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In the standard cosmological model, the dimming of distant Type Ia supernovae is explained by

invoking the existence of repulsive ‘‘dark energy’’ which is causing the Hubble expansion to accelerate.

However, this may be an artifact of interpreting the data in an (oversimplified) homogeneous model

universe. In the simplest inhomogeneous model which fits the SNe Ia Hubble diagram without

dark energy, we are located close to the center of a void modeled by a Lemaı́tre-Tolman-Bondi metric.

It has been claimed that such models cannot fit the cosmic microwave background (CMB) and other

cosmological data. This is, however, based on the assumption of a scale-free spectrum for the primordial

density perturbation. An alternative physically motivated form for the spectrum enables a good fit to

both SNe Ia (Constitution/Union2) and CMB (WMAP 7-yr) data, and to the locally measured

Hubble parameter. Constraints from baryon acoustic oscillations and primordial nucleosynthesis are

also satisfied.
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I. INTRODUCTION

The simplest cosmological model consistent with the
spatial flatness expectation of inflation is the Einstein–de
Sitter (EdS) universe with �m ¼ 1 and �K ¼ 0. This
formed the basis of the ‘‘standard cold dark matter’’
(SCDM) cosmology which provided a good description
of the large-scale structure of the Universe [1,2]. It was
noted, however, that it is inconsistent with the angular
power spectrum of the clustering of galaxies in the
Automated Plate Measurement galaxy survey [3].
Subsequently, large-angle anisotropies in the cosmic mi-
crowave background (CMB) were detected by COBE [4],
thus providing an absolute normalization of the amplitude
of primordial density perturbations. The SCDM model
assumes that the power spectrum of the primordial density
perturbations has the scale-invariant form: PðkÞ � j�kj2 /
kn, with n ¼ 1 and the predicted amplitude of matter
fluctuations on small (cluster and galaxy) scales is then
too high relative to observations [5]. However, if the epoch
of matter-radiation equality is delayed by lowering the
CDM density to �m � 0:3, then the peak in the power
spectrum of density fluctuations is shifted to larger scales,
thus decreasing the power on small scales and enabling a
match to the data. To maintain spatial flatness a nonzero
value of the cosmological constant was invoked,
with �� 2H2

0 corresponding to �� � �=3H2
0 � 0:7.

Subsequently, it was also observed that Type Ia supernovae
(SNe Ia) at redshift z ’ 0:5 appear �25% fainter than
expected in an EdS universe [6,7]. Together with measure-
ments of galaxy clustering in the 2dF survey [8] and of
cosmic microwave (CMB) anisotropies by WMAP [9],
this changed the ‘‘standard cosmological model’’ to an
accelerating universe with a dominant cosmological con-
stant term, which has been widely interpreted as a mani-
festation of the physical vacuum or ‘‘dark energy.’’ This

‘‘concordance’’�CDM cosmology (with�� ’ 0:7,�m ’
0:3, h ’ 0:7) has proved to be consistent with other cos-
mological data, in particular, baryonic acoustic oscillations
detected in the SDSS [10] and measurements of mass
fluctuations from clusters and weak lensing [11]. Further
observations of both SNe Ia [12–14] and theWMAP 3-year
results [15] have continued to firm up the model.
Embarrassingly, however, this model lacks a physical

basis. There are two serious problems with the notion that
the Universe is dominated by some form of vacuum energy.
The first is the notorious fine-tuning problem of vacuum
fluctuations in quantum field theory—the energy scale of
the inferred cosmological energy density is �10�12 GeV,
which is many orders of magnitude below the energy
scale of �102 GeV of the standard model of particle

physics, not to mention the Planck scale of MP �
ð8�GNÞ�1=2 ’ 2:4� 1018 GeV [16]. The second is the
equally acute coincidence problem: since��=�m evolves
as the cube of the cosmic scale factor aðtÞ, there is no
reason to expect it to be of Oð1Þ today, yet this is suppos-
edly the case.
Interestingly the WMAP results alone do not require

dark energy if the assumption of a scale-invariant
primordial power spectrum is relaxed. This is well justified
given our present ignorance of the physics underlying
inflation which is believed to have created these fluctua-
tions. It has been demonstrated [17,18] that the tempera-
ture angular power spectrum of an EdS universe with
h ’ 0:44 matches the WMAP data well if the primordial
power is enhanced by �30% in the region of the second
and third acoustic peaks (corresponding to spatial scales
of k� 0:01–0:1h Mpc�1). This alternative model with no
dark energy has a slightly better �2 for the fit to WMAP-3
data than the concordance ‘‘power-law �CDM model’’
and, in spite of having more parameters, has an equal
value of the Akaike information criterion used in model
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selection. Other EdS models with a broken power-law
spectrum [19] have also been shown to fit the WMAP
data. Moreover, an EdS universe can fit measurements of
the galaxy power spectrum if it includes a �10% compo-
nent of hot dark matter in the form of massive neutrinos of
mass�0:5 eV [17–19]. Clearly the main evidence for dark
energy comes from the SNe Ia Hubble diagram.

It should be kept in mind that the acceleration of the
expansion rate is not directly measured but inferred from
measurements of the apparent magnitudes and redshifts of
SNe Ia. Indeed, all the evidence for dark energy is geo-
metrical, i.e., based on interpreting the data in an assumed
homogeneous model universe. So far there is no convinc-
ing observation of dynamical manifestations, e.g., the ‘‘late
integrated Sachs-Wolfe effect’’. In fact, what is actually
inferred from observations is not an energy density, just a
value of OðH2

0Þ for the otherwise unconstrained � term in

the Friedmann equation. It has been suggested that this
may simply be an artifact of interpreting imprecisely mea-
sured cosmological data in the oversimplified framework
of a universe assumed to be described by the exactly
isotropic and homogeneous Friedmann-Robertson-Walker
(FRW) metric, in which H0 � 10�42 GeV� ð1028 cmÞ�1

is the only scale [20]. Note that the nonzero value of
�� � �=3H2

0 is inferred from the ‘‘cosmic sum rule’’

�m þ�K þ�� ¼ 1, which is just a restatement of the
Friedmann equation. If, however, this equation does not
describe the real Universe exactly, and in order to do so
other nonzero terms ought to have been added to the sum
rule, then we may mistakenly infer a value for�� of Oð1Þ
if these other terms are in fact important. For example, in
an inhomogeneous universe averaged quantities satisfy
modified Friedmann equations which contain extra terms
since the operations of spatial averaging and time evolution
do not commute [21]. These ‘‘backreaction’’ terms depend
upon the variance of the local expansion rate and hence
increase as inhomogeneities develop. However, although
backreaction behaves just like a cosmological constant,
whether its expected magnitude can indeed account for
the apparent cosmological acceleration is debated and
remains an open question at present [22–31].

Another possibility is that inhomogeneities affect light
propagation on large scales and cause the luminosity dis-
tance–redshift relation to resemble that expected for an
accelerating universe. This has been investigated for a
‘‘Swiss-cheese’’ universe in which voids modeled by
patches of Lemaı́tre-Tolman-Bondi (LTB) space-time
are distributed throughout a homogenous background.
However, the results depend on the specific model: some
authors find the change in light propagation to be negli-
gible because of cancellation effects [32–35], whereas
others claim it can partly mimic dark energy [36–38]. It
may be that observers preferentially choose sky regions
with underdense foregrounds when studying distant ob-
jects such as SNe Ia, so the expansion rate along the line

of sight is then greater than average; such a selection effect

may also allow an inhomogeneous universe to fit the ob-

servations without dark energy [39].
In this paper we are mainly interested in a ‘‘local void’’

(sometimes referred to as ‘‘Hubble bubble’’) as an expla-

nation for dark energy; to prevent an excessive CMB

dipole moment due to our peculiar velocity we must be

located near the center of the void. An underdense void

expands faster than its surroundings, thus younger super-

novae inside the void would be observed to be receding

more rapidly than older supernovae outside the void. Under

the assumption of homogeneity this would lead to the

mistaken conclusion that the expansion rate of the

Universe is accelerating, although both the void and the

global Universe are actually decelerating. The local void

scenario has been investigated by several authors using a

variety of methods [40–65]. By modelling the void as an

open FRW region joined by a singular mass shell to a FRW

background, it was found that a void with radius 200 Mpc

can fit the supernova Hubble diagram without dark energy

[46]. It was also shown that an LTB region which reduces

to a EdS cosmology with h ¼ 0:51 at a radius of 1.4 Gpc

can match both the supernova data and the location of

the first acoustic peak in the CMB [51]. Ref. [59] attempted

to find the smallest possible void consistent with the cur-

rent supernova results—their LTB-based ‘‘minimal void’’

model has a radius of 350 Mpc. Unfortunately, since this

model is equivalent to an EdS universe with h ¼ 0:44
outside the void where the SDSS luminous red galaxies

lie, as it stands it is unable to fit the measurements of the

baryonic acoustic oscillation (BAO) peak at z� 0:35 [66].

LTB models of much larger voids were considered in

Ref. [62] (with radii of 2.3 Gpc and 2.5 Gpc and Hubble

contrasts of 0.18 and 0.30, respectively) and it was dem-

onstrated they can fit the BAO data, as well as the SNe Ia

data and the location of the first CMB peak. Ref. [64] found

the best fit to the SNe Ia data for a void of radius 1:3�
0:2 Gpc, and Ref. [65] confirmed that such a void provides

an excellent fit to the ‘‘Union’’ data set of SNe Ia.
In this paper we demonstrate that, contrary to the

results obtained in Refs. [67–70], a Gpc-sized void can

simultaneously fit the SNe Ia data as well as the full CMB

power spectrum, while also satisfying constraints from

local Hubble measurements, primordial nucleosynthesis,

and the BAO data, if the primordial power spectrum is not

assumed to be nearly scale-invariant. The layout of the

paper is as follows. In Sec. II we summarize the general

relativistic framework for LTB models and describe the

characterization of the void. In Sec. III we discuss the form

of the primordial power, and present a physical model with

a primordial power spectrum that is not scale-free. In order

to compare observables in the void model to existing

cosmological data, some formalism needs to be developed.

This is done in Sec. IV, and the statistical approach is
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discussed in Sec. V. Finally, Sec. VI presents the main
results of the paper.

II. LTB VOID MODELS

A. The metric and solution

We model the void as an isotropic, radially inhomoge-
neous universe described by the LTB metric:

ds2 ¼ �c2dt2 þ A02ðr; tÞ
1þ KðrÞdr

2 þ A2ðr; tÞd�2; (1)

where a prime denotes the partial derivative with respect
to coordinate distance r, and the curvature KðrÞ is a free
function, bounded by K < 1. This reduces to the
usual FRW metric in the limit where Aðr; tÞ ! aðtÞr and
KðrÞ ! �r2.

We define two Hubble rates:

H? �
_Aðr; tÞ
Aðr; tÞ ; Hk �

_A0ðr; tÞ
A0ðr; tÞ ; (2)

where an overdot denotes the partial derivative with respect
to t. The analogue of the Friedmann equation is

H2
? ¼ FðrÞ

A3ðr; tÞ þ
c2KðrÞ
A2ðr; tÞ ; (3)

where FðrÞ> 0 is another free function which determines
the local energy density through

8�G�ðr; tÞ ¼ F0ðrÞ
A2ðr; tÞA0ðr; tÞ : (4)

We define dimensionless density parameters �MðrÞ and
�KðrÞ such that

FðrÞ ¼ H2
0ðrÞ�MðrÞA3

0ðrÞ; (5)

and

c2KðrÞ ¼ H2
0ðrÞ�KðrÞA2

0ðrÞ; (6)

where H0ðrÞ and A0ðrÞ are the values of H?ðr; tÞ and
Aðr; tÞ, respectively, at the present time t ¼ t0. The
Friedmann equation then becomes [71]:

H2
? ¼ H2

0

�
�M

�
A0

A

�
3 þ�K

�
A0

A

�
2
�
; (7)

so �MðrÞ þ�KðrÞ ¼ 1. This equation can be integrated
from the time of the Big Bang, tB ¼ tBðrÞ, to yield the age
of the Universe at any given ðr; tÞ:

t� tBðrÞ ¼ 1

H0ðrÞ
Z A=A0

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�MðrÞx�1 þ�KðrÞ

p : (8)

We thus have two functional degrees of freedom, in�MðrÞ
and tBðrÞ, which can be chosen as desired. (The third
function, A0ðrÞ, corresponds to a gauge mode and we
choose to set A0ðrÞ ¼ r.) A spatially varying tB corre-
sponds to a decaying mode [72], so for simplicity we set
tB ¼ 0 everywhere, so that at the current time t0:

H0ðrÞ ¼

8>>>>>><
>>>>>>:

�
ffiffiffiffiffiffiffiffiffi
��K

p
þ�Msin

�1

ffiffiffiffiffiffiffiffi
��K

�M

q
t0ð��KÞ3=2 ; �K < 0;

2
3t0

; �K ¼ 0;
ffiffiffiffiffiffi
�K

p
��Msinh

�1

ffiffiffiffiffi
�K
�M

q
t0�

3=2
K

; �K > 0:

(9)

The void model can then be specified by the choice of one
free function, which we take to be �MðrÞ, and a constant
H � H0ð0Þ which determines the local Hubble rate at the
center (and is equivalent to choosing t0). Note that both
at the center of the void and far outside the void, the
definition of �MðrÞ reduces to the standard FRW density
parameter �m.
The solution to Eq. (7) for general r and t can be given in

parametric form for the different values of�KðrÞ (or KðrÞ)
as follows [42]:
(i) for �KðrÞ> 0:

A ¼ �MðrÞA0ðrÞ
2�KðrÞ ðcosh�� 1Þ; (10a)

H0t ¼ �MðrÞ
2�3=2

K ðrÞ ðsinh�� �Þ; (10b)

(ii) for �KðrÞ ¼ 0:

A ¼ 1

2
ð18�MðrÞÞ1=3ðH0tÞ2=3A0ðrÞ; (11)

(iii) for �KðrÞ< 0:

A ¼ �MðrÞA0ðrÞ
2j�KðrÞj ð1� cosuÞ; (12a)

H0t ¼ �MðrÞ
2j�KðrÞj3=2

ðu� sinuÞ: (12b)

Light travels to an observer at the center of the void
along null radial incoming geodesics described by [42]:

dt

dz
¼ � 1

ð1þ zÞHkðzÞ ; (13a)

dr

dz
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ KðrÞp

ð1þ zÞA0ðzÞHkðzÞ ; (13b)

where HkðzÞ ¼ HkðrðzÞ; tðzÞÞ, etc. The angular diameter

distance at redshift z is then given by

dAðzÞ ¼ AðrðzÞ; tðzÞÞ; (14)

and the luminosity distance by

dLðzÞ ¼ ð1þ zÞ2AðrðzÞ; tðzÞÞ: (15)

All observable quantities along the light cone can be
calculated from these equations.
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B. Void profile

We can now choose the void profile by specifying�MðrÞ
and the local value of the Hubble rate by specifying H.
Although the void profile may have any shape, we restrict
ourselves to the simple Gaussian form:

�MðrÞ ¼ �out � ð�out ��inÞ exp
�
�
�
r

r0

�
2
�
; (16)

where �in and �out correspond to the matter density
parameter at the center of the void and at infinity, respec-
tively, and r0 characterizes the width of the void. We wish
to look only at voids that are asymptotically EdS, so we set
�out ¼ 1. Thus distances in the void model are completely
specified by the three parameters �in, r0, and H.

We wish to stress that in restricting ourselves to voids
which have a Gaussian profile, we may be missing the
model that fits the data best. In principle we could sample a
wider class of profiles and choose the form that gives the
best fit. However, in this paper we are concerned mainly
with providing a counterexample of a void which can
simultaneously fit both the SNe Ia magnitudes and the
CMB spectrum, so we do not perform this search.

III. PRIMORDIAL POWER SPECTRA

The observed power spectrum of CMB anisotropies in
any cosmological model is a convolution of three un-
knowns. The first two are the local physics at the time of
recombination, which is dependent on the composition of
the Universe at that time, and the angular diameter distance
to the last scattering surface (LSS), which depends on the
geometry of the Universe. Both of these are completely
specified by the choice of the void model as described in
Sec. II B, along with the further specification of the baryon
fraction, �b, and the baryon-to-photon ratio � � nb=n�.

The third unknown is the shape of the primordial power
spectrum of density perturbations. In toy models of infla-
tion this is close to scale-invariant and featureless. Under
the assumption that the primordial spectrum is described
by a simple power law, the standard �CDM concordance
cosmological model fits the observed angular power spec-
trum reasonably well [73]. However, there is no indepen-
dent evidence for this form of the primordial power, and as
the observed anisotropies arise as a convolution of the
assumed primordial spectrum with the transfer function
of the assumed cosmological model, it is clear that we
cannot determine one without making assumptions about
the other. (In fact, there are indications that the primordial
spectrum is not scale-free, even when a�CDM cosmology
is assumed [74–83].)

In Refs. [67–70] it is argued that, assuming near-scale
invariance of the primordial power, void models cannot
simultaneously provide an explanation for supernovae
magnitudes and fit the observed CMB spectrum, unless
the void is extremely deep [67] or embedded in a universe

with large nonzero overall curvature [70]. However, in
considering void models as an alternative to dark energy,
we are in any case departing from the concordance cos-
mology, so there is no need to retain the assumption that
the primordial power spectrum is scale-free. If this as-
sumption is relaxed then even an EdS cosmology without
dark energy can fit the CMB data [17,19]. In this paper we
consider a particular alternative form of the primordial
P ðkÞ that is not scale-free but is in fact physically well-
motivated, as described below.

A. Bump model

Whereas the simplest toy models of inflation contain
only a single scalar field which rolls slowly down its
potential, physical models generically contain other fields,
whose evolution is typically not slow-roll. These fields
may couple to the inflaton and affect its evolution, thus
breaking the scale-free nature of the primordial power,
with important consequences.
An example of such a physical model is ‘‘multiple

inflation’’ [84] in the framework of N ¼ 1 supergravity,
the locally realised version of supersymmetry (SUSY).
This model includes ‘‘flat-direction’’ fields c which have
gauge and Yukawa couplings to ordinary matter but are
only gravitationally coupled to the inflaton. Such flat-
directions have been classified and tabulated in the mini-
mal supersymmetric standard model (MSSM) [85]. As the
Universe cools during inflation, the c fields undergo sym-
metry breaking phase transitions, causing a sudden change
in the effective mass of the inflaton (which is assumed to be
a field in a ‘‘hidden sector’’). For a single flat-direction
field, this produces a ‘‘step’’ in the spectrum of the curva-
ture perturbation [86]. If more than one flat-direction field
is present, they can couple to the inflaton with opposite
signs, and instead produce a ‘‘bump’’ feature in the power
spectrum [17]. (A toy model that produces a similar ‘‘step’’
feature in the power spectrum has also been proposed [87]
and has been studied with respect to fitting the WMAP
1-year [88,89] and 3-year [90] data, albeit in a different
context to that considered here. Other signatures of mul-
tiple inflation, in particular, the generation of associated
non-Gaussianities, have also been studied [91].)
The potential for the inflaton � and the flat-direction

fields c i is then given by

Vð�; c 1; c 2Þ ¼ V0 � 1

2
m2H2

I�
2 þ 1

2
	1H

2
I�

2c 2
1

� 1

2

2

1H
2
I c

2
1 þ �1c

n1
1 þ 1

2
	2H

2
I�

2c 2
2

� 1

2

2

2H
2
I c

2
2 þ �2c

n
2 ; (17)

wheremHI and
iHI are the masses of the� and c i fields,
respectively, 	iH

2
I is the coupling of the c i field to the

inflaton, �i is the coefficient of the nonrenormalizable
operator of order ni which lifts the potential of the c i
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field, and HI is the Hubble scale during inflation (units of
Planck mass MP ¼ 1 are used throughout). The two flat-
direction fields remain trapped at the origin by thermal
effects until the phase transitions take place at times ti.
Natural values for the parameters of this model are
j	ij � 1, 
2

i � 3, and �i � 1. According to the list of
flat-direction fields in Ref. [85], the ones with ni ¼ 12,
16 will be the most relevant. It is usually assumed that
some symmetry protects the inflaton mass m from SUSY-
breaking corrections (the ‘‘� problem’’), thus allowing
sufficient e-folds of inflation to occur. Note that the times
of the phase transitions t1 and t2—or, equivalently, the
scales k1 and k2 at which the effects of the flat-direction
fields begin to be felt—are however arbitrary.

In Ref. [17] a full likelihood analysis was performed to
demonstrate that a primordial power spectrum with such a
‘‘bump’’ would allow even an EdS universe with � ¼ 0 to
fit the WMAP 3-year data, although this requires a rather
low value of h0 ’ 0:44. As void models generically imply a
lower global value of h0 than the local value at the center
where we are located, such a primordial power spectrum
could help a void model to fit the CMB.

The primordial power spectrum produced by this
‘‘bump’’ model can be calculated exactly by numerically
solving the equation of motion of the � field according to
the potential in Eq. (17). However, we do not choose to do
so for two reasons. Firstly, this evaluation is computation-
ally expensive and slows a Markov Chain Monte Carlo
(MCMC) analysis considerably. Secondly, our results re-
garding void models are dependent only on the existence of
such a feature, rather than the details of the particular
theory that explains it. Multiple inflation provides an ex-
ample of such a theory, but similar features with steps and
oscillations may also be produced, e.g., in DBI inflation
[92]. Strictly speaking, it is not even necessary to assume
that these features arise from an inflationary model at all.

With this in mind, we introduce a parameterization of
the primordial scalar power P ðkÞ to capture the essential
features of the ‘‘bump’’ model instead of attempting to
reproduce it exactly:

P ðkÞ ¼ P 0ð1� a tanhðbxÞ þ ce�ðbxÞ2Þ; (18)

where x � log10ðk=k0Þ. In Fig. 1 we plot P ðkÞ obtained
from a full calculation in the ‘‘bump’’ model, with parame-
ter values n1 ¼ 16, n2 ¼ 12, 
2

1 ¼ 
2
2 ¼ 3, �1 ¼ �2 ¼ 1,

	1 ¼ �0:2, 	2 ¼ 1, and m2 ¼ 0:05 (all set at their ‘‘natu-
ral’’ values, save for 	1).HI, k1, and k2 are free parameters
and are chosen so as to broadly reproduce the best-fit
primordial spectrum from Ref. [17]. In the same figure
we also plot the form of our simple parameterization. We
do not consider any tensor modes, as in ‘‘small field’’
models such as multiple inflation these are always negli-
gibly small.

This form of P ðkÞ is thus determined by 5 free parame-
ters: P 0, a, b, c, and k0. This may appear to be a step

backward from the standard power-law form, which de-
pends on only 3 (AS, ns, and nrun—the amplitude, slope and
‘‘running’’ of the spectrum). However, it is important to
bear in mind that we are merely using an empirical pa-
rameterization for a P ðkÞ that is ultimately the result of
some underlying theory, in which all of these parameters
are in fact determined by fundamental physics.
On the other hand, it can be argued that the standard

parameterization of a power law hides other parameters
which are artificially set to zero through the overriding
assumption that only a single scalar field is involved. In the
absence of an accepted physical mechanism for inflation,
we feel that all plausible alternatives ought to be consid-
ered, rather than judging purely on the basis of naive
parameter-counting. It is with this rationale that we use
this form of the primordial power in constructing our
counterexample.

IV. FITTING THE MODEL TO OBSERVATIONS

In this section we will discuss how to fit the void model
to the best available cosmological data: the WMAP 7-year
release [73], SNe Ia data from the Constitution [93] and the
Union2 compilations [94], the local Hubble rate measure-
ment by the Hubble Key Project [95], constraints from big
bang nucleosynthesis [96], and BAO measurements from
SDSS DR7 [97].
As cosmology in an LTB metric differs from the stan-

dard FRW approach, we need to develop some formalism
to allow us to confront these data sets in a consistent
manner. This is outlined in the following sections.

FIG. 1 (color online). The solid (blue) curve shows the pri-
mordial power spectrum obtained from a full calculation of the
multiple inflation model, with parameters as described in the
text. The dashed (red) curve shows the simple parameterization
(18), with parameter values P 0 ¼ 2:48� 10�9, a ¼ 0:1,
b ¼ 2:0, c ¼ 3:0, and k0 ¼ 0:015. For comparison, the dotted
(black) curve shows a standard power-law spectrum with slope
ns ¼ 0:954, amplitude AS ¼ 2:3� 10�9, which are the best-fit
values for the �CDM model with no ‘‘running’’ to the CMBþ
SNCfA data sets (Sec. VI).
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A. SNe Ia magnitudes

The distance modulus of a supernova is defined as the
residual between its apparent and absolute magnitudes m
and M, and is related to its luminosity distance as


 ¼ m�M ¼ 5log10

�
dL
Mpc

�
þ 25; (19)

so that, knowing 
 for each object in a data set, we can
use Eq. (15) to compare a void model to the data.

We use two data sets: the Constitution compilation
of 397 SNe in the redshift range z ¼ 0:015–1:55 [93] and
the Union2 compilation of 557 SNe in the range z ¼
0:015–1:4 [94]. The Constitution sample uses the SALT
lightcurve fitter while Union2 uses the newer SALT2 fitter.
Neither fitter, however, directly provides the value of
 for
each object—for instance, the SALT fitter provides as
output values of mmax

B (the rest-frame peak magnitude in
the B-band) a time stretch factor, s, and a color parameter,
c, for each supernova, from which the distance modulus is
calculated as:


i ¼ mmax
B;i �Mþ � � ðsi � 1Þ � � � ci; (20)

whereM, �, and � are empirical coefficients whose values
are determined by marginalizing over the fit to a particular
fiducial cosmology. The SALT2 fitter follows the same
principle, though with a ‘‘stretch factor,’’ x1, that is analo-
gous to but not the same as s.

Both the Constitution and Union2 compilations provide
tabulated values of distance modulus 
 and its estimated
error

 for a choice of coefficientsM,�, and� calculated

for the best-fit flat �CDM model. In addition, 

 includes

an important contribution from a systematic uncertainty
whose value is chosen such that the reduced �2 value for
the flat �CDM model is of order unity. Hence, when
comparing any alternative model to �CDM on the basis
of their respective fits to the SNe Ia data, we ought to in
principle perform the entire fitting analysis from scratch,
choosing the values ofM, �, and � that produce the best fit
for the particular model under consideration, and adjusting
the systematic error inserted by hand in an equivalent
manner. However, to do so we would require not only the
actual light-curve fitter outputs for each supernova (which
the publicly downloadable data for the Constitution set
does contain, but Union2 does not), but also the full
covariance matrix of the lightcurve fits, which neither
compilation provides.1 Therefore, we are forced to adopt
the common (if incorrect) procedure of fitting the void
model by marginalizing over the unknown absolute mag-
nitude M alone, while bearing in mind the caveat that this
may bias our results and our best-fit void parameters in an
unknown manner.

B. CMB power spectrum

It has been shown in several previous studies that void
models are only very loosely constrained by the position of
the first peak of the CMB [51,62]. However, the WMAP
satellite has in fact measured the angular power spectrum
Cls over a wide range of multipoles, l, and it is preferable
to use as much of this data as possible. This entails the
calculation of the full predicted Cl spectrum for the void
model. This has been done using various methods [67–70],
but always with the assumption of a nearly scale-invariant
primordial spectrum.
In order to be able to calculate the predicted angular

power spectrum for an LTB model using one of the pub-
licly available Boltzmann codes (we use a version of
CAMB [99], modified to accept the primordial power
spectra we consider), we use a version of the ‘‘effective
EdS approach’’ [68,69]. In brief, this consists of construct-
ing an effective EdS model which has the same physics at
recombination as the given void model, and the same
angular diameter distance to the LSS. Then, given the
same primordial power spectrum, the Cls of the effective
model and the void model will be the same, at intermediate
and small angular scales. Thus, the effective model can be
used as a calculational tool to obtain the power spectrum
for the void model under consideration. Note, however,
that the effective EdS model will in general have a central
temperature, TEdS

0 , and a central Hubble rate,HEdS
0 , that are

different from the actual T0 and H0 that we observe today.
This is because the physics has been matched at early
times; at late times the models must then necessarily differ.
To generate the effective model, we adopt the following

procedure. First we specify the void profile and local
Hubble rate by choosing the parameters �in, r0, and H.
Then, using Eqs. (13a) and (13b) we numerically integrate
out from the center of the void along the past light cone to
obtain the coordinates ðrm; tmÞ at an intermediate redshift
zm. As in Refs. [68,69] we choose this redshift to be
zm ¼ 100, where the spatial curvature of the void is neg-
ligible but the radiation density is still small and can
justifiably be ignored in the calculations.
At these coordinates we now calculate the Hubble rate,

Hm ¼ H?=kðrm; tmÞ and the angular diameter distance

Am ¼ Aðrm; tmÞ. Let us denote by rEdSðtÞ the comoving
radial coordinate of a radial light ray in the EdS universe
and by zEdS the redshifts seen by an observer at rEdS ¼ 0.
To ensure the matching of the distances to the LSS, we
impose the condition Am ¼ aðrEdSm ÞrEdSm for EdS scale fac-
tor a. This provides us with the relation

Am ¼ 2c

ð1þ zEdSm ÞHEdS
0

�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ zEdSm

p
�
; (21)

where zEdSm is the redshift in the EdS universe at coordinates
ðrEdSm ; tmÞ. (Note that our procedure implies zEdSm � zm and
thus differs slightly from the equivalent method outlined in
Refs. [68,69] where instead zEdS0 � 0.) To ensure the same

1This is provided in the SNLS 3-year data release [98];
however it contains only 231 objects, so we do not consider it
here.
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physics at early times in the two models we also match the
Hubble rates, Hm ¼ HEdSðzEdSm Þ, and this combined with
Eq. (21) provides us with an expression for zEdSm :

zEdSm ¼ A2
mH

2
m þ 4cAmHm

4c2
: (22)

Given the value of zEdSm , we can then calculate the effective
EdS mean temperature and Hubble rate via

TEdS
0 ¼ T0

�
1þ zm
1þ zEdSm

�
; (23a)

HEdS
0 ¼ Hm

ð1þ zEdSm Þ3=2 ; (23b)

where T0 ¼ 2:726� 0:001 K is the CMB temperature
observed today [100].

The parameters TEdS
0 , HEdS

0 , �m ¼ 1, �� ¼ �K ¼ 0,
and the baryon fraction �b can then be fed into CAMB,
together with the choice of primordial power spectrum, to
find the spectrum of Cls for the effective EdS model. This
will be identical to the spectrum actually observed at the
center of the void, at large enough values of l.

At small values of l, however, the void model will create
an integrated Sachs-Wolfe (ISW) signal which is not cap-
tured by the effective EdS model. However, no rigorous
calculation has yet been made of this expected ISW signal.
In addition, the void may also in principle have a different
reionization history than that of the effective EdS model.
These two effects mean that at small l the Cl values
calculated using the EdS model will differ, in both the
TT and TE power spectra, from the actual spectrum due
to the void.

In order to account for this, we choose to apply a cutoff
at l ¼ 32 in both the WMAP-7 TT and TE power spectra.
The value l ¼ 32 is chosen also to coincide with the
switchover point for the TT power spectrum at which the
WMAP likelihood routine switches between the low-l,
Gibbs-sampling likelihood estimation technique and the
master code for high-l (for the TE spectrum the switchover
point between pixel-based analysis and the master code is
close by at l ¼ 24). This also allows a more direct inter-
pretation of the likelihood L in terms of a �2 value. We
have checked that increasing the cutoff point does not
materially affect our results.

Given that in Ref. [17] it is found that an EdS model
can fit the WMAP data with a primordial power
spectrum similar to the ‘‘bump’’ model we use here, we
expect to find a good fit to the CMB with hEdS0 �
HEdS

0 =ð100 kms�1 Mpc�1Þ ’ 0:44 and TEdS
0 ’ T0. This

should be contrasted with the values of hEdS0 ’ 0:51 and

TEdS
0 ’ 3:4 K required with a power-law primordial spec-

trum [68,69].

C. Local Hubble rates

It has been claimed in previous studies [68–70] that the
local Hubble rate of void models that fit the CMB and
SNe Ia data simultaneously must be very low (as low as
h0 ’ 0:45 in Refs. [68,69]) and that this argues against void
models, since the measured local values (at z < 0:1) are
significantly higher (see Ref. [101] for a review). This can
provide an important discriminant against void models.
Therefore, in performing the MCMC analysis, we also fit
the local Hubble rate for the void model hLTB0 � H=100 to

the Hubble Key Project (HKP) value h0 ¼ 0:72� 0:08
[95]. We note that there is some variation in the value
of h0 obtained by different groups, ranging from h0 ¼
0:623� 0:06 [102] to h0 ¼ 0:742� 0:036 [103], and the
HKP value lies in between these two.
The SNe Ia compilations, the WMAP-7 observations,

and the HKP value for h0 form the primary data sets that
we use to constrain the void model. We also discuss the fit
to some other cosmological data below.

D. Big bang nucleosynthesis

Our theoretical understanding of the physics of the
epoch of big bang nucleosynthesis allows us to use obser-
vations of the abundances of various elements to con-
strain the baryon-to-photon ratio, � ¼ nb=n�, at that

time. Although � is constant with time in FRW space-
time, this is not the case in LTB space-time. However,
assuming that � is spatially constant in the LTB model
(which need not necessarily be true, see Refs. [104,105]),
we can use the effective EdS model model to calculate �
for the void model. Since both models share the same early
Universe physics by construction, we have [69]

�10 � 1010� ¼ 273:9

�
T0

TEdS
0

�
3
!b; (24)

where !b � �bðhEdS0 Þ2. The inferred primordial abun-

dance of deuterium, together with that of helium, provides
the constraint 5:1 � �10 � 6:5 at 95% C.L. [96].

E. BAO scale

The BAO data provided by the SDSS collaboration [97]
are essentially measurements of a feature in the correlation
function of the observed galaxy distribution which is re-
lated to the physical sound horizon at the CMB scale,
evolved down to the redshift at which the measurement is
made. The full theory for how these perturbations should
evolve in LTB space-times is unknown and a difficult
problem, as the background curvature enters the Bardeen
equation for the gravitational potential. As this may vary
significantly over scales of �150 Mpc, it can potentially
add a significant and as yet unknown distortion to BAO
scales [106].
Nevertheless, some efforts have been made to compare

void models to BAO data under the assumption that the
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evolution of perturbations does not depend on scale (as is
the case in FRW space-time) [68–70]. Under this assump-
tion the difference between LTB and FRW space-times is
simply that as Hk � H? for r > 0, physical length scales

in an LTB space-time evolve differently in radial and
transverse directions at late times, whereas in FRWmodels
the evolution is isotropic. It is not clear that this is neces-
sarily a valid assumption to make. However, in order to
provide a comparison with the previous studies we follow
the same prescription as in Ref. [69], while bearing in mind
that a better calculation may lead to significant changes in
the results.

The first step is to construct another effective EdS
model, referred to as the ‘‘BAO model,’’ which shares
the same early Universe physics as the void model under
consideration, but unlike in the previous case, need not
match the angular diameter distance to the LSS. We choose
in this case to match the central temperatures, TBAO

0 ¼ T0,

which then provides us with the relation

HBAO
0 ¼ Hm

ð1þ zmÞ3=2
; (25)

as unlike in the previous section, we will now have zBAOm ¼
zm (where, as before, we chose zm ¼ 100). We also match
the values of �b and �m ¼ 1 at this redshift to ensure the
same early Universe physics.

As the BAO model and the LTB void model have, by
definition, the same physics at coordinates ðrðzmÞ; tðzmÞÞ �
ðrm; tmÞ, and since at this redshift the LTB space-time is
sufficiently close to FRW, we may conclude that the physi-
cal sound horizon in the void model at time tm is essentially
isotropic and homogeneous, and equal to the sound horizon
spðzmÞ in the BAOmodel, which may be calculated accord-

ing to [107]

spðzÞ ¼ 44:5 ln½9:83=ð�mh
2
0Þ�

ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10ð�bh

2
0Þ3=4

q Mpc: (26)

In order to evaluate the BAO scales observed at redshift z
by an observer at the center of the void, we need to
evolve this physical sound horizon scale down to coordi-
nates ðrðzÞ; tðzÞÞ in the LTB background. Thus the radial
and transverse physical BAO scales at redshift z will be,
respectively,

lBAOk ðzÞ ¼ spðzmÞA
0ðrðzÞ; tðzÞÞ
A0ðrðzÞ; tmÞ ; (27)

lBAO? ðzÞ ¼ spðzmÞAðrðzÞ; tðzÞÞAðrðzÞ; tmÞ ; (28)

and these can in turn be rewritten in terms of the corre-
sponding redshift and angular intervals:

�zðzÞ ¼ ð1þ zÞlBAOk ðzÞHkðrðzÞ; tðzÞÞ; (29)

��ðzÞ ¼ lBAO?
AðrðzÞ; tðzÞÞ : (30)

It is these values of �zðzÞ and ��ðzÞ that are directly
measurable. As mentioned in Ref. [69], the redshift scale
�zðzÞ is expected to be a stronger discriminator of void
models than ��ðzÞ. However, while estimates of the radial
BAO scale have been made [108,109], the statistical sig-
nificance of these claims has been questioned [110,111].
Given this ambiguity, we choose not to use this data;
instead we use constraints on the ratio,

�ðzÞ � spðzrecÞ
DVðzÞ ; (31)

at redshifts z ¼ 0:2 and z ¼ 0:35 from Ref. [97], where zrec
is the redshift at recombination andDVðzÞ is an isotropized
distance measure. This is given in a FRW model by [10]

DFRW
V ðzÞ �

�
zd2AðzÞ
HðzÞ

�
1=3

; (32)

where dAðzÞ and HðzÞ represent, respectively, the angular
diameter distance and the Hubble rate in the FRW model.
As the BAO measurements are quoted in terms of the

ratio �ðzÞ, it is necessary to convert them into a form that
can be related to�zðzÞ and��ðzÞ. It can be shown [70] that

QðzÞ � ð��2�zÞ1=3 ¼ z1=3�ðzÞ; (33)

and this is the measure we use to compare the void model
to the data.

V. METHOD

We perform a likelihood analysis using COSMOMC [112]
to generate Markov–Chain–Monte Carlo (MCMC) chains
to estimate confidence limits on the parameters in fitting
the model to the data. For each void model, specified by
�in, r0, and H, we first calculate the effective parameters
HEdS

0 and TEdS
0 as described in Sec. IVB. We fix the optical

depth to the LSS to the WMAP-7 value, although this
choice is immaterial as our cutoff at l ¼ 32 means that
the data do not constrain reionization in any case.
Therefore, the full set of parameters for the void model
is: local matter density �in, void radius r0, local Hubble
value H, baryon fraction �b, and the power spectrum
parameters P 0, a, b, c, and k0. (The cold dark matter
density �c is set equal to 1��b since we are not consid-
ering large-scale structure formation here so do not need to
invoke a small component of hot dark matter to match the
SDSS power spectrum of galaxy clustering as in Ref. [17].)
These are fed as inputs to CAMB [99] to generate the CMB
spectrum for the model.
Once the output Cl values have been obtained from

CAMB, we can fit the model to the WMAP-7 data [73],
the SNe Ia data (the Constitution [93] and Union2 [94] data
sets are fitted separately), the HKP value for the local
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Hubble rate [95], the BAO data [97] and the Big Bang
nucleosynthesis (BBN) constraint [96].

In order to compare the goodness of fit, we perform
exactly the same fitting procedure for a vanilla �CDM
model whose parameters are: baryon density �bh

2
0, cold

dark matter density �ch
2
0, local Hubble rate 100h0,

2 and

the power spectrum amplitude, AS, and slope, ns.
We characterize the best-fit likelihood of the void model
by the value ��2 ¼ �2 lnðLvoid=L�CDMÞ, which means
that negative values of ��2 favor the void. In Fig. 2 the TT
and TE power spectra are shown for two sample best-fit
models. The quantitative results of the analysis are dis-
cussed in Sec. VI.

VI. RESULTS

In this section we shall use SNCfA to denote the
Constitution data set and SNU2 to denote Union2; CMB
denotes the WMAP-7 data and HKP the Hubble Key
Project value for the Hubble rate.

In Fig. 3 we plot the 2D likelihoods for the effective EdS
model parameters TEdS

0 , HEdS
0 , and !b obtained from the

MCMC chains for both CMBþ SNCfA and CMBþ SNU2

data. Clearly, TEdS
0 ’ T0 and hEdS0 ’ 0:45, which is exactly

as we expect, given the results of Ref. [17]. Figure 4 shows
the marginalized likelihoods of the void parameters and the
resultant age of the Universe, for the same data sets.

For both CMBþ SNCfA and CMBþ SNU2 we obtain a
local Hubble value h0 � 0:60� 0:02, which, although
slightly low, is still consistent with the HKP value of
h0 ¼ 0:72� 0:08 to within 2
. It is also much higher
than the value of h0 obtained in previous studies [68,69].
This is because in order to fit the CMB with a power-law
primordial spectrum, a value of TEdS

0 ’ 3:4 K is required

and in order to generate this, the void must be surrounded
by a large overdense shell. The presence of this shell
means the asymptotic value H0ðr 	 r0Þ �HEdS

0 �H0ð0Þ
and hence in order to fit the CMB, H0ð0Þ must be small.
In contrast, our void profile does not have an overdense
shell, and as shown in Fig. 3, TEdS

0 ’ T0. This allows

us to generate the difference between h0 ’ 0:60 and
hEdS0 ’ 0:45.
Our void model also does not suffer from the ‘‘old age’’

problem referred to in Ref. [69]: we find the age of the
void Universe to be 14:4� 0:3 Gyr for the CMBþ SNCfA

chains and 14:5� 0:3 Gyr for CMBþ SNU2, which are
significantly less than the values of �18:8 Gyr quoted in
Ref. [69]. This is unsurprising, as the age t0 is related to the
value of h0 by Eq. (9), and reasonable values for one ensure
reasonable values for the other.
To enable a comparison of the quality of the fits,

we show in Table I the ��2 values for the best-fit model
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FIG. 2 (color online). The TT and TE power spectra of the
models that best fit the CMB and Constitution SNe Ia data.
The solid (red) curve is for the void model, calculated using the
effective EdS approach described in Sec. IVB, and the dashed
(black) curve is for �CDM. Binned WMAP-7 data is also
shown.
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FIG. 3 (color online). Constraints on the effective EdS pa-
rameters for the void model with a bump, from CMB and
SNe Ia data. The solid (red) contours show the 1 and 2
 like-
lihood confidence intervals for the Constitution SNe Ia data set
and the dashed (blue) contours are for Union2.
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FIG. 4 (color online). Marginalized 1D likelihoods for the void
model with a bump, for the fit to CMB and SNe Ia data. The solid
(red) curves are for the Constitution SNe Ia data set and the
dashed (blue) curves are for Union2.

2The COSMOMC code actually uses the ratio of the sound
horizon to the angular diameter distance as the input parameter,
but this is equivalent to using h0.
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with a void and a spectral ‘‘bump,’’ relative to the standard
�CDM model, for different combinations of the primary
constraining data sets. It is clear that the ��2 values in all
cases are small given the number of degrees of freedom
involved, which shows that the void model is perfectly
compatible with these data sets. A more quantitative com-
parison cannot be made because, as noted in Sec. IVA the
SNe Ia data are adjusted to fit a fiducial �CDM model and
the error bars are tuned to give a �2 per degree of freedom
of order unity for this model.

It should be noted that the addition of the HKP con-
straint increases the��2 value by�2 for Union2 and�2:7
for Constitution, which reflects the fact that CMB and
SNe Ia data favor a value of h0 that is consistent with,
but lower than, the HKP value. Even with this increase
however, the��2 values are still small (and in fact the void
provides a marginally better fit to the CMBþ SNCfA data
than does �CDM). It is possible that a thorough explora-
tion of possible void profiles or use of unbiased SNe Ia data
will make this fit better, but as this does not detract from
the main results presented here, we do not investigate it in
this paper.

A more interesting constraint comes from Big Bang
nucleosynthesis. From our MCMC chains for CMBþ
SNCfA and CMBþ SNU2 we find in both cases �10 ¼
4:6� 0:2, which is �2
 below the best-fit value. This
arises primarily because !b is on the low side, as seen in
Fig. 3. When the BBN constraint is added to the MCMC
chains, we find an increase in ��2 of �2:5 relative to the
values for CMBþ SNCfA þ HKP and an increase of �3:1
for CMBþ SNU2 þ HKP. It should be noted, however,
that the inferred primordial abundance of lithium indicates
a significantly lower value of � than does deuterium [96],
hence a better understanding of the chemical evolution of
these fragile elements is required before the significance of
the marginal discrepancy above can be assessed.

Finally, we find that adding the BAO data results in
an increase in ��2 of 4.9 relative to the value for
CMBþ SNU2 þ HKPþ BBN and 5.5 relative to the value

for CMBþ SNCfA þ HKPþ BBN, for an additional 2
degrees of freedom. The main reason for this increase
is that the BAO data require a shallower void with
�in � 0:17, whereas the CMBþ SN data favor a slightly
deeper void with �in � 0:13. Most of the increase in �2

arising from including the BAO data comes from the
poorer fit to SNe Ia data that results. Given the uncertainty
in interpreting �2

SN that we have already mentioned, as well

as the assumptions that have gone into our analysis in
Sec. IVE, we cannot draw any definite conclusions from
these results. However, it would appear that the BAO data
are certainly not inconsistent with a void model.

VII. DISCUSSION

An interesting proposed test of void models is the
Compton y-distortion of the CMB spectrum that is pro-
duced by the scattering of photons by reionized gas in
regions of the void that see a highly anisotropic LSS
[58]. In the single-scattering and linear approximations
and under the assumption that the dipole anisotropy domi-
nates the distortion, this can be written as [69]

y ¼ 7

10

Z zre

0
dz

d�

dz
�ðzÞ2; (34)

where � is the optical depth, �ðzÞ is the dipole temperature
anisotropy in the CMB observed at redshift z, and the
integral is taken up to the redshift of reionization zre.
The Far Infrared Absolute Spectrophotometer instru-

ment on COBE provides an upper bound y < 1:5� 10�5

(at 2
) [117]. While this can constrain some void profiles,
voids lacking an overdense outer shell are found not to be
in tension with this upper bound [69]. The Gaussian void
profile that we consider does not have a prominent over-
dense outer shell. Since we do not expect an interesting
constraint, we chose not to evaluate the y-distortion, which
would be uncertain in any case since the exact reionization
history (and thus zre) of the void model is unknown.
Another direct test of a local void is via the kinetic

Sunyaev-Zel’dovich effect [113]. This has been applied
to cluster kSZ observations (e.g., Ref. [63,114]) and to
full-sky data [115] from the Atacama Cosmology
Telescope [116], and is found to place constraints on large
voids. Allowing an inhomogeneous bang-time or correctly
accounting for the effects of radiation (see Refs. [104,105])
may potentially weaken these constraints while preserving
the fits described here. Such an analysis is beyond
the scope of the current paper but will be investigated in
the future.
In summary, in this paper we have presented a local

void model which fits SNe Ia and CMB data, local H0

values, nucleosynthesis constraints, and BAO without re-
quiring dark energy and thus provides a counterexample
to the claim that dark energy is necessary to fit these
observations.

TABLE I. Best-fit likelihood values for �CDM and the rela-
tive ��2 values for the void model with a spectral bump for
different choices of the fundamental constraining data sets. Here
SNCfA refers to the Constitution sample and SNU2 to Union2.
CMB refers to WMAP-7 data and HKP to the Hubble Key
Project value for h0. Constitution data favor the void slightly
and Union2 data favor �CDM slightly, but neither difference is
significant given the number of degrees of freedom.

Data sets # d.o.f. �2 lnðL�CDMÞ ��2

CMB 1936 5785.0 þ0:9
CMBþ SNCfA 2333 6250.4 �3:3
CMBþ SNU2 2493 6315.7 þ1:4
CMBþ SNCfA þ HKP 2334 6250.5 �0:6
CMBþ SNU2 þ HKP 2494 6315.9 þ3:4
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