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A method is developed for dealing with ultraviolet divergences in calculations of cosmological

correlations, which does not depend on dimensional regularization. An extended version of the WKB

approximation is used to analyze the divergences in these calculations, and these divergences are

controlled by the introduction of Pauli-Villars regulator fields. This approach is illustrated in the theory

of a scalar field with arbitrary self-interactions in a fixed flat-space Robertson-Walker metric with

arbitrary scale factor aðtÞ. Explicit formulas are given for the counterterms needed to cancel all

dependence on the regulator properties, and an explicit prescription is given for calculating finite

regulator-independent correlation functions. The possibility of infrared divergences in this theory is

briefly considered.
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I. INTRODUCTION

Much effort has been expended in recent years in the
calculation of quantum effects on cosmological correla-
tions produced during inflation. These calculations are
complicated by the occurrence of ultraviolet divergences,
which have typically been treated by the method of dimen-
sional regularization. Unfortunately, this method has sev-
eral drawbacks. It is difficult or impossible to employ
dimensional regularization unless the analytic form of the
integrand as a function of wave number is explicitly
known, so calculations have generally relied on an assump-
tion of slow roll inflation, or even strictly exponential
inflation. Also, even where an analytic form of the inte-
grand is known, dimensional regularization can be tricky.
Senatore and Zaldarriaga [1] have shown that there are
terms in correlation functions that were omitted in work by
other authors [2,3].

This article will describe a method of dealing with
ultraviolet divergences in cosmological correlations, with-
out dimensional regularization. For the purposes of regu-
larization of infinities, we employ a generally covariant
version of Pauli-Villars regularization [4]. In order to
calculate the counterterms that are needed to cancel infin-
ities when the regulator masses go to infinity, we introduce
an extended version of the WKB approximation (keeping
not only terms of leading order in wavelength), which
works well even when the wave number dependence of
the integrand is not explicitly known, and can therefore
be applied for an arbitrary history of expansion during
inflation.

This method is described here in a classic model, the
fluctuations of a real scalar field in a fixed general
Robertson-Walker metric. This is simple enough to illus-
trate the use of the method without the general idea being
lost in the complications of quantum gravity, and yet

sufficiently general so that we can see how to deal with
an arbitrary expansion history. As we shall see, these
methods yield a prescription for calculating correlation
functions that are not only free of ultraviolet divergences,
but independent of the properties of the regulator fields.

II. THE MODEL

We consider the theory of a single real scalar field ’ðxÞ
in a fixed metric g��ðxÞ, with Lagrangian density

L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Detg
p �

� 1

2
g��@�’@�’� Vð’Þ

�
; (1)

where Vð’Þ is a general potential. The modifications in this
Lagrangian needed to introduce counterterms and regula-
tor fields will be discussed in Secs. III’ and IV, respectively.
This theory will be studied in the case of a general flat-

space Robertson-Walker metric:

g00 ¼ �1; g0i ¼ 0; gij ¼ a2ðtÞ�ij; (2)

with aðtÞ a fixed function (unrelated to Vð’Þ), which is
arbitrary except that we assume that aðtÞ increases mono-
tonically from a value that vanishes for t ! �1. The field
equation is then

€’þ 3H _’� a�2r2’þ V 0ð’Þ ¼ 0; (3)

where as usualH � _a=a is the expansion rate. We define a
fluctuation �’ by writing

’ðx; tÞ ¼ �’ðtÞ þ �’ðx; tÞ; (4)

where �’ðtÞ is a position-independent c-number solution of
the field equation:

€�’þ 3H _�’þ V 0ð �’Þ ¼ 0: (5)

Our calculations will be done using an interaction pic-
ture, in which the time-dependence of �’ is governed by
the part of the Hamiltonian quadratic in �’, so that �’
satisfies a linear differential equation*weinberg@physics.utexas.edu

PHYSICAL REVIEW D 83, 063508 (2011)

1550-7998=2011=83(6)=063508(13) 063508-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.063508


� €’þ 3H� _’� a�2r2�’þ V00ð �’Þ�’ ¼ 0: (6)

The commutation relations of �’ are

½�’ðx; tÞ; � _’ðy; tÞ� ¼ ia�3ðtÞ�3ðx� yÞ; (7)

½�’ðx; tÞ; �’ðy; tÞ� ¼ ½� _’ðx; tÞ; � _’ðy; tÞ� ¼ 0: (8)

The fluctuation can therefore be expressed as

�’ðx; tÞ ¼
Z

d3q½eiq�x�ðqÞuqðtÞ þ e�iq�x�yðqÞu�qðtÞ�;
(9)

where �ðqÞ is an operator satisfying the familiar commu-
tation relations

½�ðqÞ; �yðq0Þ� ¼ �3ðq� q0Þ; ½�ðqÞ; �ðq0Þ� ¼ 0;

(10)

and uqðtÞ satisfies the differential equation
€u q þ 3H _uq þ a�2q2uq þ V 00ð �’Þuq ¼ 0 (11)

and the initial condition, that for t ! �1,

uqðtÞ ! 1

ð2�Þ3=2aðtÞ ffiffiffiffiffiffi
2q

p exp

�
iq

Z T

t

dt0

aðt0Þ
�
; (12)

where T is an arbitrary fixed time. (The commutation
relations (10) and the initial condition (12) ensure that
the commutation relations (7) and (8) are satisfied for
t ! �1. The three commutators in these commutation
relations satisfy coupled first-order differential equations
in time, which with this initial condition imply that the
commutation relations are satisfied for all times.)

According to the ‘‘in-in’’ formalism [5], the vacuum
expectation value of a productOHðtÞ of Heisenberg picture
fields and their derivatives, all at time t, is given by1

hOHðtÞiVAC ¼
�
�T exp

�
i
Z t

�1
H0

Iðt0Þdt0
�
OIðtÞ

� T exp

�
�i

Z t

�1
H0

Iðt0Þdt0
��

0
(13)

where h� � �i0 denotes the expectation value in a bare
vacuum state annihilated by �ðqÞ; T and �T denote time-
ordered and anti-time-ordered products; OIðtÞ is the
operator OðtÞ expressed in terms of interaction picture
fluctuations; and H0

I is the interaction Hamiltonian, the
sum of terms in the Hamiltonian of third and higher order
in the fluctuations, expressed in terms of the interaction-
picture fluctuation �’:

H0
I � a3

Z
d3x

�
1

6
V 000ð �’Þ�’3 þ 1

24
V0000ð �’Þ�’4 þ . . .

�
:

(14)

We will evaluate Eq. (13) as an expansion in the number
of loops. If we like, we can introduce a loop-counting
parameter g by writing Vð’Þ ¼ g�2Fðg’Þ, with FðzÞ a
g-independent function of z, so that the number of factors
of g in a diagram with L loops and E external scalar lines is

# ¼ 2L� 2þ E: (15)

Thus an expansion in the number of loops is the same as a
series in powers of g2.

III. ONE-LOOP COUNTERTERMS

Infinities are encountered when calculating loop contri-
butions to (13) in this model. As in flat space, they can
be canceled by introducing suitable counterterms into the
Lagrangian. (When regulator fields are introduced, the
counterterms instead cancel dependence on the regulator
properties.) But the Lagrangian cannot know what metric
will be adopted, or the classical field �’ around which the
field ’ is to be expanded, so neither can the counterterms.
Thus we must return to the generally covariant form (1) of
the Lagrangian in analyzing the possible counterterms that
may be needed and employed.
The general one-loop one-particle-irreducible diagram

consists of a loop into which are inserted a number of
vertices, to each of which is attached any number of
external lines. An insertion with N external lines is given
by the (N þ 2)th derivative of Vð’Þ with respect to ’ at
’ ¼ �’, so the counterterm in the Lagrangian can only
be a function of V 00ð’Þ, and of g�� and its derivatives.

Furthermore, the operators appearing in a counterterm
needed to cancel infinities can only be of dimensionality
(in powers of energy) four or less. But V 00ð’Þ has dimen-
sionality two, so the only generally covariant counterterm
satisfying these conditions is of the form2

L 1 loop
1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Detg

p ½AV 00ð’Þ þ B½V 00ð’Þ�2 þ CRV00ð’Þ�;
(16)

where R is the usual scalar curvature, and A, B, and C
are constants that depend on the cutoff (that is, on the
regulator masses), but not on the potential. Dimensional
analysis tells us that in the absence of regulator fields A is
quadratically divergent, while B and C are logarithmically
divergent.
If we now specialize to the Robertson-Walker metric (2),

and write the scalar field as in (4), this counterterm
becomes (aside from a c-number term)

1It will be implicitly understood that the contours of integra-
tion over time are distorted at very early times to provide
exponential convergence factors, as described in Ref. [3].

2This argument does not rule out an additional term propor-
tional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Detg
p

V 00ð’Þg��@�’@�’, but one-loop diagrams do
not generate ultraviolet divergent terms with spacetime deriva-
tives acting on external line wave functions.
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L1 loop
1 ¼ a3

�
A

�
V 000ð �’Þ�’þ 1

2
V 0000ð �’Þ�’2 þ . . .

�
þ Bð2V 00ð �’ÞV 000ð �’Þ�’
þ ½V 0002ð �’Þ þ V 00ð �’ÞV 0000ð �’Þ��’2 þ . . .Þ
� ð6 _H þ 12H2ÞC

�
V000ð �’Þ�’

þ 1

2
V0000ð �’Þ�’2 þ . . .

��
: (17)

These terms are of one-loop order, and hence to that order
are to be used only in the tree approximation, with a new
term in the interaction Hamiltonian given by

�HI ¼ �
Z

d3xL1 loop
1 : (18)

The terms shown explicitly in Eq. (17) are the only coun-
terterms in Eq. (18) that contribute in one-loop order to the
one-point and two-point functions.

IV. REGULATORS

The counterterm (17) is certainly not the most general
counterterm that would be consistent with the symmetries
of the Robertson-Walker metric. For instance, if we did not
know anything about general covariance, we would have
no reason to expect that _H and H2 should occur in the
linear combination R ¼ �6 _H� 12H2. In order to be sure
that the divergences we encounter will be of a form that can
be canceled by the counterterm (17), although we do our
calculations for the Robertson-Walker metric (2), we shall
adopt a regulator scheme derived from a generally cova-
riant theory.

The usual approach to this problem is to use dimensional
regularization, which we wish to avoid for reasons given in
Sec. I. There are other methods of regularization that have
been extensively applied to the evaluation of expectation
values of operators like the energy-momentum tensor in
curved spacetimes [6] but not as far as I know to the
calculation of cosmological correlations.

One such method is covariant point-splitting [7]. This
method is well suited to the calculation of expectation
values of bilinear operators, where the ultraviolet diver-
gence arises from the confluence of the arguments of the
two operators. Because it is a covariant method, it can be
implemented by a renormalization of the bilinear operator
that respects its transformation and convergence proper-
ties. It seems difficult to apply covariant point-splitting to
the calculation of cosmological correlations, where one
integrates over the separation of the spacetime arguments
of the interaction Hamiltonian.’

There is another widely used method known as adiabatic
regularization [8]. In this method, one subtracts from the
integrand its asymptotic form for large wave numbers, as
determined by an extended version of the WKB method.
Experience has shown that though not covariant, this

method yields the same results for expectation values of
bilinear operators as covariant point-splitting [9]. But
adiabatic regularization affects the contribution of small
as well as large internal wave numbers, so it seems unlikely
that it can be applied to the calculation of cosmological
correlations, where for some diagrams the contribution of
small virtual wave numbers to correlation functions de-
pends in a complicated way on external wave numbers, so
that adiabatic regularization cannot be implemented by
the introduction of generally covariant counterterms in
the Lagrangian.
We will instead here employ a generally covariant

version of Pauli-Villars regularization [4], which like co-
variant point splitting and adiabatic regularization has
previously been applied to the calculation of expectation
values. For the theory studied here, the Lagrangian (1) is
modified to read

L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Detg
p �

� 1

2
g��@�’@�’

� 1

2

X
n

Znðg��@��n@��n þM2
n�

2
nÞ

� V

�
’þX

n

�n

��
; (19)

where �n are regulator fields, and Zn and Mn are real
nonzero parameters. In order to eliminate ultraviolet diver-
gences up to some even order D, we must take the Zn and
regulator masses Mn to satisfyX

n

Z�1
n ¼ �1;

X
n

Z�1
n M2

n ¼ 0;

X
n

Z�1
n M4

n ¼ 0; . . . ;
X
n

Z�1
n MD

n ¼ 0:
(20)

For instance, if there were only logarithmic divergences
then D ¼ 0, and we would only need one regulator field,
with Z1 ¼ �1. In one-loop calculations the maximum
degree of divergence is quadratic, i.e.D ¼ 2, and to satisfy
the conditions (20) we need at least two regulator fields.
In our calculations we will not need to make a specific
choice of the number of regulator fields, but only assume
that there are enough to satisfy Eq. (20).
The coefficients A, B, and C in the one-loop counterterm

(17) will be given values depending on the Zn andMn, such
that all expectation values (13) approach finite limits inde-
pendent of the Zn and Mn, as the Mn become infinite. As
we will see, this condition not only fixes the terms in A, B,
and C that are proportional to logarithms of regulator
masses and the term in A that is proportional to squares
of regulator masses, but also the terms in A, B, and C that
depend on regulator masses only through their ratios, and
hence that remain fixed as the regulator mass scale goes to
infinity. The only terms in A, B, and C that will not be fixed
by this condition are finite terms independent of regulator
properties, which of course represent the freedom we have
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to change the parameters in the potential or to add a non-
minimal coupling of the scalar field to the curvature.

The regulator fields �n like the physical field ’ are
written as classical fields plus fluctuations

�nðx; tÞ ¼ ��nðtÞ þ ��nðx; tÞ: (21)

The classical fields satisfy the coupled field equations

€�’þ 3H _�’þ V 0
�
�’þX

n

��n

�
¼ 0 (22)

€�� n þ 3H _��n þ Z�1
n V 0

�
�’þX

n

��n

�
þM2

n ��n ¼ 0: (23)

We assume throughout that the regulator massesMn are all

much larger than Hðt0Þ and jV 00ð �’ðt0ÞÞj1=2 over the whole
range from t0 ! �1 to the time t0 ¼ t at which the corre-
lations are measured. In consequence, the classical field
Eqs. (22) and (23) have a solution in which all the ��n are
less than �’ by factors of order H2=M2

n and jV 00ð �’Þj=M2
n,

and so may be neglected. We adopt this solution for the
classical fields. In particular, the field �’ then satisfies the
original classical field Eq. (5).

In dealing with internal lines, it is convenient to
lump together the physical field fluctuation �’ and the
fluctuations ��n in the regulator fields, by introducing an
index N (and likewise M, etc.) such that ��N is the
physical field fluctuation �’ for N ¼ 0 and is a regulator
field fluctuation for N ¼ n � 1, both in the interaction
picture. The general field fluctuations satisfy the coupled
field equations

� €�N þ 3H� _�N � a�2r2��N þM2
N��N

þ Z�1
N V00ð �’ÞX

M

��M ¼ 0; (24)

where Z0 ¼ 1 and M0 ¼ 0. The commutation relations of
the �� are

½��Nðx; tÞ; � _�Mðy; tÞ� ¼ ia�3ðtÞ�3ðx� yÞZ�1
N �NM; (25)

½��Nðx; tÞ; ��Mðy; tÞ� ¼ ½� _�Nðx; tÞ; � _�Mðy; tÞ� ¼ 0:

(26)

The general fluctuation can therefore be expressed as

��Nðx; tÞ ¼
X
M

Z
d3q½eiq�x�MðqÞuMNqðtÞ

þ e�iq�x�y
MðqÞu�MNq ðtÞ�; (27)

where �NðqÞ satisfy the commutation relations

½�NðqÞ; �y
Mðq0Þ� ¼ �3ðq� q0ÞZ�1

N �NM; ½�NðqÞ; �Mðq0Þ�
¼ 0; (28)

and the uMNqðtÞ are solutions of Eq. (24):

€uMNq þ 3H _uMNq þ a�2q2uMNq þM2
Nu

M
Nq

þ Z�1
N V00ð �’ÞX

L

uMLq ¼ 0 (29)

distinguished by the initial condition, that for t ! �1,

uMNqðtÞ!
1

ð2�Þ3=2a3=2ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�NqðtÞ

q �M
N exp

�
�i

Z t

T
�Nqðt0Þdt0

�
;

(30)

where

�Nqðt0Þ �
�

q2

a2ðt0Þ þM2
N

�
1=2

: (31)

The �NðqÞ are all taken to annihilate the vacuum. The two-
point functions appearing in propagators are then given by

h��Nðx1; t1Þ��Mðx2; t2Þi0
¼ X

K

Z
d3qeiq�ðx1�x2ÞZ�1

K uKNqðt1ÞuK�Mqðt2Þ: (32)

In calculating one-loop graphs, we must integrate over
one or more times ti associated with vertices, and over a
single comoving wave number q. There are two ranges of
q � jqj where the integrand is greatly simplified.
In the first range, q=aðtÞ (and hence all q=aðtiÞ) is much

greater than Hðt0Þ and jV 00ð �’ðt0ÞÞj1=2 for all t0 � t, as well
as much greater than the physical wave numbers associated
with external lines, though q=aðtÞ is not necessarily greater
than the regulator masses. In this range, we can reliably
evaluate the integrand in an extended version of the WKB
approximation, described in an Appendix. Any term that
would be convergent in the absence of cancellations among
the physical and regulator fields makes a negligible con-
tribution to the integral over this range.
In the second range, q=aðtÞ is much less than the regu-

lator masses, though it is not necessarily less than Hðt0Þ or
jV 00ð �’ðt0ÞÞj1=2 or the physical wave numbers associated
with external lines. In this range, it is safe to ignore the
regulator fields. (We do not have to worry about the con-
tribution of times t0 so much earlier than t that q=aðt0Þ is of
the order of the regulator masses, because this contribution
is exponentially suppressed by the rapid oscillation of the
integrand at these early times.)
It is crucially important to our method of calculation

that, because we assume that the regulator masses are much

larger than Hðt0Þ and jV00ð �’ðt0ÞÞj1=2 and the physical wave
numbers associated with external lines, these ranges of
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wave number overlap. We can therefore separate the range
of integration of comoving wave number by introducing a
quantity Q in the overlap region, so that Q=aðtÞ is much
less than all regulator masses, and much greater than Hðt0Þ
and jV 00ð �’ðt0ÞÞj1=2 and the physical wave numbers associ-
ated with external lines. We can evaluate the integral over
q � Q ignoring the regulators, and over q � Q by using
the WKB approximation. No errors are introduced by this
procedure in the final result, because we are taking the
regulator masses to be arbitrarily large compared with
Q=aðtÞ, which is taken to be arbitrarily large compared

with Hðt0Þ or jV00ð �’ðt0ÞÞj1=2 for t0 � t or the physical wave
numbers associated with external lines, so terms propor-
tional to quantities like Q=MnaðtÞ or HaðtÞ=Q are entirely
negligible.

It should be emphasized thatQ is neither an infrared nor
an ultraviolet cutoff, but simply a more-or-less arbitrary
point at which we choose to split the range of integration.
As long as Q is chosen in the overlap of the two regions
defined in the previous paragraphs, the sum of the integrals
over q � Q and q � Q will automatically be independent
of Q.

V. THE TWO-POINT FUNCTION

To demonstrate the use of the methods described in the
previous section, and to evaluate the coefficients A, B, and
C in the counterterm (16), we will now calculate the one-
loop corrections to the vacuum expectation value of the
product �’Hðy; tÞ�’Hðz; tÞ of Heisenberg picture fields.
This can be written in terms of a Green’s functionGpðtÞ, as
h�’Hðy; tÞ�’Hðz; tÞiVAC ¼

Z
d3p expðip � ðy � zÞÞGpðtÞ:

(33)

Leaving aside vacuum fluctuations and counterterms, there
are three one-loop diagrams, shown in Fig. 1. In this
section we will consider only the one-particle-irreducible
diagrams, I and II; these will suffice to allow us in Sec. VI
to fix the coefficients A, B, and C in the counterterm (16).
Diagram III will be dealt with in Sec. VII.

Diagram I
By the usual rules of the ‘‘in-in’’ formalism, after inte-

grating over spatial coordinates, the contribution of dia-
gram I to the two-point function is

GI
pðtÞ ¼ �2ð2�Þ6 Re

Z t

�1
dt1a

3ðt1ÞV 000ð �’ðt1ÞÞ

�
Z t

�1
dt2a

3ðt2ÞV000ð �’ðt2ÞÞ
X

KLMNM0N0
Z�1
K Z�1

L

�
Z

d3q½�ðt1 � t2Þu2pðtÞu�pðt1Þu�pðt2ÞuKMqðt1Þ

� uK�
M0qðt2ÞuLNq0 ðt1ÞuL�N0q0 ðt2Þ �

1

2
jupðtÞj2u�pðt1Þ

� upðt2ÞuK�
Mqðt1ÞuKM0qðt2ÞuL�Nq0 ðt1ÞuLN0q0 ðt2Þ�; (34)

where q � jqj and q0 � jq� pj. The first term in the
square brackets arises from diagrams in which the vertices
come either both from the time-ordered product or both
from the anti-time-ordered product in Eq. (13), while the
second term arises from diagrams in which one vertex
comes from the time-ordered product and the other from
the anti-time-ordered product.
As described at the end of the previous section, to

calculate GI
pðtÞ we divide the region of integration over

q � jqj into the ranges q < Q and q > Q, where Q is
chosen so that Q=aðtÞ is much less than all regulator
masses but much greater than p=aðtÞ and Hðt0Þ and

jV 00ð �’ðt0ÞÞj1=2 for all t0 � t.
For q < Q, we can ignore the regulators, and set K, L,

M, N, M0, N0 all equal to zero, with u00q just equal to the

wave function uq in the absence of regulators. This con-

tribution takes the form

I

II

III

FIG. 1. Diagrams for the two-point function.
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GI;<Q
p ðtÞ ¼ �2ð2�Þ6 Re

Z t

�1
dt1a

3ðt1ÞV 000ð �’ðt1ÞÞ
Z t

�1
dt2a

3ðt2ÞV 000ð �’ðt2ÞÞ½�ðt1 � t2Þu2pðtÞu�pðt1Þu�pðt2Þ

�
Z
q<Q

d3quqðt1Þu�qðt2Þuq0 ðt1Þu�q0 ðt2Þ �
1

2
jupðtÞj2u�pðt1Þupðt2Þ

Z
d3qu�qðt1Þuqðt2Þu�q0 ðt1Þuq0 ðt2Þ�: (35)

No limit has been put on the second integral over q, because the oscillating exponentials in uq and uq0 make this integral
converge [3], so that the contribution of wave numbers with q > Q is exponentially small.

For q � Q, we can use the WKB approximation (30). This contribution then takes the form

GI;>Q
p ðtÞ¼�2Re

Z t

�1
dt1V

000ð �’ðt1ÞÞ
Z t1

�1
dt2V

000ð �’ðt2ÞÞu2pðtÞu�pðt1Þu�pðt2Þ
X
KL

Z�1
K Z�1

L

�
Z
q>Q

d3q

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Kqðt1Þ�Kqðt2Þ�Lqðt1Þ�Lqðt2Þ

q exp

�
�i

Z t1

t2

½�Kqðt0Þþ�Lqðt0Þ�dt0
�
: (36)

Note that we have dropped the distinction between q0 and q, because p is negligible compared with q for q > Q.
We have also dropped the contribution of the second term in Eq. (34), because this term converges for eachK and L, and so
makes a negligible contribution to the integral over values q > Q.

The contribution of values of t2 at any fixed time less than t1 is also negligible, because of the rapid oscillation
of the final factor. But there is an important contribution from values of t2 that are so close to t1 that ðt1 � t2ÞQ=aðt1Þ is not
large. This contribution can be evaluated by setting t2 ¼ t1 everywhere except in the range of integration in the
exponential, so that

GI;>Q
p ðtÞ¼�2Re

Z t

�1
dt1V

000ð �’ðt1ÞÞ
Z t1

�1
dt2V

000ð �’ðt1ÞÞu2pðtÞu�2p ðt1Þ
X
KL

Z�1
K Z�1

L

�
Z
q>Q

d3q

4�Kqðt1Þ�Lqðt1Þexpð�iðt1�t2Þ½�Kqðt1Þþ�Lqðt1Þ�Þ

¼�
Z t

�1
dt1V

000ð �’ðt1ÞÞ2 Im½u2pðtÞu�2p ðt1Þ�
X
KL

Z�1
K Z�1

L

Z
q>Q

d3q

2�Kqðt1Þ�Lqðt1Þ½�Kqðt1Þþ�Lqðt1Þ�: (37)

The integral over q converges because
P

KZ
�1
K ¼ 0. This

integral receives contributions from terms where �K and
�L are both regulator fields �m and �n, or are a regulator
field �n and a physical field �0 ¼ ’, or are two physical
fields. Adding these contributions gives

GI;>Q
p ðtÞ ¼ �

Z t

�1
dt1a

3ðt1ÞV000ð �’ðt1ÞÞ2 Im½u2pðtÞu�2p ðt1Þ�

�
�X
mn

Z�1
m Z�1

n

M2
n lnMn �M2

m lnMm

M2
n �M2

m

þ 2
X
n

Z�1
n lnMn þ ln

�
Q

aðt1Þ
��

: (38)

Note that, because
P

nZ
�1
n ¼ �1, this is independent of the

units used to measure Q and the regulator masses, as long
as the same units are used in all logarithms.

Diagram II
By the usual rules of the ‘‘in-in’’ formalism, after

integrating over spatial coordinates, the contribution of
diagram II to the two-point function (33) is given by

GII
p ðtÞ ¼ ð2�Þ3

Z t

�1
dt1a

3ðt1ÞV 0000ð �’ðt1ÞÞ Imðu2pðtÞu�2p ðt1ÞÞ

� X
KNN0

Z�1
K

Z
d3quKNqðt1ÞuK�N0qðt1Þ: (39)

We again divide the range of integration over q � jqj into
the ranges q < Q and q � Q, where Q is chosen so
that Q=aðtÞ is much less than all regulator masses but

much greater than p=aðtÞ and Hðt0Þ and jV 00ð’ðt0ÞÞj1=2 for
all t0 � t1.
For q < Q we can ignore the regulators, and set K, N,

and N0 all equal to zero, with u00q just equal to the wave

function uq in the absence of regulators. This contribution

takes the form

GII;<Q
p ðtÞ¼ ð2�Þ3

Z t

�1
dt1a

3ðt1ÞV 0000ð �’ðt1ÞÞImðu2pðtÞu�2p ðt1ÞÞ

�
Z
q<Q

d3qjuqðt1Þj2: (40)

For q > Q the individual terms in Eq. (39) are quadrati-
cally divergent, so here we need an extended version of the
WKB approximation (30), in which we keep terms in u of

order ��3=2 and ��5=2 as well as ��1=2. This is complicated
by the presence of the potential term in Eq. (29), which
couples wave functions with different �s. We will deal
with this by considering the potential term in Eq. (29) as
a perturbation. Of course, V00ð �’Þ is not a perturbation; it is
of zeroth order in the loop-counting parameter g intro-
duced at the end of Sec. II. However, each insertion of
V00ð �’Þ in the loop in Diagram II lowers its degree of
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divergence by two units, so the only terms we need to
consider are those of zeroth and first order in V00ð �’Þ, which
in the absence of cancellations are quadratically and log-
arithmically divergent, respectively. Terms of higher order
in V00ð �’Þ are convergent even in the absence of cancella-
tions, and are therefore negligible.

To evaluate the terms in GII;>Q
p ðtÞ of zeroth order in

V 00ð �’Þ, we note that in the absence of the potential, uKNðt1Þ
is proportional to �KN:

uKNqðt1Þ ¼ �NKuNqðt1Þ; (41)

where

€u Nq þ 3H _uNq þ ðq2=a2ÞuNq þM2
NuNq ¼ 0: (42)

This contribution is

GII;>Q;0
p ðtÞ ¼ ð2�Þ3

Z t

�1
dt1a

3ðt1ÞV0000ð �’ðt1ÞÞ Imðu2pðtÞu�2p ðt1ÞÞ
X
N

Z�1
N

Z
d3qjuNqðt1Þj2: (43)

The integrand is given by an asymptotic expansion derived in the Appendix. For both q2=a2ðt1Þ andM2
N much greater than

both H2ðt1Þ and _Hðt1Þ, we have

juNqj2 ! 1

2�Nqa
3ð2�Þ3

�
1þ _H þ 2H2

2�2
Nq

þ ð _H þ 3H2ÞM2
N

4�4
Nq

� 5H2M4
N

8�6
Nq

�
; (44)

where, as before, �2
Nqðt1Þ ¼ ðq=aðt1ÞÞ2 þM2

N . The integral over q converges because
P

NZ
�1
N ¼ P

NZ
�1
N M2

N ¼ 0. The sum
over N receives contributions from terms where �N is a regulator field �n or the physical field �0 ¼ ’. Adding these
contributions gives

GII;>Q;0
p ðtÞ ¼ �

Z t

�1
dt1a

3ðt1ÞV 0000ð �’ðt1ÞÞ Imðu2pðtÞu�2p ðt1ÞÞ
�X

n

Z�1
n M2

n lnMn þ ð _Hðt1Þ þ 2H2ðt1ÞÞ
�
5

6
�X

n

Z�1
n lnMn

�

� Q2

a2ðt1Þ
� ð _Hðt1Þ þ 2H2ðt1ÞÞ ln

�
Q

aðt1Þ
��

: (45)

The regulator-dependent term arising from diagram II that are of first order in V00ð �’Þ can be calculated by applying
the rules of the ‘‘in-in’’ formalism a diagram like that of diagram II, but with a V 00 insertion in the loop. This gives

GII;>Q;1
p ðtÞ ¼ �ð2�Þ6

Z t

�1
dt1a

3ðt1ÞV 0000ð �’ðt1ÞÞ
Z t

�1
dt2a

3ðt2ÞV 00ð �’ðt2ÞÞ
X

KLMNM0N0
Z�1
K Z�1

L

Z
q>Q

d3qRefu2pðtÞu�pðt1Þu�pðt1Þ

� ½�ðt1 � t2ÞuKMqðt1ÞuK�M0qðt2ÞuLNqðt1ÞuL�N0qðt2Þ þ 1 $ 2�g: (46)

(This contribution is produced only by terms in which both interactions come from the time-ordered product in Eq. (13), or
both from the anti-time-ordered product. As in the case of diagram I, the other terms make a negligible contribution to the
part of the integral with q > Q.) The individual terms in Eq. (46) are only logarithmically divergent, so we can evaluate this
using the leading term (30) in the WKB approximation. Following the same limiting procedure as for diagram I, we find

GII;>Q;1
p ðtÞ ¼ �

Z t

�1
dt1a

3ðt1ÞV 0000ð �’ðt1ÞÞV 00ð �’ðt1ÞÞ Im½u2pðtÞu�2p ðt1Þ�

�
�X
mn

Z�1
m Z�1

n

M2
n lnMn �M2

m lnMm

M2
n �M2

m

þ 2
X
n

Z�1
n lnMn þ ln

�
Q

aðt1Þ
��

: (47)

Total 1PI Amplitude
The complete contribution of the two one-particle irreducible diagrams is given by the sum of the terms (35), (38), (40),

(45), and (47):
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G1PI
p ðtÞ ¼ �2ð2�Þ6

Z t

�1
dt1a

3ðt1ÞV 000ð �’ðt1ÞÞ
Z t1

�1
dt2a

3ðt2ÞV 000ð �’ðt2ÞÞRefu2pðtÞu�pðt1Þu�pðt2Þ

�
Z
q<Q

d3quqðt1Þu�qðt2Þuq0 ðt1Þu�q0 ðt2Þg þ ð2�Þ6
Z t

�1
dt1a

3ðt1ÞV 000ð �’ðt1ÞÞ

�
Z t

�1
dt2a

3ðt2ÞV000ð �’ðt2ÞÞjupðtÞj2 Re
�
u�pðt1Þupðt2Þ

Z
d3qu�qðt1Þu�q0 ðt1Þuqðt2Þuq0 ðt2Þ

	

þ ð2�Þ3
Z t

�1
a3ðt1ÞV0000ð �’ðt1ÞÞ Imfu2pðtÞu�pðt1Þg

Z
q<Q

d3qjuqðt1Þj2 þ �
Z t

�1
dt1a

3ðt1Þ½V 000ð �’ðt1ÞÞ2

þ V 0000ð �’ðt1ÞÞV 00ð �’ðt1ÞÞ� Imfu2pðtÞu�2p ðt1Þg
�X
mn

Z�1
n Z�1

m

�
M2

n lnMn �M2
m lnMm

M2
n �M2

m

�
þ 2

X
n

Z�1
n lnMn þ ln

�
Q

aðt1Þ
��

þ �
Z t

�1
dt1a

3ðt1ÞV 0000ð �’ðt1ÞÞ Imfu2pðtÞu�2p ðt1Þg
�X

n

Z�1
n M2

n lnMn � Q2

a2ðt1Þ
þ ð _Hðt1Þ

þ 2H2ðt1ÞÞ
�
5

6
�X

n

Z�1
n lnMn � ln

�
Q

aðt1Þ
���

: (48)

To repeat, q0 � jq� pj, andQ is any wave number for whichQ2=a2ðtÞ is much larger thanH2 and V00ð �’Þ and p2=a2ðtÞ and
much less than all regulator masses. In this range, the Q-dependence of the first and third terms is canceled by the explicit
Q-dependence of the fourth and fifth terms.

VI. CANCELING THE REGULATORS

The terms in the counterterm (17) that are quadratic in the fluctuation make a contribution to the interaction-picture
Hamiltonian of the form

�H
quad
I ðtÞ ¼ 1

2
GðtÞ

Z
d3x�’2ðx; tÞ; (49)

where

G ¼ �a3½AV0000ð �’Þ þ 2B½V 0002ð �’Þ þ V 00ð �’ÞV 0000ð �’Þ� � 6Cð _H þ 2H2ÞV 000ð �’Þ�: (50)

According to the rules of the ‘‘in-in’’ formalism, this makes a contribution to the two-point function (33) given by

�G1PI
p ðtÞ ¼ 2ð2�Þ3

Z t

�1
dt1Gðt1Þ Imfu2pðtÞu�2p ðt1Þg: (51)

Comparing Eqs. (50) and (51) with (48), we see that in order to cancel the dependence of the one-particle irreducible two-
point function on the regulator properties, we need

A ¼ 1

16�2

�X
n

Z�1
n M2

n lnMn þ�2
A

�
(52)

B ¼ 1

32�2

�X
nm

Z�1
n Z�1

m

�
M2

n lnðMn=�BÞ �M2
m lnðMm=�BÞ

M2
n �M2

m

�
þ 2

X
n

Z�1
n lnðMn=�BÞ

�
(53)

C ¼ � 1

96�2

�
5

6
�X

n

Z�1
n ln

�
Mn

�C

��
: (54)

(The first term in Eq. (52) does not depend on the units used for regulator masses in the logarithm, becauseP
nZ

�1
n M2

n ¼ 0.) Here �A, �B, and �C are unknown mass parameters. The presence of these parameters should not be
seen as a drawback of this method; they reflect the real freedom we have to add finite regulator-independent terms to the
original Lagrangian proportional to V00ð’Þ or V002ð’Þ or RV 00ð’Þ.

Adding Eqs. (48) and (51) gives our final answer for the one-particle-irreducible part of the two-point function
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G1PI
p ðtÞ þ�G1PI

p ðtÞ ¼
�
�2ð2�Þ6

Z t

�1
dt1a

3ðt1ÞV 000ð �’ðt1ÞÞ
Z t1

�1
dt2a

3ðt2ÞV000ð �’ðt2ÞÞ

� Re

�
u2pðtÞu�pðt1Þu�pðt2Þ

Z
q<Q

d3quqðt1Þu�qðt2Þuq0 ðt1Þu�q0 ðt2Þ
	

þ �
Z t

�1
dt1a

3ðt1ÞV 000ð �’ðt1ÞÞ2 Imfu2pðtÞu�2p ðt1Þg ln
�

Q

aðt1Þ�B

��
þ ð2�Þ6

Z t

�1
dt1a

3ðt1ÞV 000ð �’ðt1ÞÞ

�
Z t

�1
dt2a

3ðt2ÞV000ð �’ðt2ÞÞjupðtÞj2 Re
�
u�pðt1Þupðt2Þ

Z
d3qu�qðt1Þu�q0 ðt1Þuqðt2Þuq0 ðt2Þ

	

þ
�
ð2�Þ3

Z t

�1
dt1a

3ðt1ÞV 0000ð �’ðt1ÞÞ Imfu2pðtÞu�pðt1Þg
Z
q<Q

d3qjuqðt1Þj2

þ �
Z t

�1
dt1a

3ðt1ÞV 0000ð �’ðt1ÞÞ Imfu2pðtÞu�2p ðt1Þg
�
� Q2

a2ðt1Þ
þ V 00ð �’ðt1ÞÞ ln

�
Q

aðt1Þ�B

�
� ð _Hðt1Þ

þ 2H2ðt1ÞÞ ln
�

Q

aðt1Þ�C

�
þ�2

A

	�
: (55)

For Q2=a2ðtÞ much larger than H2, _H, jV 00ð �’Þj, and
p2=a2ðtÞ, all Q dependence cancels separately in the terms
in square brackets on the first three lines and on the last
three lines. In this form, the two-point function (including
also the one-particle-reducible contribution discussed in
the following section) can be calculated even if all
we have for the wave functions uqðt0Þ is a numerical
approximation.

VII. ONE-PARTICLE-REDUCIBLE DIAGRAMS

We now turn to the one-particle-reducible diagram III.
In this diagram the two external lines come together in a
three-field vertex, with the third line terminating either in a
three-field vertex to which is attached a scalar loop or a
one-field vertex arising from the part of the one-loop
counterterm (17) that is linear in �’. This part of the
counterterm is

�Hlin
I ðtÞ ¼ F ðtÞ

Z
d3x�’ðx; tÞ; (56)

with F ðtÞ given by

F ¼ �a3½AV000ð �’Þ þ 2BV 00ð �’ÞV 000ð �’Þ
� Cð6H2 þ 12 _HÞV000ð �’Þ�: (57)

This diagram requires special treatment, because the line
connecting the two vertices carries zero three-momentum.
For this reason, here we will delay integrating over the
difference x of the spatial coordinate of the two vertices.
The full one-particle-reducible contribution to the two-
point function (33) is then

G1PR
p ðtÞ ¼ 2ð2�Þ3 Re

Z t

�1
dt1a

3ðt1ÞV000ð �’ðt1ÞÞu2pðt1Þu�2p ðt1Þ

�
Z t

�1
dt2Iðt2Þ

Z
d3x½�hTf�’ð0; t1Þ�’ðx; t2Þgi0

þh�’ðx; t1Þ�’ð0; t2Þi0�; (58)

where

Iðt2Þ � 1

2
a3ðt2ÞV 000ð �’ðt2ÞÞ

Z
d3q

X
KNN0

uKNqðt2ÞuK�
N0qðt2Þ

þF ðt2Þ: (59)

In the first term in the square brackets in Eq. (58), both
vertices come from the time-ordered product in Eq. (13),
while in the second term, vertex 1 comes from the time-
ordered product and vertex 2 from the anti-time-ordered
product; in the complex conjugate time-ordered and anti-
time-ordered products are interchanged.
There is no problem here with ultraviolet divergences

coming from the integral over q. Following the same
procedure as in our treatment of diagram II in the preceed-
ing two sections, we have

Iðt2Þ ¼ 1

2
a3ðt2ÞV 000ð �’ðt2ÞÞ

�Z
q<Q

d3qjuqðt2Þj2

þ 1

8�2

�
� Q2

a2ðt2Þ
þ V00ð �’ðt2ÞÞ ln

�
Q

aðt2Þ�B

�

� ð _Hðt2Þ þ 2H2ðt2ÞÞ ln
�

Q

aðt2Þ�C

�
þ�2

AÞ
�
; (60)

where Q is any wave number with Q2=a2ðtÞ much larger
than _Hðt0Þ and H2ðt0Þ and jV00ð �’ðt0ÞÞj for all t0 � t. All
dependence of Q cancels in this limit.
But there is an apparent problem with infrared effects.

Equation (58) involves the integralsZ
d3xhTf�’ð0; t1Þ�’ðx; t2Þgi0 and

Z
d3xh�’ðx; t2Þ�’ð0; t1Þi0:

When we use Eq. (9) for the interaction-picture fields, the
integrals over x pick out the value zero for the wave
number q. But the wave function uqðtÞ is not defined in
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the case q ¼ 0, because in this case there is of course no
time early enough so that q2=a2ðtÞ is much larger than
H2ðtÞ and jV 00ð �’ðtÞÞj. For the same reason, the argument
for the Bunch-Davies condition �ðqÞ�0 ¼ 0 breaks down
for q ¼ 0.

Fortunately, we need the integrals over x only in the
combinationZ

d3x½�hTf�’ð0; t1Þ�’ðx; t2Þgi0 þ h�’ðx; t2Þ�’ð0; t1Þi0�
¼ i�ðt1 � t2ÞGðt1; t2Þ (61)

where

Gðt1; t2Þ � i
Z

d3xh½�’ð0; t1Þ; �’ðx; t2Þ�i0: (62)

Despite the ambiguity in u0ðtÞ and the inapplicability of the
Bunch-Davies condition for q ¼ 0, the functionGðt1; t2Þ is
perfectly well-defined. It is the solution of the second-order
differential equation�

d2

dt21
þ 3Hðt1Þ d

dt1
þ V 00ð �’ðt1ÞÞ

�
Gðt1; t2Þ ¼ 0; (63)

subject to initial conditions dictated by the commutation
relations (7) and (8):

Gðt2; t2Þ ¼ 0; (64)

�
d

dt1
Gðt1; t2Þ

�
t1¼t2

¼ a�3ðt2Þ: (65)

The only property of the vacuum state used here is that it
has zero momentum and unit norm. The general solution is

Gðt1; t2Þ ¼ uðt1Þuðt2Þ
Z t1

t2

dt

a3ðtÞu2ðtÞ ; (66)

where uðtÞ is any solution of the q ¼ 0 wave equation

€uþ 3H _uþ V 00ð �’Þu ¼ 0; (67)

that does not vanish between t1 and t2. (For instance, for a
general potential and a de Sitter metric, we can take u ¼ _�’,
which does not vanish in typical inflationary models.)
Putting this together, we have the one-particle-reducible
contribution to the two-point function (33):

G1PR
p ¼ �2ð2�Þ3

Z t

�1
dt1a

3ðt1ÞV 000ð �’ðt1ÞÞ Imfu2pðtÞu�2k ðt1Þg

�
Z t1

�1
dt2Gðt1; t2ÞIðt2Þ: (68)

VIII. THE ONE-POINT FUNCTION

In Sec. II we defined �’ as the departure of the field ’
from its classical value �’, not from its mean value, so we
must expect �’ to have a nonvanishing expectation value.

As we will see, this is closely related to quantities calcu-
lated in the previous section.
According to the general diagrammatic rules, the vac-

uum expectation value of the Heisenberg picture scalar
field fluctuation in one-loop order is

h�’Hðy; tÞione loopVAC ¼ �i
Z

d3x1
Z t

�1
dt1h�’ðy; tÞ

� �’ðx1; t1Þi0Iðt1Þ þ c:c:; (69)

with I given by Eq. (60) representing the insertion of a
loop or a counterterm at the end of the single incoming
line. In the term shown in Eq. (69) the single vertex comes
from the time-ordered product in Eq. (13); in its complex
conjugate, the vertex comes from the anti-time-ordered
product. The two terms together involve the commutator
of the field perturbations, so the one-point function may be
written in terms of the function G defined by Eq. (62):

h�’Hðy; tÞione loopVAC ¼ �
Z t

�1
dt1Gðt; t1ÞIðt1Þ: (70)

We see now that the contribution (68) of the one-particle-
reducible diagrams to the two-point function may be sim-
ply expressed in terms of the mean fluctuation:

G1PR
p ðtÞ ¼

Z t

�1
dt1a

3ðt1ÞV 000ð �’ðt1ÞÞ

� h�’Hð0; t1Þione loopVAC Imfu2kðtÞu�2k ðt1Þg: (71)

This is the same as would be given by adding an interaction
obtained by shifting �’ by its expectation value:

�HIðtÞ ¼ 1

2
a3ðtÞV 000ð �’ðtÞÞh�’Hð0; tÞione loopVAC

�
Z

d3x�’2ðx; tÞ: (72)

IX. INFRARED DIVERGENCES?

Although the model treated in this paper is intended to
provide an illustration of a method of dealing with ultra-
violet divergences, it may be of some interest to look into
the possible presence of infrared divergences in this model.
For any fixed comoving wave number q, the evolution of
the wave function uqðtÞ defined by Eqs. (11) and (12)

becomes q-independent once q=aðtÞ drops below HðtÞ,
so the behavior of the wave function for fixed t and
q ! 0 is determined by the behavior of V 00ð �’ðt0ÞÞ and
Hðt0Þ for t0 ! 0. We can distinguish two cases in which
this problem is greatly simplified.
Expansion-dominated: If jV00ð �’ðt0ÞÞj 	 H2ðt0Þ for

t0 ! 0, then as long as this inequality is satisfied, we can
drop the potential term in Eq. (11), which then becomes
the same as the differential equation for tensor fluctuations.
It is well known [10] in this case that if _Hðt0Þ ! �	H2ðt0Þ
as t0 ! 0, then the wave function uqðt1Þ at a fixed time t1
goes as q�3=2�	 for q=aðt1Þ 	 Hðt1Þ. This q-dependence
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is unaffected even if H2ðtÞ drops below jV 00ð �’ðtÞÞj at some
time after q=a drops below H, since the evolution of the
wave function at such times is q-independent. So (taking
	 < 1) the integral over q of the product uqðt1Þu�qðt2Þ in the
propagator will be infrared divergent if and only if 	 � 0.
(We have been assuming that as time passes fluctuations
leave the horizon rather than entering it, so this discussion
is limited to the case 	 < 1. For the case 	 � 1, see Ref.
[11].) There is no infrared divergence in the unlikely event
that the expansion rate increases at very early times.

Potential-dominated: If jV00ð �’ðt0ÞÞj 
 H2 for t0 ! 0,
then as long as this inequality is satisfied, Eqs. (11) and
(12) have a WKB solution

uqðt0Þ ’ 1

ð2�Þ3=2a3=2ðt0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2!ðt0Þp exp

�
i
Z T

t0
!ðt00Þdt00

�
;

(73)

where T is arbitrary, and

!ðt0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

q

aðt0Þ
�
2 þ V00ð �’ðt0ÞÞ

s
: (74)

Once q=aðt0Þ falls below jV00ð �’ðt0ÞÞj, the wave function
uqðt0Þ becomes independent of q, aside from a q-dependent

phase that is independent of t0. Later, H2ðt0Þ may or may
not become comparable to or greater than jV 00ð �’ðt0ÞÞj, but
this cannot affect the q-dependence of the wave function.
Therefore when the potential dominates at very early
times, the product uqðt1Þu�qðt2Þ in the propagator at fixed

times t1 and t2 becomes q-independent for q ! 0, and
there is no infrared divergence when we integrate the
propagator over q.

X. FURTHER ISSUES

The method described here can of course be applied in
this model to all one-loop correlation functions. The same
counterterms, given by Eqs. (16) or (17) and (52)–(54) will
remove dependence on the regulator properties, because
the only ultraviolet divergences in one-loop one-particle-
irreducible diagrams occur in the one-point and two-point
functions, which we have already discussed in Secs. V
through VIII. The only ultraviolet divergences in higher
correlation functions arise in diagrams in which trees are
attached to loops at either one or two vertices, and the
divergences in these loops are just those with which we
have dealt. Multiloop graphs are more challenging.

Beyond the simple model discussed here, of a scalar
field in a fixed metric, there is the more realistic problem of
scalar and tensor fluctuations in a theory of coupled scalar
and gravitational fields. This is more complicated, because
even in one-loop order there are quartic as well as quadratic
and logarithmic ultraviolet divergences. That alone should
not prevent the method described here from being appli-
cable to realistic theories, at least for one-loop graphs,

since divergences of any order can be eliminated by in-
cluding enough regulator fields.
A more serious problem is the difficulty of introducing

regulator fields for the graviton propagator. (This problem
is of course avoided in theories with large numbers of
matter fields, where matter loops dominate over graviton
loops.) If the only vertices that involve gravitons have a
single graviton line attached to matter lines, then we can
introduce regulators for the graviton propagator by cou-
pling heavy tensor fields with suitable Z-factors to the
energy-momentum tensor. But it is not clear how to deal
with graphs containing vertices to which are attached two
or more graviton lines.
This raises the question whether Pauli-Villars regulari-

zation is really necessary. The final results (55) and (58) for
the one-particle irreducible and reducible parts of the two-
point function could almost have been guessed without
introducing regulator fields. It would only be necessary
to introduce an ultraviolet cutoff at a sufficiently large
comoving wave number Q, calculate the Q-dependence
of the resulting two-point function by using the WKB
methods described in this paper, and then introduce a
counterterm of form (16), with A, B, and C chosen as
functions of Q to cancel the Q-dependence found in this
way. (This is not the adiabatic regularization procedure
mentioned in Sec. IV, even though both procedures use
WKB methods, because with a cutoff at Q only the part of
the integrand for internal wave numbers larger than Q is
affected.) Of course, this procedure leaves finite terms in A,
B, andC undetermined, but they are undetermined anyway,
since they represent the real possibility of changing the
original Lagrangian by adding corrections to the potential
and adding a coupling of the scalar field to the spacetime
curvature. The cutoff introduced in this way would not
respect general covariance, but apparently one would get
the correct results (55) and (68) anyway.
There is something mysterious about this. The actual

calculations in this paper were done for a fixed Robertson-
Walker metric, Eq. (2). They would have been done in the
same way by someone who had never heard of general
covariance. Yet the infinities turned out to depend onH and
_H only in the combination _H þ 2H2, proportional to the
scalar spacetime curvature. We can understand this for a
generally covariant regularization procedure, like Pauli-
Villars regularization, because in that case general covari-
ance is broken only by the background, which presumably
does not affect ultraviolet divergences. But how do these
calculations know that they are supposed to give infinities
that can be canceled by counterterms that are generally
covariant, when we use a noncovariant cutoff on the inter-
nal wave number instead of introducing regulator fields?
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APPENDIX: THE EXTENDED
WKB APPROXIMATION

We wish to find an asymptotic expression for the solu-
tion uqðtÞ of the differential equation

€u qðtÞ þ 3HðtÞ _uqðtÞ þ ðq2=a2ðtÞÞuqðtÞ þM2uqðtÞ ¼ 0

(A1)

subject to the initial condition, that for t ! 0,

uqðtÞ ! 1

ð2�Þ3=2aðtÞ ffiffiffiffiffiffi
2q

p exp

�
iq

Z T

t
dt0=aðt0Þ

�
: (A2)

(The effects of the potential are treated separately in
Sec. V.) We are interested in the behavior of uqðtÞ at a

fixed time t, when q=aðtÞ is much larger than HðtÞ, but not
necessarily greater than M.

As an ansatz, we take

uqðtÞ ! 1

ð2�Þ3=2a3=2ðtÞ ffiffiffiffiffiffiffiffiffiffiffi
2�ðtÞp exp

�
i
Z T

t
�ðt0Þdt0

�

�
�
1þ fðtÞ

�ðtÞ þ
gðtÞ
�2ðtÞ þOð��3Þ

�
(A3)

with f, g, etc. of zeroth order in q and M, and

�ðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=a2ðtÞ þM2

q
: (A4)

This clearly satisfies the initial condition (A2). The differ-

ential equation (A1) is satisfied by (A3) to order �3=2 and

�1=2, while the terms in (A1) of order ��1=2 (countingM as
being the same order as �) give

d

dt

�
f

�

�
¼ i

2�

�
_H þ 2H2 þ 3H2M2

2�2
� 5M4H2

4�4
þ _HM2

2�2

�
:

(A5)

The terms in (A1) of order ��3=2 are more complicated,
but fortunately we only need these terms in juqj2, and for

this purpose we can avoid having to work out these terms
by using the time-dependence of the Wronskian:

u�q _uq � uq _u
�
q / 1

a3
: (A6)

Using (A3) gives

2ð2�Þ3a3ðu�q _uq � uq _u
�
qÞ ¼ �2i� 4iRef

�
þ 2i

�

d

dt

�
Imf

�

�

� 2i
jfj2
�2

� 4iReg

�2
þOð��3Þ:

(A7)

Now, Eq. (A5) shows that d=dtðf=�Þ is imaginary, so
since fðtÞ=�ðtÞ vanishes for t ! 0, fðtÞ=�ðtÞ and hence fðtÞ
is imaginary for all t. The first term on the right-hand side
of Eq. (A7) is constant, and the second term vanishes, so
the constancy of this quantity requires the vanishing of the
terms of order ��2:

jfj2 þ 2Reg ¼ �
d

dt

�
Imf

�

�
: (A8)

But this is just what we need, for Eq. (A3) (with f imagi-
nary) gives

juqðtÞj2 ! 1

2�ðtÞð2�Þ3a3ðtÞ
�
1þ jfðtÞj2 þ 2RegðtÞ

�2ðtÞ
�
:

(A9)

Together with Eqs. (A5) and (A8), this gives the result used
in evaluating diagram II in Sec. V.

juqj2 ! 1

2�a3ð2�Þ3
�
1þ _H þ 2H2

2�2
þ ð _H þ 3H2ÞM2

4�4

� 5H2M4

8�6

�
: (A10)
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