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We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid

xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the

combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of

this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from

primary scintillation. We show that signal partitioning into scintillation and ionization is well described by

the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct

detection of dark matter.
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I. INTRODUCTION

There is considerable experimental effort dedicated to
the direct detection of particle dark matter. Among the
various detection strategies [1], dual-phase liquid xenon
detectors have recently achieved a rapid scale-up in target
mass [2], which directly improves the sensitivity of the
dark matter search. The expected experimental signature
from the scattering of a dark matter particle is in most cases
a low-energy O ðkeVÞ recoiling nucleus. A fraction fn of
the nuclear recoil energy Enr is transferred to measurable
electronic excitation, and the rest is lost to heat, e.g. atomic
motion. The theoretical prediction for the quenching fn
obtained by Lindhard et al. [3] agrees to within�20%with
the measured amount of ionization in germanium detectors
[4,5]. However, it has been observed that the Lindhard
theory does not agree with measurements of ionization
quenching of nuclear recoils in liquid xenon [6].

Experiments with liquid xenon as the target medium
historically use only the primary scintillation signal to
reconstruct Enr [2,7–10]. Commensurate with this nonlin-
ear energy scale determined by primary scintillation, there
has been a substantial experimental effort aimed at mea-
suring (see [11,12] and references therein) and understand-
ing [13–16] the scintillation quenching Leff of liquid
xenon for nuclear recoils. In spite of these efforts, a factor
of 2 disagreement persists between recent measurements,
and Lindhard theory does not correctly predict Leff

[6,13,15,17,18]. However, with semiempirical modifica-
tions, reasonable agreement may be obtained [11,14,16].

Meanwhile, it has been known for nearly a decade [19]
that a linear, drift-field independent energy scale with a
substantial improvement in energy resolution [20,21] is
obtained from a simultaneous measurement of the number
of primary scintillation photons n� and ionized electrons

ne. This is given for electron and nuclear recoils by
Shutt et al. [22] as

Eer ¼ �ðn� þ neÞ; (1)

Enr ¼ �ðn� þ neÞ=fn; (2)

where � ¼ 13:8� 0:9 eV [19] is the average energy re-
quired to create a single quanta, either photon or electron.
Other measurements have found � ¼ 13:7� 0:2 eV [23]
and � ¼ 14 eV [24]. Equation (1) is widely used to mea-
sure Eer for electron recoils from gamma and beta particles
[8,20,24], but Eq. (2) as a measure of Enr has been largely
ignored. We note that this formulation is analogous to the
ionization energy scale in germanium detectors.
In this article, we show that the Lindhard theory is

consistent with the quenching of the total (ne þ n�) elec-

tronic excitation from nuclear recoils in liquid xenon. This
further motivates the adoption of the combined energy
scale (Eq. (2)), but it does not resolve the disagreement
between recent measurements of Leff [11,12]. We there-
fore pinpoint the likely source of the present disagreement,
and suggest a strategy for reducing systematic effects in
future measurements of either Leff or fn.
Our motivation for this work is to obtain the best recon-

struction of the detected nuclear recoil energy in liquid
xenon dark matter search experiments. The predicted nu-
clear recoil energy spectrum of halo-bound particle dark
matter elastically scattering from a xenon target falls
sharply with increasing Enr [25]. This implies that the
sensitivity of a given exposure (detectormass� time) of
a liquid xenon detector has a strong dependence on the
detector energy scale. For light (&10 GeV) dark matter
particles, the dependence on energy scaling and threshold
is even more severe. Recent results from XENON100 [2],
in which no candidate events were observed, gave a clear
example of this. Depending on assumptions about the
energy scaling (obtained therein from primary scintillation*pfs@llnl.gov
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via Leff) and the energy resolution, XENON100 may or
may not exclude parameter space consistent with potential
signal in the CoGeNT [26] and DAMA [27] experiments.

II. RECONSTRUCTING NUCLEAR
RECOIL ENERGY

Lindhard et al. [3] calculated a general expression for
the expected fraction of nuclear recoil energy that is trans-
ferred to electrons. It can be written as

fn ¼ k � g=ð1þ k � gÞ; (3)

with k ¼ 0:133Z2=3A�1=2. Physically, k is a proportionality
constant between the electronic stopping power dE=dx and
the velocity of the projectile (which in this context is a
recoiling xenon atom). The relation is most simply ex-
pressed in terms of dimensionless variables, as in [3]. For
xenon, Lindhard’s calculation results in k ¼ 0:166.
Recently, Hitachi calculated from first principles the elec-
tronic stopping power of recoiling xenon atoms in a liquid
xenon target. The result is shown in Fig. 5 of [6], and
discussed further in [16]. In terms of the dimensionless
variables of [3], his calculation corresponds to k ¼ 0:110.
Note that no analytic form was given for the energy-
dependent function g in [3], and we have used the parame-
trization given in [25]. In Fig. 1 we show fn as calculated
from Eq. (3), for these two values of k (solid and dashed
curves). In [3], Lindhard et al. cautioned that ‘‘Maybe the
greatest uncertainty is the proportionality factor, k . . .
[which] is often on the interval 0:10< k < 0:20.’’
Ideally, the remedy for this uncertainty may be obtained
from data.

In order to compare with data, we write Eq. (2) as

fn ¼ �

�
S1

�1

þ S2

�2

�
=Enr; (4)

with n� and ne in terms of the experimentally measured

quantities S1 and S2. These are just the number of recorded
photoelectrons in the primary scintillation and ionization
(measured from proportional scintillation) signals in a
dual-phase xenon detector. The number of primary scintil-
lation photons is n� ¼ S1=�1, where �1 �Oð0:1Þ is the

total efficiency to convert a scintillation photon to a de-
tectable photoelectron. The number of ionized electrons is
ne ¼ S2=�2, where �2 �Oð10Þ is the number of photo-
electrons registered from the proportional scintillation re-
sulting from a single ionized electron. While �2 is
reasonably easy to measure in dual-phase liquid xenon
detectors, �1 is difficult to measure directly. As a result,
experiments instead quote the scintillation light yield Ly

(units of photoelectrons/keV) of a monoenergetic gamma
source. The proportionality constant between �1 and Ly

depends strongly on both the incident gamma energy and
the electric field (Ed) applied across the liquid xenon
target. For a 122 keV gamma from 57Co at Ed ¼ 0, a
detector-independent expression for the proportionality is
�1 ¼ 0:015Ly [23].

We need �1 in order to use Eq. (4), and first cross-check
the relationship given above, which implies �1 ¼ 0:080
[23] for the XENON10 detector [24]. XENON10 measured
�2 ¼ 24� 1 [28] from the background distribution of
single electrons. The value of �1 is also uniquely deter-
mined by requiring Eq. (1) to reproduce the correct peak
positions of gamma lines. Since the energy scale is linear,
any monoenergetic source will suffice. From the 164 keV
gamma observed by XENON10, we find �1 ¼ 0:078�
0:005.
Simultaneous measurements of the scintillation (Leff)

and ionization (Qy) yield of liquid xenon as a function of

Enr were obtained by Manzur et al. [11]. Their ionization
yield data was presented in terms of ne (so we do not need
�2), and their scintillation data in terms of Ly for 122 keV

gammas. Using the scaling relation given above, we infer
�1 for their detector. We then use Eq. (4) to cast the results
from [11] in terms of fn. This is shown in Fig. 1 (asd, with
1� uncertainty). The combinedLeff andQy measurements

of Manzur et al. are not quite consistent with the
XENON10 nuclear recoil band measurement [7]. In
[29] it is argued that for the three data points below Enr ’
6 keV, the most likely origin of the disagreement is that
Qy was overstated by about 1� due to spurious threshold

effects. The Manzur et al. data as corrected by [29] is also
shown in Fig. 1 (as w, uncertainty similar but omitted for
clarity).
The experiments described in [11,24] (and, for that

matter, [2]) obtained their data with different values of
Ed. Although the values of Ed ranged from about

k=0.166

k=0.110

nuclear recoil energy [keV]

fr
ac

tio
n 

of
 e

ne
rg

y 
gi

ve
n 

to
 e

le
ct

ro
ns

f n

1 10 100

0.10

0.15

0.20

0.25

0.30

0.40

0.50

FIG. 1 (color online). Quenching of electronic excitation from
nuclear recoils in liquid xenon: from [11] (d), from [11] as
corrected by [29] (w, uncertainty not shown but similar to d),
from [12] (�) and from [28] (e). Also shown are the theoretical
prediction [3] for two calculated values of k (solid and dashed
curves).
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0:5 kV=cm [2] to 1:0 kV=cm [11], the effects of this
difference are negligible. As shown in Fig. 3 of [6], the
scintillation and ionization signals from nuclear recoils
exhibit no significant dependence on Ed, in the range
0:5–1:0 kV=cm. At values of Ed & 0:2 kV=cm, a decrease
of about 8% is observed in the ionization signal, relative to
Ed * 0:5 kV=cm. In the same range, the scintillation sig-
nal is observed to increase by a similar amount.

Aprile et al. recently measuredLeff at Ed ¼ 0 [12]. This
condition prevented them from making a simultaneous
measurement of the ionization yield, as in [11]. Following
[29], we used the constraint from the XENON10 nuclear
recoil band to infer the ionization yield (at Ed ¼
0:73 kV=cm) for this data, taking care to account for the
8% shift in ne and n�. The resulting fn is shown in Fig. 1 (as

�, with 1� uncertainty). Uncertainty in the ionization yield
was assumed to be 20%, which is similar to the uncertainty
reported in [11]. The slightly smaller total uncertainty in
this case results from the higher �1 obtained in that
experiment.

A final data point in Fig. 1 (e) was obtained from the
endpoint of the XENON10 neutron calibration [28]. The
maximum recoil energy imparted by Am-Be neutrons to a
xenon target via elastic scattering is Enr ¼ 4Enmnm=
ðmn þmÞ2. The maximum incident neutron energy was
En ¼ 10:5� 0:5 MeV [30], with the uncertainty repre-
sented by the horizontal error bar.

III. DISCUSSION

Signal quenching from nuclear recoils in liquid xenon
appears well-described by the Lindhard model of quench-
ing, once account is taken of all energy transferred to
electrons. This is a very significant result, but it should
not be surprising. Lindhard et al. defined �� as ‘‘the sum
total of the energy given to electrons,’’ [3] with explicit
mention of both excitation and ionization. In liquid xenon,
the former leads to n� and the latter to both ne and n� [19].

In our notation, which follows that of other recent work,
fn � ��=Enr.

Considering the uncertainties in the existing data, it is
unclear which calculated value of k is preferred. But it is
clear that systematic uncertainty in future measurements of
fn can be reduced. Essential steps not taken in previous
work include direct in situ measurement of �1 and �2. A
particularly apt choice for measuring �1 would be the
internal, homogenous 40 keV line from 83mKr [31,32].
Nonuniformities in signal collection at the detector edges
could be minimized by x� y position reconstruction, and
rejection of edge events. As pointed out in [29], it is also
desirable to obtain a measurement of the nuclear recoil
band, as a cross-check. However, this may be difficult to
implement without shielding from external background
radiation.

It may be preferable to use Eq. (2) to reconstruct nuclear
recoil energy, instead of Enr ¼ S1=ðLyLeffÞSe=Sn [2,7,9].

In the latter, Se and Sn are the scintillation reduction due to
Ed, for electron and nuclear recoils. In either case, it will be
essential to retain a distinct measure of the primary scin-
tillation response. This is because �1 � �2, and so the
low-energy signal detection efficiency and energy resolu-
tion depend almost entirely on S1. Additionally, some
experiments rely solely on the S1 signal [33]. The primary
scintillation response can be related to fn using the photon
fraction n�=ðn� þ neÞ, as suggested in [34]. In Fig. 2 we

show the photon fraction (large symbols) and the ionized
electron fraction ne=ðn� þ neÞ (small symbols) for the data

from Fig. 1.
It is well-understood that energy loss in liquid noble

gases leads to a number Nex of excited atoms and a number
Ni of ionized atoms. We make the usual assumption that
each excited xenon atom leads to the creation of one
scintillation photon, and that each ionized atom leads to
a single electron unless it recombines [19]. Ionized atoms
which recombine result in a single scintillation photon,
giving Ni þ Nex ¼ ne þ n� independent of recombina-

tion. The fraction of electrons collected (i.e. those escaping
recombination) is predicted by the Thomas-Imel box
model [35] to be

ne
Ni

¼ 1

�
lnð1þ �Þ; � ¼ Ni�

4a2v
; (5)

which describes Ni initial electron-ion pairs in a box of
dimension a. This model has been shown to work well for
spatially small tracks (nuclear recoils and low-energy elec-
tron recoils) when the term �=ða2vÞ is held constant [23].
The electron fraction F e ¼ ne=ðne þ n�Þ is then given by
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FIG. 2 (color online). The photon fraction n�=ðn� þ neÞ (large
symbols) and the electron fraction ne=ðn� þ neÞ (small symbols)

for nuclear recoils in liquid xenon, for Ed ¼ 1:0 kV=cm.
Symbols correspond to data shown in Fig. 1. Uncertainty in �
and w were omitted for clarity, and are similar to uncertainty in
d. Curves are a best fit of Eq. (6), as summarized in Table I.
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F e ¼ 1

�
lnð1þ �Þ Ni

ne þ n�
; (6)

and the photon fraction is 1�F e. Considering Eq. (2), we
also have

Ni þ Nex ¼ Enrfn=�: (7)

We fit Eq. (6) to the data, treating �=ða2vÞ and Nex=Ni as
free parameters and using fn given by Lindhard with
k ¼ 0:166. The results are shown in Fig. 2 and summarized
in Table I.

We find that for nuclear recoils in liquid xenon,Nex=Ni �
1 with an uncertainty of about 15%. This is in good agree-
ment with [23], which found Nex=Ni ¼ 0:89. It has been
known for some time that for electron recoils, Nex=Ni ¼
0:06 [36]. As suggested in [23], the roughly factor �15
difference in initial exciton to ion ratios produced by electron
and nuclear recoils appears to be the origin of the distinct
S2/S1 bands for charged versus neutral particle interactions.
We note that Eq. (6) provides a less than satisfactory fit to
data (d) with Enr & 7 keV, and so we also show the results
of a fit which excludes this region. The disagreement may
indicate that Nex=Ni is energy-dependent in this regime. A
detailed discussion of the recombination physics contained
in the ratio�=ða2vÞ is beyond the scope of this work, andwe
simply note that our results are very similar to those obtained
in [23], which used the S2/S1 band centroid rather than fixed-
energy data points.

The observed trend in the electron fraction data (d and
w) implies that by about Enr ’ 2 keV, the measured signal
may consist almost entirely of electrons. If the photon
fraction is 1�F e ¼ 0:2 at 2 keV, and we conservatively
assume that Hitachi’s calculation of k ¼ 0:110 is correct,
the expected S1 signal at this energy is �3 photons.
Considering typical values of �1, the probability that this
results in a measurable number of photoelectrons is nearly
zero. From the relation

Leff ¼ ð1�F eÞ fn�
�1

Ly

Se
Sn

; (8)

inwhich all energy dependence is encoded inF e and fn, we
would expect Leff ¼ 0:025. Meanwhile, an electron frac-
tion F e ¼ 0:8 implies an S2 signal of �14 electrons at
2 keV. This translates to an ionization yield Qy ¼ 6:8

electrons/keV, or about 1
2� higher than the value obtained

in [37]. On the other hand, if the trend predicted by Eq. (6)
is correct and 1�F e ¼ 0:5 at 2 keV, we would expect
Leff ¼ 0:063. This implies an S2 signal of 8.5 electrons,
and the ionization yield Qy ¼ 4:3 electrons/keV is about

1� below the value obtained in [37].
It has been pointed out that in order for electronic exci-

tation to result from a two-body collision between a projec-
tile (the recoiling atom) and an atomic electron, the
maximum possible energy transfer in the collision must
exceed the band gap energy Eg of the target [38]. This

condition can be expressed in terms of the projectile veloc-
ity v and the electron velocity ve as Eg < 2mevðvþ veÞ
[39]. The electron velocity is often identifiedwith the Fermi

velocity [38,40] vF ¼ ð3�2�eÞ1=3ℏ=me. In the application
of the Fermi-gas model to metals, the electron density �e is
calculated only for the valence electrons [41]. This follows
from the assumption of a ‘‘free and independent electron
gas.’’ For insulators or semiconductors, the situation is less
clear. If all 54 electrons in a xenon atom are considered, the
requisite projectile velocity which satisfies the inequality
(with Eg ¼ 9:3 eV in xenon [42]) implies a cutoff in

electronic excitation below a nuclear recoil energy
Enr ¼ 39 keV [43]. We suggest that it is more physical to
calculate vF under the assumption that the Fermi level EF

lies at the midpoint of the energy gap [44]. For xenon this
implies an effective 3 valence electrons per atom, with a
predicted kinematic cutoff in electronic excitation below
Enr ¼ 157 keV. Considering Fig. 1, we do not see signifi-
cant evidence for any kinematic cutoff in excess of the
Lindhard prediction. Applying similar reasoning to germa-
nium, one would consider an effective 1=40 valence elec-
trons per atom in calculating vF, and predict a kinematic
cutoff below Enr ¼ 6:5 keV. Again, no evidence for such a
cutoff is observed [5]. A simple interpretation of this is that
direct two-body collisions are not the dominant electronic
energy-loss mechanism for recoiling atoms. Lindhard et al.
indirectly suggest as much [3].

IV. SUMMARY

We have shown that the quenching of electronic excita-
tion from nuclear recoils in liquid xenon appears well-
described by the prediction of Lindhard et al. [3] when
taking the appropriate measure of electronic excitation, i.e.
the combined energy scale given by Eq. (2). Further mea-
surements with reduced uncertainty will be needed to
elucidate the correct value of k in Eq. (3), and we have
provided three specific suggestions for achieving this. We
have urged the adoption of the combined energy scale for
nuclear recoils, with the photon and electron fractions
describing the signal partitioning. This has the distinct
advantage of allowing comparison with the quenching
theory of Lindhard et al., and the recombination model
of Thomas and Imel.

TABLE I. Result of fitting Eq. (6) to the data shown in Fig. 2.
The first (second) row corresponds to the solid (dashed) curves in
Fig. 2. The XENON10 data point (e) is not included in the fits.

Data Nex=Ni �=ða2vÞ Ref.

d 0.86 0.028 [11]

da 1.05 0.025 [11]

w 1.04 0.030 [11,29]

� 1.13 0.042 [12]

aEnr > 7 keV only.
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For direct detection experiments with null results, the
choice of energy scale has a negligible effect on exclusion
limits. However, one eventually expects to observe nuclear
recoils from the scattering of dark matter� optimistically,
in the 100þ live days of blinded data so far accumulated by
the XENON100 Collaboration. At that juncture it will be
essential to obtain the most accurate reconstruction of the
true recoil energy. We illustrate this point with a simple
example, considering the recent XENON100 result (Fig. 3
of [2]). Suppose there were two hypothetical nuclear recoil
events A and B, both with S1 ¼ 4 photoelectrons, but with
event A having log10ðS2=S1Þ ¼ 2:3, and event B having
log10ðS2=S1Þ ¼ 1:9. The S1-only energy scale employed
in [2] assigns the same Enr ¼ 8:7� 4:3 keV to both
events. In contrast, the combined energy scale (Eq. (2))
assigns Enr ¼ 8:7� 2:7 keV to event A, and Enr ¼ 6:9�
2:8 keV to event B, in recognition of the smaller electron
signal.

As shown in Fig. 1, the fraction of energy given to
electrons (fn) is expected to (and in fact appears to)
decrease with decreasing Enr. But the rate of decrease of
Leff does not necessarily follow the same slope. This is a
consequence of recombination, as shown in Fig. 2. As of
this writing, a direct calibration of the available signal from
nuclear recoils with energies Enr & 4 keV has remained
out of reach. Yet broad-spectrum neutron calibration data
[2,9] indicate that liquid xenon direct detection experi-
ments have achieved a sensitivity to nuclear recoils of

lower energy. The question of ‘‘how much lower?’’ has
necessarily relied on extrapolations of Leff . In the absence
of any theoretical expectation, a reasonable choice has
been to assume that Leff ’ 0:115 (flat) for Enr & 4 keV
[2]. We have already shown that this is incompatible with
theoretical expectations, if k ¼ 0:110. It remains so even if
we optimistically assume that Lindhard’s calculation of
k ¼ 0:166 is correct. For example, the expectation at
Enr ¼ 2 keV is then Leff ¼ 0:036 for 1�F e ¼ 0:2, and
Leff ¼ 0:089 for 1�F e ¼ 0:5. Given that in all reason-
able cases, theoretical expectations suggest that Leff

should decrease with decreasing Enr, it is difficult to sup-
port the more aggressive of the two exclusion limits (solid
curve, Fig. 5 of [2]) proposed by the XENON100
Collaboration.
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