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The motion of a Schwarzschild black hole with velocity v0 ¼ �0c through a constant magnetic field B0

in vacuum induces a component of the electric field along the magnetic field, generating a nonzero second

Poincaré electromagnetic invariant �F � F � 0. This will produce (e.g., via radiative effects and vacuum

breakdown) an electric charge density of the order of �ind ¼ B0�0=ð2�eRGÞ, where RG ¼ 2GM=c2 is the

Schwarzschild radius and M is the mass of the black hole; the charge density �ind is similar to

the Goldreich-Julian density. The magnetospheres of moving black holes resemble in many respects

the magnetospheres of rotationally-powered pulsars, with pair formation fronts and outer gaps, where the

sign of the induced charge changes. As a result, the black hole will generate bipolar electromagnetic jets

each consisting of two counter-aligned current flows (four current flows total), each carrying an electric

current of the order I � eB0RG�0. The electromagnetic power of the jets is L � ðGMÞ2B2
0�

2
0=c

3; for a

particular case of merging black holes the resulting Poynting power is L � ðGMÞ3B2
0=ðc5RÞ, where R is

the radius of the orbit. In addition, in limited regions near the horizon the first electromagnetic invariant

changes sign, so that the induced electric field becomes larger than the magnetic field, E> B. As a result,

there will be local dissipation of the magnetic field close to the horizon, within a region with the radial

extent �R � RG�0. The total energy loss from a system of merging black holes is a sum of two

components with similar powers, one due to the rotation of space-time within the orbit, driven by the

nonzero angular momentum in the system, and the other due to the linear motion of the black holes

through the magnetic field. Since the resulting electrodynamics is in many respects similar to pulsars,

merging black holes may generate coherent radio and high energy emission beamed approximately along

the orbital normal. In addition, merging black holes may produce observable wind-driven cavities.

DOI: 10.1103/PhysRevD.83.064001 PACS numbers: 04.30.Tv, 95.85.Sz

I. INTRODUCTION

Observations of an electromagnetic signal accompany-
ing black hole merger are most desirable, as they will
provide crucial information on the location and the physi-
cal properties of the event. Two types of electromagnetic
signal can be expected from merging black holes. First,
merging black holes induce perturbations in the surround-
ing gas [1–4]. The resulting electromagnetic signal is then
subject to great uncertainty and naturally depends on the
complicated nonlinear fluid behavior of the system. One of
the problems is that at late stages of the merger there
should be little gas inside the orbit since the time scale
for shrinkage of the binary orbit by gravitational wave
radiation becomes shorter than the time scale for mass
inflow due to viscose stresses in the disk [3]. It is then
hard to excite transient dissipative processes in a faraway
accretion disk.

Alternatively, external gas can support electric currents
that create large-scale magnetic fields. Motion of black
holes in this externally supplied magnetic field can
then lead to an electromagnetic extraction of energy.
Qualitatively, there are two distinct possibilities for the
electromagnetic extraction of energy from spiraling black
holes. First, the system of two orbiting black holes
possesses nonzero angular momentum, which induces ro-
tation of space-time. Rotating space-time can generate

electromagnetic outflows, in a manner similar to the clas-
sical Faraday disk. This is the physics behind the Blandford
and Znajek [5] process of extracting the rotational power of
a black hole. Below we refer to this mechanism as the
Faraday disk mechanism. This mechanism has been pre-
viously considered in Ref. [6]. For a given magnetic field,
the resulting power can be estimated using the Faraday
disk scaling, LEM;F � R2B2

0cð�R=cÞ2, where R is the orbi-

tal radius and � is the typical angular velocity of the
rotation of the space-time within the black holes’ orbit,

�� ðGMÞ3=2=ðc2R5=2Þ. The resulting Poynting flux is then

LEM;F � G3M3

c5R
B2
0: (1)

In a separate, physically distinct process, which
we consider in this paper, the linear motion of a
Schwarzschild black hole will generate the electric poten-
tial drop across the black hole, so that a black hole will
effectively operate as a unipolar inductor, in a way some-
what similar to the planet Io moving in Jupiter’s magnetic
field [7]. Classically, the motion of a conductor though the
magnetic field generates in the frame of a conductor an
electric field E ¼ �v� B. This induced electric field will
generally have a normal component to the surface of the
conductor. As a result, surface charges will be generated;
they will produce their own electric field, now with
a component parallel to the initial magnetic field. This
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electric field drives currents along magnetic field lines;
dissipation of these currents is responsible for nonthermal
radio through X-ray emission of the Jupiter magneto-
sphere. An important difference of the unipolar induction
mechanism considered in the present paper from the clas-
sical unipolar inductor is that in the case of a black hole no
physical charges are needed to produce Ek. The parallel

electric field appears in complete vacuum due to the cur-
vature of space.

A qualitative estimate of the resulting Poynting power
may be obtained from the following reasoning. For a
conductor of length l moving with velocity v0 ¼ �0c
through magnetic field B0 the resulting potential difference
��� �0LB. If the resulting outflow is relativistic, the
electromagnetic power can be estimated as LEM �
��2c ¼ �2

0B
2
0l

2c (see also [8]). In the case of orbiting

black hole, estimating l� RG (the Schwarzschild radius)

and�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RG=R

p
, the expected power of unipolar inductor

turns out to be the same as that of the Faraday disk
mechanism, Eq. (1).

Thus, the estimates of the electromagnetic powers due to
rotation of the space-time and due to linear motion of a
black hole with Keplerian velocity turn out to be similar,
given by Eq. (1); we view this as a coincidence. Though in
both cases the power eventually comes from the inductive
electric field, the underlying physics is different in the two
cases. One mechanism requires nonzero angular momen-
tum, while the other does not. A total energy loss from a
system of merging black holes is a sum of two components
with similar powers, one due to the rotation of space-time
within the orbit, another due to linear motion of the black
holes through magnetic field.

Previously, in Refs. [9–11] a number of force-free simu-
lations of black hole magnetospheres were performed. In
the case of the orbiting black holes the authors mostly
studied the electromagnetic power due to linear motion
of black hole, and not due to rotation of the space-time
within the orbit. The present paper offers explanations and
parameter scalings of these numerical simulation.

II. STATIC ELECTROMAGNETIC FIELDS
IN SCHWARZSCHILD METRIC

Consider vacuum stationary homogeneous electromag-
netic fields in Schwarzschild metric. Though the structure
of a constant electromagnetic fields in Schwarzschild met-
ric is well known [12–15], here we briefly rederive it here
for completeness. Adopting a Schwarzschild metric

ds2 ¼ ��2dt2 þ 1

�2
dr2 þ r2ðd�2 þ sin2�d�2Þ (2)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r

p
, the relevant vacuum Maxwell

equations

@�ð ffiffiffiffiffiffiffi�g
p

F��Þ ¼ 0; (3)

(F�� ¼ A½�;�� is Maxwell tensor) for the nonvanishing

components of the vector potential A0ðr; �0Þ and A�ðr; �Þ
(here �0 and � are angles with respect to the axes aligned
with the electric and magnetic field at infinity) give

�2@rðr2@rA0Þ þ 1

sin�0
@�0 ðsin�0@�0A0Þ ¼ 0

r2@r�
2@rA� þ sin�@�

�
1

sin�
@�A�

�
¼ 0:

(4)

(In vacuum, the same relations hold for the dual Maxwell
tensor �F��; in that case the equations for A0 and A�

switch.) The potentials corresponding to constant fields at
infinity are

A0 ¼ E0ðr� 2MÞ cos�0 A� ¼ B0

2
r2sin2�: (5)

The electromagnetic fields

E ¼ ð1=�ÞrA0 ¼ E0ðcos�0er � � sin�0e�Þ
B ¼ r� A�e� ¼ B0ðcos�er � � sin�e�Þ

(6)

where r is a covariant derivative, with a corresponding
unit radial vector êr ¼ �@r, see Fig. 1. The structure of the
electric and magnetic fields is the same, as follows from the
duality transformation in vacuum.
The above relations can be obtained in a more conven-

tional way by using the alternative 3þ 1 formulation of the
general relativity [16], in which case the Maxwell equa-
tions in the more general Kerr metric take the form

r � E ¼ 4��

r � B ¼ 0

r� ð�BÞ ¼ 4��jþDtE

r� ð�EÞ ¼ �DtB

(7)

where Dt ¼ @t �L ~� is the total time derivative, including

Lie derivative along the velocity of the zero angular
momentum observers (ZAMOs). For Schwarzschild metric
~� ¼ 0 and in the stationary case Dt � 0. Electromagnetic
fields in Eq. (7) are those measured by a stationary
local observer in terms of local time. The fields �E and
�B are those measured by a local observer in terms of
Schwarzschild time t.
Since we expect that the nonzero charge will eventually

be created, we give here the complete Laplace equation for
the electric potential A0 in presence of nonzero charge
density

r 1

�
rA0¼4��

1

r2
@rðr2@rA0Þþ 1

�2rsin�0
@�ðsin�@�A0Þ

þ 1

�2r2sin2�
@2�A0¼4�

�

�
(8)

cf. [17], Eq. 10.
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The shape of the field lines (6) is given by

sin� ¼ 2e�2ð1��Þ 1� �

1þ �

r?;0

M
(9)

where r?;0 is the radial cylindrical distance from the axis of

a given field line at infinity. The last field line that intersects
the black hole at � ¼ �=2 has initial r?;0 ¼ e2M=2 and is

given by sin� ¼ 2 e2�

ð1þ�Þ
M
r . Note, that though the surfaces

of constant magnetic flux are cylinders r sin� ¼ constant
(corresponding to A� ¼ constant), on the horizon the mag-

netic field in Schwarzschild coordinates becomes radial.
This is naturally impossible at the point r ¼ 2M, � ¼ �=2,
but at that point the magnetic field is zero. This seeming
inconsistency can be resolved in terms of embedding dia-
grams [13].

By construction fields (6) correspond to r �E ¼ 0, so
any local observer would measures zero charge density. On
the other hand, judging by the shape of electric field lines
in coordinates r� �, the observer at infinity will infer a
dipolarlike charge distribution

�eff ¼ rnc �E ¼ 2ð1� �Þ cos�
0

r
E0: (10)

Here rnc denotes the noncovariant differentiation with
respect to coordinates r� �. The effective charge is con-
centrated near the black hole so at large distances the black
hole effectively has a surface charge

	eff ¼ 1

4�

Z 1

2M
�effdr ¼ lnðe=2Þ

�
E0 cos�

0: (11)

We stress that there are no physical charges present: the
shape of electric field lines in the chosen metric is modified
by gravity, not electric charges. Also, the shape of field
lines and the value of the effective surface density depends
on the choice of coordinates and a given set of observers.

III. BLACK HOLE IN ELECTROMAGNETIC
FIELDS ORTHOGONAL AT INFINITY

Let us next assume that in a particular reference frame
at large distances from the black hole the magnetic field
is along �ez direction, while in this reference frame
the electric field is zero. A black hole is moving orthogo-
nally to the magnetic field with velocity �0 ¼ v0=c along
y direction. In the frame of the black hole, at large dis-
tances r 	 M, there is then a static electric field E0 ¼
�v� B0 ¼ �0B0ex, E0 ¼ �0B0. (In this section we
define B0 as the value of magnetic field in the frame where
the black hole is at rest; it is related to the value in the
frame where the electric field is vanishing by a simple
Lorentz transformation). Thus, in the frame of the hole
the electric and magnetic fields are given by Eq. (6),
where �0 is a polar angle with respect to the x axis,
cos�0 ¼ sin� cos�. The electromagnetic invariants are

B2 � E2 ¼ B2
0ð1� �2

0Þ þ 2ð�2
0ðcos2�cos2�þ sin2�Þ

� sin2�ÞB
2
0M

r

E � B � �DetjF��jffiffiffiffiffiffiffi�g
p ¼ � cos� sin2��0B

2
0

M

r
(12)

while the parallel electric field is

Ek ¼ � cos� sin2�
M

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2sin2�M=r

p E0: (13)

Equations (12) highlight two important points. The sec-
ond Poincaré electromagnetic invariant is generally non-
zero,E � B 6�0. The first Poincaré invariant changes sign on
the surface

r ¼ 2Mðsin2�� �2
0ðcos2�cos2�� sin2�ÞÞ
1� �2

0

: (14)

This occurs close to the horizon around points f� �
�=2; � � 0; �g within a region �r

2M � �2
0=ð1� �2

0Þ, see

Fig. 2.
We expect that in astrophysical environment Ek will be

decreased by pair creation (see Sec. IV). Still, the perpen-
dicular component of the electric field E? becomes larger
than the magnetic field at points

�
1� 2Msin2�

r

�
2 ¼ �2

0�

�
1� 2Msin2�sin2�

r

�
: (15)

The region bounded by this surface has a shape similar to
the one where E ¼ B, Eq. (14), see Fig. 3.

FIG. 1 (color online). Shape of magnetic (solid lines aligning
with z axis) and electric (dashed lines, aligning with x axis) field
lines in the x� z plane for the vacuum Schwarzschild black
hole. The red curve (in the online color image) starting at the
point � ¼ �=2, r ¼ 2M is the shape of the outer gap, where the
sign of the induced charges changes.
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Since we expect that a plasma will be generated due to
vacuum breakdown, we can define the plasma drift velocity
(assuming �d < 1, see below)

~�d ¼ E�B=B2 ¼ �

1� 2Msin2�=r
ð� sin� sin�er

þ cos� sin�e� þ cos�e�Þ�0: (16)

It is directed along the y axis at large distances, but
becomes complicated near the hole. Most importantly,
the value of v is not bound. Close to the points � ¼ �=2,

� ¼ 0, �, the velocity diverges as �d � �0=�. This is
related to the previously mentioned fact that the second
electromagnetic invariant changes sign close to these
points.

IV. MAGNETOSPHERES OF MOVING
SCHWARZSCHILD BLACK HOLES

A. Induced charge density

In the previous section we showed that the motion of a
Schwarzschild black hole through magnetic field in vac-
uum generates nonzero second Poincaré electromagnetic
invariant (parallel electric field) and regions where the first
Poincaré changes sign, E> B. In vacuum this would have
been the end of the story, so to speak. In reality, astrophys-
ical plasmas tolerate neither a large parallel electric field,
nor regions of E> B: any stray particle will be accelerated
by the electric field and will produce an electron-positron
pair via various radiative effects. The resulting pair plasma
will try to screen the initial parallel electric field, by
producing a charge density required to have Ek ¼ 0.
Thus, we expect that around astrophysical black holes

moving in an external magnetic field a nonzero charge
density will appear, that satisfies the equation (8) with
induced electric field

Eind ¼ Ekb̂ (17)

where

b̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2M=rÞsin2�p ð� cos�er þ � sin�e�Þ (18)

is a unit vector along magnetic field. The corresponding
charge density, see Fig. 4

FIG. 3 (color online). 3D view of the surfaces bounding the regions where E> B (left panel) and E? >B (right panel) for �0 ¼ 0:5.
The central sphere of radius r ¼ 2M is the Schwarzschild radius. False colors (in the online version) in this figure and Fig. 4 are chosen
for presentation purpose only.

FIG. 2 (color online). 3D view of the black hole magneto-
sphere. The magnetic field (thick solid lines together with
magnetic surfaces) is along the z axis at large distance; the black
hole is moving along the y direction. The central sphere of radius
r ¼ 2M is the Schwarzschild radius. Two limited regions near
the equatorial plane approximately aligned with the x axis are
bounded by the surfaces E ¼ B. On the nearly conical surfaces
originating at the magnetic equator the induced charge density is
zero. This particular plot is for �0 ¼ 1=2.
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�ind ¼ 1

4�
r �E

¼ �

�

ð1þ ðM=r� 3=2Þsin2�Þ
ð1� ð2M=rÞsin2�Þ2 cos� sin�

ME0

r2
: (19)

The typical value of charge density �0 is

�0 ¼ �0B0

4�M
¼ B0ðv0=RGÞ

2�c
: (20)

This reminds the Goldreich-Julian charge density [18] if
we substitute v0=RG ! �eff .

At large distance from the black hole the charge density
is

�ind � ð1þ 3 cos2�Þ cos� sin�M2

r2
�0: (21)

On the magnetic equator � ¼ �=2 the charge density is

�ind;�¼�=2 ¼ 2
�0

�

M2

r2
cos�: (22)

It diverges on the horizon. The charge density close to the
horizon �ind;h is

�ind ¼ ��0

cos� sin�

cos2�
: (23)

It diverges near the equator.
The point r ¼ 2M, � ¼ �=2 is a special one, as can be

seen from the fact that the limit of Eq. (23) for � ! �=2
does not coincide with the limit r ! 2M of Eq. (22). This
can be traced to the fact that on the one hand, the lines of
force must cross the horizon orthogonally [e.g., [13]], yet
on the other hand they must lay on cylinders r sin� ¼
constant (see Eq. (6)). These two conditions are inconsis-
tent at the point � ¼ �=2, r ! 2M. Recall also that the
magnetic field is zero at this point, Eq. (6), while experi-
encing a kink, clearly seen in the embedding diagram [13].

B. Plasma response

Similarly to the case of rotating neutron stars, two
alternative possibilities exist with respect to the dynamical
response of the system to the required charge density. First,
the overall plasma distribution can provide a static distri-
bution of the required charge density and the system will
overall be quiet, without strong electromagnetic outflows.
In the case of pulsars, this approach is advocated in
Ref. [19]. This scenario is supported by the fact that direct
PIC simulations of the pulsar magnetospheres so far failed
to produced an outflow: the system indeed just relaxes to a
nearly steady-state configuration [20]. It is expected that
secular instabilities of the resulting charged configurations
[e.g., diocotron instability, [21]] may eventually lead to the
formation of the jets (Spitkovsky, priv. comm.).
Alternatively (and this viewpoint is supported by the

majority of pulsar theorists), static charge configuration
cannot be established on magnetic field lines connecting to
infinity, resulting in the formation of the wind [18].
Fluid simulation of pulsar magnetospheres supports this
paradigm [22]. Since in our case all magnetic field lines
are connected to infinity, large parallel electric fields
will lead to plasma outflow, which would qualitatively
resemble plasma outflow on the open lines of pulsar
magnetospheres.
We accept the paradigm that in the case of black holes,

similar to the pulsar magnetospheres, parallel electric
fields will lead to vacuum breakdown, generation of the
primary beam and a dense secondary plasma. In this sec-
tion we investigate the resulting electromagnetic structure
of the black hole magnetospheres.

C. Pair formation front

A black hole moving with velocity v0 ¼ �0c through
magnetic field B0 creates a potential drop of the order
�� � �0rGB0. For example, for a black hole of mass

FIG. 4 (color online). Surfaces of constant charge density �ind ¼ þjConstj (left panel) and �ind ¼ �jConstj (right panel) for
Const ¼ 2� 10�2�0 and �0 ¼ 0:5.
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M ¼ 106M
m6 moving on the orbit 
 	 1 times larger
than the Schwarzschild radius, Rorb ¼ 
rG, in a
given magnetic field, the resulting potential is � �
5� 1013 Vð B

1 GÞm6

�1=2. This will result in a particle en-

ergy, which is typically much larger than the one required
to break the vacuum. For example, in pulsar magneto-
spheres, the pulsar death line corresponds approximately
to � � 109 V [e.g., [23,24]]. Though radiative processes
and the photon fields around pulsars and around black
holes can be substantially different, in the case of black
holes the available potential is many orders of magnitude
larger than the one corresponding to the pulsar death line.
This should ensure the vacuum breakdown and the forma-
tion of the secondary pair plasma in black hole
magnetospheres.

For a given parallel electric field, Eq. (12) and a given
shape of field lines, Eq. (9), we can calculate the total
potential drop along a field line �� ¼ R

Ekds, where ds
is taken along a given field line. For magnetic field lines
that intersect the black hole horizon (those that have r?;0 <
e2M=2) the lower limit of integration is on the horizon,
while for those field lines that miss the hole the lower limit
of integration is at magnetic equator. After a particle gains
sufficient energy e��crit to break the vacuum via radiative
effects, a dense flow of the secondary particles will screen
the resulting parallel electric field. We can calculate the
shape of this so-called pair formation front (equipotential
surface) by requiring

R
Ekds ¼ e��crit, see Fig. 5.

Near the central field line the pair formation front is
located at large distances from the black hole since close to

the axis the electric field is small, Ek � 2E0 cos�
Mr?
r2

,

where r? is the distance from the axis. To find the shape
of a pair formation at large cylindrical distances, we note

that the magnetic field is nearly straight, while the parallel
electric field becomes Ek � sin2� cos�ðME0=rÞ. A fixed

potential drop is then achieved on surfaces satisfying

sin�PPF ¼ e��crit

2ME0 cos�
: (24)

Formally, the pair formation front extends to infinity.

D. Large-scale jets: quadruple current flow

Accepting the paradigm that the plasma will be stream-
ing along magnetic field lines nearly with the speed of
light, the charge density (19) will generate a current flow in
the black hole magnetosphere. At large distances the sign
of parallel electric field and of the charge density depends
on the quantity sin� cos�, Eqs. (12) and (19). Thus, two
counter-aligned currents propagating along z axis will be
generated (four total separate current), separated the y� z
plane, Fig. 6.
Each quadrant of space carries a total current

I � r2
Z �=2

��=2
d�

Z �=2

0
sin�d�� ¼ �

4
M2�0 ¼ GM�0B0

16
:

(25)

This current will produce toroidal magnetic field (for cy-
lindrical radii M � r? � z)

B� � �0

Mr2?
3�z3

cos�B0 � B0: (26)

At a given cross section z ¼ constant, the toroidal mag-
netic field will roughly correspond to two equal counter-
aligned current flows.

0 1 2 3 4
0

1

2

3

4

x M

z
M

FIG. 5 (color online). Structure of the equipotential surface in
the x� z plane (solid line). It is calculated by requiring that the
potential drop along a given field line equals some fiducial
potential

R
Ekds ¼ e��crit. Dashed lines are magnetic field

lines.

4 2 0 2 4

4

2

0

2

4

x M

z
M

FIG. 6 (color online). Value and direction of the parallel
electric field Ek in the plane y ¼ 0. Shadowing intensity is

proportional to the absolute value of the electric field. The
electric field has opposite direction in the four quadrants; as a
result two counteraligned current flows in each�z direction will
be generated.
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The regions of space with two counter-aligned currents
propagating along �z direction (corresponding to semi-
spaces x > 0 and x < 0) will interact with each other. Since
the currents are due to charge-separated flow, the interac-
tion is both electric and magnetic. Oppositely charged
currents have charge density per unit length � � M2�0.
The total electric force per unit length will be Fe �
�2=r ¼ M4�2

0=r. This electrostatic force will be nearly

balanced (but not completely) by the magnetostatic repul-
sive force of two counter-aligned currents I, Eq. (25). (The
repulsive Lorentz force in this case will be smaller than the
attractive Coulomb force by 1� vb=c � 1, where vb is
the velocity of the particles from the primary beam.)

E. Outer gaps

On some field lines the charge density changes along a
field line, Fig. 7. By analogy with pulsar magnetospheres
we will call the surfaces �ind ¼ 0 the ‘‘outer gaps.’’ The
condition �ind ¼ 0 is satisfied on surfaces given by

rog ¼ 2Msin2�

3sin2�� 2
: (27)

The outer gaps touch the horizon at the equator and extend

within polar angles arcsin
ffiffiffiffiffiffiffiffi
2=3

p
< �< �� arcsin

ffiffiffiffiffiffiffiffi
2=3

p
. At

large distances the outer gap becomes a conical surface
with cos2� ¼ �1=3, see Fig. 2. In addition, somemagnetic
field lines have the sign of the induced charge density
changing two times along the field lines (this occurs along
a narrow annular bunch of magnetic field lines that cross
the horizon close to the magnetic equator).

V. ELECTROMAGNETIC SIGNALS

A. Overall power

What electromagnetic signal can be expected from
Schwarzschild black holes acting asunipolar inductors?
In a magnetically dominated medium with the effective
impedance of free space, � 4�=c, the currents (25) will
result in energy loss

LEM;u � M2E2
0 ¼ M2B2

0�
2
0: (28)

The power (28) approximately equals B2
�r

2c with a toroi-

dal magnetic field given by the estimate (26). Equivalently,
it arises due to the initial electric field and the toroidal
magnetic field (26) induced by the currents.
In particular, for a binary BH before merger, we can

estimate the electric field as

E0 � B0

ffiffiffiffiffiffiffiffiffiffiffi
M=R

p
(29)

where R is the radius of the orbit. The resulting power is
then

LEM;u ¼ M3B2
0

R
� ðGMÞ3B2

0

c5R
(30)

where we reinstated the Newton’s constant and the speed of
light. This is an estimate of the power lost by a black hole
moving through a constant magnetic field via unipolar
inductor mechanism. It turns out to be of the same order
as LEM;F, Eq. (1), the power dissipated by the rotation of

space with the black hole’s orbit via the Faraday disk
mechanism [6]. Still, we stress that these powers come
from related but physically separate mechanisms: a
Faraday-type electromagnetic outflow considered in [6]
and the linearly moving unipolar inductor discussed here
(see also [8]). The power (30) is typically much smaller
than the power carried away by gravitational waves at the
later stages of the merger [6].

B. Estimates of the magnetic field

The general expression for the Poynting power (30)
depends on the strength of the magnetic field, which in
the case of merging astrophysical black holes must be
supported by the accretion disk and thus depend both on
the microphysics of the disk dynamo [25] and the dynami-
cal evolution of the binary black hole-accretion disk sys-
tem [2,3].
Since the Poynting power (30) is the same as in the case

of Faraday-type electromagnetic outflow driven by the
rotation of space-time, we can use various estimates of
magnetic field and the merger dynamics discussed in
Ref. [6]. Here we briefly restate the points.
Two stages of disk dynamics may be identified. At early

times the loss of energy via gravitational radiation is slow
enough, so that due to viscous diffusion the inner edge of the
disk will be located close to the orbital radius, Rd � R. At
later times, for Rd 
 
dGM=c2, 
d � 40–100 [3,26], the
binary will decouple from the disk, undergoing a merger,
while the inner edge of the disk remains fixed at Rd.
There are several estimates of magnetic field, which

generally give similar values [6]. For example, magnetic
field can be estimated assuming that a fraction �E of the
Eddington luminosity is carried by the magnetic field,
B2 � �ELEdd=ðcR2

dÞ (where Rd � R before decoupling

and R� 
dRG after decoupling)

2.0 2.5 3.0 3.5 4.0
0.2

0.1

0.0

0.1

0.2

r M

0

FIG. 7 (color online). Charge density along magnetic field
lines starting at � ¼ �=2 at different azimuthal angles � ¼
�ð3=4Þ�, ��, 0, �=2 (top to bottom) at large r). The zero is

at radii satisfying
4M2e4

ffiffiffiffiffiffiffi
r�2M

p
=
ffiffi
r

p ðMr�3
2Þ

ð ffiffiffiffiffiffiffiffiffiffi
r�2M

p þ ffiffi
r

p Þ4 þ 1 ¼ 0, r ¼ 2:260M.
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B ¼ �1=2
E

ðGMÞ1=2 ffiffiffiffiffiffiffi
mp

pffiffiffiffiffiffiffi
	T

p
Rd

� 3� 104 Gm�1=2
6 �1=2

E;�1

�
Rd

RG

��1
:

(31)

Thus, after decoupling the magnetic field remains nearly
constant within the orbit,

Bd � 300 Gm�1=2
6 �1=2

E;�1

�1
d;2: (32)

The total power (30) in this case then becomes

LEM

LEdd

¼ �E

ðGMÞ3
c6RR2

d


 �E

�2
d : (33)

The peak electromagnetic power is typically a fairly
small fraction of the Eddington luminosity LEM �
10�5–10�3LEdd and can realistically be observed at cos-
mological distances only for the merger of very massive
black holes, M � 108M
.

Finally, comparing the power of the Schwarzschild
black hole as the unipolar inductor, Eq. (1) with the
Blandford-Znajek power in a given magnetic field, LBZ �
a2B2M2 (a is the black hole spin parameter), gives

LEM

LBZ

� M

a2R
: (34)

Thus, for fast rotating black holes, a� 1, the power of the
unipolar inductor is subdominant for R 	 M. (In addition,
since during the merger the inner edge of the disk is at
fairly large radii, � 40–100RG, it is expected that the
magnetic field on the black hole is smaller in the case of
a merger).

C. Expected emission

Equations (30)–(33) provide estimates of the total elec-
tromagnetic power produced by a black hole in a form of a
Poynting flux due to a unipolar induction mechanism. A
fraction of this power will be dissipated and converted into
the observed radiation. Next, we discuss possible emission
signatures. By analogy with pulsars, we expect several
types of electromagnetic signal from black holes as uni-
polar inductors, approximately corresponding to magneto-
spheric and plerionic emission. In addition, in the case of
black holes we expect emission from regions with E> B.

1. Magnetospheric-type emission

As we discussed above, the magnetospheres of black
holes moving in a magnetic field resemble in many re-
spects the pulsar magnetospheres. Thus we may expect
somewhat similar radiative signatures, though the details
of the emission mechanisms proposed below must natu-
rally be calculated independently for black hole magneto-
spheres. Rotationally-powered pulsars produce, generally
speaking, two types of radiation: coherent radio emission
and high energy X-ray through 
-ray emission.

As we discussed in Sec. IVE, the sign of the induced
charge density changes as a function of distance from the
hole along a set of field lines, Figs. 2 and 7. One might
expect that this will lead to effects qualitatively similar to
the ones occurring in the so-called outer gaps in pulsar
magnetospheres, where the sign of the Goldreich-Julian
density changes [27]. In particular, recent Fermi observa-
tions of pulsars show that high energy 
-ray emission is
generated at the outer gaps [28]. Similarly, we can expect
that merging black holes will produce high energy emis-
sion, which will be preferentially beamed along the normal
to the orbital plane. One might expect that, similar to
pulsars, the emitted high energy power may reach tens of
percent of the total electromagnetic power, Eq. (30).
The radiation physics of pulsar outer gaps is not well

understood at the moment [29]. A particularly important
difference between the pulsar and black hole magneto-
spheres considered here is that in the case of pulsars the
curvature radiation (in addition to inverse Compton pro-
cesses) is an important ingredient. Magnetic fields in the
magnetospheres of black holes will generally have drasti-
cally different—larger—radii of curvature, that would
make curvature radiation unimportant (this can be easily
demonstrated following the estimates of the inverse curva-
ture emission given below).
Another, in addition to the curvature emission, important

ingredient in the dynamics of the pulsar outer gaps is the
inverse Compton (IC) emission. It will provide the domi-
nant radiative friction effect to the particles accelerated in
the black hole magnetospheres. Let us next estimate its
properties. First, balancing the radiation friction force �

2e4Uph=ðm2

ec
3Þ, where 
 is the Lorentz factor of a particle

and Uph is the radiation field energy-density, with the

acceleration rate by the induced electric field, eE0c, the
terminal Lorentz factor becomes


 ¼ mec
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

e3Uph

s
: (35)

Estimating the electric field as E ¼ �0B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RG=Rorb

p
B0

and relating the radiation field energy-density to Eddington
luminosity, Uph ¼ LEdd=ð4�R2

orbcÞ, we find


 ¼
�
GMBm2

e	T

e3mp

�
1=2


3=4 ¼ 6� 106; B1=2
4 m1=2

6 
3=4

(36)

where, we recall, Rorb ¼ 
rG.
We can then estimate the IC power produce by the

leptons with typical density given by Eq. (20) within a
typical volume � R3

G,

LIC � �0

2�
ffiffiffi



p B2R2
Gc ¼ 1040 ergs�1B2

4m
2
6


�1: (37)
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The typical frequency of IC emission is given by up-
scattering of thermal photons of energy emitted at the inner
edge of the accretions disk with energy

kBT �
�

GM _M

8�	SBR
3

�
1=4

(38)

where 	SB is the Stefan-Boltzmann constant, kB is the
Boltzmann constant and _M is the accretion rate. Scaling
the accretion rate _Mwith Eddington luminosity,�M

_Mc2 ¼
LEdd, where �M � 0:1 is the accretion efficiency, we find

T ¼
�

mpc
5

2�M	TR
3

�
1=4 � 120 eVm�1=4

6 ��1=4
M 
�3=4: (39)

The corresponding IC photon energy is

� � 
2T ¼ Bc5=4G3=4kBM
3=4m2

e

3=4	3=4

Tffiffiffi
24

p
e3m3=4

p
ffiffiffiffiffiffiffi
�M

4
p ffiffiffiffiffiffiffiffiffi

	SB
4
p

¼ 800 GeVB4m
3=4
6 
3=4��1=4

�1 : (40)

Luminosities (37) at energies (40) can be detected in
reasonable time (e.g., 100 hours of observations) by atmos-
pheric Cherenkov telescopes like HESS and VERITAS
only within the few Mpc.

Similarly to the case of pulsars, merging BHs may also
produce high brightness coherent radio emission. The par-
allel electric field (17) will produce a primary beam of
density (20) moving with highly relativistic velocity. Pair
production by the particles from the primary beam will
generate secondary plasma with much higher densities.
Such momentum distribution of particles may result in
various types of plasma instabilities and generation of
coherent high brightness radio emission [e.g., [30,31]].

2. Plerionic-type emission

Most of the power (30) will leave the black hole region
in a form of relativistic highly magnetized wind. Even
though the instantaneous power (30) is typically much
smaller than the Eddington power corresponding to masses
M, Eq. (33), the total released energy can be substantial as
we demonstrate below. Most of the energy is released
before decoupling. Indeed, after the decoupling the mag-
netic field is constant within the orbit, Eq. (32), so that the

power (30) integrated over the merging orbit with R �
ðR4

d � G3M3t
c5

Þ1=4 after decoupling gives

Ed ¼ �E

Z ðGMÞ3B2
d

c5RðtÞ dt � �ELEdd

Rd

c
� B2

dR
3
d: (41)

Thus, after decoupling the black holes spiraling in a con-
stant magnetic field dissipate approximately the magnetic
field energy within the volume of the decoupling radius.

On the other hand the total energy released before
decoupling is

Etot � �E

LEddR0

c
¼ �E

GMmpR0

	T

(42)

where R0 is the initial radius where the model becomes
applicable. Thus, most of the energy is released at large
separations of the black holes.
As an estimate of the initial radius R0 where the model is

applicable, one can compare the pressure created by the
outflow, � LEM=ðR2

0cÞ, with the thermal energy-density in

the surrounding medium, � nexmpc
2
s (nex is the number

density and cs is the speed of sound in the surrounding
medium). This gives

R0�
�
�E

ðGMÞ4
c6c2sn	T

�
1=5¼10�3 pcm4=5

6 c�2=5
s;7 n�1=5�1=5

E;�1

Etot�
�ðGMÞ9m5

p

c6c2sn	
6
T

�
1=5¼1047 ergm9=5

6 c�2=5
s;6 �6=5

E;�1n
�1=5:

(43)

This is a substantial amount of energy, especially for
mergers of more massive black holes. It can in principal
be observed both via direct emission and by appearance of
dynamical morphological feature resembling a wind-
blown nebular in the central parts of galaxies.

3. Emission from regions with E> B

Violation of the condition B> E implies a large electric
field in plasma that cannot be reduced by the relative
motion of charges (recall that the drift velocity is indepen-
dent of the sign of charge). Mass loading (inertia) or
dissipation will reduce the electric field to E< B. It is
commonly assumed (mostly for the purposes of numerical
simulations [9,10,22]) that the regions where E> Bwill be
strongly dissipative due to resistivity.
We can estimate the volume where E> B as � R3

G�0.

Dissipation of the electromagnetic fields inside the regions
E> B will lead to energy flux into those regions Ldiss �
R2
GE0B0 (this estimate neglects the fact that not all the

surface of the black hole is covered by the regions with
E> B, see Fig. 3). Thus, qualitatively, there will be local
dissipation of the magnetic energy flux through the
Schwarzschild circle. For merging black holes the resulting
power

Ldiss � R2
G�0B

2
0 ¼ B2

0

ðGMÞ5=2
c4R1=2

: (44)

For R 	 RG this power is somewhat larger than the
Poynting power of both the unipolar inductor and the
Faraday wheel mechanisms (1), yet the estimates that
went into Eq. (44) are likely to be solid upper limits due
to the neglect of the geometry of the E> B regions, which,
in fact, does not cover most of the black hole surface for
�0 � 1. In addition, a fraction of this power will be
swallowed by the black hole, while the escaping part will
be heavily redshifted and unlikely to be observed.
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VI. FORCE-FREE MAGNETOSPHERES
OF SCHWARZSCHILD BLACK HOLES

We have argued above that the parallel electric fields
created by the black hole motion lead to vacuum break-
down, generation of dense plasma that in turn screens the
parallel component of the electric field. If the matter
energy-density is much smaller that the energy-density of
the magnetic field, the plasma behavior will be controlled
by the magnetic field, while nearly massless charge carriers
provide the currents demanded by the dynamics and ensure
the E � B ¼ 0 condition. This is called the force-free limit
[32]. Using the 3þ 1 formulation of the general relativity
[16], Eq. (7), taking the total time derivative of the con-
straint E �B ¼ 0 and eliminating DtE and DtB using
Maxwell equations, one arrives at the corresponding
Ohm’s law in Kerr metric

j ¼ðB �r�ð�BÞ�E �r�ð�EÞÞBþ�ðr�EÞE�B

4��B2
:

(45)

Note that this expression does not contain the function ~�.
Equation (45) is a nonlinear equation for the time-
dependent structure of magnetospheres of Kerr black
holes. In the stationary, r� ð�EÞ ¼ 0, axisymmetric
case Eq. (45) and Maxwell’s Eqs. (7) reduce to the Grad-
Shafranov equation in Schwarzschild metric [15] for the
A� component of the vector potential. In our case, the lack

of a cyclic variable prevents the reduction of Eq. (45) to a
single equation.

VII. DISCUSSION

The electrodynamics of Schwarzschild black holes mov-
ing through a constant magnetic field resembles in many
respects the pulsar magnetospheres. The motion of a black
hole in vacuum both generates a nonzero electric field
along the magnetic field, and, in addition, produces regions
where E> B. Similarly to the case of rotationally-powered
pulsars, the nonzero parallel electric field will lead to
vacuum breakdown, generation of pair plasma and produc-
tion of large-scale electric currents. Magnetospheres of
moving black holes will have pair formation fronts and
outer gaps, where the sign of the induced charge density
changes. There is an important difference between pulsars
and a black hole: in the case of pulsars the parallel electric
field is produced by real surface charges [18], while in
the case of black holes the parallel electric field is a
pure vacuum effect, resulting from the curvature of the
space-time.

In the case of merging black holes we expect two kinds
of electromagnetic outflows: those originating in the close
vicinity of the black holes due to a unipolar induction
mechanism and those originating within the orbit due

to the rotation of space-time. Both types of jets have
approximately the same power. There is a clear thought
experiment where the two effects (due to rotation of
space-time and due to linear motion of a black hole)
differ. Consider a linear motion of a black hole through a
magnetic field. The effect discussed in this paper will
appear, while the one discussed in Ref. [6] would not. On
the other hand, consider a rotating massive ring: in this
case the effect considered in Ref. [6] will appear, but one
considered in this paper would not.
The power of a unipolar inductor is taken from the

energy of the linear motion of the BH. Thus, there is an
effective friction force exerted by the magnetic field
onto the black hole. Qualitatively, there are two ways to
create a Poynting flux: (i) in vacuum due to changing
electromagnetic fields; (ii) in plasma by generating a
current-carrying plasma outlfow. In vacuum there is no
energy loss by a black hole: even though the magnetic
fields are disturbed by the passage of a black hole, there is
no wave emission, as can be seen from the fact that in the
frame of the black hole the electromagnetic fields are
stationary.
In the case of plasma, no time-dependence is necessary

in order to produce a Poynting flux: presence of plasma
allows one to choose from all the possible reference
frames one special frame, where the electric field is zero.
Only in that special frame there is no Poynting flux;
all other frames will have Poynting flux. Mathematically,
in case of plasma the stress-energy tensor is diagonaliz-
able, while this is generally not true in vacuum.
Overall, the system under consideration is very similar to
pulsars, in vacuum the aligned rotator does not spin-down,
but in reality parallel electric fields generate currents
that carry electromagnetic energy, extracted from
rotation.
Any attempt to simulate numerically the magneto-

spheres of moving black holes using MHD-type (fluid)
codes will face a problem of nonzero E �B � 0 and the
regions with E> B. Both these conditions violate com-
monly used fluid assumptions. Pair production resulting
from E � B � 0 will eventually ensure that E � B � 0 in
the bulk of the plasma. Thus, one possible way to simulate
the black hole magnetospheres (again following the work
on pulsar magnetospheres) is to assume that the regions
where the ideal approximation is violated are sufficiently
small, so that in the bulk the condition E � B ¼ 0 is sat-
isfied. In the highly magnetized limit the dynamics then
reduces to the force-free limit, Sec. VI. But experience in
modeling pulsar magnetospheres [22] tells us that in the
highly magnetized limit the system would evolve towards
violations of the ideal condition E � B ¼ 0 by creating
current sheets, where the magnetic field reverses, and, in
addition, would spontaneously create regions with E> B.
Resolving current sheets, or finding a proper prescription
for treating them, was a major obstacle in numerical
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simulations of pulsar magnetospheres. The appearance of
regions with E> B required introduction of artificial re-
sistivity and demonstrating that the final outcome is largely
independent of these ad hoc numerical procedures). This
was the approach taken in Refs. [9–11] wherein a number
of force-free simulations of black hole magnetospheres
were performed. Our results are generally in agreement
with Refs. [9–11].

Finally, we note that in the standard model of particle
physics the nonzero second Poincaré electromagnetic in-
variant leads to the appearance of sources of topological
axial vector currents that can lead to the local violation of
the baryon and lepton numbers through the triangle anom-
aly (which is responsible, e.g., for the two photon decay of
�0). The triangle anomaly violates the baryon number
through a nonperturbative effect [33,34]. In case of a black
hole moving through a constant magnetic field, there is a
nonzero divergence of the electromagnetic topological
current J�

J� ¼ A�ð�F��Þ
J0 ¼ A �B ¼ 0

Ji ¼ E�Aþ A0

�

BJ�;� ¼ � 7

4
sin2� cos�B0E0

M

r
¼ 7

4
E �B:

(46)

Note that the helicity, the time component of the topologi-
cal current, is zero; the anomaly appears due to the
3-divergence of the spacial components of J�. We leave a
more detailed investigation of the implications for the
standard model of particle physics to a future work.
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APPENDIX: BLACK HOLE MAGNETOSPHERES
IN KERR-SCHILD COORDINATES

Interpretation of results in general relativity is often a
nontrivial exercise. The results of the main part of the
article were obtained in Schwarzschild coordinates.
Schwarzschild coordinates have a singularity on the
horizon, which often makes interpretation of the results
problematic. To avoid the singularity the Kerr-Schild co-
ordinates are often used instead. In this appendix we repeat
the previous calculations in the Kerr-Schild coordinates
and show that qualitatively the above-derived results gen-
erally hold.

The Kerr-Schild metric is given by

ds2 ¼ ��2dt2 þ 4M

r
dtdrþ

�
1þ 2M

r

�
dr2

þ r2ðd�2 þ sin2�d�2Þ: (A1)

The vacuum Maxwell equations (3) then give an equation
for A� the same as in Schwarzschild coordinates, Eq. (4).

Thus, in Kerr-Schild coordinates the flux function corre-
sponding to a constant field at infinity is A� ¼
ðB0=2Þr2sin2�.
Using the covariantr operator with êr ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2M=r
p @r we

can then find the electromagnetic fields and the charge
density

E¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2M

r

s
rA0¼E0

�
cos�0er� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2M=r
p sin�0e�

�

B¼r�A�e�¼B0

�
cos�er� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2M=r
p sin�e�

�

�ind¼
E0Msin�cos�ððMr þ 3

2Þsin2ð�ÞþM
r þ1Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r þ1

q
ð2Mcos2�

r þ1Þ2
: (A2)

Qualitatively, the results in the Kerr-Schild metric look
very similar to the ones in the Schwarzschild metric. The
only noticeable difference is the location of the E ¼ B
surface, which in the case of the Kerr-Schild metric is
given by

r ¼ 2Mðsin2�� �2
0ðcos2�cos2�þ sin2�ÞÞ
1� �2

0

; (A3)

see Fig. 8.

FIG. 8 (color online). Shape of regions where E ¼ B in the
Kerr-Schild metric for �0 ¼ 0:5; compare with Fig. 3.
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