearing for
several q values, and for this reason we will no longer
discuss the Padé-summation in this paper.

Finally, we observe that close to the LSO the even-parity
modes �L agree slightly better to the numerical results
than �H’s. Thus, we adopt in this paper the multipolar
waveforms built with the �L. In Figs. 6–8, we compare
the Taylor-expanded, �f-resummed, and numerical
Newtonian-normalized multipolar amplitudes for the
dominant modes. In general, the �f and �-resummed
amplitudes agree better with the numerical amplitudes
than Taylor-expanded amplitudes do, especially for
higher-order modes. More specifically, we find that
�-resummed amplitudes (not shown in Figs. 6–8) differ
from the numerical ones by & 0:6% up to v � 0:4 for the
(2,2), (2,1), and (3,2) modes and by & 1:8% for the (3,3)
and (4,4) modes. Their fractional difference grows up to
�1–10 at the LSO when q ¼ 0:95.

When applying the �f resummation, we find that the
fractional amplitude difference between the numerical and

analytical (2,2) amplitude at the LSO is 16% (33%), 0.18%
(0.32%), and 0.20% (0.85%) for q ¼ 0:95, 0, �0:95, re-
spectively. We indicated in parenthesis the numbers when
Taylor-expanded amplitudes are employed. For the (2,1),
(3,3), and (4,4) modes, for which fewer spin PN terms are
known (see Table I), the improvement due to the �f

resummation is more striking. In fact, for the (2,1), (3,3),
and (4,4) modes, we obtain a fractional amplitude differ-
ence of 2.4% (4.2), 0.2%(0.58%), and 0.0036%(0.15%);
7.5%(2), 0.027%(0.55%), and 0.13%(0.2%); 16%(7.5),
1.7%(28%), and 0.6%(5.8%), for q ¼ 0:95, 0, �0:95,
respectively.
We summarize the results of Figs. 6–8 as follows.

First, we remark that the Taylor-expanded amplitudes
agree with the numerical ones quite well for the (2,2)
mode where the PN expansion is known through the
highest order today (5.5 PN for nonspinning terms and
4PN for spin terms). Thus, for the (2,2) mode, the improve-
ment due to the resummation technique is marginal. We
expect that a similar result holds for higher modes when
sufficient PN terms are known. Second, the factorized
resummed waveforms consistently improve the amplitude
agreement with numerical waveforms for several values of
q and large spanning of v. In the lower panels of Figs. 6–8,
we observe that the fractional amplitude difference be-
tween the numerical and �f-resummed waveforms is al-
ways smaller than the difference between the numerical
and Taylor-expanded waveforms, except around the v
values where the numerical and Taylor-expanded ampli-
tudes coincide. For all modes [except the (2,2) mode] and
all spin values shown in the figures, we find that
�f-resummed amplitudes are typically closer to the
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FIG. 6 (color online). Upper panel: Comparison between the numerical and analytical Newtonian-normalized jh22j and jh21j modes
for a test particle orbiting around a Kerr black hole in the equatorial plane. For the numerical data and analytical models (Taylor
expanded and �f resummed), we have nine curves corresponding to different spin values of the Kerr black hole. From top to bottom,
the spins are q ¼ �0:95, �0:75, �0:5, �0:25, 0,0.25, 0.5, 0.75, and 0.95. Lower panel: relative fractional difference between
analytical and numerical jh‘mj for the representative spin values q ¼ �0:95, 0, 0.95.
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FIG. 7 (color online). Upper panel: Comparison between the numerical and analytical Newtonian-normalized jh33j and jh32j modes
for a test particle orbiting around a Kerr black hole in the equatorial plane. For the numerical data and analytical models (Taylor
expanded and �f resummed), we have nine curves corresponding to different spin values of the Kerr black hole. From top to bottom,
the spins are q ¼ �0:95, �0:75, �0:5, �0:25, 0, 0.25, 0.5, 0.75, and 0.95. Lower panel: relative fractional difference between
analytical and numerical jh‘mj for the representative spin values q ¼ �0:95, 0, 0.95.
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numerical amplitudes than Taylor expanded are by an order
of magnitude or more.

Finally, for ‘ 
 5 modes, the �f resummation is not
very successful in modeling the numerical amplitudes but
it is better than Taylor-expanded amplitudes. We know
nonspinning and spin corrections only through 2.5PN order
in the (5,5) mode (see Table I); thus it is not surprising
that we cannot model those modes very well. Since the
contribution of the ‘ 
 5modes to the radiation power and
strain amplitude is not negligible, it would be very useful
to calculate higher-order corrections in those modes in
the future.

C. Comparison between analytical and numerical
energy fluxes

Here we compare numerical and analytical Newtonian-
normalized energy fluxes for a test particle orbiting a Kerr
black hole in the equatorial plane. The fluxes are computed
by summing the power radiated using Eq. (30) and setting
‘ ¼ 8. For a test particle moving along a quasicircular
equatorial orbit, the Newtonian-normalized flux is
FðvÞ=FNewtðvÞ, where FNewtðvÞ ¼ 32�2v10=5.

We note that the dominant error source of the numerical
calculation of the total flux is the truncation at ‘ ¼ 8 of the
mode summation. Let F‘¼8ðvÞ be the contribution from
‘ ¼ 8mode for FðvÞ. The fraction, F‘¼8ðvÞ=FðvÞ, is about
10�10 around v ¼ 0:1 and 10�5 to 10�2 around the LSO.

In Fig. 9, we compare numerical and analytical
Newtonian-normalized energy fluxes for different spin

values of the Kerr black hole. In the left panel of Fig. 9,
we consider two Taylor-expanded fluxes computed from
the Taylor-expanded h‘m’s: one that truncates all terms
beyond 5.5PN order and spin terms beyond 4PN order
(Taylor expanded truncated), and one that keeps all
higher-order terms (Taylor expanded nontruncated).
[The former is the Taylor-expanded flux that consistently
includes nonspinning effects through 5.5PN order and
spin effects through 4PN order [12,13]; the latter includes
new higher-order PN terms computed by Tagoshi and
Fujita [14].]
In the left panel of Fig. 9, we do not show the Taylor-

expanded flux truncated at 4PN order [13] since its agree-
ment with the numerical flux is rather poor. Figures 2 and 3
of Ref. [33] show that in this case the Taylor-expanded
flux starts to differ from the numerical one at a relatively
low velocity of v ¼ 0:2 for all spin values. By contrast, the
agreement is substantially improved when we include the
5.5PN order nonspinning terms in the Taylor-expanded-
truncated flux. The Taylor-expanded-nontruncated flux
agrees better with the numerical flux than the Taylor-
expanded-truncated flux for retrograde orbits with q < 0,
while its agreement is worse for prograde orbits with
q > 0. For spin values q > 0:5, the agreement is especially
bad, as the Taylor-nontruncated flux grows too fast when
v > 0:4. We find that this difference is mainly due to the
large new spin term [14] in the (3,3) mode, i.e. ð�q2 þ
9�q2=2þ q89=5Þv7 in Ẑ33!0

(real part only). Without any

resummation, the Taylor-expanded-truncated flux agrees
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FIG. 8 (color online). Upper panel: Comparison between the numerical and analytical Newtonian-normalized jh44j mode for a test
particle orbiting around a Kerr black hole in the equatorial plane. For the numerical data and analytical models (Taylor expanded and
�f resummed), we have four curves corresponding to different spin values of the Kerr black hole. From top to bottom, the spins are
q ¼ �0:95, �0:5, 0, 0.5, and 0.95. Lower panel: relative fractional difference between analytical and numerical jh‘mj for the
representative spin values q ¼ �0:95, 0, and 0.95.
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well with the numerical flux for all spin values except for
q ¼ 0:95. The lower left panel shows that the fractional
differences between the numerical and the Taylor-
expanded-truncated fluxes are below 1% until v ¼ 0:3
and are below 10% for q ¼ 0:95 until v ¼ 0:55 and below
10% for all other spin values until the LSO.

In the right panel of Fig. 9, we consider three analytical
flux models which use the f‘m, �‘m (for q ¼ 0:95 only),

and �f
‘m, respectively. The fractional difference between

the numerical flux and f, �, or �f-resummed fluxes is
<0:3% for all spin values when v < 0:3. Larger differ-
ences appear only when v > 0:3 for large and aligned
spins, and the f-resummed flux performs especially bad
when v > 0:4. In the case of q ¼ 0:95, we show the
significant improvements achieved from the f-resummed
to the �-resummed and eventually to the �f-resummed
flux. The fractional difference with numerical flux at the
LSO is reduced from�3:5� 104 to�3 to 13%. The main
reason for the bad performance of the f-resummed flux is
caused by the new spin term [14] in the (3,3) mode, i.e.

ð�q2 þ 9�q2=2þ q89=5Þv7 in Ẑ33!0
(real part only), as is

in the case of the Taylor-expanded-nontruncated flux.
As a matter of fact, we notice that if we did not include

this new term computed in Ref. [14] and applied the f
resummation, or the � resummation only to the nonspin-
ning terms [19,34], we would find a flux not very different
from the �-resummed flux in the right panel of Fig. 9. In
the � or �f resummation, this new term is suppressed
by an order of magnitude, which leads to the improvements
in their performance in modeling the numerical flux.
Specifically, this term becomes ðq6187=330� q3Þv7 in
f33, ðq5297=2970þ q3=3Þv7 in �33, and ð�q1073=1188þ
q32=3Þv7 in �f

33.

Finally, for large aligned spin q ¼ 0:95 at the LSO, the
�f-resummed flux is closer to the numerical flux than the
Taylor-expanded-truncated flux. Furthermore, we want to
emphasize that the �f resummation improves the Taylor-
expanded flux substantially over a large range of v and
spin values. The differences between numerical and
�f-resummed fluxes are smaller than those between the
numerical and Taylor-expanded-truncated fluxes, by a fac-
tor of 3–5 at low velocities. Considering the large number
of orbits an extreme mass-ratio binary spends in this range
of velocities or frequencies, such an improvement is indeed
significant in correcting the orbital dynamics (see Ref. [35]
for a quantitative analysis in the nonspinning case).
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FIG. 9 (color online). Upper panels: Comparison between the numerical and analytical Newtonian-normalized energy flux
for a test particle orbiting a Kerr black hole in the equatorial plane. There are nine curves for each waveform’s model and numerical
data. They correspond to different spins of the Kerr black hole. From top to bottom, the spins are q ¼ �0:95, �0:75, �0:5, �0:25, 0,
0.25, 0.5, 0.75, and 0.95. The Taylor-expanded-truncated flux includes test-particle spin terms through 4PN order [13] and
nonspinning terms through 5.5PN order [12]. The Taylor-expanded-nontruncated flux includes higher-order PN terms originated
by the new PN terms in the h‘m’s computed by Tagoshi and Fujita [14] (see Table I). The �-resummed flux is plotted for one spin
value q ¼ 0:95 in the upper right panel, to show the large improvement when using �f-resummed instead of �-resummed flux.
Lower panels: fractional difference between the numerical and analytical energy fluxes for the representative spin cases:
q ¼ �0:95, 0, 0.95.
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IV. FACTORIZED MULTIPOLAR WAVEFORMS
FOR GENERIC MASS-RATIO SPINNING,

NONPRECESSING BLACK HOLES

In this section, we extend the calculation of Sec. II
to generic mass-ratio spinning, nonprecessing black-hole
binaries.

In Ref. [22,23], the nonspinning Taylor-expanded multi-
polar waveforms were computed through 3PN order. In
Ref. [25], spinning Taylor-expanded multipolar waveforms
were computed through 1.5PN order. Using the definitions

M � m1 þm2 (37a)

�m � m1 �m2; (37b)
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and restricting ourselves to circular, equatorial orbits, we
obtain the following modes decomposed with respect to
�2 spin-weighted spherical harmonics
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The 1.5PN, 0.5PN, and 1PN order spin terms in the modes
h22, h21, h33, respectively, were obtained in Ref. [25].
The 1.5PN-order (0.5PN-order) spin terms in the even
(odd) parity modes are computed in Appendix F. The
higher-order nonspinning PN terms can be found in
Refs. [6,22,23].
To compute the factorized multipolar waveforms for

generic mass ratios, we use Eq. (2). For the source terms

Ŝ
ð�pÞ
eff , we employ the energy and angular momentum for

circular, equatorial orbits computed from the effective-
one-body Hamiltonian of Ref. [36] (at the PN order at
which we derive the factorized modes, the Taylor-
expanded Hamiltonian of Ref. [36] coincides with the
Hamiltonian of Ref. [37]). More explicitly, when expand-
ing the effective-one-body energy and angular momentum
for circular, equatorial orbits through 1.5PN order, we find
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Eqs. (39) and (40) are sufficient for computing the quantity
f‘m in Eq. (2). In fact, similarly to the test-particle case
analyzed in Sec. II, the factor T‘m in the generic mass-ratio
case is not modified by spin effects. The factor �‘m is not
modified by spin effects either since there are no imaginary
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spin terms in Eqs. (38a)–(38i). The nonspinning �‘m

expressions for generic mass ratios are given in
Eqs. (20)–(29) of Ref. [6]. Thus, inserting Eqs. (39) and
(40) in Eq. (2), and using Eqs. (38a)–(38i), we derive the
even-parity f‘m and �‘m and odd-parity fL‘m and �L

‘m up to

the highest PN accuracy known today. We obtain
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We may use EðrÞ instead of jLj as the source term in the
odd-parity modes. However, there is no difference between
fLlm and fHlm, and correspondingly between �L

lm and �H
lm,

through PN orders where spin effects of binaries with
generic mass ratio are known.
In the nonspinning case, using 1PN, 2PN, and 3PN

corrections, it was shown [6] that the dependence of �‘m

on the mass-ratio � is mild. As a consequence, it was
considered meaningful to use test-particle results at PN
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orders where generic mass-ratio results are unknown.
Since for each mode only the leading-order generic
mass-ratio spin terms are known, it is not possible to carry
out an exhaustive study and understand how the spin terms
in �‘m depend on �. As obtained in Appendix F, at leading
order, the 0.5PN spin terms in the odd-parity modes are
proportional to �. Thus, they are zeros in the test-particle
limit but finite in the comparable-mass case. Moreover, we
find that the dependence on � of the 1.5PN spin terms in
the even-parity modes is not that simple. Depending
on the values of �S and �A, the relative difference between

hð0Þ;1:5PN‘m ð� ¼ 0:25Þ and hð0Þ;1:5PN‘m ð� ¼ 0Þ varies from zero

to order of unity. Therefore, also the dependence of

hð0Þ;1:5PN‘m on � is not mild.

Nevertheless, it is still reasonable to include the test-
particle limit spin terms in f‘m and �‘m such that at least
part of the higher-order spin effects are included and to
check the results against available numerical (exact) data.
Specifically, we combine the test-particle and generic
mass-ratio results by replacing all the test-particle terms
in f‘m and �‘m, whose generic mass-ratio counterparts are
known with their generic expressions.

Thus, in the generic mass-ratio, spinning case, we pro-
pose to add to the f‘m’s and �‘m’s derived in this section
the test-particle limit terms derived in Sec. II. In applying
this procedure, we need to make a choice for the dimen-
sionless spin variable q appearing in the test-particle limit
f‘m’s and �‘m’s. For a black-hole binary with component
masses m1 and m2 and spins �1 and �2, we consider
here two possibilities motivated by the choice of the
deformed-Kerr spin in the effective-one-body formalism.
References [19,36] used for the deformed-Kerr spin
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while Ref. [37] used the following deformed-Kerr spin
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M2
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1�4�

p
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Moreover, in the generic mass-ratio, spinning case, we
also propose to use as effective sources in Eq. (2) the
Hamiltonian and angular momentum for quasicircular
orbits computed using the effective-one-body
Hamiltonians [36,37].

In Fig. 10, we compare the amplitudes of the numerical,
the Taylor-expanded and the �-resummed modes for the
five most dominant modes and for the two configurations
of equal-mass, equal-spin black-hole binaries of the
Caltech-Cornell-CITA collaboration of Ref. [19,38]. We
employ the effective sources built using the Hamiltonian
and angular momentum for quasicircular orbits of

Ref. [19,36]. The dimensionless spins in the two
configurations are �1 ¼ �2 ¼ 0:43655 and �1 ¼ �2 ¼
�0:43757, respectively. The numerical amplitudes are de-
rived from the numerical simulations published in
Ref. [19]. Oscillations in the numerical amplitudes are
due to numerical artifacts in the simulations. For the
(2,2) mode, the Taylor-expanded amplitudes agree quite
well with the numerical amplitude, at least up to the
frequency considered. Thus, the improvement due to the
� resummation is marginal. For higher-order modes, there
are large differences between numerical and Taylor-
expanded amplitudes, and we find a substantial improve-
ment when we adopt the � resummation, except for the
(3,3) mode in the spin aligned case (�1 ¼ �2 ¼ 0:43655),
whose numerical and Taylor-expanded amplitudes overlap,
likely by coincidence. For the (2,2), (4,4), and (6,6) modes,
the relative difference between numerical and �-resummed
amplitudes is within 5% [39]. For the (3,2) and (4,2)
modes, the relative difference is between 10%–20%. We
find that the results in Fig. 10 depend weakly on the choice
of q. In fact, using q ¼ q0 defined in Eq. (43) and
q ¼ qS ¼ q0=2 (when � ¼ 0:25) defined in Eq. (44), the
relative amplitude difference is <2% for the (2,2), (4,4),
(4,2), and (6,6) modes and �5% for the (3,2) mode.
Therefore, the uncertainty in the �-resummed amplitude
due to the choice of q is less than half their systematic
difference from the numerical results.
Since we expect a stronger amplitude dependence

on q in the case of larger spin magnitudes, we study the
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FIG. 10 (color online). Comparisons between the numerical,
Taylor-expanded, and �-resummed amplitudes of the dominant
modes for an equal-mass equal-spin black-hole binary as func-
tions of the orbital velocity v. In the left panel, the component
spins are �1 ¼ �2 ¼ 0:43655; in the right panel, the component
spins are �1 ¼ �2 ¼ �0:43757. The numerical amplitudes were
produced by the Caltech/Cornell/CITA collaboration.
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�-resummed amplitude dependence on the choice of q in
Fig. 11, where we show the difference between the ampli-
tudes jh‘mðq ¼ q0Þj and jh‘mðq ¼ qSÞj for an equal-mass,
equal-spin black-hole binary with component spins �1 ¼
�2 ¼ 0:95. The relative amplitude differences are<5% for
the dominating (2,2) and (4,4) modes and <10% for the
weaker (3,2) and (4,2) modes at v < 0:45. For the (6,6)
mode, since the test-particle spin terms in �66 are known
only through 2PN order, i.e. only one more term is known
beyond the generic mass-ratio results, the amplitude de-
pendence on q is entirely determined by this term and is
somewhat stronger—reaching 30% at the LSO.

Finally, we check the effect of the test-particle spin
terms by comparing jh‘mðq ¼ q0Þj and jh‘mðq ¼ 0Þj (i.e.,
removing the test-particle spin terms from the generic
mass-ratio amplitudes in the latter) for this binary configu-
ration. The difference, compared to Fig. 11, becomes larger
by a factor of a few and reaches 10–25% for the (2,2), (4,4),
(3,2), and (4,2) modes in the range of frequencies inves-
tigated in this paper. These terms may provide non-
negligible corrections to the waveform and flux modeling.

V. CONCLUSIONS

In our study, we employed the spin PN multipolar
waveforms derived and decomposed with respect to the
�2 spin-weighted spheroidal harmonics in Ref. [13]
and transformed them in �2 spin-weighted spherical
harmonics. We also took advantage of the new, recently

computed [14], higher-order nonspinning and spin PN
contributions in several subdominant modes. We also aug-
mented our knowledge of the higher-order spin terms for
generic mass-ratios, computing the generic expressions for
the half and one-and-half post-Newtonian contributions to
the odd-parity (current) and even-parity (odd) multipoles,
respectively, (see Appendix F).
Using the above results, we extended the resummation

method of factorized multipolar waveforms introduced in
Ref. [6] to spinning, nonprecessing black-hole binaries.
This factorized multipolar decomposition consists in a
multiplicative decomposition of the h‘m waveform into
the product of several factors corresponding to various
physical effects and the replacement of the factor f‘m by

its ‘th root �‘m ¼ ðf‘mÞ1=‘.
In the case of a nonspinning test particle orbiting

a Kerr black hole in the equatorial plane, we found
that the � resummation is quite effective in reproducing
the numerical multipolar amplitudes and energy flux
up to q 
 0:75 and v 
 0:4. However, for larger values
of q, we observed that the analytical �‘mðvÞ’s either
have a slope larger than the numerical one or they tend
to grow as function of v instead of decreasing. This be-
havior can be cured by factoring out the lower-order PN
terms in the �‘m, notably the 0.5PN, 1PN, and 1.5PN
order terms. Being the lower-order PN terms negative
(for q > 0), this procedure corresponds to factoring out
the zeros of �‘m, which turns out to capture the numerical
(exact) zeros.
When applying the �fresummation, we found that the

fractional amplitude difference between the numerical and
analytical (2,2) mode at the LSO is 16% (33%), 0.18%
(0.32%), and 0.20% (0.85%) for q ¼ 0:95, 0, �0:95, re-
spectively. We indicated in parenthesis the numbers when
Taylor-expanded amplitudes are employed. Thus, we
found that for the (2,2) mode the improvement of the
resummation is marginal. This might be due to the fact
that the (2,2) mode is known at rather high PN order
(5.5 PN for nonspinning terms and 4PN for spin terms).
For the (2,1), (3,3), and (4,4) modes, for which less spin PN
terms are known (see Table I), the improvement due to the
�f resummation is even more striking. In fact, for those
modes, we obtained a fractional amplitude differences
2.4% (4.2), 0.2% (0.58%), and 0.0036% (0.15%); 7.5%
(2), 0.027% (0.55%), and 0.13% (0.2%); 16% (7.5), 1.7%
(28%), and 0.6% (5.8%), for q ¼ 0:95, 0, �0:95, respec-
tively. For ‘ 
 5, the �f-resummed amplitudes are cer-
tainly better than the Taylor-expanded amplitudes, but they
differ from the numerical results quite substantially at high
frequency. This is due to the fact that for those modes the
spin effects are known only up to 2.5PN order or lower. In
summary, we found that the multipolar amplitudes com-
puted with the �f resummation are systematically closer to
the numerical (exact) results than Taylor-expanded ones
over a large range of v and spin values. The agreement can
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FIG. 11 (color online). Relative difference between
�-resummed amplitudes of the dominant modes for an equal-
mass, equal-spin black-hole binary when the test-particle spin is
set to q ¼ q0 and q ¼ qS. The component spins of the binary are
�1 ¼ �2 ¼ 0:95. The relative amplitude difference is plotted as
a function of the orbital velocity v.
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be further improved by including suitable adjustable pa-
rameters and calibrating them to the numerical results, as
done in the nonspinning case in Ref. [35].

Moreover, the numerical energy flux can also be
successfully modeled by the �f resummation—for ex-
ample, we found that the fractional difference between
the numerical and �f-resummed flux is 13% (63%),
0.70% (3.3%), and 0.48% (2.9%) for q ¼ 0:95, 0, �0:95,
respectively, where the numbers in parenthesis refer
to the Taylor-expanded-truncated PN flux. For large
aligned spins, the �f-resummed flux is much closer to
the numerical flux at the LSO than the Taylor-expanded-
truncated flux. Furthermore, we emphasize again that the
�f resummation improves the Taylor-expanded flux sub-
stantially over a large range of v and spin values and
especially at low frequency where the majority of the
signal-to-noise ratio of a binary accumulates.

We have also extended the factorized resummation to
generic mass-ratio, nonprecessing, spinning black-hole bi-
naries and proposed, as in Ref. [6], to augment the generic
mass-ratio �‘m with higher-order test-particle spin contri-
butions. Unlike in the nonspinning case [6], in the spinning
case only the leading-order generic mass-ratio spin terms
are known. Using this limited information, we found that
the dependence on � of the spin terms is not necessarily
mild. It depends on the mass ratio and the spin values.
Nevertheless, we explored the possibility of adding the
spin contributions from the test-particle limit case to the
generic mass-ratio amplitudes.

When adding the test-particle limit contributions, we
proposed to identify q with the Kerr-deformed spin in the
effective-one-body description. Using the two choices
currently available in the literature, that is q ¼ jS0j=M2

[19,36] or q ¼ jSj=M2 [37], we found that the resummed
amplitudes of the (2,2), (4,4), (4,2), and (6,6) modes agree
with numerical simulation results [19] to within 2%, for
equal-mass, equal-spin binaries with spins j�1j ¼ j�2j ’
0:44. The (3,2) mode amplitude agrees with numerical
results at 5% level. The relative difference between the
two choices of resummed amplitudes is less than half their
difference from numerical results. When the spins are near
extremal, e.g., �1 ¼ �2 ¼ 0:95, we found a mild but non-
negligible q dependence of the resummed amplitudes.
Finally, when setting q ¼ 0, that is removing the test-
particle spin terms from the generic mass-ratio amplitudes,
we obtain that the results vary by 10–20% for the (2,2),
(4,4), (3,2), and (4,2) modes in the range of frequencies
investigated in this paper.

The study carried out in this paper should be considered
as a first step in the modeling of extreme-mass-ratio
inspirals and comparable-mass black-hole binaries in pres-
ence of spins. We expect that in the extreme-mass-ratio
inspiral case, the amplitude and flux agreement can be

further improved by including in our �f
‘m a few adjustable

parameters and calibrate them to the numerical data, as

already done in Ref. [35] for nonspinning extreme-mass-
ratio inspirals. In the comparable-mass case, more detailed
comparisons with accurate numerical-relativity simula-
tions will allow us to nail down the choice of the spin
parameter q and allow us to carry out direct comparisons
between the numerical and analytical �‘m, thus helping
in modeling the latter.
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APPENDIX A: TAYLOR-EXPANDED
MULTIPOLAR WAVEFORMS Ẑ‘m!0

In order to compute the multipolar waveforms for
a test particle around a Kerr black hole, we transform
the Teukolsky equation into the frequency domain and
expand it into the �2 spin-weighted spheroidal
harmonics. The resulting equation is an ordinary differen-
tial equation about the radial coordinate. This radial
Teukolsky equation can be solved formally by using the
Green function. Since the Green function is represented
by homogeneous solutions of the radial Teukolsky equa-
tion, the central issue of this problem is to obtain the
homogeneous solutions. There are two methods for
obtaining them.
In the first method, we transform the radial Teukolsky

equation into the Sasaki-Nakamura equation. In the
Schwarzschild case, the homogeneous Sasaki-Nakamura
equation becomes the homogeneous Regge-Wheeler equa-
tion. We expand the homogeneous Sasaki-Nakamura or
Regge-Wheeler equation in terms of � � GM!, where !
is the angular frequency of the wave. In the case of circular
orbit, ! becomes !0 ¼ m� (we revive the gravity con-
stantG here). We look for the solution in power series in �.
This is thus a kind of post-Minkowskian expansion. One
difference between the ordinary post-Minkowskian ap-
proximation and this approximation is that we must impose
correct boundary conditions at the horizon. Closed analytic
representation of the solution at each order is necessary
in order to obtain the asymptotic amplitudes which con-
stitute the Green function. The lowest-order solutions are
represented by spherical Bessel functions. The higher-
order solutions can, in principle, be derived iteratively.
However, it becomes more difficult to perform this
iteration and to derive the solution in closed analytic
form at higher orders. The highest order computation
so far was done in the Schwarzschild case by Tanaka
et al. [12] in which the closed analytic formulas for a
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homogeneous solution are obtained up to Oð�Þ for
arbitrary ‘ and up to Oð�3Þ for ‘ ¼ 2 and 3 and up to
Oð�2Þ for ‘ ¼ 4. The formulas are explicitly given in a
review paper [30]. Those computations are sufficient for
obtaining the energy flux through 5.5PN order. Since the

formulas for the Ẑ‘m!0
’s are not given in the literature, we

write them below. For each mode, we write the terms up to

Oðv11�2ð‘�2ÞÞ relative to the lowest-order term.
Furthermore, in the Kerr case, so far the highest order

computation was done by Tagoshi et al. [13] in which the
closed analytic formulas for a homogeneous solution are
obtained at Oð�Þ for arbitrary ‘ modes and at Oð�2Þ for
‘ ¼ 2 and 3 modes. These computations are sufficient for
obtaining the energy flux through 4PN order.

Two of the authors have recently obtained the Oð�2Þ
closed analytic formulas for ‘ ¼ 4mode [14]. This order is
necessary to derive the multipolar waveforms through 3PN

order beyond CðN;0Þ
4m , i.e. 4PN order beyond CðN;0Þ

22 (see
Table I). More details of the computation and complete
results are given elsewhere [14]. Here, we show only the

explicit formulas for Ẑ‘m!0
defined in Eq. (17). We write

the spin-dependent 4PN-order Ẑ‘m!0
in which each mode

contains terms up to Oðv8�ð‘�2Þ��pÞ relative to the lowest-
order term. (�p is the parity of each mode).

The second method to obtain the homogeneous
Teukolsky function is based on the Mano-Suzuki-
Takasugi formalism [31]. In this formalism, the homoge-
neous solutions of the Teukolsky equation are represented
with the series of hypergeometric functions and confluent
hypergeometric functions. The expansion coefficients of
the two series solutions are the same, and they are closely
related to the series expansion in power of �. Thus, if we
compute this series up to higher order, we automatically
obtain the higher-order PN expansion formulas. Such
computation was applied to the evaluation of the PN
expansion of the black-hole absorption effect in the Kerr
case [40]. This method was also applied to the energy
flux through 5.5PN order in the Schwarzschild case, con-
firming the results obtained with the above iteration
method [12]. We apply this method to the Kerr case and
obtain the 4PN-order multipolar waveforms, which agree
with the results obtained with the above iteration method.
This method has also been recently applied to the compu-
tation of the 5.5PN-order multipolar waveforms in the
Schwarzschild case by Fujita and Iyer [15]. The nonspin-
ning terms of expressions below agree with their results up

to Oðv11�2ð‘�2ÞÞ.
We have
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v2; Ẑ86!0

¼ 1� 353

38
v2; Ẑ84!0

¼ 1� 2837

342
v2; Ẑ82!0
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v; Ẑ85!0

¼ 1� 9q

8
v; Ẑ83!0
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; Ĉ65 ¼ Ẑ65!0
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þ 8q

7
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3640

�
v4 þ 7481q

4620
v5 þ

�
11083164791

277477200
� 3142 eulerlog3ðv2Þ

385

�
v6; (C2c)

fH41 ¼ 1� 169

66
v2 � 10q

3
v3 þ

�
5q2

2
þ 145021

120120

�
v4 þ

�
89027q

13860
� 10q3

3

�
v5 þ

�
10765133231

2497294800
� 3142 eulerlog1ðv2Þ

3465

�
v6;

(C2d)

fH54 ¼ 1� 1998

455
v2 � 4qv3 þ

�
3q2 þ 3188

1365

�
v4; fH52 ¼ 1� 1728

455
v2 � 4qv3 þ ð3q2 þ 4826

1365

�
v4; (C2e)

fH65 ¼ 1� 137

24
v2 � 14q

3
v3; fH63 ¼ 1� 121

24
v2 � 14q

3
v3; fH61 ¼ 1� 113v2

24
� 14q

3
v3; (C2f)

fH76 ¼ 1� 834

119
v2; fH74 ¼ 1� 6736

1071
v2; fH72 ¼ 1� 6274

1071
v2: (C2g)
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APPENDIX D: EXPRESSIONS OF THE �‘m’S
MODES FOR ‘ > 4

1. The odd-parity �L
‘m’s and even-parity �‘m’s

�55¼1�487

390
v2�2q

3
v3þ

�
q2

2
�3353747

2129400

�
v4�241q

195
v5;

(D1a)

�L
54 ¼ 1� 2908

2275
v2 � 2q

15
v3 þ

�
2q2

5
� 16213384

15526875

�
v4;

(D1b)

�53 ¼ 1� 25

26
v2 � 2q

3
v3 þ

�
q2

2
� 410833

709800

�
v4 � 103q

325
v5;

(D1c)

�L
52 ¼ 1� 2638

2275
v2 � 2q

15
v3 þ

�
2q2

5
� 7187914

15526875

�
v4;

(D1d)

�51 ¼ 1� 319

390
v2 � 2q

3
v3 þ

�
q2

2
� 31877

304200

�
v4 þ 139q

975
v5;

(D1e)

�66 ¼ 1� 53

42
v2 � 2q

3
v3 þ

�
q2

2
� 1025435

659736

�
v4;

�L
65 ¼ 1� 185

144
v2 � 2q

9
v3; (D1f)

�64 ¼ 1� 43

42
v2 � 2q

3
v3 þ

�
q2

2
� 476887

659736

�
v4;

�L
63 ¼ 1� 169

144
v2 � 2q

9
v3; (D1g)

�62 ¼ 1� 37

42
v2 � 2q

3
v3 þ

�
q2

2
� 817991

3298680

�
v4;

�L
61 ¼ 1� 161

144
v2 � 2q

9
v3; (D1h)

�77 ¼ 1� 151

119
v2 � 2q

3
v3; �L

76 ¼ 1� 1072

833
v2;

(D1i)

�75 ¼ 1� 127

119
v2 � 2q

3
v3; �L

74 ¼ 1� 8878

7497
v2;

(D1j)

�73 ¼ 1� 111

119
v2 � 2q

3
v3; �L

72 ¼ 1� 8416

7497
v2;

�71 ¼ 1� 103

119
v2 � 2q

3
v3; (D1k)

�88 ¼ 1� 1741

1368
v2; �L

87 ¼ 1� 3913

3040
v2;

�86 ¼ 1� 167

152
v2; �L

85 ¼ 1� 725

608
v2; (D1l)

�84 ¼ 1� 1333

1368
v2; �L

83 ¼ 1� 3433

3040
v2;

�82 ¼ 1� 1231

1368
v2; �L

81 ¼ 1� 3337

3040
v2: (D1m)

2. The odd-parity �H
‘m’s

�H
21 ¼ 1� 3q

4
v� 3

224
ð21q2 þ 4Þv2 � 1

896
ðqð189q2 þ 596ÞÞv3 þ

�
� 405q4

2048
þ 1767q2

1792
� 21809

56448

�
v4

�
�
1701q5

8192
� 1191q3

7168
þ 69851q

75264

�
v5 þ

�
7839703541

2607897600
� 15309q6

65536
þ 4113q4

16384
þ 342289q2

200704
� 107 eulerlog1ðv2Þ

105

�
v6

þ
�
� 72171q7

262144
þ 19683q5

65536
þ 3131q3

344064
þ 107

140
q eulerlog1ðv2Þ � 40609146713q

10431590400

�
v7

þ
�
107 eulerlog1ðv2Þ

1960
þ 48499995300301

22782593433600

�
v8 þ

�
2333563 eulerlog1ðv2Þ

5927040
þ 3762995064239

8679083212800

�
v10; (D2a)

�H
32 ¼ 1� 74

135
v2 � 8q

9
v3 þ

�
2q2

3
� 164726

200475

�
v4 � 2138q

1215
v5 þ

�
8q2

135
� 104 eulerlog2ðv2Þ

63
þ 61271294666

10343908575

�
v6

þ
�
7696 eulerlog2ðv2Þ

8505
þ 1593740014406

3072140846775

�
v8; (D2b)
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�H
43 ¼ 1� 67

88
v2 � 5q

6
v3 þ

�
5q2

8
� 6934313

7047040

�
v4 � 13847q

9240
v5 þ

�
1597804689571

195343948800
� 1571 eulerlog3ðv2Þ

770

�
v6; (D2c)

�H
41 ¼ 1� 169

264
v2 � 5q

6
v3 þ

�
5q2

8
� 2204777

7047040

�
v4 þ

�
151q

27720
� 5q3

6

�
v5 þ

�
1299523316251

1758095539200
� 1571 eulerlog1ðv2Þ

6930

�
v6;

(D2d)

�H
54¼1�1998

2275
v2�4q

5
v3þ

�
3q2

5
�16699324

15526875

�
v4; (D2e)

�H
52¼1�1728

2275
v2�4q

5
v3þ

�
3q2

5
� 6936754

15526875

�
v4; (D2f)

�H
65 ¼ 1� 137

144
v2 � 7q

9
v3;

�H
63 ¼ 1� 121

144
v2 � 7q

9
v3;

�H
61 ¼ 1� 113

144
v2 � 7q

9
v3;

(D2g)

�H
76 ¼ 1� 834

833
v2; �H

74 ¼ 1� 6736

7497
v2;

�H
72 ¼ 1� 6274

7497
v2:

(D2h)

APPENDIX E: EXPRESSIONS OF THE �‘m’S
MODES FOR 4 < ‘ � 7

�55 ¼ 31

42
v3; �53 ¼ 31

70
v3; �51 ¼ 31

210
v3; (E1a)

�54 ¼ 12q

5
v4 þ 8

15
v3; �52 ¼ 6q

5
v4 þ 4

15
v3; (E1b)

�66 ¼ 43

70
v3; �64 ¼ 43

105
v3; �62 ¼ 43

210
v3; (E1c)

�65 ¼ 10

21
v3; �63 ¼ 2

7
v3; �61 ¼ 2

21
v3; (E1d)

�77 ¼ 19

36
v3; �75 ¼ 95

252
v3; (E1e)

�73 ¼ 19

84
v3; �71 ¼ 19

252
v3: (E1f)

APPENDIX F: MULTIPOLE MOMENTS FOR
GENERIC ‘ AND m

In Refs. [6,22], the authors have computed the even- and
odd-parity 1PN multipoles for generic ‘ and m. Those
calculations were crucial in understanding the ‘ scaling
of the f‘m’s, suggesting the introduction of the �‘m’s
functions.
In this Appendix, we calculate the 0.5PN spin terms in

the odd-parity multipoles ĥð1Þ‘m and the 1.5PN spin terms in

the even-parity multipoles ĥð0Þ‘m. Just for completeness, we

also reproduce the 1PN nonspinning terms in the odd-

parity multipoles ĥð1Þ‘m, already computed in Ref. [6].

Henceforth, we make use of the standard multi-index
notation for tensors of arbitrary rank, which are displayed
as

TL � Ti1i2...i‘ ; (F1)

where each index i1 to i‘ runs from 1 to 3. We also employ
the notation ThLi ¼ STFL½TL� to denote the symmetric

trace-free projection over the indices i1 to i‘. For example,
we have

Thiji ¼ 1

2
ðTij þ TjiÞ � 1

3
�ij�

pqTpq: (F2)

Repeated multi-indices imply summation over all corre-
sponding indices, e.g.

TLS
L � Ti1i2...i‘S

i1i2...i‘ : (F3)

Reference [22] computed the expression of the full wave-
form as an expansion in �2 spin-weighted spherical har-
monics through the coefficients U‘m and V‘m as follows

hlm ¼ 1ffiffiffi
2

p
R
ðU‘m � iV‘mÞ; (F4)

where

U‘m ¼ 16�

ð2‘þ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 1Þð‘þ 2Þ
2‘ð‘� 1Þ

s
ULY‘m�

L ; (F5a)

V‘m ¼ � 32�‘

ð2‘þ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þ

2‘ð‘þ 1Þð‘� 1Þ

s
VLY‘m�

L : (F5b)
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The radiative moments UL and VL are the lth time deriva-
tives of the multipole moments IL and JL, respectively, as
we neglect tail contributions for our purposes here. In
terms of the vector r̂ defined above Eqs. (F11), the quantity
Y‘m

L is defined as follows

Y‘m ¼ Y‘m
L r̂L: (F6)

1. Odd-parity 0.5PN spin multipoles

The odd-parity contributions to the waveforms are pro-
vided by the expansion coefficients V‘m, which in turn
are determined by the current-multipole moments JL. In
the circular orbital case, the nonspinning 1PN current-
multipole moment JL is given by [6]

JNSL ¼ ð�Mr‘þ1�Þ½K1L̂
hi‘
N nL�1i þ v2K2L̂

hi‘
N nL�3	i‘�2i‘�1i�;

(F7)

where � is the orbital frequency, v ¼ ðM�Þ1=3 and

n ¼ r

r
; L̂N ¼ r� _r

jr� _rj ; � ¼ L̂N � n; (F8)

and where

K1 ¼ c‘þ1 þ v2

�
� �

2‘
þ 2‘þ 3

2‘
b‘þ1 þ 2�

‘þ 1

‘
b‘�1

þ 1

2

�
‘þ 1

‘
� ð‘� 1Þð‘þ 4Þ

ð‘þ 2Þð2‘þ 3Þ
�
c‘þ3

�
; (F9a)

K2 ¼ ð‘� 1Þð‘� 2Þð‘þ 4Þ
2ð‘þ 2Þð2‘þ 3Þ c‘þ3; (F9b)

b‘ ¼ X‘
2 þ ð�Þ‘X‘

1 ; (F9c)

c‘ ¼ X‘�1
2 þ ð�Þ‘X‘�1

1 ; (F9d)

where c‘ coincides with Eq. (5), and X1;2 ¼ m1;2=M.

For circular orbits, we have

n ¼ ðcos�orb; sin�orb; 0Þ; (F10a)

� ¼ ð� sin�orb; cos�orb; 0Þ; (F10b)

L̂ N ¼ ð0; 0; 1Þ: (F10c)

In terms of the vector r̂ ¼ ðsin� cos�; sin� sin�; cos�Þ,
the following expressions will prove very helpful below:

n ¼ ½r̂��¼�=2;�¼�orb
; (F11a)

� ¼ ½@�r̂��¼�=2;�¼�orb
; (F11b)

L̂ N ¼ �½@�r̂��¼�=2;�¼�orb
: (F11c)

The 0.5PN-order contribution to JL that is linear in the
spins is given by Ref. [41]

JSL ¼ ð‘þ 1Þ
2

STFL

�X
A

Si‘Ay
L�1
A

�
: (F12)

To rewrite Eq. (F12) in the center-of-mass frame, we use
y1 ¼ X2r and y2 ¼ �X1r, which leads to the following

JSL ¼ ð‘þ 1Þ
2

½ðX‘�1
2 S<i‘

1 þ ð�Þ‘�1X‘�1
1 Shi‘2 ÞxL�1i�

� �M2r‘�1 ð‘þ 1Þ
2

�̂
hi‘
ð‘Þn

L�1i; (F13)

where

�̂ ð‘Þ ¼ X1X
‘�2
2 �1 þ ð�Þ‘�1X2X

‘�2
1 �2; (F14)

and we define �1 ¼ S1=m
2
1 and �2 ¼ S2=m

2
2. For non-

precessing binaries, we have �̂ð‘Þ ¼ �̂ð‘ÞL̂N , and hence

we can write down the total 1PN-order current-multipole
moment as

JL ¼ ð�Mr‘þ1�ÞSTFL
�
L̂i‘
N

�
K1n

L�1 þ v2K2n
L�3	i‘�2i‘�1

þ v
ð‘þ 1Þ

2
�̂ð‘ÞnL�1

��
: (F15)

Next, in order to compute the radiative coefficient V‘m,
we first need J‘m ¼ JLY‘m

L . It is therefore useful to rewrite
all vectors appearing in JL in terms of r̂ as follows:

JL ¼ ð�Mr‘þ1�ÞSTFL
�
@�n

i‘

�
K1n

L�1

þv2K2n
L�3@�n

i‘�2@�n
i‘�1 þv

ð‘þ 1Þ
2

�̂ð‘ÞnL�1

��
orb
;

(F16)

where the ‘‘orb’’ subscript is shorthand for evaluating the
bracket at � ¼ �=2, � ¼ �orb. The purpose of this rewrit-
ing is to allow us to eventually make use of Eq. (F6),
together with the following identities

@�n
hLi ¼ ‘ð@�nhi‘ÞnL�1i (F17a)

@2�n
hL�1i ¼ ð‘� 1Þfð‘� 2ÞnhL�3@�n

i‘�2@�n
i‘�1i

� ½nhi‘�1 � ðn 	 L̂NÞL̂hi‘�1

N �nL�2ig: (F17b)

By substituting Eqs. (F17) into Eq. (F16), the current-
multipole moments become
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JL¼ð�Mr‘þ1�ÞSTFL
�
K1

‘
@�n

Lþv2 K2

‘ð‘�2Þ@�n
L

þv2 K2

‘ð‘�1Þð‘�2Þ@�@
2
�n

Lþv2 ð‘þ1Þ
2‘

�̂ð‘Þ@�nL
�
orb
:

(F18)

Contracting Eq. (F18) with Y‘m�
L then yields

J‘m ¼ c‘þ1

‘
ð�Mr‘þ1�Þ½@�Y�

‘mð�;�orbÞ��¼�=2

�
�
1þ v

ð‘þ 1Þ
2c‘þ1

�̂ð‘Þ � v2

�
�

2‘
� 2‘þ 3

2‘

b‘þ1

c‘þ1

� 2�
‘þ 1

‘

b‘�1

c‘þ1

þ 1

2

�
m2ð‘þ 4Þ

ð‘þ 2Þð2‘þ 3Þ
� ‘þ 1

‘

�
c‘þ3

c‘þ1

��
: (F19)

From the parity properties of associated Legendre poly-
nomials, J‘m is nonvanishing only if ‘þm is odd. The next

step consists of converting r‘þ1 into an expansion in v by
means of Kepler’s third law,

r‘þ1 ¼ ðMv�2Þ‘þ1

�
1� v2ð‘þ 1Þ

�
1� �

3

��
; (F20)

and substituting it into Eq. (F19) yields

J‘m ¼ c‘þ1

‘
ðMv�2Þ‘þ1�v3½@�Y�

‘mð�;�orbÞ��¼�=2

�
�
1þ v

ð‘þ 1Þ
2c‘þ1

�̂ð‘Þ � v2

�
ð‘þ 1Þ

�
1� �

3

�

þ �

2‘
� 2‘þ 3

2‘

b‘þ1

c‘þ1

� 2�
‘þ 1

‘

b‘�1

c‘þ1

þ 1

2

�
m2ð‘þ 4Þ

ð‘þ 2Þð2‘þ 3Þ �
‘þ 1

‘

�
c‘þ3

c‘þ1

��
: (F21)

Taking ‘ time derivatives and multiplying by the appro-
priate normalization factor finally gives

V‘m ¼ � 32�‘

ð2‘þ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þ

2‘ð‘þ 1Þð‘� 1Þ

s
�Mð�imÞ‘vð‘þ1Þ c‘þ1

‘
½@�Y�

‘mð�;�orbÞ��¼�=2

�
1þ v

ð‘þ 1Þ
2c‘þ1

�̂ð‘Þ

� v2

�
ð‘þ 1Þ

�
1� �

3

�
þ �

2‘
� 2‘þ 3

2‘

b‘þ1

c‘þ1

� 2�
‘þ 1

‘

b‘�1

c‘þ1

þ 1

2

�
m2ð‘þ 4Þ

ð‘þ 2Þð2‘þ 3Þ �
‘þ 1

‘

�
c‘þ3

c‘þ1

��
; (F22)

The overall factor in front of the bracket in Eq. (F22)
coincides with the Newtonian contribution as given by
Eq. (3), using Eqs. (F4) and (4b). Hence by definition
[see Eq. (2)], we find

ĥð1Þ‘m ¼ 1þ v
ð‘þ 1Þ
2c‘þ1

�̂ð‘Þ � v2

�
ð‘þ 1Þ

�
1� �

3

�

þ �

2‘
� 2‘þ 3

2‘

b‘þ1

c‘þ1

� 2�
‘þ 1

‘

b‘�1

c‘þ1

þ 1

2

�
m2ð‘þ 4Þ

ð‘þ 2Þð2‘þ 3Þ �
‘þ 1

‘

�
c‘þ3

c‘þ1

�
: (F23)

Again, the 1PN-order terms in the above equation were
computed in Appendix A of Ref. [6].

Quite interestingly, we find that in the nonspinning test-
particle limit (m2 � m1, �1 ¼ j�1j ¼ am1 � q, �2 ¼ 0),
only the odd-parity mode ‘ ¼ 2 contains the 0.5PN spin
term, for all the other odd-parity modes the 0.5PN spin
terms vanish. In fact, using Eqs. (F9d) and (F14), we find
that if we set �2 ¼ 0, the 0.5PN spin terms reduces to

ĥ
ð1Þ;0:5PN
‘m ¼ � ð‘þ 1Þm2

1�1

2½m1m2 þ ð�1Þ‘m‘
1m

2�‘
2 �v: (F24)

If ‘ ¼ 2, then ĥð1Þ;0:5PN21 ¼ �3=2vq when � ! 0, while if

‘ > 2, we have ĥð1Þ;0:5PN‘m / �qv and the latter goes to zero

as � ! 0. The fact that the odd-parity modes with ‘ > 2

vanish is consistent with the �2 spin-weighted spherical
C‘m’s computed in the main part of this paper. However, it
is worth noticing that the odd-parity �2 spin-weighted
spheroidal Z‘m’s do contain 0.5PN spin terms.
Moreover, for the case of finite symmetric mass-ratio �,

we find that the 0.5PN spin terms in Eq. (F23) coincide
with what was derived in PN theory [22]. The ‘ depen-
dence of the 0.5PN spin term in Eq. (F23) varies depending
on the binary mass ratio and the spin magnitudes. For
example, we find that for maximally spinning and aligned
black holes (�1 ¼ �2 ¼ 1) if the masses are equal, the
0.5PN spin term in Eq. (F23) scales as ‘ but if the masses
are unequal, it generally does not scale as ‘.
Finally, we derive the corresponding generic 0.5PN spin

contributions to fð1Þ‘m and �ð1Þ
‘m. Since we know that there is

no quadratic spin contribution at 1PN order in fð1Þ‘m, we need

to introduce a 1PN quadratic spin term in �ð1Þ
‘m. Thus, the

spin portions read

fð1Þ;0:5PN‘m ¼ ĥð1Þ;0:5PN‘m ; �ð1Þ;0:5PN
‘m ¼ 1

‘ ĥ
ð1Þ;0:5PN
‘m ;

�ð1Þ;1PN
‘m ¼ � ‘� 1

2‘2
ðĥð1Þ;0:5PN‘m Þ2: (F25)

2. Even-parity 1.5PN spin multipoles

The 1.5PN spin contributions to the even-parity wave-
form come from two distinct sources. The first is the 1.5PN
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spin mass multipole moment ISL, given by (in the center-of-
mass frame, for nonprecessing, circular orbits)

ISL ¼M2�2 2‘

‘þ 1
r‘ ~�ðlÞSTFL

�
‘�nLþ ‘� 1

r2�
nL�2vi‘�1vi‘

�
;

(F26)

where

~� ð‘Þ ¼ X‘�2
2 �1 þ ð�Þ‘X‘�2

1 �2: (F27)

Making use of the following identity which is valid for
circular orbits

STFL

�ð‘� 1Þ
r2

nL�2vi‘�1vi‘

�
¼ STFL

�
1

‘

d2

dt2
nL þ�2nL

�
;

(F28)

we can rewrite ISL as follows

ISL ¼ M2�2 2‘

‘þ 1
r‘ ~�ðlÞSTFL

�
ð‘þ 1Þ�nL þ 1

‘�

d2

dt2
nL
�
:

(F29)

The second contribution comes from the Newtonian mass
multipole moments, in two different ways. First, since the
coordinate transformation that takes us from a generic
frame to the center-of-mass frame involves the spins at
1.5PN order, the Newtonian mass multipole moments ac-
quire a spin contribution when reexpressed in the center-
of-mass frame. Second, when we use Kepler’s law at 1.5PN
order to rewrite the orbital separation r as an expansion in

v ¼ ðM�Þ1=3, spin terms are generated which contribute to
the 1.5PN spinning waveform. In a general frame, the
Newtonian mass multipole moments are given by

INL ¼ STFL½m1y
L
1 þm2y

L
2 �: (F30)

The coordinate transformation to the center-of-mass frame
is given by [42]

y 1 ¼ X2rþ �

M
v��; (F31a)

y 2 ¼ �X1rþ �

M
v��: (F31b)

Therefore, in the center-of-mass frame, the Newtonian
mass multipole moments read

INL ¼ M�c‘r
lnhLi þ �2‘c‘�1r

l�1nhL�1ðv� �Þi‘i: (F32)

For nonprecessing, circular orbits, Eq. (F32) may be re-
written as

INL ¼M�c‘r
lnhLi

�
1þ �

‘c‘�1

c‘
ðX2�2 �X1�1Þv3

�
: (F33)

Adding together both contributions (F29) and (F33),
contracting with Y�

‘m and finally taking ‘ time derivatives

as well as multiplying by the appropriate overall factor, we
arrive at the following expression for the even-parity ra-
diative moment

U‘m ¼ 16�

ð2‘þ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 1Þð‘þ 2Þ
2‘ð‘� 1Þ

s
M�c‘ð�im�Þ‘r‘

� Y�
‘mð�=2; �orbÞ

�
1þ �

‘c‘�1

c‘
ðX2�2 � X1�1Þv3

þ �

c‘

�
2‘

‘þ 1

��
‘þ 1�m2

‘

�
~�ð‘Þv3

�
: (F34)

The overall factor in front of the bracket in Eq. (F34)
coincides with the Newtonian contribution as given by
Eq. (3), using Eqs. (F4) and (4a). Next, we use Kepler’s
third law to replace the orbital separation r by the follow-
ing expansion in v. Again, we do not write the 1PN order
nonspinning contributions explicitly here to keep formulas
short.

r ¼ Mv�2

�
1þ

�
2

3
ðX2

1�1 þ X2
2�2Þ þ �ð�1 þ �2Þ

�
v3

��1
:

(F35)

Substituting (F35) into (F34), we can finally isolate the
1.5PN spin contribution to the even-parity waveform as

ĥð0Þ;1:5PN‘m ¼
�
�‘

�
2

3
ðX2

1�1 þ X2
2�2Þ þ �ð�1 þ �2Þ

�

þ �
‘c‘�1

c‘
ðX2�2 � X1�1Þ

þ �

c‘

�
2‘

‘þ 1

��
‘þ 1�m2

‘

�
~�ð‘Þ

�
v3: (F36)

In the nonspinning test-particle limit, Eq. (F36) simply
reduces to

ĥ
ð0Þ;1:5PN
‘m ! � 2‘

3
qv3; (F37)

thus, it scales as ‘. Finally, we derive the corresponding

generic 1.5PN spin contribution to fð0Þ‘m and �ð0Þ
‘m and they

read

fð0Þ;1:5PN‘m ¼ ĥð0Þ;1:5PN‘m ; �ð0Þ;1:5PN
‘m ¼ 1

‘
fð0Þ;1:5PN‘m : (F38)

Therefore, the generic fð0Þ‘m and �ð0Þ
‘m expressions through

1.5PN are given by the above equation combined with
the 1PN nonspinning result given in Eq. (A15) of
Ref. [6] (note that there is no 1.5PN nonspinning contri-

bution to fð0Þ‘m or �ð0Þ
‘m).
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