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We find the natural embedding of the (Rþ R2) inflationary model into the recently constructed FðRÞ
supergravity. It gives a simple and viable realization of chaotic inflation in supergravity. The only

requirement for a slow-roll inflation is the existence of theR3 term with an anomalously large coefficient

in Taylor expansion of the FðRÞ function.
DOI: 10.1103/PhysRevD.83.063512 PACS numbers: 98.80.Cq, 04.65.+e

I. INTRODUCTION

A natural realization of inflation in supergravity is
known to be problematic [1,2] because of the factor
expðK=M2

PlÞ in the (F-term generated) scalar potential

[3], where K is the Kähler potential of the chiral scalar

matter superfields � and ��. The naive (tree-level) Ansatz

K ¼ ��� gives rise to the scalar potential proportional to

expð ���Þ that is too steep for a slow-roll inflation (the so-
called � problem) with the unacceptable inflaton mass
jm2j � V0=M

2
Pl � H2.

To cure the above problem, the D-term mechanism was
proposed [4], where the inflation is generated in the gauge
sector and is highly sensitive to the gauge charges. Another
proposal is to assume that the Kähler potential does not
depend upon some scalars( ¼ flat directions) and then add
a desired scalar superpotential for the flat directions [5].
Both proposals are nongeometrical and nonuniversal
because they refer to the matter sector (not gravity) and
require the existence of extra fields too.

As has also been known for a long time [6,7], viable
inflationary models can be easily constructed in (nonsu-
persymmetric) fðRÞ gravity theories (see, e.g., Ref. [8] for
a recent review) with the action

S ¼ �M2
Pl

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ; (1)

whose function fðRÞ begins with the scalar curvature R,
and the difference (fðRÞ � R) takes the form R2AðRÞ for
R ! 1, with a slowly varying function AðRÞ (we assume
that ℏ ¼ c ¼ 1). The simplest one of those models is given
by (see Ref. [9] for our sign conventions)

fðRÞ ¼ R� R2

6M2
: (2)

The theory (2) is known as the excellent model of chaotic
inflation [10]. The coefficient in front of the second term on
the right-hand side of Eq. (2) is chosen so that M actually
coincides with the rest mass of the scalar particle appearing

in fðRÞ gravity (dubbed scalaron in Ref. [6]) at low curva-
tures jRj � M2 or in flat spacetime, in particular. The
model fits the observed amplitude of scalar perturbations
ifM=MPl � 1:5� 10�5ð50=NeÞ, and gives rise to the spec-
tral index ns � 1 � �2=Ne � �0:04ð50=NeÞ and the
scalar-to-tensor ratio r � 12=N2

e � 0:005ð50=NeÞ2, in
terms of the e-foldings number Ne � ð50� 55Þ depending
upon details of reheating after inflation [9,11]. Despite of
the fact that it has been known for 30 years, the model (2)
remains viable and is in agreement with the most recent
WMAP7 observations of ns ¼ 0:963� 0:012 and r < 0:24
(with 95% CL) [12].
The purpose of this paper is to show that there exists a

natural embedding of the inflationary model (2) into su-
pergravity.1 For that purpose we use the supersymmetric
extension of fðRÞ gravity theories, called FðRÞ supergrav-
ity, that was recently constructed in Ref. [16]. In Sec. II we
briefly outline the FðRÞ supergravity by focusing on its
reduction to the more familiar fðRÞ gravity. In Sec. III we
propose a simple realization of chaotic inflation in super-
gravity via embedding of the bosonic model (2) into the
particular FðRÞ supergravity model. Sec. IV is our
conclusion.

II. FðRÞ SUPERGRAVITYAND fðRÞ GRAVITY

The most succinct formulation of FðRÞ supergravity
exists in a chiral 4D, N ¼ 1 superspace where it is defined
by an action2

S ¼
Z

d4xd2�EFðRÞ þ H:c: (3)

1For completeness, it is worthwhile to mention some other
microscopic approaches that are unrelated to supergravity but
also lead to the (Rþ R2) model as the macroscopic (and ap-
proximate) theory with a high precision: (i) the Higgs inflation
with a large nonminimal coupling of the Higgs field to gravity
[13,14], and (ii) the so-called emergent gravity [15].

2For simplicity, we take MPl ¼ 1 in this section.
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in terms of a holomorphic function FðRÞ of the
covariantly-chiral scalar curvature superfield R, and the
chiral superspace density E. The chiralN ¼ 1 superfieldR
has the scalar curvature R as the field coefficient at its �2

term (see, e.g., Ref. [17] for details about supergravity in
superspace). The chiral superspace density E (in a WZ
gauge) reads

E ¼ eð1� 2i��a
�c a þ �2BÞ; (4)

where e ¼ ffiffiffiffiffiffiffi�g
p

, c a is gravitino, and B ¼ S� iP is the

complex scalar auxiliary field (it does not propagate in the
theory (3) despite of the apparent presence of the higher
derivatives). The full component structure of the action (3)
is very complicated. Nevertheless, it is classically equiva-
lent to the standard N ¼ 1 Poincaré supergravity mini-
mally coupled to the chiral scalar superfield, via the
supersymmetric Legendre-Weyl-Kähler transform [16].
The chiral scalar superfield is given by the superconformal
mode of the supervielbein (in Minkowski or AdS vacuum)
which becomes dynamical in FðRÞ supergravity.

A relation to the fðRÞ gravity theories can be established
by dropping the gravitino (c a ¼ 0) and restricting the
auxiliary field B to its real (scalar) component, B ¼ 3X
with �X ¼ X. Then, as was shown in Ref. [18], the bosonic
Lagrangian takes the form

L ¼ 2F0
�
1

3
Rþ 4X2

�
þ 6XF: (5)

It follows that the auxiliary field X obeys an algebraic
equation of motion,

3Fþ 11F0X þ F00
�
1

3
Rþ 4X2

�
¼ 0: (6)

In those equations F ¼ FðXÞ and the primes denote the
derivatives with respect to X. Solving Eq. (6) for X and
substituting the solution back into Eq. (5) results in the
bosonic function L ¼ � 1

2 fðRÞ.
It is natural to expand the input function FðRÞ

into power series of R. For instance, when FðRÞ ¼ f0 �
1
2 f1R with some (nonvanishing and complex) coefficients

f0 and f1, one recovers the standard pure N ¼ 1 super-
gravity with a negative cosmological term [16].

A more interesting Ansatz is given by

FðRÞ ¼ � 1

2
f1Rþ 1

2
f2R2 (7)

with some real coefficients f1 and f2. It gives rise to the
bosonic function (with f1 ¼ 3=2) [18]

fðRÞ ¼ 5� 17

32 � 11
R� 22 � 7

32 � 11
ðR�RmaxÞ

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R=Rmax

q i

¼ R� R2

6M2
� 11R3

252M4
þOðR4Þ; (8)

where Rmax ¼ 32�72

23�11
f�2
2 is the AdS bound automatically

generated in the model, and M2 ¼ 11
7 Rmax. Unfortunately,

the model (8) is not viable as the inflationary model
because it suffers from the � problem arising due to the
presence of the higher-order terms with respect to the
scalar curvature in Eq. (8) [18].

III. OUR NEW MODEL

The Ansatz we propose in this paper is given by

FðRÞ ¼ � 1

2
f1Rþ 1

2
f2R2 � 1

6
f3R3; (9)

whose real (positive) coupling constants f1;2;3 are of (mass)

dimension 2, 1, and 0, respectively. Our conditions on the
coefficients are

f3 � 1; f22 � f1: (10)

The first condition is needed to have inflation at the curva-
tures much less thanM2

Pl (and to meet observations), while

the second condition is needed to have the scalaron (in-
flaton) mass be much less than MPl, in order to avoid large
(gravitational) quantum loop corrections after the end of
inflation up to the present time.
Stability of our bosonic embedding (5) in supergravity

implies F0ðXÞ< 0. In the case (9) it gives rise to the
condition f22 < f1f3. For simplicity we will assume

f22 � f1f3: (11)

Then the second term on the right-hand side of Eq. (9) will
not affect inflation, as is shown below.
Equation (5) with the Ansatz (9) reads

L ¼ �5f3X
4 þ 11f2X

3 �
�
7f1 þ 1

3
f3R

�
X2

þ 2

3
f2RX� 1

3
f1R (12)

and gives rise to a cubic equation on X,

X3 �
�
33f2
20f3

�
X2 þ

�
7f1
10f3

þ 1

30
R

�
X � f2

30f3
R ¼ 0: (13)

We find three consecutive (overlapping) regimes.
(i) The high curvature regime including inflation is

given by

�R < 0 and
j�Rj
R0

�
�
f22
f1f3

�
1=3

; (14)

where we have introduced the notation R0 ¼
21f1=f3 > 0 and �R ¼ Rþ R0. With our sign con-
ventions (Sec. I) we have R< 0 during the de Sitter
and matter dominated stages. In the regime (14) the
f2-dependent terms in Eqs. (12) and (13) can be
neglected, and we get

X2 ¼ � 1

30
�R (15)

and
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L ¼ � f1
3
Rþ f3

180
ðRþ R0Þ2: (16)

It closely reproduces the inflationary model (2) since
inflation occurs at jRj � R0. So it is natural to
denote f3 ¼ 15M2

Pl=M
2 (see Sec. I). It is worth

mentioning that we cannot simply set f2 ¼ 0 in

Eq. (9) because it would imply X ¼ 0 and L ¼
� f1

3 R for �R > 0. As a result of that the scalar

degree of freedom would disappear that would lead
to the breaking of a regular Cauchy evolution.
Therefore, the second term in Eq. (9) is needed to
remove that degeneracy.

(ii) The intermediate (post-inflationary) regime is given
by

j�Rj
R0

� 1: (17)

In this case X is given by a root of the cubic equation

30X3 þ ð�RÞX þ f2R0

f3
¼ 0: (18)

It also implies that the 2nd term in Eq. (13) is always
small. Equation (18) reduces to Eq. (15) under the
conditions (14).

(iii) The low-curvature regime (up to R ¼ 0) is given by

�R > 0 and
�R

R0

�
�
f22
f1f3

�
1=3

: (19)

It yields

X ¼ f2R

f3ðRþ R0Þ (20)

and

L ¼ � f1
3
Rþ f22R

2

3f3ðRþ R0Þ : (21)

It is now clear that f1 should be equal to 3M
2
Pl=2 in

order to obtain the correctly normalized Einstein
gravity at jRj � R0. In this regime the scalaron
mass squared is given by

1

3jf00ðRÞj ¼
f3R0M

2
Pl

4f22
¼ 21f1

4f22
M2

Pl ¼
63M4

Pl

8f22
(22)

in agreement with the case of the absence of theR3

term, studied in Sec. II. The scalaron mass squared
(22) is much less thanM2

Pl indeed, due to the second

inequality in Eq. (10), but it is much more than the
one at the end of inflation (�M2).

It is worth noticing that the corrections to the Einstein
action in Eqs. (16) and (21) are of the same order (and
small) at the borders of the intermediate region (17).

The roots of the cubic Eq. (13) are given by the textbook
(Cardano) formula [19], though that formula is not very

illuminating in a generic case. The Cardano formula
greatly simplifies in the most interesting (high-curvature)
regime where inflation takes place, and the Cardano dis-
criminant is

D �
�
R

90

�
3
< 0: (23)

It implies that all three roots are real and unequal. The
Cardano formula yields the roots

X1;2;3 � 2

3

ffiffiffiffiffiffiffiffi
�R

10

s
cos

0
@ 27

4f3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�10R=f22

q þ C1;2;3

1
Aþ 11f2

20f3
;

(24)

where the constant C1;2;3 takes the values

ð�=6; 5�=6; 3�=2Þ.
As regards the leading terms, Eqs. (12) and (24) result in

the ð�RÞ3=2 correction to the (Rþ R2) terms in the effec-
tive Lagrangian in the high-curvature regime jRj � f22=f

2
3.

In order to verify that this correction does not change our
results under the conditions, (14), let us consider the
fðRÞ-gravity model with

fðRÞ ¼ R� bð�RÞ3=2 � aR2; (25)

whose parameters a > 0 and b > 0 are subject to the
conditions a � 1 and b=a2 � 1. It is easy to check that
f0ðRÞ> 0 for R 2 ð�1; 0	, as is needed for (classical)
stability.
Any fðRÞ gravity model is known to be classically

equivalent to the scalar-tensor gravity with proper scalar
potential [20]. The scalar potential can be calculated from a
given function fðRÞ along the standard lines (see, e.g.,
Refs. [8,9]). We find (in the high-curvature regime)

VðyÞ ¼ 1

8a
ð1� e�yÞ2 þ b

8
ffiffiffiffiffiffi
2a

p e�2yðey � 1Þ3=2 (26)

in terms of the inflaton field y. The first term of this
equation is the scalar potential associated with the pure
(Rþ R2) model, and the second term is the correction due

to the R3=2 term in Eq. (25). It is now clear that for large
positive y the vacuum energy in the first term dominates
and drives inflation until the vacuum energy is compen-
sated by the y-dependent terms near ey ¼ 1.
It can be verified along the lines of Ref. [11] that the

formula for scalar perturbations remains the same as for
the model (2), i.e., �2

R � N2M2=ð24�2M2
PlÞ, where N is

the number of e-folds from the end of inflation. So, to fit
the observational data, one has to choose f3 �
5N2

e=ð8�2�2
RÞ � 6:5� 1010ðNe=50Þ2. Here the value of

�R is taken from Ref. [12] and the subscript R has a
different meaning from the rest of this paper.
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IV. CONCLUSION

We conclude that the model (9) with a sufficiently
small f2 obeying the conditions (10) and (11) gives a
viable realization of the chaotic (Rþ R2)-type inflation
in supergravity. The only significant difference with re-
spect to the original (Rþ R2) inflationary model is the
scalaron mass that becomes much larger than M in super-
gravity, soon after the end of inflation when �R becomes
positive. However, it only makes the scalaron decay
faster and creation of the usual matter (reheating) more
effective.

The whole series in powers of R may also be consid-
ered, instead of the limited Ansatz (9). The only necessary
condition for embedding inflation is that f3 should be
anomalously large. When the curvature grows, the R3

term should become important much earlier than the con-
vergence radius of the whole series without that term. Of
course, it means that viable inflation may not occur for any
function FðRÞ but only inside a small region of nonzero
measure in the space of all those functions. However, the
same is true for all known inflationary models, so the very
existence of inflation has to be taken from the observatio-
nal data, not from a pure thought.

We consider our results as the viable alternative to the
earlier fundamental proposals [4,5] for realization of cha-
otic inflation in supergravity. However, inflation is not the
only target of our construction. As is well known [6,7]—
see also the recent paper Ref. [21]—the scalaron decays
into pairs of particles and antiparticles of quantum matter

fields, while its decay into gravitons is strongly suppressed
[22]. It represents the universal mechanism of viable re-
heating after inflation and provides a transition to the
subsequent hot radiation-dominated stage of the
Universe’s evolution and the characteristic temperature
Treheating � 109 GeV. In its turn, it leads to the standard

primordial nucleosynthesis after. In FðRÞ supergravity the
scalaron has a pseudoscalar superpartner (or axion) that
may be the source of a strong CP violation and then,
subsequently, a leptogenesis and a baryogenesis that natu-
rally lead to baryon (matter-antimatter) asymmetry [23].
Supersymmetry in FðRÞ supergravity is already broken

by inflation. It may give rise to a massive gravitino with
m3=2 
 107 GeV. The gravitino is a natural candidate for

the cold dark matter in our construction, cf. Ref. [24]. The
gravitationally mediated supersymmetry breaking may
serve as the important element for the new particle phe-
nomenology (beyond the standard model) based on a
matter-coupled FðRÞ supergravity.
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