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The important issue of the magnetic component of gravitational waves (GWs) has been considered in

various papers in the literature. From such analyses, it has been found that such a magnetic component

becomes particularly important in the high-frequency portion of the frequency range of ground based

interferometers for GWs which arises from standard general theory of relativity (GTR). Recently, such a

magnetic component has been extended to GWs arising from scalar-tensor gravity (STG) too. After a

review of some important issues on GWs in STG, in this paper we reanalyze the magnetic component in

the framework of STG from a different point of view, by correcting an error in a previous paper and by

releasing a more precise response function. In this way, we also show that if one neglects the magnetic

contribution considering only the low-frequency approximation of the electric contribution, an important

part of the signal could be, in principle, lost. The determination of a more precise response function for the

magnetic contribution is important also in the framework of the possibility of distinguishing other

gravitational theories from GTR. At the conclusion of this paper, an expansion of the main results is

also shown in order to recall the presence of the magnetic component in GTR too.
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I. INTRODUCTION

The data analysis of interferometric gravitational wave
(GW) detectors has begun, and the scientific community
hopes for the first direct detection of GWs in the coming
years; for the current status of GW interferometers, see
Ref. [1]. In such a way, the indirect evidence of the
existence of GWs by Nobel Prize winners, Hulse and
Taylor [2], will be confirmed. Detectors for GWs will be
important for a better understanding of the Universe and
also because the interferometric detection of GWs will be
the definitive test for the general theory of relativity (GTR)
or, alternatively, a strong endorsement for extended theo-
ries of gravity (ETG) [3]. On the other hand, the discovery
of GW emission by the compact binary system composed
by two neutron stars PSR1913+16 [2] has been, for phys-
icists working in this field, the ultimate thrust allowing to
reach the extremely sophisticated technology needed for
investigating this field of research [1]. GWs are a conse-
quence of Einstein’s GTR [4], which presuppose GWs to
be ripples in the space-time curvature travelling at light
speed [5,6]. In GTR, only asymmetric astrophysics
sources can emit GWs [7]. The most efficient are coales-
cing binaries systems at frequencies around 1 KHz [1],
while a single rotating pulsar can rely only on spherical
asymmetries, usually very small [1,7]. Its spin frequency
often lies in the hectohertz sweet spot of current detectors,
i.e., at order hundreds Hz [8]. Supernovae could have
relevant asymmetries, being potential sources [7]. It is
generally agreed that the frequency of GW emission
from the birth of stellar mass collapsed objects is in the

range 50 Hz to a few KHz [9]. The most important
cosmological source of GWs is, in principle, the so-called
stochastic background of GWs which, together with the
cosmic background radiation, would carry, if detected, a
huge amount of information on the early stages of the
evolution of the Universe [10–13]. The existence of a relic
stochastic background of GWs is a consequence of general
assumptions. Essentially, it derives from a mixing between
basic principles of classical theories of gravity and of
quantum field theory [10–13]. The strong variations of
the gravitational field in the early Universe amplify the
zero-point quantum oscillations and produce relic GWs. It
is well known that the detection of relic GWs is the only
way to learn about the evolution of the very early
Universe, up to the bounds of the Planck epoch and the
initial singularity [10,13]. It is very important to stress the
unavoidable and fundamental character of this mecha-
nism. The model derives from the inflationary scenario
for the early Universe [14], which is consistent with the
Wilkinson Microwave Anisotropy Probe data on the cos-
mic background radiation (in particular exponential infla-
tion and spectral index � 1 [15]). Inflationary models are
cosmological models in which the Universe undergoes a
brief phase of very rapid expansion in early times [14]. In
this tapestry the expansion could be power law or expo-
nential in time. Such models provide solutions to the
horizon and flatness problems and contain a mechanism
that creates perturbations in all fields [14]. Important for
our case is that this mechanism also provides a distinctive
spectrum of relic GWs [10,12,13]. The GW perturbations
arise from the uncertainty principle and the spectrum of
relic GWs is generated from the adiabatically amplified
zero-point fluctuations [10–13]. In standard cosmology*cordac.galilei@gmail.com
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such a spectrum is flat along the frequency range
10�16 � f � 108 Hz [16].

Regarding the potential GW detection, let us recall some
historical notes. In 1957, Pirani, who was a member of the
Bondi’s research group, proposed the geodesic deviation
equation as a tool for designing a practical GW detector
[17]. In 1959, JosephWeber [18], First AwardWinner at the
1959 Gravity Research Foundation Competition, studied a
detector that, in principle, might be able to measure dis-
placements smaller than the size of the nucleus. He devel-
oped an experiment using a large suspended bar of
aluminum, with a high resonant Q at a frequency of about
1 kHz. Then, in 1960, he tried to test the general relativistic
prediction of GWs from strong gravity collisions [19] and,
in 1969, he claimed evidence for the observation of GWs
(based on coincident signals) from two bars separated by
1000 km [20]. He also proposed the idea of doing an
experiment to detect GWs by using laser interferometers
[20]. In fact, all the modern detectors can be considered as
originating from Weber’s early ideas [1,7,21]. At the
present time, in the world there are five cryogenic bar
detectors that have been built to work at very low tempera-
tures (< 4K): Explorer at CERN, Nautilus at the Frascati
INFN National Laboratory, Auriga at the Legnaro National
Laboratory, Allegro at Louisiana State University, and
Niobe in Perth [7,21]. Instrumental details can be found in
[21] and references therein. Spherical detectors are the
Mario Schenberg, which was built in São Paolo (Brazil)
and the MiniGRAIL, which was built at the Kamerlingh
Onnes Laboratory of Leiden University, see [7,21,22] and
references therein. Spherical detectors are important for the
potential detection of the scalar component of GWs that is
admitted in ETG [22]. In the case of interferometric detec-
tors, free falling masses are interferometer mirrors that can
be separated by kilometers (3 km for Virgo, 4 km for LIGO)
[1,7,21]. In this way, the GW tidal force is, in principle,
several order of magnitude larger than in bar detectors.
Interferometers have very large bandwidth (10–10000 Hz)
because mirrors are suspended to pendulums having reso-
nance in the Hz region. Thus, above such a resonance
frequency, mirrors work, in a good approximation, like
freely falling masses in the horizontal plane [1,7,21].

Now, let us recall the importance of distinguishing the
gravitational theories by using the observation of GWs.
Motivations to extend GTR arise from the fact that even
though Einstein’s theory [4] has achieved great success
(see, for example, the opinion of Landau, who said that
GTR is, together with quantum field theory, the best sci-
entific theory of all [23]) and has passed a lot of experi-
mental tests [24], it has also shown some shortcomings and
flaws which today prompt theorists to ask if it is the
definitive theory of gravity [3]. Differently from other field
theories like the electromagnetic theory, GTR is very
difficult to quantize [25]. This fact rules out the possibility
of treating gravitation like other quantum theories, and

precludes the unification of gravity with other interactions.
At the present time, it is not possible to realize a consistent
quantum gravity theory that leads to the unification of
gravitation with the other forces [25]. On the other hand,
one can define ETG, those semiclassical theories where the
Lagrangian is modified, with respect to the standard
Einstein-Hilbert gravitational Lagrangian, adding high or-
der terms to the curvature invariants (terms like R2,
RabRab, R

abcdRabcd, RhR, RhkR, in the sense of the so-
called fðRÞ theories, see the recent review [26]) and/or
terms with scalar fields nonminimally coupled to geometry
(terms like �2R in the sense of the so-called scalar-tensor
theories [27]), i.e., generalizations of the Jordan-Fierz-
Brans-Dicke theory of gravitation [28–30]). In general,
one has to emphasize that terms like those are present in
all the approaches to performing the unification between
gravity and other interactions. In addition, from a cosmo-
logical point of view, such modifications of GTR produce
inflationary frameworks, which are very important as they
solve a lot of problems of the standard Universe model
[14]. Note that we are not saying that GTR is wrong. It is
well known that, even in the context of extended theories,
GTR remains the most important part of the structure
[3,26]. We are only trying to understand if weak modifica-
tions on such a structure could be needed to solve some
theoretical and observing problems.
In the general context of cosmological evidence, there

are other considerations that suggest an extension of GTR.
As a matter of fact, the accelerated expansion of the
Universe, which is observed today, shows that the cosmo-
logical dynamic is dominated by the so-called dark energy,
which gives a large negative pressure. This is the standard
picture, in which such a new ingredient is considered as a
source of the right side of the field equations. It should be
some form of unclustered nonzero vacuum energy which,
together with the clustered dark matter, drives the global
dynamics. This is the so-called concordance model
(�CDM), which gives, in agreement with the cosmic
microwave background radiation, large scale structure,
and Supernovae Ia data, a good tapestry of today’s ob-
served Universe, but presents several shortcomings, such
as the well-known coincidence and cosmological constant
problems [31]. An alternative approach is to change the left
side of the field equations, seeing if observed cosmic
dynamics can be achieved by extending GTR [3]. In this
different context, we are not required to find candidates for
dark energy and dark matter, which until now have not
been found, but only the observed ingredients, which are
curvature and baryon matter, have to be taken into account.
Considering this point of view, one can think that gravity is
different at various scales and room for alternative theories
is present [3,26]. In principle, the most popular dark energy
and dark matter models can be achieved considering fðRÞ
theories of gravity [26], where R is the Ricci curvature
scalar, and/or STG [27].
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Also the tensor-vector-scalar theory (TVST) has at-
tracted considerable attention as an alternative to GTR
[32]. TVST is proposed as a relativistic theory of modified
Newtonian dynamics [32], and it reproduces modified
Newtonian dynamics in the weak acceleration limit.

Let us recall the previous studies of how to distinguish
alternative gravitational theories from GTR. For example,
STG could be distinguished from GTR with surface atomic
line redshift [33], with GWs [34,35], while the TVST
theory could be distinguished from GTR with surface
atomic line redshift [32], with Shapiro delays of gravita-
tional waves and photon or neutrino [36], with GWs
[37,38], with the rotational effect [39]. The recent result
in [3] has shown that, if advanced projects on the detection
of GWs improve their sensitivity, allowing the scientific
community to perform a GW astronomy, accurate angle-
and frequency-dependent response functions of interfer-
ometers for GWs arising from various theories of gravity
will permit discrimination among GTR and ETG in an
definitive way. This ultimate test will work because stan-
dard GTR admits only two polarizations for GWs, while in
all ETG the polarizations are, at least, three, see [3] for
details.

Recently, starting from the analysis in Ref. [40], some
papers in the literature have shown the importance of the
gravitomagnetic effects in the framework of GW detection
[7,41–44]. In fact, the so-called magnetic components of
GWs have to be taken into account in the context of the
total response functions of interferometers for GWs prop-
agating from arbitrary directions, [7,40–44]. In a recent
paper, the magnetic component has been extended to GWs
arising from STG too [45]. In particular, in Ref. [45] it has
been shown that if one neglects the magnetic contribution
considering only the low-frequency approximation of the
electric contribution, an important portion of the signal
could be, in principle, lost in the case of STG too, in total
analogy with the standard case of GTR [7,40–44]. Then, it
is clear that the computation of a more precise response
function for the magnetic contribution is important also in
the framework of the possibility of distinguishing other
gravitational theories from GTR.

On the other hand, in [45] an error was present in the
fundamental equations (20) of such a paper. That error was
carried through to all the computations in [45] by enabling
incorrect geometric factors in the angular dependence of
the response function. In this paper, the original error and
the geometric factors in the angular dependence are cor-
rected in order to obtain the correct response function for
the magnetic component of GWs in STG.

Before starting the analysis, let us explain the meaning
of what is magnetic and what is electric among the com-
ponents of GWs. Following [40], let us consider the anal-
ogy between the motion of free masses in the field of a GW
and the motion of free charges in the field of an electro-
magnetic wave. AGW drives the masses in the plane of the

wave front and also, to a smaller extent, back and forth in
the direction of the propagation of the wave. To describe
this motion, the notion of electric and magnetic compo-
nents of the gravitational force due to a GW can be
introduced, as it has been discussed in [7,40–45]. The
analogy is not perfect, but it shows some important features
of the phenomenon [40]. In Refs. [7,40–45], the positions
and motion of free test masses have been analyzed in the
local inertial reference frame associated with one of the
masses, i.e., the beam splitter in the case of an interfer-
ometer. It is well known that this choice of coordinate
system is the closest thing to the global Lorentzian coor-
dinates that are normally used in electrodynamics [24]. The
distinction among the electric and magnetic components of
motion, as well as compared with electrodynamics, is
particularly clear in this description [7,40–45]. When one
interacts with the detection of GWs, the usually used
equations, with the curvature tensor in them, are only the
zero-order approximation in terms of L=�, where L is the
length of the arms of the interferometer and � the wave-
length of the propagating GW [7,40–44]. This approxima-
tion is sufficient for the description of the electric part of
the motion, which concerns frequencies of order hundreds
Hz, but it results as insufficient for the description of the
magnetic part, which can concern frequencies of order
KHzs. In the next approximation, which is a first order in
terms of L=�, the geodesic deviation equation includes the
derivatives of the curvature tensor, and this approximation
is fully sufficient for the description of the magnetic force
and magnetic component of motion. One understands that
the component of motion which is called, with some
reservations, magnetic, represents the finite-wavelength
correction to the usual infinite-wavelength approximation
[7,40–45].
From the analyses in [7,40–44], it resulted that such a

magnetic component becomes particularly important in the
high frequency portion of the frequency range of ground
based interferometers and in future space based interfer-
ometers for GWs which arises from standard GTR. The
analysis has also been extended to GWs arising from STG
in [45]. After a review of some important issues in Sec. II,
in this paper we re-analyze the magnetic component in the
framework of STG from a different point of view, and we
correct an original error in [45], which generated incorrect
geometric factors in the angular dependence, in order to
obtain the correct response function for the magnetic com-
ponent of GWs in STG. After this, we also compute a more
precise response function that will show that if one ne-
glects the magnetic contribution considering only the low-
frequency approximation of the electric contribution, an
important portion of the signal, which could arrive to about
the 15% for particular directions of the propagating GWs,
could be, in principle, lost.
It is important to discuss the splitting between magnetic

and electric components from another point of view.

PRECISE RESPONSE FUNCTION FOR THE MAGNETIC . . . PHYSICAL REVIEW D 83, 062002 (2011)

062002-3



In GTR, GWs are pure spin-2 tensor waves. In alternative
theories there can be other spin contributions to the field
and the waves. In the particular case of this paper, which
regards STG, there is an additional scalar sector to the
gravitational field, responsible for a scalar sector to gravi-
tational radiation. More specifically, one may mathemati-
cally break the gravitational field in GTR between
electriclike and magneticlike sectors, so called because of
formal mathematical similarities to their namesakes in
Maxwell’s theory. This division of the full gravitational
field is most elegantly done in GTR using the Weyl tensor
[46,47]. For the sake of completeness, this important point
will be reviewed in next Sec. II A.

At the end of the paper an expansion of the main results
is also shown in order to recall the presence of the magnetic
component in GTR too.

II. A REVIEW OF SOME IMPORTANT ISSUES

A. Decomposition of the Weyl tensor into the electric
and magnetic components

In this subsection, where we closely follow [47], we
show an irreducible splitting into electric and magnetic
parts for the Weyl tensor.

Tidal forces in metric theories of gravity like GTR and
STG are described in a covariant way by the geodesic
deviation equation [46–48]

D2�a

ds2
¼ �Rmbn

a dx
m

ds

dxn

ds
�b; (1)

where �a is the separation vector between two test masses
[46–48], i.e.,

�b � xbm1 � xbm2; (2)

D
ds is the covariant derivative and s the affine parameter

along a geodesic [46–48]. In this paper Latin indices are
used for four-dimensional quantities, Greek indices for
three-dimensional ones, and the author works with
G ¼ 1, c ¼ 1, and ℏ ¼ 1 (natural units). Equation (2)
gives the relative acceleration of two neighboring particles
with the same 4-velocity dxa

ds . If one wants to find the

electromagnetic analogue to (1), a very intrinsic difference
between the two interactions must be recalled. While the
ratio between gravitational and inertial mass is universal,
the same does not apply to the ratio between electrical
charge and inertial mass. In other words, there is no elec-
tromagnetic counterpart of the equivalence principle [47].
Thus, the analogue electromagnetic problem will consist
in considering two neighboring particles with the same
4-velocity dxa

ds in an electromagnetic field on a flat

Minkowskian space-time, by assuming the extra condition
that the two particles have the same q=m ratio [47]. Under
these constrains, one obtains the worldline deviation equa-
tion as [47]

D2�a

ds2
¼ q

m
Fa
m;b

dxm

ds
�b; (3)

where Fa
b is the electromagnetic tensor [23]. By comparing

(1) with (3), one gets a physical analogy between the two
tensors [47]:

Egravity
ab � Rambn

dxm

ds

dxn

ds
$ Eab � Fam;b

dxm

ds
: (4)

The tensor Eab is the covariant derivative of the electric

field, which is defined as Ea � Fab dxb
ds , and it is seen by an

observer having a 4-velocity dxa

ds . It is usually called the

electric tidal tensor. The gravitational counterpart E
gravity
ab

is usually called the electric gravitational tidal tensor. The
different signs in (1) and (3) are due to the different
interaction (attractive or repulsive) between masses or
charges of the same sign [47]. In an analogous way, one
defines the magnetic tidal tensor as

Bab � ?Fam;b

dxm

ds
¼ 1

2
�clamFcl;b

dxm

ds
; (5)

where �abcd is the Levi-Cività tensor and ? denotes the
Hodge dual [47]. Bab represents the tidal effects produced

by the magnetic field, which is defined as Ba � ?Fab dxb
ds ,

seen by an observer who has a 4-velocity dxc

ds .

Then, by working with the Riemann tensor, one intro-
duces the so-called magnetic part of the Riemann tensor

B
grav
ab � ?Rambn

dxm

ds

dxn

ds
¼ 1

2
�clamRclbn

dxm

ds

dxn

ds
; (6)

which is the physical gravitational analogue of Bab and is
usually called the magnetic gravitational tidal tensor [47].
Now, let us introduce the decomposition of the Riemann

tensor [47,49]

Rabcd ¼ Cabcd þ ga½cRd�b þ gb½dRc�a þ 1
3ga½dgc�bR; (7)

where Cabcd is the Weyl tensor. Like the Riemann curva-
ture tensor, the Weyl tensor expresses the tidal force that a
body feels when moving along a geodesic [49]. The Weyl
tensor differs from the Riemann curvature tensor in that it
does not convey information on how the volume of the
body changes, but rather only how the shape of the body is
distorted by the tidal force [49]. The Weyl tensor is trace-
less and shows the property [47,49]

? Cabcd ¼ C ?abcd : (8)

By introducing the electric and magnetic parts of the
Weyl tensor, both of which are symmetric and traceless,
i.e., [47]

"ab � Cacbn

dxc

ds

dxn

ds
; Hab � ?Cacbn

dxc

ds

dxn

ds
; (9)

Egravity
ab and Bgravity

ab read [47]
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Egravity
ab ¼ "ab þ 1

2

�
gabRcd

dxc

ds

dxd

ds
þ�Rab

� 2
dxða
ds

RbÞd
dxd

ds

�
þ 1

6
R

�
gab þdxa

ds

dxb
ds

�
(10)

and

B
gravity
ab ¼ Hab þ 1

2
�abncR

n
d

dxc

ds

dxd

ds
: (11)

These expressions can be used to obtain the gravitational
analogue of Maxwell equations, see [47] for details.

B. The linearized scalar-tensor gravity

The most general action of STG in four dimensions is
given by [22,27,45,48,50]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p

�
�
fð�ÞRþ 1

2
gmn�;m�;n � Vð�Þ þLmass�energy

�
:

(12)

Choosing

’¼ fð�Þ; !ð’Þ ¼ fð�Þ
2f0ð�ÞWð’Þ ¼ Vð�ð’ÞÞ; (13)

Eq. (12) reads

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p

�
�
’R�!ð’Þ

’
gmn’;m’;n �Wð’Þ þLmass�energy

�
;

(14)

which is a generalization of the Jordan-Fierz-Brans-Dicke
theory of gravitation [28–30].

By varying the action (14) with respect to gmn and to
the scalar field ’ the field equations are obtained
[22,27,45,48,50]:

Gmn ¼ � 4� ~G

’
T
ðmass�energyÞ
mn

þ!ð’Þ
’2

�
’;m’;n � 1

2
gmng

ab’;a’;b

�

þ 1

’
ð’;mn � gmnh’Þ þ 1

2’
gmnWð’Þ; (15)

with associated a Klein-Gordon equation for the scalar
field

h’ ¼ 1

2!ð’Þ þ 3
ð�4� ~GTðmass�energyÞ þ 2Wð’Þ

þ ’W0ð’Þ þ d!ð’Þ
d’

gmn’;m’;n: (16)

In the above equations, T
ðmass�energyÞ
mn is the ordinary

stress-energy tensor of the matter and ~G is a dimensional,
strictly positive, constant. The Newton constant is replaced
by the effective coupling

Geff ¼ � 1

2’
; (17)

which is, in general, different from G. GTR is re-obtained
when the scalar field coupling is

’ ¼ const ¼ �1
2: (18)

To study GWs, the linearized theory in vacuum

[Tðmass�energyÞ
mn ¼ 0] with a little perturbation of the back-

ground must be analyzed. The background is assumed
given by the Minkowskian background plus ’ ¼ ’0 and
’0 is also assumed to be a minimum for W [22,48]:

W ’ 1
2��’

2 ) W 0 ’ ��’: (19)

Putting

gmn ¼ �mn þ hmn; ’ ¼ ’0 þ �’; (20)

and, to first order in hmn and �’, if one calls ~Rmnrs, ~Rmn,
and ~R the linearized quantity that corresponds to Rmnrs,
Rmn, and R, the linearized field equations are obtained
[22,48]:

~Rmn �
~R

2
�mn ¼ �@m@n�þ �mnh�; h� ¼ m2�;

(21)

where

� � ��’

’0

; m2 � �’0

2!þ 3
: (22)

The case in which it is ! ¼ const and W ¼ 0 in
Eqs. (15) and (16) has been analyzed in [22,48] with a
treatment that generalized the ‘‘canonical’’ linearization of
GTR [24].
For the sake of completeness, let us complete the linea-

rization process by closely following [22,48].
The linearized field equations become

~Rmn �
~R

2
�mn ¼ @m@n�þ�mnh�; h�¼ 0: (23)

Let us put

�hmn � hmn � h

2
�mn þ �mn�;

�h � �mn �hmn ¼ �hþ 4�;
(24)

with h � �mnhmn, where the inverse transform is the same

hmn ¼ �hmn �
�h

2
�mn þ �mn�;

h ¼ �mnhmn ¼ � �hþ 4�:
(25)
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By putting the first of Eqs. (25) in the first of the field
Eqs. (23), it is

h �hmn � @mð@a �hanÞ � @nð@a �hanÞ þ �mn@
bð@a �habÞ: (26)

Now, let us consider the gauge transform (Lorenz con-
dition)

�hmn ! �h0mn ¼ �hmn � @ðm�nÞ þ �mn;

@a�a �h ! �h0 ¼ �hþ 2@a�a;

� ! �0 ¼ �

(27)

with the condition h�n ¼ @m �hmn for the parameter �m.
It is

@m �h0mn ¼ 0; (28)

and, omitting the 0, the field equations can be
rewritten as

h �hmn ¼ 0; (29)

h� ¼ 0; (30)

solutions of Eqs. (29) and (30) are plan waves

�h mn ¼ Amnð ~kÞ expðikaxaÞ þ c:c:; (31)

� ¼ að ~kÞ expðikaxaÞ þ c:c: (32)

Thus, Eqs. (29) and (31) are the equation and the solu-
tion for the tensor waves exactly like in GTR [24], while
Eqs. (30) and (32) are, respectively, the equation and the
solution for the scalar mode.

The solutions (31) and (32) preserve the conditions

kaka ¼ 0; kmAmn ¼ 0; (33)

which arise, respectively, from the field equations and from
Eq. (28).

The first of Eqs. (33) shows that perturbations have the
speed of light, the second the transversal effect of the field.

Fixed the Lorenz gauge, another transformation with
h�m ¼ 0 can be made; let us take

h�m ¼ 0; @m�
m ¼ �

�h

2
þ�; (34)

which is permitted because h� ¼ 0 ¼ h �h. We obtain

�h ¼ 2� ) �hmn ¼ hmn; (35)

i.e., hmn is a transverse plane wave too. The gauge trans-
formations

h�m ¼ 0; @	�
m ¼ 0 (36)

preserve the conditions

@m �hmn ¼ 0 �h ¼ 2�: (37)

Considering a wave propagating in the positive z
direction

km ¼ ðk; 0; 0kÞ; (38)

the second of Eqs. (33) implies

A0
 ¼ �A3
; A
0 ¼ �A
3; A00 ¼ �A30 þ A33:

(39)

Now, let us see the freedom degrees of Amn. We was
started with 10 components (Amn is a symmetric tensor);
3 components have been lost for the transversal condition,
more, the condition (35) reduces the component to 6. One
can take A00, A11, A22, A21, A31, and A32 as independent
components; another gauge freedom can be used to put to
zero three more components (i.e., only three of �m can be
chosen; the fourth component depends from the others by
@m�

m ¼ 0).
Then, by taking

�m ¼ ~�mð ~kÞ expðikaxaÞ þ c:c:; km~�m ¼ 0; (40)

the transform law for Amn is [see Eqs. (27) and (31)]

Amn ! A0
mn ¼ Amn � 2ikðm~�nÞ: (41)

Thus, for the six components of interest

A00 ! A00 þ 2ik~�0; A11 ! A11;

A22 ! A22; A21 ! A21;

A31 ! A31 � ik~�1; A32 ! A32 � ik~�2:

(42)

The physical components of Amn are the gauge invari-
ants A11, A22, and A21; thus, one can chose ~�n to put equal
to zero the others.
The scalar field is obtained by Eq. (35):

�h ¼ h ¼ h11 þ h22 ¼ 2�: (43)

In this way, the total perturbation of a GW propagating
in the z direction in this gauge is

hmnðtþ zÞ ¼ Aþðtþ zÞeðþÞ
mn þA�ðtþ zÞeð�Þ

mn þ�ðtþ zÞeðsÞmn:

(44)

The term Aþðtþ zÞeðþÞ
mn þ A�ðtþ zÞeð�Þ

mn describes the
two standard (i.e., tensor) polarizations of GWs which
arises from GTR in the transverse-traceless (TT) gauge

[24], while the term �ðtþ zÞeðsÞmn is a third polarization
which is due to the extension of the TT gauge to the STG
case.
For a purely scalar GW, the metric perturbation (44)

reduces to

hmn ¼ �eðsÞmn; (45)

and the correspondent line element is [22,48]

ds2 ¼ dt2 � dz2 � ð1þ�Þdx2 � ð1þ�Þdy2; (46)

with � ¼ �0e
i!ðtþzÞ.

The wordlines x, y, and z ¼ const are timelike geodesics
representing the histories of free test masses, see the anal-
ogy with tensor waves in [24].
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C. Quadrupole, dipole, and monopole modes:
Potential detection

It is important to recall that in the case of STG, the scalar
GWs will be excited as well as the tensor GWs; thus, in
principle, the promising GW sources of scalar GWs and
their frequencies are exactly the same as that of the ordi-
nary tensor GW. In fact, the production of scalar gravita-
tional radiation is no different than the production of any
other type of radiation [13]. If one wants to produce
electromagnetic radiation at, say, 1 KHz, one needs to
take electric charges and vibrate them at 1 KHz [13]. The
same holds for both tensor and scalar gravitational radia-
tion; waves of a certain frequency are produced when
the characteristic time for the matter and energy in the
Universe to shift is about comparable to the period of the
waves [13]. Coalescing binaries systems emit at frequen-
cies around 1 KHz [1], while single rotating pulsars have a
spin frequency that lies in the hectohertz sweet spot of
current detectors, i.e., at order hundreds Hz [8]. The fre-
quency of GWemission from collapsed objects like super-
novae is in the range 50 Hz to a few KHz [9]. The
stochastic background of GWs has a spectrum that is flat
along the frequency range 10�16 � f � 108 Hz [16].

An important difference with respect to standard GTR is
that the scalar GWs will radiate even in the case that the
event would be spherically symmetric. Thus, we under-
stand that in the case of almost spherically symmetric
events, the energy emitted by tensor modes can be ne-
glected [48,52] (in the sense that the scalar modes largely
exceed the tensor ones). Let us examine this issue in detail.

We emphasize that in this subsection we closely follow
the papers [48,51,52]. In the framework of GWs, the more
important difference between GTR and STG is the exis-
tence, in the latter, of dipole and monopole radiation
[48,52]. In GTR, for slowly moving systems, the more
important multipole contribution to gravitational radiation
is the quadrupole one. The result is that the dominant
radiation-reaction effects are at order ðvcÞ5, where v is the

orbital velocity. The rate, due to quadrupole radiation, at
which a binary system loses energy is given, in GTR, by
[48,52]

�
dE

dt

�
quadrupole

¼ � 8

15
�2 m

4

r4
ð12v2 � 11 _r2Þ: (47)

� and m are, respectively, the reduced mass parameter and
total mass, given by � ¼ m1m2

ðm1þm2Þ2 and m ¼ m1 þm2.

r, v, and _r represent, respectively, the orbital separation,
relative orbital velocity, and radial velocity.

In STG, Eq. (47) is modified by corrections to the
coefficients ofOð1!Þ, where! is the Brans-Dicke parameter

[STG also predicts monopole radiation, but in binary sys-
tems it contributes only to these Oð1!Þ corrections] [48,52].
The important modification in STG is the additional energy
loss caused by the dipole modes. By analogy with

electrodynamics, dipole radiation is a ðv=cÞ3 effect, poten-
tially much stronger than quadrupole radiation. However,
in STG, the gravitational dipole moment is governed by the
difference s1 � s2 between the bodies, where si is a mea-
sure of the self-gravitational binding energy per unit rest
mass of each body [48,52]. si represents the sensitivity of
the total mass of the body to variations in the background
value of the Newton constant, which, in this theory, is a
function of the scalar field [48,52]

si ¼
�
@ðlnmiÞ
@ðlnGÞ

�
N
: (48)

G is the effective Newtonian constant at the star, and the
subscript N denotes holding baryon number fixed.
Defining S � s1 � s2 to first order in 1

! , the energy loss

caused by dipole radiation is given by [48,52]

�
dE

dt

�
dipole

¼ � 2

3
�2 m

4

r4

�
S2

!

�
: (49)

In STG, the sensitivity of a black hole is always
sBH ¼ 0:5 [48,52], while the sensitivity of a neutron star
varies with the equation of state and mass. For example,
sNS � 0:12 for a neutron star of mass order 1:4M�, being
M� the solar mass [48,52].
Binary black-hole systems are not at all promising for

studying dipole modes because sBH1 � sBH2 ¼ 0, a conse-
quence of the no-hair theorems for black holes [48,52]. In
fact, black holes radiate away any scalar field, so that a
binary black-hole system in STG behaves as if GTR.
Similarly, binary neutron star systems are also not effective
testing grounds for dipole radiation [48,52]. This is be-
cause neutron star masses tend to cluster around the
Chandrasekhar limit of 1:4M�, and the sensitivity of neu-
tron stars is not a strong function of mass for a given
equation of state. Thus, in systems like the binary pulsar,
dipole radiation is naturally suppressed by symmetry, and
the bound achievable cannot compete with those from the
Solar System [48,52]. Hence, the most promising systems
are mixed: black hole-neutron star (BH-NS), black hole-
white dwarf (BH-WD), or neutron star-white dwarf
(NS-WD).
The emission of monopole radiation from STG is very

important in the collapse of quasispherical astrophysical
objects because in this case the energy emitted by quadru-
pole modes can be neglected [24,48,51]. In [51] it has been
shown that, in the formation of a neutron star, monopole
waves interact with the detectors as well as quadrupole
ones. In that case, the field-dependent coupling strength
between matter and the scalar field has been assumed to be
a linear function. In the notation of this paper such a
coupling strength is given by � � 1

2!ð’Þþ3 in Eq. (16).

Then [51]

� ¼ �0 þ �0ð’� ’0Þ (50)
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and the amplitude of the scalar polarization results [51]

� / �0

d
; (51)

where d is the distance of the collapsing neutron star ex-
pressed in meters.

On the other hand, such signals will be quite weak. Let
us discuss the experimental sensitivity required to detect
them. We have also to compare with the sensitivities of
ongoing and future experiments. To make this, we consider
an astrophysical event that produces GWs and which can,
in principle, help to simplify the problem. In previous
discussion we analyzed two potential sources of potential
detectable scalar radiation:

(i) mixed binary systems like BH-NS, BH-WD, or
NS-WD;

(ii) the gravitational collapse of quasispherical astro-
physical objects.

The second source looks propitious because in such a case
the energy emitted by quadrupole modes can be neglected
[48,51] (in the sense that the monopole modes largely
exceed the quadrupole ones. In fact, if the collapse is
completely spherical, the quadrupole modes are totally
removed [24]). In that case, only the motion of the test
masses due to the scalar component has to be analyzed.

The authors of [51] analyzed the interesting case of the
formation of a neutron star through a gravitational col-
lapse. In that case, they found that a collapse occurring
closer than 10 kpc from us (half of our Galaxy) needs a

sensitivity of 3 � 10�23
ffiffiffiffiffiffi
Hz

p
at 800 Hz (which is the char-

acteristic frequency of such events) to potential detect the
strain which is generated by the scalar component in the
arms of LIGO.

At the present time, the sensitivity of LIGO at about

800 Hz is 10�22
ffiffiffiffiffiffi
Hz

p
, while the sensitivity of the Enhanced

LIGO Goal is predicted to be 8 � 10�22
ffiffiffiffiffiffi
Hz

p
at 800 Hz [1].

Then, for a potential detection of the scalar mode we have
to hope in Advanced LIGO Baseline High Frequency
and/or in Advanced LIGO Baseline Broadband. In fact,
the sensitivity of these two advanced configuration is pre-

dicted to be 6 � 10�23
ffiffiffiffiffiffi
Hz

p
at 800 Hz [1].

Another clarification is needed on the potential detection
of the scalar mode. To identify the scalar GW, one needs to
prepare several detectors. In fact, detectors to be cross
correlated must be, at least two [22,53]. A cross correlation
can concern two different interferometers, like discussed,
for example, in [53] or, alternatively, an interferometer can
be cross correlated with a resonance bar [22]. In [22] the
interesting case of the cross correlation between the Virgo
interferometer and the monopole mode of the MiniGRAIL
resonant sphere for the detection of the scalar mode has
been analyzed. Even if such a cross correlation is very
small, it has been shown that a maximum is present at
about 2710 Hz, i.e., within the sensitivity’s range of both of
MiniGRAIL and Virgo [22]. Then, if the eventual detection

of a monopole mode of the MiniGRAIL bar at about
2710 Hz will coincide with a signal detected by the
Virgo interferometer at the same frequency, such a detec-
tion will be a strong endorsement for scalar tensor theories
of gravity. Indeed, the monopole mode of a sphere cannot
be excited by ordinary tensor waves arising from standard
GR, see [22] for details.

D. A note on conformal frames

Concerning scalar GWs, it is important clarify that the
results in Einstein frame will not be same as those in
physical frame (Jordan-Fierz-Brans-Dicke frame).
The author recently discussed this important issue in

Ref. [48]. The key point is that the motion in the Einstein
frame is not geodesic [48,54,55], and this point strongly
endorses deviations from equivalence principle and non-
metric gravity theories in the Einstein frame [48,54,55].
The author showed in [48] that the geodesic deviation
Eq. (1), which governs GW signals in the gauge of the
local observer, changes in the conformal Einstein frame
becoming [48]

D2�d

ds2
¼ � ~R d

abc

dxc

ds

dxb

ds
�a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�

j2!þ 3j

s
D

ds
ð@d ~’Þ; (52)

where ~Rabc
d is the rescaled Riemann tensor in the confor-

mal Einstein frame [48,55]. Thus, an extra term of the
geodesic deviation equations, which is not present in the
Jordan frame, see Eq. (1), is present in the Einstein frame,

i.e., the term�
ffiffiffiffiffiffiffiffiffiffiffiffi
16�

j2!þ3j
q

D
ds ð@d ~’Þ [48]. This key point implies

that the motion of the test masses due to the scalar compo-
nent of GWs in STG is different in the two frames. Such a
motion has been carefully examined, in both of the two
frames, at first order in the geodesic deviation in Ref. [48].

III. ELECTRIC AND MAGNETIC COMPONENTS

In a laboratory environment on Earth, the coordinate
system in which the space-time is locally flat is typically
used [24], and the distance between any two points is given
simply by the difference in their coordinates in the sense of
Newtonian physics. In this frame, called the frame of the
local observer, scalar GWs manifest themselves by exert-
ing tidal forces on the masses (the mirror and the beam
splitter in the case of an interferometer).
A detailed analysis of the frame of the local observer is

given in Ref. [24], Sec. 13.6. Here only the more important
features of this frame are resumed:
(i) the time coordinate x0 is the proper time of the

observer O;
(ii) spatial axes are centered in O;

in the special case of zero acceleration and zero rotation the
spatial coordinates xj are the proper distances along the
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axes and the frame of the local observer reduces to a local
Lorentz frame: in this case, the line element reads

ds2 ¼ �ðdx0Þ2 þ �	
dx
	dx
 þOðjxjj2Þdxadxb; (53)

the effect of GWs on test masses is described by the
equation for geodesic deviation in this frame

€x 	 ¼ � ~R
	
0
0x


; (54)

where ~R	
0
0 are the components of the linearized Riemann

tensor [24].
Labelling the coordinates of the TT gauge with ttt, xtt,

ytt, and ztt, in [45], the coordinate transformation
xa ¼ xaðxbttÞ from the TT coordinates to the frame of the
local observer was written as (Eqs. (20) in [45])

t¼ tttþ 1
4ðx2tt�y2ttÞ _�; x¼xttþ 1

2xtt�þ 1
2xttztt;

_�y¼yttþ 1
2ytt�þ 1

2yttztt
_�; z¼ ztt� 1

4ðx2tt�y2ttÞ _�; (55)

where it is _� � @�
@t , see the analogy with the tensor waves

of standard general relativity in [40–44]. But we have to
emphasize that in Eq. (55) an error is present. In fact, the
extra (scalar) polarization in Eq. (46) is symmetric with
respect to rotations around the z axis. Therefore, the z
displacement of a test particle can depend on its radial
coordinate in xy plane, but not on the positional angle in
this plane. However, such a positional dependence is im-
plied by the combination of the xtt and ytt factors in the last
line of Eq. (55). This line cannot be correct. Clearly, the
error is the sign minus before y2tt in both of the first and the
last lines of Eq. (55). Thus, the correct coordinate trans-
formation from the TT coordinates to the frame of the local
observer is

t¼ tttþ 1
4ðx2ttþy2ttÞ _�; x¼xttþ 1

2xtt�þ 1
2xttztt

_�;

y¼yttþ 1
2ytt�þ 1

2yttztt
_�; z¼ ztt� 1

4ðx2ttþy2ttÞ _�; (56)

which respects the symmetry with respect to rotations
around the z axis of the third scalar polarization. The
coefficients of this transformation (components of the
metric and its first time derivative) are taken along
the central wordline of the local observer [45]. The linear
and quadratic terms, as powers of xatt, are unambiguously
determined by the conditions of the frame of the local
observer, while the cubic and higher-order corrections
are not determined by these conditions [40–45].

Considering a free mass riding on a timelike geodesic
(x ¼ l1, y ¼ l2, z ¼ l3), Eqs. (56) define the motion of this
mass with respect to the introduced frame of the local
observer. In concrete terms, one gets

xðtÞ ¼ l1 þ 1
2l1�ðtÞ þ 1

2l1l3
_�ðtÞ;

yðtÞ ¼ l2 þ 1
2l2�ðtÞ þ 1

2l2l3
_�ðtÞ;

zðtÞ ¼ l3 � 1
4ðl21 þ l22Þ _�ðtÞ:

(57)

In the absence of GWs, the position of the mass is
ðl1; l2; l3Þ. The effect of the scalar GW is to drive the
mass to have oscillations. Thus, in general, from
Eqs. (57) all three components of motion are present.

Neglecting the terms with _� in Eqs. (57), the ‘‘tradi-
tional’’ equations for the mass motion are obtained:

xðtÞ ¼ l1 þ 1
2l1�ðtÞ; yðtÞ ¼ l2 þ 1

2l2�ðtÞ; zðtÞ ¼ l3:

(58)

Clearly, this is the analogy of the electric component
of motion in electrodynamics, see the Introduction

of this paper and Refs. [40–45], while equations xðtÞ ¼
l1 þ 1

2 l1l3
_�ðtÞ

xðtÞ ¼ l1 þ 1
2l1l3

_�ðtÞ; yðtÞ ¼ l2 þ 1
2l2l3

_�ðtÞ;
zðtÞ ¼ l3 � 1

4 ðl21 þ l22
_�ðtÞ (59)

are the analogue of the magnetic component of motion.
The fundamental fact to be stressed is that the magnetic
component becomes important when the frequency of the
wave increases, but only in the low-frequency regime. This
can be understood directly from Eqs. (57). In fact, recalling

that � ¼ �0e
i!ðtþzÞÞ, Eqs. (57) become

xðtÞ ¼ l1 þ 1

2
l1�ðtÞ þ 1

2
l1l3!�

�
!t� �

2

�
;

yðtÞ ¼ l2 þ 1

2
l2�ðtÞ þ 1

2
l2l3!�

�
!t� �

2

�
;

zðtÞ ¼ l3 � 1

4
ðl21 þ l22Þ!�

�
!t� �

2

�
:

(60)

Thus, the terms with _� in Eqs. (57) can be neglected
only when the wavelength goes to infinity, while, at high
frequencies, the expansion in terms of !lilj corrections,

with i, j ¼ 1, 2, 3, breaks down.

IV. DETECTABILITY OF THE
ELECTRIC COMPONENT

In the literature on scalar GWs, in general, the detect-
ability is discussed only in the low-frequency-
approximation, i.e., only for the electric component of
Eqs. (58), see [50,56], for example.
In this case, it is well known that the geodesic deviation

Eq. (54) gives [48]

€x ¼ 1
2
€�x (61)

and

€y ¼ 1
2
€�y: (62)
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At this point, one can write [57]

~R i
0j0 ¼

1

2

�@2t 0 0

0 �@2t 0 ..
.

0 0 0
	 	 	

0
BBBB@

1
CCCCA�ðt; zÞ ¼ � 1

2
Tij@

2
t�:

(63)

Here the transverse projector with respect to the direc-
tion of propagation of the GW, n̂, defined by [57]

Tij ¼ �ij � n̂in̂j; (64)

has been used. In this way, the geodesic deviation Eq. (54)
can be rewritten as

d2

dt2
xi ¼ 1

2
@2t�Tijxj: (65)

Concerning the detectability of the third polarization
state let us compute the pattern function of a detector to
this scalar component. One has to recall that it is possible
to associate to a detector a detector tensor [57] that, for an
interferometer with arms along the û e, and v̂ directions
with respect the propagating gravitational wave (see
Fig. 1), is defined by

Dij � 1
2ðv̂iv̂j � ûiûjÞ: (66)

If the detector is an interferometer, the signal induced by
a gravitational wave of a generic polarization, labeled here
with sðtÞ, is the phase shift, which is proportional to [57]

sðtÞ 
Dij ~Ri0j0: (67)

Then, by using Eqs. (63), one gets

sðtÞ 
 �sin2� cos2�: (68)

The angular dependence (68), which is shown in Fig. 2,
is different from the two well-known standard ones
arising from general relativity which are, respectively
ð1þ cos2�Þ cos2� for the þ polarization and
� cos� sin2# for the � polarization, see, for example,

Ref. [58]. Thus, in principle, the angular dependence (68)
could be used to understand whether this third polarization
is present, under the expectation that the current or future
GW detectors can achieve high sensitivity.
For the sake of completeness, it is better to show similar

figures for the cases of þ and � tensor GWs to compare
with Fig. 2. The angular dependences ð1þ cos2�Þ cos2�
for the þ polarization and � cos� sin2# for the � polar-
ization are, respectively, shown in Figs. 3 and 4.

V. DETECTABILITY OF THE MAGNETIC
COMPONENT

The discussion in the previous section concerns only the
low-frequency approximation of the electric component of
Eqs. (58). For a better approximation in the response
function, one needs a frequency dependence by consider-
ing the magnetic component of Eqs. (59) too. We empha-
size that in this section and in Sec. VI, we will only

u

v

GW
w

Phi

Theta

FIG. 1. A GW propagating from an arbitrary direction
ðr; �;�Þ, adapted from Ref. [57].
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FIG. 2 (color online). Angular dependence of the response
function for the third polarization, adapted from Ref. [57].
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FIG. 3 (color online). The angular dependence ð1þ cos2�Þ�
cos2� for the þ polarization
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consider the magnetic component of scalar GWs. Notice
that we are not claiming that the electric component can be
neglected. The electric component is always present. The
key point is that we have discussed this potential detection
in Sec. III. But, as we are within the linearized theory, we
can invoke the principle of superposition in order to discuss
them separately. The same happens when one discusses
separately the various different polarizations.

To compute the response functions for an arbitrary
propagating direction of the GW, a spatial rotation of the
coordinate system has to be performed [7,45]:

u ¼ �x cos� cos�þ y sin�þ z sin� cos�;

v ¼ �x cos� sin�� y cos�þ z sin� sin�;

w ¼ x sin�þ z cos�

(69)

or, in terms of the x, y, z frame:

x ¼ �u cos� cos�� v cos� sin�þ w sin�;

y ¼ u sin�� v cos�;

z ¼ u sin� cos�þ v sin� sin�þ w cos�:

(70)

The test masses are the beam splitter and the mirror of
the interferometer, and we will suppose the beam splitter
located in the origin of the coordinate system. In this way,
Eqs. (59) represent the motion of the mirror as it is due to
the magnetic component of the scalar GW.

As the mirror of Eqs. (59) is situated in the u direction,
using Eqs. (59), (69), and (70) the u coordinate of the
mirror is given by

u ¼ Lþ 1
4L

2A _�ðtÞ; (71)

where

A � 2 cos� cos�

��
1þ sin2�

2

�
þ sin2� sin2�

�

� 2sin2� sin� cos�; (72)

and L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ l23

q
is the length of the interferometer

arms.
The computation for the v arm is similar to the one

above. Using Eqs. (59), (69), and (70), the coordinate of the
mirror in the v arm is:

v ¼ Lþ 1
4L

2B _�ðtÞ; (73)

where

B � 2 cos� sin�

��
1þ sin2�

2

�
þ sin2� sin2�

�

� 2cos2� sin� sin�: (74)

Equations (71) and (73) represent the distance of the
two mirrors of the interferometer from the beam splitter in
presence of the scalar GW polarization (again note that
only the contribution of the magnetic component of the
third polarization of the GW is taken into account).
A ‘‘signal’’ can also be defined in the time domain (i.e.,

T ¼ L in our notation):

�TðtÞ
T

� u� v

L
¼ 1

4
LðA� BÞ _�ðtÞ: (75)

The quantity (75) can be computed in the frequency
domain using the Fourier transform of �, defined by [3]

~�ð!Þ ¼
Z 1

�1
dt�ðtÞ expði!tÞ; (76)

obtaining

~�Tð!Þ
T

¼ H�
magnð!Þ�ð!Þ;

where the function

H�
magnð!Þ ¼ � 1

8
i!LðA� BÞ

¼ � 1

4
i!L

�
cos�

��
1þ sin2�

2

�
þ sin2� sin2�

�

� ðcos�� sin�Þ
þ sin�½cos2� sin�� sin2� cos��

�
(77)

is the total response function of the interferometer for the
magnetic component of the third polarization of the scalar
GW. This response function is different from the result of
[45] because we corrected the error in Eqs. (20) of [45]
[Eqs. (55) in this paper], and we used the correct Eqs. (56).
Such an error was carried through to all the computations
in [45], and this enabled incorrect geometric factors in the
response function in [45].
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FIG. 4 (color online). The angular dependence � cos� sin2#
for the � polarization.

PRECISE RESPONSE FUNCTION FOR THE MAGNETIC . . . PHYSICAL REVIEW D 83, 062002 (2011)

062002-11



VI. AMORE PRECISE RESPONSE FUNCTION FOR
THE MAGNETIC COMPONENT

Again, it is important to stress the importance of the
magnetic component at high frequency. In fact, it is well
known that the frequency range for Earth-based gravita-
tional antennas is the interval 10 Hz � f � 10 KHz [1].
As we recalled in the Introduction, the magnetic contribu-
tion represents the finite-wavelength correction to the usual
infinite-wavelength approximation. In other words, it be-
comes important at high frequencies, i.e., frequencies at
order KHzs [40–45]. Thus, in this section a more precise
response function for the magnetic component at high
frequency will be obtained.

Following [3,22,58–60], a good way to analyze varia-
tions in the proper distance (time) is by means of ‘‘bounc-
ing photons.’’ A photon can be launched from the
interferometer’s beam splitter to be bounced back by the
mirror. The ‘‘bouncing photons analysis’’ was created in
[59]. Actually, it has strongly generalized to angular de-
pendences and scalar waves in [3,22,58,60]. However, this
is the first time that the such a ‘‘bouncing photons analy-
sis’’ is applied to the magnetic component of scalar GWs.

We start by considering a photon that propagates in the u
axis, but the analysis is almost the same for a photon that
propagates in the v axis. By using Eq. (71), the unper-
turbed coordinates for the beam splitter and the mirror are
ub ¼ 0 and um ¼ L. Thus, the unperturbed propagation
time between the two masses is

T ¼ L: (78)

From Eq. (71), the displacements of the two masses
under the influence of the GW are

�ubðtÞ ¼ 0 (79)

and

�umðtÞ ¼ 1
4L

2A _�ðtþ L sin� cos�Þ: (80)

In this way, the relative displacement in the u direction,
which is defined by

�LðtÞ ¼ �umðtÞ � �ubðtÞ (81)

gives a signal in the u direction

�TðtÞ
T

��������u
¼ �LðtÞ

L
¼ 1

4
LA _�ðtþ L sin� cos�Þ: (82)

But, for a large separation between the test masses (in the
case of Virgo the distance between the beam splitter and
the mirror is 3 kilometers, 4 in the case of LIGO), the
definition (81) for relative displacements becomes unphys-
ical because the two test masses are taken at the same time
and therefore cannot be in a casual connection [59,60]. In
this way, the correct definitions for the bouncing photon are

�L1ðtÞ ¼ �umðtÞ � �ubðt� T1Þ (83)

and

�L2ðtÞ ¼ �umðt� T2Þ � �ubðtÞ; (84)

where T1 and T2 are the photon propagation times for the
forward and return trip, correspondingly. According to the
new definitions, the displacement of one test mass is com-
pared with the displacement of the other at a later time to
allow for finite delay from the light propagation. The
propagation times T1 and T2 in Eqs. (83) and (84) can be
replaced with the nominal value T because the test mass

displacements are already first order in _� [60]. Thus, the
total change in the distance between the beam splitter and
the mirror in one round-trip of the photon is

�Lr:t:ðtÞ ¼ �L1ðt� TÞ þ �L2ðtÞ
¼ 2�umðt� TÞ � �ubðtÞ � �ubðt� 2TÞ; (85)

and in terms of the amplitude of the scalar GW

�Lr:t:ðtÞ ¼ 1
2L

2A _�ðtþ L sin� cos�� LÞ: (86)

The change in distance (86) leads to changes in the round-
trip time for photons propagating between the beam splitter
and the mirror in the u direction:

�1TðtÞ
T

��������u
¼ 1

2
LA _�ðtþ L sin� cos�� LÞ: (87)

In the last calculation (variations in the photon round-
trip time which come from the motion of the test masses
inducted by the magnetic component of the scalar GW), it
has been implicitly assumed that the propagation of the
photon between the beam splitter and the mirror of our
interferometer is uniform as if it were moving in a flat
space-time. But the presence of the tidal forces indicates
that the space-time is curved. As a result, one more effect
after the first discussed, that requires spacial separation,
has to be analyzed [59,60].
From Eq. (80) the tidal acceleration of a test mass caused

by the magnetic component of the þ polarization of the
GW in the u direction is

€uðtþ u sin� cos�Þ ¼ 1

4
L2A

@

@t
€�ðtþ u sin� cos�Þ:

(88)

Equivalently, one can say that there is a gravitational
potential [24,59,60]

Vðu; tÞ ¼ � 1

4
L2A

Z u

0

@

@t
€�ðtþ l sin� cos�Þdl; (89)

which generates the tidal forces, and that the motion of the
test mass is governed by the Newtonian equation
[24,59,60]

€~r ¼ �5 V: (90)

For the second effect, one considers the interval for
photons propagating along the u axis
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ds2 ¼ g00dt
2 þ du2: (91)

The condition for a null trajectory (ds ¼ 0) gives the
coordinate velocity of the photons [59,60]

v2
p �

�
du

dt

�
2 ¼ 1þ 2Vðt; uÞ; (92)

which to first order in � is approximated by

vp � �½1þ Vðt; uÞ�; (93)

with þ and� for the forward and return trip, respectively.
By knowing the coordinate velocity of the photon, one
defines the propagation time for its travelling between
the beam splitter and the mirror:

T1ðtÞ ¼
Z umðtÞ

ubðt�T1Þ
du

vp

(94)

and

T2ðtÞ ¼
Z ubðtÞ

umðt�T2Þ
ð�duÞ
vp

: (95)

The calculations of these integrals would be complicated
because the um boundaries of them are changing with time:

ubðtÞ ¼ 0 (96)

and

umðtÞ ¼ Lþ �umðtÞ: (97)

But, to first order in �, these contributions can be
approximated by �L1ðtÞ and �L2ðtÞ [see Eqs. (83) and
(84)]. Thus, the combined effect of the varying boundaries
is given by �1TðtÞ in Eq. (87). Then, only the times for
photon propagation between the fixed boundaries, i.e., 0
and L, have to be calculated. Such propagation times are
denoted with �T1;2 to distinguish from T1;2. In the forward

trip, the propagation time between the fixed limits is

�T1ðtÞ ¼
Z L

0

du

vðt0; uÞ � L�
Z L

0
Vðt0; uÞdu; (98)

where t0 is the delay time (i.e., t is the time at which the
photon arrives in the position L, so L� u ¼ t� t0) which
corresponds to the unperturbed photon trajectory

t0 ¼ t� ðL� uÞ:

Similarly, the propagation time in the return trip is

�T2ðtÞ ¼ L�
Z 0

L
Vðt0; uÞdu; (99)

where now the delay time is given by

t0 ¼ t� u:

The sum of �T1ðt� TÞ and �T2ðtÞ gives the round-trip
time for photons travelling between the fixed boundaries.
Then, the deviation of this round-trip time (distance) from
its unperturbed value 2T is

�2TðtÞ ¼�
Z L

0
½Vðt� 2Lþu;uÞduþ�

Z 0

L
Vðt� u;uÞ�du;

(100)

and, using Eq. (89), it is

�2TðtÞ¼1

4
L2A

Z L

0

�Z u

0

@

@t
€�ðt�2Tþ lð1þsin�cos�ÞÞdl

þ�
Z u

0

@

@t
€�ðt� lð1�sin�cos�Þdl

�
du: (101)

Thus, the total round-trip proper distance in presence of
the magnetic component of the scalar GW is

Tt ¼ 2T þ �1T þ �2T; (102)

and

�Tu ¼ Tt � 2T ¼ �1T þ �2T (103)

is the total variation of the proper time (distance) for the
round-trip of the photon in presence of the magnetic com-
ponent of the scalar GW in the u direction.
By using Eqs. (87) and (101) and the Fourier transform

of � defined by Eq. (76), the quantity (103) can be com-
puted in the frequency domain as

~�Tuð!Þ ¼ ~�1Tð!Þ þ ~�2Tð!Þ; (104)

where

~� 1Tð!Þ ¼ �i! exp½i!Lð1� sin� cos�Þ�L
2A

2
~�ð!Þ;

(105)

~� 2Tð!Þ ¼ i!L2A

4

��1þ exp½i!Lð1� sin� cos�Þ� � iL!ð1� sin� cos�Þ
ð1� sin� cos�Þ2

þ expð2i!LÞð1� exp½i!Lð�1� sin� cos�Þ� � iL!ð1þ sin� cos�Þ
ð�1� sin� cos�Þ2

�
~�ð!Þ: (106)

In the above computation the derivation and translation theorems of the Fourier transform have been used. In this way
the response function of the u arm of our interferometer to the magnetic component of the scalar GW results
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H�
u ð!Þ �

~�Tuð!Þ
L ~�ð!Þ

¼ �i! exp½i!Lð1� sin� cos�Þ�LA
2

þ i!LA

4

��1þ exp½i!Lð1� sin� cos�Þ� � iL!ð1� sin� cos�Þ
ð1� sin� cos�Þ2

þ expð2i!LÞð1� exp½i!Lð�1� sin� cos�Þ� � iL!ð1þ sin� cos�Þ
ð�1� sin� cos�Þ2

�
: (107)

The computation for the v arm is parallel to the one above. With the same way of thinking of previous analysis, one gets
variations in the photon round-trip time which come from the motion of the beam splitter and the mirror in the v direction

�1TðtÞ
T

��������v
¼ 1

2
LB�ðtþ L sin� sin�� LÞ; (108)

while the second contribute (propagation in a curve space-time) will be

�2TðtÞ ¼ 1

4
L2B

Z L

0

�Z u

0

@

@t
€�ðt� 2T þ lð1� sin� sin�ÞÞdlþ�

Z u

0

@

@t
€�ðt� lð1� sin� sin�Þdl

�
du; (109)

and the total response function of the v arm for the magnetic component of the scalar GWs is given by

H�
v ð!Þ �

~�Tuð!Þ
L €�!Þ

¼ �i! exp½i!Lð1� sin� sin�Þ�LB
2

þ i!LB

4

��1þ exp½i!Lð1� sin� sin�Þ� � iL!ð1� sin� sin�Þ
ð1� sin� cos�Þ2

þ expð2i!LÞð1� exp½i!Lð�1� sin� sin�Þ� � iL!ð1þ sin� sin�Þ
ð�1� sin� sin�Þ2

�
: (110)

The total response function for the magnetic component is given by the difference of the two response function of the
two arms:

H�
totð!Þ � H�

u ð!Þ �H�
v ð!Þ; (111)

and using Eqs. (107) and (110), one obtains a complicated formula

H�
totð!Þ ¼

~�Ttotð!Þ
L ~�ð!Þ

¼ �i! exp½i!Lð1� sin� cos�Þ�LA
2

þ LB

2
i! exp½i!Lð1� sin� sin�Þ�

� i!LA

4

��1þ exp½i!Lð1� sin� cos�Þ� � iL!ð1� sin� cos�Þ
ð1� sin� cos�Þ2

þ expð2i!LÞð1� exp½i!Lð�1� sin� cos�Þ� � iL!ð1þ sin� cos�Þ
ð�1� sin� cos�Þ2

�

þ i!LB

4

��1þ exp½i!Lð1� sin� sin�Þ� � iL!ð1� sin� sin�Þ
ð1� sin� cos�Þ2

þ expð2i!LÞð1� exp½i!Lð�1� sin� sin�Þ� � iL!ð1þ sin� sin�Þ
ð�1� sin� sin�Þ2

�
; (112)

which at lower frequencies is in perfect agreement with the result (77):

H�
totð! ! 0Þ ¼ � 1

4
i!L

�
cos�

��
1þ sin2�

2

�
þ sin2� sin2��ðcos�� sin�Þ þ sin�½cos2� sin�� sin2� cos��

�
: (113)
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In Fig. 5 the angular dependence (112) is mapped at
a frequency of 9 KHz for the Virgo interferometer
(L ¼ 3 km, see [1]). From Fig. 4 it is clear why we are
claiming that the magnetic contribution becomes important
at high frequencies: if one neglects such a contribution
considering only the low-frequency approximation of the
electric contribution analyzed in previous literature and in
Sec. IV of this paper an important portion of the total
integrated signal could be, in principle, lost. In fact, the
lost signal could arrive at about the 15% for some particu-
lar directions of the propagating GW. To well understand
this point one has to compare this magnetic contribution,
which is shown in Fig. 5, with the electric contribution
which is shown in Fig. 2, that is sufficient only for fre-
quencies order hundreds Hz. For higher frequencies, i.e.,
frequencies order kHzs, the magnetic correction is needed.

VII. COMPARING THE RESULTS WITH
THE GENERAL THEORY

OF RELATIVITY

It is important to show an expansion of the main results
recalling its presence also in GTR. Doing that, the impor-
tance of the STG for the effect, that is known to exist also
in GTR, is further emphasized. To make this, let us insert in
Eqs. (57) the contribution due to theþ and� polarizations
of the total perturbation (44). The analogous of Eqs. (57)
for the þ and � polarizations in GTR are Eqs. (6) of
Ref. [41], which are

xðtÞ ¼ l1 þ 1
2½l1hþðtÞ � l2h�ðtÞ� þ 1

2l1l3
_hþðtÞ þ 1

2l2l3
_h�ðtÞ;

yðtÞ ¼ l2 � 1
2½l2hþðtÞ þ l1h�ðtÞ� � 1

2l2l3
_hþðtÞ þ 1

2l1l3
_h�ðtÞ;

zðtÞ ¼ l3 � 1
4ðl21 � l22Þ _hþðtÞ þ 2l1l2 _h�ðtÞ: (114)

These equations, which are also Eqs. (13) of Ref. [40]
written with different notations, define the motion of the

mass due to theþ and� polarizations in the same frame of
the local observer of Eqs. (57).

Neglecting the terms with _hþ and _h� in Eqs. (114), the
traditional equations for the mass motion in GTR are
obtained [40,41]:

xðtÞ ¼ l1 þ 1
2½l1hþðtÞ � l2h�ðtÞ�;

yðtÞ ¼ l2 � 1
2½l2hþðtÞ þ l1h�ðtÞ�;

zðtÞ ¼ l3:

(115)

Clearly, this is analogous to the electric component of
motion in electrodynamics [40,41], while equations

xðtÞ ¼ l1 þ 1
2l1l3

_hþðtÞ þ 1
2l2l3

_h�ðtÞ;
yðtÞ ¼ l2 � 1

2l2l3
_hþðtÞ þ 1

2l1l3
_h�ðtÞ;

zðtÞ ¼ l3 � 1
4ðl21 � l22Þ _hþðtÞ þ 2l1l2 _h�ðtÞ

(116)

are analogous to the magnetic component of motion
[40,41]. Starting from Eqs. (116), a careful analysis has
been realized in [41], where the response functions for the
magnetic components in GTR have been computed.
In particular, the analogous of Eq. (77) for the þ and �
polarizations are, respectively, [41]

Hþ
magnð!Þ ¼ � 1

8
i!LðA� BÞ

¼ � 1

4
i!L sin�

��
cos2�þ sin2�

1þ cos2�

2

��

� ðcos�� sin�Þ (117)

and

H�
magnð!Þ ¼ �i!TðC�DÞ

¼ �i!L sin2�ðcos�þ sin�Þ cos�: (118)

By invoking the principle of superposition, we can add
the motion of the mass due to the third scalar polarization
�, which is defined by Eqs. (57), to the motion of the to
mass due to theþ and� polarizations, which is defined by
Eqs. (114). At the end, we get

xðtÞ ¼ l1 þ 1
2½l1hþðtÞ � l2h�ðtÞ� þ 1

2l1l3
_hþðtÞ þ 1

2l2l3
_h�ðtÞ

þ 1
2l1�ðtÞ þ 1

2l1l3
_�ðtÞ;

yðtÞ ¼ l2 � 1
2½l2hþðtÞ þ l1h�ðtÞ� � 1

2l2l3
_hþðtÞ þ 1

2l1l3
_h�ðtÞ

þ 1
2l2�ðtÞ þ 1

2l2l3
_�ðtÞ;

zðtÞ ¼ l3 � 1
4ðl21 � l22Þ _hþðtÞ þ 2l1l2 _h�ðtÞ � 1

4ðl21 þ l22Þ _�ðtÞ:
(119)

These equations define the motion of the mass due to all
three polarizations of GWs in STG: þ, �, and �.
Thus, one can interpret the linearized scalar field � like

a small quantity that measures the scalar sector in STG, so
that when the expansion parameter vanishes, one goes over
to GTR.
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FIG. 5 (color online). The angular dependence of the magnetic
response function (112) at 9 KHz for the Virgo interferometer
(L ¼ 3 km).
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VIII. CONCLUSIONS

In the framework of the potential detection of GWs, the
important issue of the magnetic component of GWs has
been considered in various paper in the literature. The
analyses of this issue have shown that such a magnetic
component results particularly important in the high fre-
quency portion of the frequency range of ground based
interferometers for GWs which arises from standard GTR.
On the other hand, detectors for GWs will also be impor-
tant because the interferometric GW detection will be the
definitive test for GTR or, alternatively, a strong endorse-
ment for ETG. In fact, recently, the magnetic component
has been extended to GWs arising from STG, which is an
alternative candidate to GTR. After a review of some
important issues regarding GWs in STG, in this paper the
magnetic component has been re-analyzed from a different
point of view, by correcting an error in a previous paper
and by releasing a more precise response function. In this
way, we have also shown that if one neglects the magnetic
contribution considering only the low-frequency approxi-
mation of the electric contribution, an important portion of

the signal could be, in principle, lost. In fact, the lost signal
could arrive at about the 15% for some particular directions
of the propagating GWas it is clear by comparing the total
magnetic contribution, which is shown in Fig. 5, with the
electric contribution which is shown in Fig. 2.
At the conclusion of this paper, an expansion of the main

results has also been shown. This point is important in
order to emphasize the presence of the magnetic compo-
nent in GTR too.
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