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We present the first calculation of the Bayesian evidence for different prototypical single field

inflationary scenarios, including representative classes of small field and large field models. This approach

allows us to compare inflationary models in a well-defined statistical way and to determine the current

‘‘best model of inflation.’’ The calculation is performed numerically by interfacing the inflationary code

FIELDINF with MULTINEST. We find that small field models are currently preferred, while large field models

having a self-interacting potential of power p > 4 are strongly disfavored. The class of small field models

as a whole has posterior odds of approximately 3:1 when compared with the large field class. The

methodology and results presented in this article are an additional step toward the construction of a full

numerical pipeline to constrain the physics of the early Universe with astrophysical observations. More

accurate data (such as the Planck data) and the techniques introduced here should allow us to identify

conclusively the best inflationary model.
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I. INTRODUCTION

The theory of inflation represents a cornerstone of the
standard model of modern cosmology [1–4] (for a review
see, e.g., Refs. [5–9]). By definition, it is a phase of
accelerated expansion which is supposed to take place in
the very early universe, somewhere between the electro-
weak to the grand unified theory energy scales, i.e., be-
tween�103 GeV and�1015 GeV [10]. Inflation allows us
to understand several puzzles which plagued the preinfla-
tionary standard model and that could not be understood
otherwise. Without inflation, the standard model of cos-
mology would remain incomplete and highly unsatisfac-
tory. The most spectacular achievement of inflation is that,
combined with quantum mechanics, it provides a convinc-
ing mechanism for the origin of the cosmological fluctua-
tions [the seeds of galaxies and of Cosmic Microwave
Background (CMB) anisotropies] [11–15] and it predicts
that their spectrum should be almost scale invariant (i.e.
equal power on all spatial scales) [6,16,17] which is fully
consistent with the observations [18]. This part of the
scenario is particularly remarkable since it combines gen-
eral relativity and quantum mechanics.

However, the physical nature of the inflaton (the field
driving inflation) and its relation with the standard model

of particle physics and its extensions remain elusive.
Moreover the shape of its potential is not known except,
of course, that it must be sufficiently flat. This is not so
surprising since, as mentioned above, the inflationary
mechanism is supposed to take place at energy scales
larger than typically �1 TeV, in a regime where particle
physics is not known and has not been tested at accelera-
tors. Another crucial aspect of the inflationary scenario is
how it ends and how it is connected to the subsequent hot
big-bang phase. It is believed that, after the slow-roll
period, the field reaches the bottom of its potential, oscil-
lates, and decays into radiation [19–22]. In this way, in-
flation is smoothly connected to the radiation-dominated
epoch. However, the energy density at which the radiation-
dominated era starts is not accurately known, although
some new constraints on the reheating have recently been
obtained in Refs. [23–25].
Despite the fact that it has become a cornerstone of

modern cosmology, inflation is not as observationally con-
strained as the other components of the standard model. To
improve on this situation, full numerical approaches can be
put in place in order to use, in an optimal way, the astro-
physical data now at our disposal [26–32]. This should
allow investigations on the ‘‘fine structure’’ of the infla-
tionary scenario. This program is particularly timely since
new high-accuracy astrophysical observations, such as the
European Space Agency Planck data [33], among others,
will be released soon. They will provide an unprecedented
window of opportunity to learn about inflation.
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In this article, we are concerned with the question of
how to evaluate the performance of a given inflationary
model to explain the data as compared with others. This
problem can be dealt within Bayesian inference [34] (see,
e.g., Ref. [35] for an application to inflationary model
comparison). In fact, Bayesian statistics can be used at
two levels. The first level is to determine which model
parameter values are favored by the data within a given
inflationary model, and this for all models. To this end, one
needs to compute the model’s predictions for the relevant
observables, such as the CMB, the galaxy power spectra,
etc., and then use the experimental data to extract the
posterior probability distributions of the model parameters
given the data and the theoretical priors. The second level
is to use Bayesian inference for model comparison. At this
level, one has to calculate, for each model, the global
likelihood (also known as the evidence, or model likeli-
hood) which is obtained by integrating the usual likelihood
over all of the model parameters’ values, weighted by their
prior probability distribution. The resulting quantity can be
used to compute the posterior probability of the model,
given the available data, thus updating our prior belief in
each of the inflationary models in light of the observations.
The Bayesian approach to model comparison has the ad-
vantage of automatically incorporating a quantitative no-
tion of ‘‘Occam’s razor,’’ i.e., more complex inflationary
models are assigned a larger posterior probability only if
their complexity is effectively required to explain the data.

On the practical side, these two levels in Bayesian
inference can be implemented by adopting appropriate
numerical algorithms to integrate the power spectrum for
a given inflationary model. This has been routinely avail-
able for several years now and, in this paper, we use the
public code FIELDINF [18,36,37]. This inflationary code is
then coupled with a CMB perturbation code, such as CAMB

[38], and then linked with an appropriate algorithm capable
of delivering both the posterior distributions for each
model’s parameters as well as the Bayesian evidence of
each model. The evidence is computed using the publicly
available MULTINEST code [39–41], which implements the
nested sampling algorithm, employed as an add-on sam-
pler to COSMOMC [42].

On the theoretical side, one has to choose classes of
scenarios that are representative of the inflationary land-
scape and that one wishes to analyze. In this article, we
focus on large and small field models for reasons specified
in the following. The reheating stage is described via
the reheating parameter as introduced in Refs. [18,23].
Moreover, since the choice of priors is always relevant in
problems of model comparison, we have paid particular
attention to their physical motivation and we carefully
investigate this question both for the parameters describing
the inflationary potential and for the reheating.

This article is organized as follows. In the next section,
Sec. II, we present the models studied, paying special

attention to the reheating part and the so-called reheating
parameter. In Sec. III, we recall the definition of the
Bayesian evidence, describing in detail how the priors on
the free parameters characterizing each scenario are
chosen. We also explain how its calculation is imple-
mented numerically. Finally, in Sec. IV, we present our
results and discuss their physical implications. Readers
already familiar with the inflationary models, techniques
and methods can directly jump to Sec. III B. Perhaps the
most important outcome of our article is that it sketches a
general method which allows us to quantify and determine
the ‘‘best’’ model of inflation (within the list of models
considered here).

II. INFLATIONARY COSMOLOGICAL
PERTURBATIONS

In this section, after having briefly recalled how
the theory of cosmological perturbations of quantum-
mechanical origin allows us to derive the inflationary
predictions, we present the scenarios studied here, discuss
our choice of parametrization and motivate it based on
physical considerations.

A. Choosing the inflationary potential

In order to compare inflation with various astrophysical
observables, one must first determine the power spectrum
of the density perturbations defined by the following ex-
pression:

P� ðkÞ � k3

2�2
j�kj2; (1)

where �k is the comoving curvature perturbation in Fourier
space and is a conserved quantity on super-Hubble length
scales [6–9,43].
This power spectrum depends on the shape of the in-

flaton’s potential, and thus, on its free parameters, which
have to be specified. It is common to describe the land-
scape of possible single field inflationary models with three
different archetypal classes: large field models, small field
models, and hybrid inflation. This simple approach is based
on the following considerations. Any inflaton potential
Vð�Þ can always be Taylor expanded as

Vð�Þ ¼ V0 � �

�
�

MPl

�
2 þ . . . : (2)

According to the value of the coefficients of the expansion,
one obtains different classes of models. If the constant term
V0 vanishes, then one obtains a large field model [4,44].
Instead of restricting ourselves to a massive scenario, a
simple generalization is to consider an arbitrary power
index p, not necessarily fixed to p ¼ 2 [45]. If the constant
term is not zero, then one obtains a small field model [2,3]
(with a negative second term) or an effective hybrid model
[46,47] (with a positive second term). Again, instead of
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considering only a quadratic term, it is more generic to let
the power index unspecified. This leads to the three classes
mentioned before.

An important question is whether the other terms of the
Taylor expansion are under control. This has led to a debate
on the question of whether vacuum expectation values
of � larger than the Planck mass are meaningful or not
[5,48,49]. In the simple approach used here, we do not take
part in this discussion and consider sub- as well as super-
Planckian vacuum expectation values. Moreover, hybrid
inflation is an intrinsic multiple field scenario (with the
above potential, inflation could not actually stop) which
cannot always be described by a single field approach
[50,51]. Indeed, in a multiple field model, the presence
of entropy perturbations can cause the evolution of �k on
large scales and this effect can modify the power spectrum
during the preheating stage. Since this type of effect is
model dependent, it must be studied for each scenario and,
for this reason, it is wiser, in a first step, to focus on simpler
models. For this reason, we will consider in the following
only the large and small field scenarios having, respec-
tively, the following potentials:

Vð�Þ ¼ M4

�
�

MPl

�
p ðlarge fieldÞ; (3)

and

Vð�Þ ¼ M4

�
1�

�
�

�

�
p
�

ðsmall fieldÞ: (4)

Of course, this has to be considered as a first step toward a
more complete scan of the inflationary landscape. The
large field model is characterized by two parameters,
the energy scale M and the power index p. The small
field potential is characterized by three parameters, M,
�, and p. We come back to the issue of the prior distribu-
tions to assign to each parameter in Sec. III B.

B. Describing the reheating

In order to compare an inflationary model with obser-
vations, we also need to take into account the reheating
stage which takes place after the end of inflation and before
the onset of the radiation-dominated era. This is compul-
sory since one needs to know the actual value of a physical
wave number during inflation from its observed value to-
day. For instance, the amplitude of the power spectrum P�
is measured at a given wave number, typically k�=a0 ¼
0:05 Mpc�1, where a0 denotes the present-day scale factor.
During inflation, the corresponding physical wave number
is stretched back to

k�
a

¼ k�
a0

ð1þ zendÞeNend�N; (5)

where zend is the redshift at which inflation ended, Nend the
total number of e-folds during inflation and N � lna the
number of e-folds at the time considered during inflation.

The quantity k�=a is uncertain precisely due to the exis-
tence of the reheating. Assuming instantaneous transitions
between inflation, reheating, radiation, and matter era, one
can simplify

1þ zend ¼ ð1þ zeqÞ
�
�reh

�eq

�
1=4 areh

aend
; (6)

where ‘‘reh’’ and ‘‘eq,’’ respectively, stand for the end of
reheating and the equality between the energy density of
radiation and matter. The so-called reheating parameter
Rrad [18,23] describes the evolution of the Universe during
the reheating stage and is defined by

Rrad � aend
areh

�
�end

�reh

�
1=4

; (7)

such that Eq. (6) becomes

1þ zend ¼ 1

Rrad

�
�end

�r0

�
1=4

; (8)

where �r0 is the energy density of radiation today.1 As a

result, Rrad encodes all of our ignorance on how the reheat-
ing influences the observable inflationary power spectra.
In fact, it is for inflation what the optical depth � is for
CMB observations. The latter encodes how much reioniza-
tion of the Universe affects the measured CMB anisotro-
pies (independently of the details of the reionization
history, at least at first order) while Rrad plays a similar
role for the reheating. As it should be clear from Eq. (7),
Rrad quantifies the deviation from a reheating era which
would be radiationlike.
In fact, as discussed in Ref. [23], Eq. (7) can be recast

into various equivalent forms. In terms of the number of e-
folds during reheating �N ¼ Nreh � Nend ¼ lnðareh=aendÞ,
one has

lnRrad ¼ �N

4
ð�1þ 3 �wrehÞ; (9)

where �wreh stands for the mean equation of state parameter

�w reh � 1

�N

Z Nreh

Nend

PðnÞ
�ðnÞ dn: (10)

Here PðnÞ and �ðnÞ are the instantaneous total pressure
and energy density of the Universe during reheating. This
description is completely general since no assumption
about the physical properties of the effective fluid domi-
nating the matter content of the Universe during reheating
has been made. One can also express �N in terms of �wreh

such that

lnRrad ¼ 1� 3 �wreh

12ð1þ �wrehÞ ln
�
�reh

�end

�
: (11)

1The density parameter of radiation today is �r0 ’ 2:471�
10�5h2.
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As expected, one can verify explicitly that Rrad ¼ 1 if
�wreh ¼ 1=3.

III. BAYESIAN MODEL COMPARISON

In this section, we briefly review Bayesian model com-
parison, which we adopt to compare the performance of
our inflationary models (for further details, see, e.g., [34]).
As a preliminary remark, we notice that if one seeks to
determine the most economical description of the infla-
tionary potential in light of the available data, Bayesian
model comparison is well suited, in that classical statistics
only allows us to reject hypotheses, not to confirm them
(see also Ref. [52] for alternative model selection criteria).
Therefore, while some simpler models might become ruled
out in a classical sense (i.e., their parameter space can
become completely constrained by the data, until no viable
region remains), classical statistics does not allow one to
rank the remaining models in any way. Bayesian model
comparison, with its natural inclusion of the Occam’s razor
effect, is therefore the only available tool to quantify in a
self-consistent way our preference for a specific model.

A. The Bayesian evidence

Bayesian model comparison aims at computing the pos-
terior probability of a model in view of the available data.
The fundamental idea behind the procedure is that ‘‘eco-
nomic’’ models that fit the data well are rewarded for their
predictivity, while models with a large number of free
parameters that turn out not to be required by the data
are penalized for the wasted parameter space. Therefore, in
a Bayesian sense, the best model is the one that achieves
the best compromise between quality of fit and simplicity.
One of the attractive features of Bayesian model compari-
son is that it automatically embodies a quantitative version
of Occam’s razor, i.e., the principle of simplicity.

Here and in the following, by ‘‘model’’ we denote a
choice of inflationary potential, together with a specifica-
tion of its free parameters,�j, and of their prior probability

distribution, pð�jjMjÞ. The specification of the prior is

fundamental for model comparison, as the prior shape and
range influence the Occam’s razor effect. From Bayes’
theorem, the posterior probability of model Mj given the

data d, pðMjjdÞ, is related to the Bayesian evidence (or

model likelihood) pðdjMjÞ by

pðMjjdÞ ¼
pðdjMjÞpðMjÞ

pðdÞ ; (12)

where pðMjÞ is the prior belief in modelMj. In Eq. (12),

pðdÞ ¼ P
ipðdjMiÞpðMiÞ is a normalization constant

(where the sum runs over all available known models
Mi, i ¼ 1; . . . ; N) and

pðdjMjÞ ¼
Z

d�jpðdj�j;MjÞpð�jjMjÞ (13)

is the Bayesian evidence, where pðdj�j;MjÞ is the like-

lihood. The Bayesian evidence is thus the average like-
lihood under the prior, and is the central quantity for
Bayesian model comparison.
Given two competing models, M0 and M1, the poste-

rior odds among them are given by

pðM0jdÞ
pðM1jdÞ

¼ B01

pðM0Þ
pðM1Þ ; (14)

where we have introduced the factor B01 as defined as the
ratio of the models’ evidences

B01 � pðdjM0Þ
pðdjM1Þ : (15)

The Bayes factor thus updates our relative state of belief in
two models from the prior odds to the posterior odds. Large
values of B01 denote a preference forM0, and small values
of B01 denote a preference for M1. The ‘‘Jeffreys’ scale’’
(Table I) gives an empirical prescription for translating the
values of B01 into strengths of belief.
Given two or more models, specified in terms of their

parametrization and priors on the parameters, it is straight-
forward (although sometimes computationally challeng-
ing) to compute the Bayes factor. Depending on the
problem at hand, semianalytical [54,55] and numerical
[39,40,56–58] techniques are available. In the usual
case where the prior over models is taken to be noncom-
mittal [ i.e., pðMjÞ ¼ 1=N], the model with the largest

Bayes factor ought to be preferred. Thus, the computation
ofB01 allows us to select one (or a few) promising model(s)
from a set of known models. This framework has recently
been extended to evaluate the probability that the set of
known models is incomplete, see Ref. [59].
Finally, we can also summarize our findings in terms of

posterior probability for the entire class of models being
considered here, large field or small field. From Bayes’
theorem, the posterior probability for, e.g., the small field
class (SF) is given by

pðSFjdÞ ¼ XnSF
i¼1

pðdjSFiÞpðSFiÞ
pðdÞ ; (16)

TABLE I. Empirical scale for evaluating the strength of evi-
dence when comparing two models, M0 versus M1 (so-called
Jeffreys’ scale, here slightly modified following the prescriptions
given in [34,53]). The right-most column gives our convention
for denoting the different levels of evidence above these thresh-
olds.

j lnB01j Odds Strength of evidence

<1:0 & 3:1 Inconclusive

1.0 �3:1 Weak evidence

2.5 �12:1 Moderate evidence

5.0 �150:1 Strong evidence
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where

pðdÞ ¼ XnSF
i¼1

pðdjSFiÞpðSFiÞ þ
XnLF
j¼1

pðdjLFjÞpðLFjÞ; (17)

and nSF ¼ 3 is the number of small field models consid-
ered in the class, while nLF ¼ 6 is the number of large field
models, as explained in the next section. Regarding the
choice of priors for the models, in view of comparing the
viability of large field and small field inflation, it is natural
to divide equally the prior probability between the two
classes, and then further subdivide it equally among the
models in each class, so that pðSFjÞ ¼ 1=ð2nSFÞ and

pðLFjÞ ¼ 1=ð2nLFÞ. For reasons that shall become clear

below, it will be convenient to consider the Bayes factor
between the various models and the large field model with
p ¼ 2 (LF2), and it is therefore useful to divide both the
numerator and the denominator of Eq. (16) by the evidence
of LF2, obtaining

pðSFjdÞ ¼
PnSF

i Bi�pðSFiÞPnSF
i Bi�pðSFiÞ þ

PnLF
j Bj�pðLFjÞ (18)

¼ hBi�iSF
hBi�iSF þ hBi�iLF (19)

¼
�
1þ hBi�iLF

hBi�iSF
��1

; (20)

where we have defined

hBi�iSF � 1

nSF

XnSF
i¼1

Bi�; (21)

hBi�iLF � 1

nLF

XnLF
i¼1

Bi�; (22)

and in the above Bi� denotes the Bayes factor between
model i and the LF2 model.

It is also instructive to consider the Bayesian complexity
associated with each model, defined as [60]

C b ¼ �2½DKLðP;�Þ � dDKL�; (23)

where, here, � denotes the prior distribution and
DKLðP;�Þ is the Kullback-Leiber divergence between
the posterior P and the prior, �, namely,

D KLðP;�Þ �
Z

Pð�jdÞ logPð�jdÞ
�ð�Þ d�: (24)

In Eq. (23), dDKL denotes a point estimate for the KL
divergence. It has been shown in [34,61] that the
Bayesian complexity measures the number of model
parameters that the data can constrain. Evaluated together
with the evidence, the complexity helps to assess whether
the parametrization of a model is excessive for the

constraining power of the available data (for details, see
[61]). The complexity can be expressed as

D KL ¼ h	2i � 	̂2; (25)

where 	2 � �2 lnL and the expectation value is taken
with respect to the posterior. The second term, 	̂2 is a
plug-in estimate that can be taken to be, for example, the
best-fit 	2 value or the value of the 	2 at the posterior
mean. Here we adopt the best-fit value, following [61].
As mentioned above, the evidence is computed using the

publicly available MULTINEST code [39–41], which imple-
ments the nested sampling algorithm. The gist of nested
sampling is that the multidimensional evidence integral
of Eq. (13) is recast into a one-dimensional integral.
This is accomplished by defining the prior volume x as
dx � pð�jjMjÞd�j so that

xð
Þ ¼
Z
Lð�jÞ>


pð�jjMjÞd�j; (26)

where the integral is over the parameter space enclosed by
the iso-likelihood contour Lð�jÞ ¼ 
. So xð
Þ gives the

volume of parameter space above a certain level 
 of the
likelihood (for a specific model Mj). Then the Bayesian

evidence, Eq. (13), can be written as

pðdjMjÞ ¼
Z 1

0
LðxÞdx; (27)

where LðxÞ is the inverse of Eq. (26). Samples from LðxÞ
can be obtained by drawing uniformly samples from the
likelihood volume within the iso-contour surface defined
by 
. The standard deviation on the value of the log

evidence can be estimated as ðH=nliveÞ1=2, where H is the
negative relative entropy and nlive is the number of live
points adopted, which in our case is nlive ¼ 1000 (see
Ref. [39] for details). We have checked that our evidence
values are robust (within error bars) if one increases nlive to
5000. The posterior distributions have also been cross-
checked with standard Metropolis-Hastings Markov
Chain Monte Carlo.

B. Choice of priors

Since our aim is to evaluate the evidence of large and
small field models, it is absolutely crucial to choose well-
motivated priors for the parameters describing the poten-
tial. In order to see why it is so, it is instructive to consider
the evidence of a simple, one-parameter toy case, where
there is only one single parameter �, whose prior density
under model M is given by pð�jMÞ. We shall further
assume that the likelihood is much more sharply peaked
than the prior (i.e., the quantity � has been well measured),
so that pð�Þ � const in the range �� where the likelihood
Lð�Þ is appreciably different from zero. Then the evidence
of model M, Eq. (13), is approximately equal to

pðdjMÞ � Lð�MLÞ��pð�MLjMÞ; (28)
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where �ML is the value that maximizes the likelihood
function. Since the prior must be normalized,
pð�MLjMÞ � 1=�, where � is the characteristic width
of the prior. Therefore, one finds that pðdjMÞ / ��1,
i.e., the evidence scales inversely proportionally to the
width of the prior. The term ��=� is the so-called
‘‘Occam’s factor,’’ which penalizes models with a large
‘‘wasted’’ parameter space under the prior, i.e., models
for which the characteristic width of the likelihood is
much smaller than that of the prior, ��=� 	 1. Hence
the a priori plausible range of parameter values determines
the strength of the Occam’s penalty term, and for this
reason it has to be carefully chosen on the basis of physical
considerations.2

Going back to the potentials (3) and (4), we notice that
the parameter M, common to both classes of models, is
a priori unknown, and is observationally determined by the
overall normalization of the power spectrum, P�. Since the
scale ofM is unknown, it is appropriate to adopt a prior flat
on lnM, to reflect the fact that we are giving equal a priori
probability to all orders of magnitude within some suitably
chosen lower and upper limits. A flat prior on lnM is
equivalent to a flat prior on lnP�, and therefore in our
numerical sampling we swap lnM for lnP� as a fundamen-
tal parameter. Since the overall power spectrum normal-
ization is common to all models, the precise range of
values under the prior for lnP� becomes irrelevant (as
long as the range is sufficiently wide to encompass the
support of the likelihood), as all models share the same
Occam’s razor penalty from this common parameter. In
practice, we chose lnP� 2 ½2:7� 10�10; 4:0� 10�10�, but
because of the above argument the Bayes factor between
our models would remain unchanged even if this range was
arbitrarily enlarged.

For large field models, we chose to adopt a flat prior in
the range 0:2<p< 5. The lower limit is arbitrarily chosen
to encompass all proposed large field potentials having a
fractional power [62,63]. In principle, one could imagine
an arbitrarily small p (which would suggest the use of a
Jeffreys’ prior, instead) but, up to now, there is no theo-
retical motivation to do so. On the other hand, there is no
strong theoretical reason not to consider a model with, say,
p ¼ 7. However, we know that the data already strongly
disfavor models with p > 5 (as a matter of fact, even
models with p > 3 are disfavored [23]) and therefore one
expects that the evidence of models with p > 5 (fixed)
would be strongly disfavored. Furthermore, if one wanted
to enlarge the prior range to p > 5 it would be easy to
rescale the evidence to account for the enlarged parameter
space, since the likelihood is close to 0 for p > 5. This

would lead to a larger Occam’s penalty and thus to a lower
evidence, see Eq. (28).
For small field models, we have chosen a flat prior

p 2 ½2:4; 10� as our representative class since p ¼ 2 is a
very special case. As discussed in Ref. [18], approaching
the value p ¼ 2 is numerically tricky and we have chosen
the lower bound as the closest, but different, possible value
of p > 2. Models with p < 2 [64,65] might, in principle,
be included but would constitute another class of models
since this would require to cross the p ¼ 2 barrier.
Moreover, models with negative p correspond to very
different physical regimes. For instance, the model with
p ¼ �4 is nothing but the Coulomb potential of brane
inflation and was analyzed in detail in [66]. For the reasons
detailled in Sec. I, and at this stage of the analysis, we
do not include those cases. The upper bound for p has
been chosen typically an order of magnitude higher.
Theoretically, as already mentioned above, small field
models are archetypal of inflationary potentials which
can be Taylor expanded in the (small) field values, in units
of a given vacuum expectation value �. As a result, too
large values of pwould appear quite unnatural. Concerning
�, its scale is a priori unknown and, therefore, we have
chosen a flat prior on logð�=MPlÞ in the range ½�1; 2�. On
one hand, if one has a theoretical prejudice of viewing the
small field models as representative of Taylor expanded
potential (as was done above), and, in particular, in the
supersymmetric framework, one would expect �<MPl to
keep the supergravity corrections under control. On the
other hand, other theoretical approaches do not forbid
super-Planckian vacuum expectation values [67] since
one can always consider that this potential is obtained,
not from a Taylor expansion but exactly from a more
fundamental theory. The corrections would therefore not
be controlled by the ratio of the vacuum expectation value
to the Planck mass but by the ratio of the energy density to
the Planck density. Hence our prior range is chosen in such
a way as to extend above the Planck mass. Concerning the
boundary values, in the limit �=MPl 
 1, one can show
that the two first slow-roll parameters, and hence all ob-
servable predictions, do not longer depend on both � and
p. As a result, it is straightforward to show from Eq. (28)
that the corresponding Bayes factors would be unchanged
for larger values of �. In the limit �=MPl 	 1, the first
slow-roll parameter becomes tiny and the second one
becomes � independent such that, again, the observable
predictions, and thus the likelihood and the evidence, are
no longer sensitive to �.
Finally, in addition to the two broad classes of large

field and small field models, we have introduced in our
model space finer subdivisions leading to more specific
model classes. Motivated by the above prior discussion,
it is natural to further distinguish between small
field models allowing super-Planckian expectation values
(i.e., with log�=MPl > 0) from the ones that do not

2Notice that parameters which are unconstrained by the data
are not penalized by the Occam’s factor, i.e., if the likelihood’s
width is similar to the prior range, then ��=�� 1 and the
Occam’s factor effect vanishes.
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( log�=MPl < 0). In the large field class, we have also
singled out some models having a peculiar interest such
as the genuine chaotic massive inflation model (p ¼ 2),
monodromy inflation (p ¼ 2=3), linear inflation (p ¼ 1),
and the self-interacting potential (p ¼ 3 or p ¼ 4). Of
course, one must restrict oneself to the positive part of
the potential when necessary. Therefore we consider a total
of 9 classes of models.

Having parametrized the evolution of the Universe dur-
ing the reheating in the previous section, one must now
discuss the choice of the prior on the reheating parameter.
As shown in Ref. [18], instead of working with Rrad intro-
duced in Eq. (7), it is more convenient to work with the
rescaled reheating parameter R defined by

R � Rrad

�1=4
end

MPl

: (29)

As we recap in the appendix, Rrad exhibits trivial correla-
tions with the normalization of the power spectrum P�
which can be easily removed by considering R instead.
Notice that once the inflationary model is specified, �end is
known and Eq. (29) is nothing but a rescaling. Clearly, the
order of magnitude of the different physical quantities
appearing in Eqs. (7) and (29) is unknown and this suggests
that we choose a flat prior on lnR. The next step is to
determine the prior boundaries. In fact, using the expres-
sion of Rrad given before, one also has

lnR ¼ 1� 3 �wreh

12ð1þ �wrehÞ ln
�
�reh

M4
Pl

�
þ 1þ 3 �wreh

6ð1þ �wrehÞ ln
�
�end

M4
Pl

�
:

(30)

Positivity energy conditions in general relativity impose
that �wreh cannot exceed unity and we want to separate
inflation from reheating such that �wreh cannot be less
than �1=3. Moreover, �nuc <�reh <�end, where �nuc is
the energy density at big-bang nucleosynthesis, which we

take to be �1=4
nuc ¼ 10 MeV, this implies that �46< lnR<

15þ ð1=3Þ lnð�end=M
4
PlÞ. Since there is no preferred value

for lnR, we initially take the maximal possible theoreti-
cally allowed range ½�46; 15�. However, for each given
model parameter values, we then reject all lnR values not
satisfying the consistency bound lnR< 15þ ð1=3Þ�
lnð�end=M

4
PlÞ. Finally, notice that this description of

reheating via the lnR parameter and its prior range is
common to all models.
To conclude the discussion on priors, we have chosen

flat priors on the standard cosmological parameters cen-
tered around their currently measured values, i.e., for the
density parameter of baryons�bh

2, of dark matter�dmh
2,

the angular size of the sound horizon at last scattering �
and the optical depth �. We also marginalize over the
amplitude of the unresolved SZ signal with a flat prior in
the range ASZ 2 ½0; 2�. These prior choices do not impact
on our evidence result for the inflationary models as all
models share the same standard cosmological parameters
and their respective priors. We, moreover, assume through-
out a flat universe as predicted by cosmic inflation.
The models we consider and the priors on the relevant

inflationary parameters are summarized in Table II.

IV. RESULTS AND DISCUSSION

In this section, we present our model comparison results
for the classes of models described above. Concerning the
data, we have used the seven years Wilkinson Microwave
Anisotropies Probe (WMAP7) data [68–70] comple-
mented with the Hubble Space Telescope constraints on
the Hubble constant today, H0 ¼ 74:2� 3:6 km=s=Mpc
[71]. Our findings are summarized in Fig. 1, where we
show the Bayes factors for each model, computed with
respect to the large field model with p ¼ 2.
Within the class of large field models, we can see that

models with p � 3 are disfavored, at the ‘‘weak evidence
level’’ for p ¼ 3 and at the ‘‘strong evidence’’ level for
p ¼ 4. Clearly, one can conclude that models with even
larger (and fixed) values of p would be even more strongly
disfavored, so that they can be effectively ruled out. We
have chosen the large field p ¼ 2 model as our ‘‘reference
model’’ (the one with respect to which the Bayes factors
are computed) because it plays the role of a watershed
point: large field models with shallower potentials are
preferred by the Bayesian evidence, with p ¼ 1 and
p ¼ 2=3 gathering slightly more than ‘‘weak evidence’’
in their favor. However, the evidence is not strong enough
to allow one to conclude a definite preference for these
models. The more generic large field model with p 2
½0:2; 5� is also weakly preferred over LF2, and this despite

TABLE II. Inflationary models considered in this analysis and priors on their parameters. All priors are taken to be uniform (i.e. flat)
in the variable and range specified, see the text for a detailed justification. In the last row, n is the number of free parameters related to
the inflationary sector.

Parameter Small field models, Eq. (4) Large field models, Eq. (3)

SFIs SFIl SFIf LFIp LFI2=3 LFI1 LFI2 LFI3 LFI4

Normalization, lnP� [2:7� 10�10, 4:0� 10�10] [2:7� 10�10, 4:0� 10�10]

Exponent, p [2.4, 10] [0.2, 5] 2=3 1 2 3 4

Vacuum expectation, logð�=MPlÞ ½�1; 0� [0, 2] ½�1; 2� Not applicable

Reheating, lnR ½�46; 15� ½�46; 15�
n 4 4 4 3 2 2 2 2 2
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the extra parameter of the former, which incurs an Occam’s
razor penalty. As expected, the performance of this model,
as measured by the evidence, falls in between the steep
potentials (p > 2) and the shallower ones (p < 2).

Moving on to small field models, we remark that their
overall performance is superior to our reference large field
model LF2, but quite comparable to the shallower large
field models, despite the fact that small field models have
one or even two parameters more than large field models.
The very best models of inflation are small field. Within the
error bars, the evidence cannot distinguish between a
model with an upper cutoff at MPl and one that allows �
to go above the Planck mass. Models with purely super-
Planckian expectation values are only very slightly disfa-
vored, by about 1 unit in the log evidence. Therefore, we
can conclude that the data are currently not sufficient to
distinguish between the two scenarios.

Further insight in the model comparison outcome can be
garnered by investigating simultaneously the Bayesian
complexity and the evidence (or the Bayes factor) of the
models considered here (see Ref. [61] for further details
about the interpretation of the complexity). The Bayesian
complexity, Eq. (25), has been computed for each model
from a pure Markov Chain Monte Carlo run whose con-
vergence has been monitored by using the R statistics
implemented in COSMOMC [42]. The chains have been
stopped as soon as the estimated errors were below 3%,
which corresponds to a total number of samples ranging
from 5� 104 to 4� 105 depending on the underlying
inflationary model. The variance of our complexity esti-
mate is obtained from the variance of four subchains of
equal length randomly selected from the post burn-in

samples. Both quantities are displayed in Fig. 2, where
the horizontal axis gives the value of the number of input
parameters for each model (both inflationary and cosmo-
logical) minus the Bayesian complexity, which we denote
by the symbol�Cb. Avalue of�Cb close to zero means that
the model parameters are well constrained by the data,
while �Cb > 0 gives an estimate of the effective number
of parameters remaining unconstrained by the data.
The value of�Cb for the large field models with p > 2 is

generally smaller, and reaches �Cb � 0 for p ¼ 4, the
model with the lowest evidence. This is a consequence of
the tension between these models and the data, which leads
to the reheating parameter becoming more and more con-
strained as p increases: for p ¼ 4, we find a 2� lower limit
lnR>�2:1, thus leading to an increase in the value of the
complexity by about 1 unit. Since the models with p ¼ 3
and p ¼ 4 have the smallest Bayes factor while exhibiting
values of �Cb close to 0 (meaning that all of their free
parameters are well constrained), we can conclude that
those models are genuinely disfavored by the data. On
the other hand, for the models having a similar Bayes
factor, Fig. 2 shows that the larger number of free parame-
ters in the small field models corresponds to an increase in
the number of unconstrained parameters �Cb with respect
to its value for the large field models with p � 1. This
indicates that the extra inflationary parameters in the small
field class are not being constrained by the data. Therefore,
we are led to conclude that while a slight preference for
small field models is beginning to accumulate, it is too
early to be able to conclusively favor small field models
over large field ones. It is expected that Planck data will be
able to conclusively pass judgement on this issue.

FIG. 1 (color online). Results for the Bayes factor between
different inflationary models considered in the analysis. The
names of the models are specified on the left of the figure.
The Bayes factor are computed taking massive large field model
as the reference model, and the results are given in the column
on the right of the plot. The dotted vertical lines indicate the
thresholds of weak, moderate, and strong evidence, as per
Table I.

FIG. 2 (color online). Bayes factor versus the effective number
of unconstrained parameters (�Cb) for all large and small field
models. The steeper LFI models are genuinely disfavored by the
data, as all of their free parameters are well constrained. Small
field models being favored by the evidence still have uncon-
strained parameters, and therefore it is too early to conclusively
rule out shallower (p < 2) large field models, despite the fact
that they exhibit a slightly smaller Bayes factor.
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A consistent picture emerges when one considers the
Bayesian complexity of the two models with the largest
number of parameters in each class, namely SFIf and LFIp,

with 4 and 3 inflationary parameters, respectively. For both
cases, we find a similar complexity, Cb ’ 5:9, which sug-
gests that current data can constrain up to approximately 2
inflationary parameters. This is because our models have
all N ¼ 5 noninflationary parameters in common, includ-
ing the SZ amplitude, and 4 of them are well constrained
and contribute approximately 4 units to the Bayesian com-
plexity. This leads to the conclusion that WMAP7 data are
still insufficiently powerful to fully constrain the whole
inflationary sector as parametrized in this work (see also
Refs. [72,73]).

We can also evaluate the posterior probability for the
entire class of small field scenarios. From Eq. (18) we find

pðSFjdÞ ’ 0:77� 0:03; (31)

and, therefore, pðLFjdÞ ’ 0:23� 0:03. Therefore, the
probability of the small field scenario has risen from 50%
in the prior to 77% in the posterior. This represents poste-
rior odds of �3:1 in favor of small field inflation, as
compared with large field inflation. Although, as explained
above, this shift in the odds is by no means conclusive, it
does represent an indication that large field inflation is
getting increasingly under pressure from the data [74].

Finally, it is important to assess the robustness of our
results with respect to reasonable changes in our choice of
models’ priors. Our choice to divide the prior probability
equally between the LF class and the SF class reflects the
desire to compare both classes of models on an equal
footing a priori. Another natural choice for the models’
prior would be to split the prior mass equally among
models, i.e., to assign pðSFiÞ ¼ pðLFiÞ ¼ 1=ðnSF þ nLFÞ.
This choice would, however, result in prior odds of 2:1 in
favor of the LF class, which seems contrived, given that it
arises solely from the fact that we have double as many LF
models as SF models. Even with this (unfair to the SF
class) prior choice, the posterior probability for SF would
be pðSFjdÞ ’ 0:6 [up from an initial prior probability
pðSFÞ ¼ 1=3], so our result of a (slight) preference for
SF models stands.

Finally, we notice that our result is robust with respect to
the inclusion of further models under either the SF or LF
class, provided such models are disfavored by the data (as
they would be, e.g., for p > 5 in the LF class). Inclusion of
such highly disfavored models would result in their Bayes
factors with respect to LF2 being close to 0, hence the
average values defined in Eqs. (21) and (22) would simply
be rescaled by the new (larger) number of models in each
class. However, the posterior probability of SF models
only depends on the ratio of the average Bayes factors
[see Eq. (18)], hence such rescaling factors would largely
cancel out (for a detailed discussion of this rearrangement
of prior probability in a similar context, see Ref. [59]). This

holds true provided the overall number of models in each
class is not widely different. We do not have any reason to
believe that this should be the case. However, if one of the
model classes truly had a much larger number of potential
models in it, one would have to carefully reconsider the
choice of giving both classes equal a priori mass: after all,
a class of models with a smaller number of physically
distinct possibilities in it is a priori more predictive than
a class with a large number of possible distinct models.

V. CONCLUSION

To summarize, this article presented the first calculation
of the Bayesian evidence for different classes of inflation-
ary scenarios, explaining from first principles how
physically meaningful priors could be derived for the
fundamental parameters of the models. Among the models
studied here, small field models appear to be favored, albeit
still in a fairly mild way. This result must be viewed as a
first step toward a more exhaustive exploration of the
inflationary landscape. With the techniques introduced
here and the high-accuracy CMB data soon available, we
have paved the way to the identification of the best infla-
tionary scenario.
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APPENDIX: OPTIMAL REHEATING PARAMETER

As discussed in Ref. [23], the reheating parameter Rrad

can also be explicitly related to observable quantities
and to the number of e-folds N� at which a given scale
k� leaves the Hubble radius, i.e. when k� ¼ aðN�ÞHðN�Þ
during inflation

lnRrad ’ ðNend�N�ÞþN0� 1

4
lnð8�2P�Þþ 1

4
ln

�
72

r

Vend

V�

�
;

(A1)

where V� stands for the potential evaluated at the e-foldN�,
i.e., when � ¼ �ðN�Þ. The quantity r is the primordial
tensor-to-scalar ratio and

N0 � ln

�
k�=a0
�1=4
r0

�
: (A2)

Using the Friedmann-Lemaı̂tre equations together with
Eq. (29), the rescaled reheating parameter now reads
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lnR ’ ðNend � N�Þ þ N0 þ 1

2
ln

�
9

2

Vend

V�

�
; (A3)

which clearly no longer depends explicitly on P�. There is
thus a great advantage of sampling the model parameters
on lnR rather than lnRrad to prevent the unwanted degen-
eracies appearing in Eq. (A1). This was the approach
adopted recently in Ref. [23] where, in most of this
work, the parameter lnR was used. Additional constraints
can be further obtained if one introduces extra assumptions
on the equation of state parameter. This question was also
studied in Ref. [23], but only for specific cases (unlike the
description of that work given in Ref. [75]). Let us notice
that in Ref. [75], the reheating phase was marginalized over
by using a prior on�N� ¼ Nend � N� for a particular value
of k� ¼ 0:05 Mpc�1. From the above formula, it is clear
that one can always trade the parameter lnR with �N�
provided some values for r and P� are assumed, although it
might seem awkward to introduce a scale dependent prior
for a background quantity (the prior changes if one chooses
another value for k�). A drawback of this approach is
that this introduces correlations between the parametriza-
tion of reheating and the normalization of the power
spectrum when one has to determine the prior range.
Reference [75] fixes 20< �N� < �Nend� , where �Nend�
corresponds to the value of �N� when �end ¼ �reh. It is
easy to see that this choice excludes from the prior models
that are physically legitimate. For instance, a small field
model with p ¼ 3, �wreh ¼ �0:3, and � ¼ 0:01MPl is such
that 17:2<�N� < 46:0 (for this model, the lower bound is
always smaller than 20 for � 2 ½0:01; 10�). Of course,
this also depends on the choice of �nuc which is not given
very precisely. If one takes �nuc ’ ð100 MeVÞ4, the lower
bounds become ’ 19:3 but if one chooses the extreme

value �nuc ’ ð1 MeVÞ4, it is ’ 15:1. When constraining
model parameters, these considerations does not really
matter since, as shown in Ref. [23], these model parameters
are in fact disfavored by the data. But, clearly, this will
affect the calculation of the evidence. The above consid-
erations show that priors should always be chosen and
justified from physical considerations.
Finally, in this article we have restricted ourselves to a

standard post-reheating thermal history. But the approach
used here can in fact be straightforwardly generalized to a
nonstandard thermal history before big-bang nucleosyn-
thesis. For instance, if one assumes that, inserted into the
radiation-dominated era, there is actually a phase of evo-
lution dominated by a fluid X, the equation of state pa-
rameter of which is given by wX, one could define a new
parameter RX by

lnRX � 1� 3 �wX

12ð1þ �wXÞ ln
�
�end
X

�start
X

�
; (A4)

where �start
X is the energy density at the beginning of the

epoch dominated by the fluid X and �end
X the energy density

at the end. Then, nothing is changed in the above descrip-
tion except that the parameter Rrad should now be replaced
with RradRX. Moreover, if after the X-dominated period,
there is another, say, Y-dominated period, then one can
define the parameter RY and Rrad should now be replaced
with RradRXRY. Obviously, this works for an arbitrary
number of new epochs. This also means that these non-
standard thermal histories are not really observable (unless
one has a definite model for the reheating) since the new
parameters RX and RY are in fact completely degenerated
with Rrad.
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