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We consider a vectorial, asymptotically free gauge theory and analyze the effect of higher-loop

corrections to the beta function on the evolution of the theory from the ultraviolet to the infrared. We

study the case in which the theory contains Nf copies of a fermion transforming according to the

fundamental representation and several higher-dimensional representations of the gauge group. We also

calculate higher-loop values of the anomalous dimension of the mass, �m of �c c at the infrared zero of the

beta function. We find that for a given theory, the values of �m calculated to three- and four-loop order,

and evaluated at the infrared zero computed to the same order, tend to be somewhat smaller than the value

calculated to two-loop order. The results are compared with recent lattice simulations.
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I. INTRODUCTION

In this paper we investigate how higher-loop corrections
to the beta function affect the evolution of a vectorial,
asymptotically free gauge theory [in (3þ 1) dimensions,
at zero temperature] from the ultraviolet to the infrared. We
assume that the theory contains a certain number, Nf, of

massless Dirac fermions c transforming according to a
representation R of the gauge group. We consider cases
where R is the fundamental, adjoint, and rank-2 symmetric
or antisymmetric tensor representation. We also study the
effect of higher-loop corrections to the anomalous dimen-
sion �m of the fermion mass. This work yields more com-
plete information on the nature of the evolution of the theory
from the ultraviolet to the infrared, in particular, on the
determination of the infrared zero of the beta function and
the scaling behavior of the �c c operator in thevicinity of this
zero. We will give a number of results for a general gauge
group G but will focus on the case G ¼ SUðNÞ.

We denote the running gauge coupling of the theory as
gð�Þ, with �ð�Þ ¼ gð�Þ2=ð4�Þ, where � is the Euclidean
energy/momentum scale (which will often be suppressed
in the notation). The property that the SUðNÞ gauge inter-
action is asymptotically free means that lim�!1�ð�Þ ¼ 0,

and, since the beta function is negative for small �, it
follows that, as the energy/momentum scale � decreases
from large values, � increases. As � decreases and the
theory evolves into the infrared, two different types of
behavior may occur, depending on the fermion content.
In a theory with a sufficiently small number of fermions in
small enough representations R, as � decreases through a
scale �, the coupling � exceeds a critical value �R;cr,

depending on R, for the formation of bilinear fermion
condensates, and these condensates are produced. This
may or may not be associated with an infrared (IR) zero
of the two-loop beta function at a value � ¼ �IR; if the
two-loop (2‘) beta function does have an IR zero, �IR;2‘,

then this type of behavior requires that �IR;2‘ > �R;cr [1,2].

As � decreases toward � and � increases toward the IR

zero of the beta function, the increase of � as a function of
decreasing � is reduced. This gives rise to an � that is of
order unity, but varies slowly as a function of �. This
behavior is interestingly different from the behavior of
the gauge coupling in quantum chromodynamics (QCD).
As the condensates form, the fermions gain dynamical
masses of order � so that, in the low-energy effective
theory applicable at scales �<�, they are integrated
out, and the further evolution of the theory into the infrared
is controlled by the Nf ¼ 0 beta function.

Alternatively, if the theory has a sufficiently large num-
ber Nf of fermions and/or if these fermions are in a large

enough representation R (as bounded above by the require-
ment of asymptotic freedom), then the IR zero of the beta
function occurs at a value smaller than �R;cr, so that as the

scale � decreases from large values, the theory evolves
into the infrared without ever spontaneously breaking chi-
ral symmetry. In this latter case, the IR zero of the beta
function is an exact IR fixed point (IRFP), approached
from below as � ! 0. More complicated behavior occurs
in theories containing fermions in several different repre-
sentations [3]; here we restrict to the case of fermions in a
single representation. For a given asymptotically free the-
ory that features an IR fixed point at � ¼ �IR, the value of
this IRFP decreases as a function of Nf. There is thus a

critical value of Nf, denoted Nf;cr, depending on R, at

which �IR decreases below �R;cr. This value serves as the

boundary, as a function of Nf, between the interval of

nonzero 1 � Nf < Nf;cr, where the theory evolves into

the infrared in a manner that involves fermion condensate
formation and associated spontaneous chiral symmetry
breaking (S�SB), and the interval Nf;cr <Nf < Nf;max,

where the theory evolves into the infrared without this
condensate formation and chiral symmetry breaking, with
Nf;max denoting the maximal value of Nf consistent with

the requirement of asymptotic freedom.
The anomalous dimension �m contains important infor-

mation about the scaling behavior of the operator �c c for
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which m is the coefficient, as probed on different momen-
tum scales. In a theory with an �IR �Oð1Þ, it follows that
�m may also be Oð1Þ, which can produce significant en-
hancement of dynamically generated fermion masses due
to the renormalization-group factor

� ¼ exp

�Z �2

�1

d�

�
�mð�ð�ÞÞ

�
: (1.1)

In a phase where no dynamical mass is generated, �m

simply describes the scaling behavior of the �c c operator.
There are several motivations for the study of higher-

order corrections to this evolution of an asymptotically free
theory into the infrared. First, the critical coupling �R;cr is

generically of order unity, and hence there is a need to have
a quantitative assessment of the importance of higher-loop
corrections to the evolution of the theory. Second, besides
being of fundamental field-theoretic interest, a knowledge
of this evolution plays an important role in modern techni-
color (TC) models with dynamical electroweak symmetry
breaking, in which the slow running of the coupling asso-
ciated with an approximate infrared zero of the beta func-
tion provides necessary enhancement of quark and lepton
masses [1,2] (recent reviews include [4–6]), and can reduce
technicolor corrections to precision electroweak quantities
[7,8]. In addition to the fundamental representation, fermi-
ons in higher-dimensional representations have been
studied in the context of technicolor [6,9]. Fermions in
higher-dimensional representations of chiral gauge groups
have long played a valuable role in studies of extended
technicolor (ETC) models that were reasonably ultraviolet-
complete and explicitly worked out the details of the
sequential breaking of the ETC chiral gauge symmetries
down to the TC group [10]. Recently, there has been a
considerable amount of effort devoted to lattice studies of
gauge coupling evolution and condensate formation in
vectorial SUðNÞ gauge theories as a function of Nf, for

fermions in both the fundamental representation [8,11–15]
and higher representations [16–23] (a recent review is
[24]). Thus, another important motivation for the present
work is to provide higher-order calculations that can be
compared with these lattice studies.

II. GENERAL THEORETICAL FRAMEWORK

A. Beta function

The beta function of the theory is denoted � ¼ dg=dt,
where dt ¼ d ln�. In terms of the variable

a � g2

16�2
¼ �

4�
; (2.1)

the beta function can be written equivalently as �� �
d�=dt, expressed as a series

d�

dt
¼ �2�

X1
‘¼1

b‘a
‘ ¼ �2�

X1
‘¼1

�b‘�
‘; (2.2)

where ‘ denotes the number of loops involved in the
calculation of b‘ and �b‘ ¼ b‘=ð4�Þ‘. Although this series
and series for other quantities in quantum field theories do
not have finite radii of convergence but are only asymp-
totic, experience shows that in situations where the effec-
tive expansion parameter [here, (�=�) times appropriate
group invariants] is not too large, the first few terms can
provide both qualitative and quantitative insight into the
physics. The first two coefficients in the expansion (2.2),
which are scheme-independent, are [25]

b1 ¼ 1

3
ð11CA � 4TfNfÞ (2.3)

and [26]

b2 ¼ 1

3
½34C2

A � 4ð5CA þ 3CfÞTfNf�: (2.4)

Here Cf � C2ðRÞ is the quadratic Casimir invariant for the

representation R to which the Nf fermions belong, CA �
C2ðGÞ is the quadratic Casimir invariant for the adjoint
representation, and Tf � TðRÞ is the trace invariant for the
fermion representation R. Higher-order coefficients, which
are scheme-dependent [27], have been calculated up to
four-loop order [28,29]. Some further details are given in

Appendix A. Values of b‘ for 1 � N � 4 and relevant
ranges of Nf are given in Table I.

B. Anomalous dimension of the �c c operator

The anomalous dimension �m for the fermion bilinear
�c c describes the scaling properties of this operator and
can be expressed as a series in a or equivalently, �,

�m ¼ X1
‘¼1

c‘a
‘ ¼ X1

‘¼1

�c‘�
‘; (2.5)

where �c‘ ¼ c‘=ð4�Þ‘ is the ‘-loop series coefficient. Via
Eq. (1.1), the anomalous dimension �m governs the run-
ning of a dynamically generated fermion mass. The coef-
ficients c‘ have been calculated to four-loop order [30].
The first two are

c1 ¼ 6Cf (2.6)

and

c2 ¼ 2Cf

�
3

2
Cf þ 97

6
CA � 10

3
TfNf

�
: (2.7)

For reference, the coefficient c3 is listed in Appendix A.
Since as Nf approaches Nf;max from below, b1 ! 0

with nonzero b2 and hence �IR ! 0, and since the pertur-
bative calculation expresses �m in a power series in �, it
follows that as �m ! 0 as Nf approaches Nf;max from

below. We note that a conjectured beta function that di-
rectly relates � to � has been proposed [31].
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III. PROPERTIES OF BETA FUNCTION
COEFFICIENTS AND APPLICATION TO
FUNDAMENTAL REPRESENTATION

In this section we discuss some general properties of the
beta function coefficients as functions of Nf, and give

particular results for the case of fermions in the fundamen-
tal representation. In later sections we consider fermions in
two-index representations.

A. b1

Since we restrict our considerations to an asymptotically
free theory, we require that, with our sign conventions,
b1 > 0. This, in turn, implies that

Nf < Nf;max; (3.1)

where

Nf;max ¼ 11CA

4Tf

: (3.2)

Thus, for fermions in the fundamental representation,
Nf;max;fund ¼ ð11=2ÞN.

B. b2 and condition for infrared zero of �

We next proceed to characterize the behavior of the
higher-loop coefficients of the beta function, b‘ with ‘ ¼
2; 3; 4, and the resultant zero(s) of the beta function, in
terms of their dependence on Nf. The two-loop results

are well-known and are included here so that the discussion
will be self-contained. Since only the first two coefficients
of the beta function are scheme-independent, it follows that,
to the extent that one is in a momentum regime where one
can reliably use the perturbative beta function, the zeros
obtained from these first two coefficients should be suffi-
cient to characterize the physics at least qualitatively. When
one includes higher-loop contributions to the beta function,
one expects shifts of zeros, and there are, indeed, generi-
cally substantial shifts if zeros of the two-loop beta function
occur at ��Oð1Þ. However, if inclusion of three- and/or
higher-loop contributions to � leads to a qualitative change
in behavior, relative to the behavior obtained from the two-
loop � function, then the results cannot be considered fully
reliable, since they are scheme-dependent. For example, for
a given gauge groupG and fermion content, if the two-loop
beta function does not have an infrared zero but the three-
loop beta function does, one could not conclude reliably
that this is a physical prediction of the theory. Moreover, it
should be noted that even if there is no zero of the two-loop
beta function away from the origin, i.e., a perturbative IRFP,
the beta function may exhibit a nonperturbative slowing of
the running associated with the fact that at energy scales
below the confinement scale, the physics is not accurately
described in terms of the Lagrangian degrees of freedom
(fermions and gluons) [32–34].
Another general comment is that the expression of the

beta function in Eq. (2.2) is semiperturbative and does not

TABLE I. Values of the ‘-loop beta function coefficients �b‘
defined in Eq. (2.2) in the SUðNÞ gauge theory with Nf fermions

transforming according to the fundamental representation, as
functions of N and Nf, for the range (3.1) where the theory is

asymptotically free.

N Nf
�b1 �b2 �b3 �b4

2 0 0.584 0.287 0.213 0.268

2 1 0.5305 0.235 0.154 0.191

2 2 0.477 0.184 0.099 0.127

2 3 0.424 0.132 0.047 0.078

2 4 0.371 0.080 �0:0003 0.044

2 5 0.318 0.0285 �0:044 0.024

2 6 0.265 �0:023 �0:084 0.020

2 7 0.212 �0:075 �0:120 0.030

2 8 0.159 �0:127 �0:152 0.057

2 9 0.106 �0:178 �0:180 0.099

2 10 0.053 �0:230 �0:205 0.156

3 0 0.875 0.646 0.720 1.173

3 1 0.822 0.566 0.582 0.910

3 2 0.769 0.485 0.450 0.681

3 3 0.716 0.405 0.324 0.485

3 4 0.663 0.325 0.205 0.322

3 5 0.610 0.245 0.091 0.194

3 6 0.557 0.165 �0:016 0.099

3 7 0.504 0.084 �0:118 0.039

3 8 0.451 0.004 �0:213 0.015

3 9 0.398 �0:076 �0:303 0.025

3 10 0.345 �0:156 �0:386 0.072

3 11 0.292 �0:236 �0:463 0.154

3 12 0.239 �0:317 �0:534 0.273

3 13 0.186 �0:397 �0:599 0.429

3 14 0.133 �0:477 �0:658 0.622

3 15 0.080 �0:557 �0:711 0.852

3 16 0.0265 �0:637 �0:758 1.121

4 0 1.17 1.15 1.71 3.50

4 1 1.11 1.04 1.46 2.88

4 2 1.06 0.932 1.22 2.31

4 3 1.01 0.824 0.986 1.80

4 4 0.955 0.716 0.762 1.36

4 5 0.902 0.607 0.546 0.972

4 6 0.849 0.499 0.339 0.647

4 7 0.796 0.391 0.140 0.385

4 8 0.743 0.283 �0:051 0.184

4 9 0.690 0.175 �0:234 0.046

4 10 0.637 0.066 �0:409 �0:029

4 11 0.584 �0:042 �0:575 �0:040

4 12 0.531 �0:150 �0:733 0.013

4 13 0.477 �0:258 �0:883 0.131

4 14 0.424 �0:366 �1:025 0.314

4 15 0.371 �0:474 �1:16 0.562

4 16 0.318 �0:583 �1:28 0.877

4 17 0.265 �0:691 �1:40 1.26

4 18 0.212 �0:799 �1:51 1.71

4 19 0.159 �0:907 �1:61 2.22

4 20 0.106 �1:015 �1:70 2.81

4 21 0.053 �1:124 �1:79 3.46
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incorporate certain nonperturbative properties of the phys-
ics, such as instantons, whose contributions involve essen-
tial zeros of the form expð���=�Þ, where � is a numerical
constant. These instanton effects are absent to any order of
the perturbative expansion in Eq. (2.2) but play an impor-
tant role in the theory. For example, they break the global
Uð1ÞA symmetry [35] and also enhance spontaneous chiral
symmetry breaking [36–39]. Estimates of the effects of
instantons on the running of � in quantum chromodynam-
ics have found that they increase this running, i.e., they
make �more negative in the region of small to moderate �
values [37]. If one were to model the effect of instantons
crudely via a modification of � such as

�� ¼ d�

dt
¼ �2�2

�X1
‘¼1

�b‘�
‘�1 þ 	 exp

�
���

�

��
; (3.3)

then, since 	 > 0, this would have the effect of increasing
the value of the smallest (nonzero, positive) IR zero �IR of
�. For a given minimal value of �cr;R for condensate

formation and spontaneous chiral symmetry breaking, since
at least at the perturbative level �IR is a decreasing function
of Nf, it would follow that incorporating instanton effects

would increase the value of Nf;cr, i.e., would increase the

interval in Nf where there is S�SB. Furthermore, since

instantons enhance chiral symmetry breaking, they would
tend to reduce the value of �cr;R, which also has the same

effect of increasing Nf;cr. We shall comment below on how,

although the semiperturbative one-gluon exchange approxi-
mation to the Dyson-Schwinger (DS) equation does not
directly include effects of confinement or instantons, it
may nevertheless yield an approximately correct value of
Nf;cr because of another approximation involved that has

the opposite effect on the estimate.
If one knows the beta function calculated to a maximal

loop order ‘max, then the equation for the zeros of the beta
function, aside from the zero at a ¼ 0, is

X‘max

‘¼1

b‘a
‘�1 ¼ b1

�
1þ X‘max

‘¼2

�
b‘
b1

�
a‘�1

�
¼ 0: (3.4)

As is clear from Eq. (3.4), the zeros of � away from the
origin depend only on the ‘max � 1 ratios b‘=b1 for 2 �
‘ � ‘max.

The coefficients b1 and b2 are linear functions of Nf,

while b3 and b4 are, respectively, quadratic and cubic
functions of Nf. With our sign convention in which an

overall minus sign is extracted in Eq. (2.2), each of these
coefficients is positive for Nf ¼ 0. The coefficients b1 and

b2 are both monotonically and linearly decreasing func-
tions of Nf. As Nf increases sufficiently, b2 thus reverses

sign, from positive to negative, vanishing at Nf ¼ Nf;b2z,

where

Nf;b2z ¼ 17C2
A

2Tfð5CA þ 3CfÞ : (3.5)

(The subscript b‘z stands for the condition that b‘ is zero).
Since

Nf;max � Nf;b2z ¼
3CAð11Cf þ 7CAÞ
4Tfð3Cf þ 5CAÞ > 0; (3.6)

i.e., Nf;max >Nf;b2z, it follows that there is always a non-

vacuous interval in the variable Nf, where the theory is

asymptotically free and the two-loop (2‘) beta function has
an infrared zero, namely

Nf;b2z < Nf < Nf;max: (3.7)

This zero occurs at

�IR;2‘ ¼ � 4�b1
b2

(3.8)

and is physical for b2 < 0. Explicitly, for the fundamental
representation,

Nf;b2z;fund ¼ 34N3

13N2 � 3
(3.9)

and

�IR;2‘;fund ¼
4�ð11N � 2NfÞ

�34N2 þ Nfð13N � 3N�1Þ : (3.10)

Illustrative values of Nf;b2z;fund are given in Table II. The

sizes of ‘-loop contributions are determined by ð�=�Þ‘
multiplied by corresponding powers of various group in-
variants. Illustrative values of �IR;2‘;fund are given in

Table III for N ¼ 2; 3; 4 and the subset of the interval
(3.7) for which �IR;2‘;fund is not so large as to render the

two-loop perturbative calculation obviously unreliable.
Here and below, when � and � values are listed without
an explicit R, it is understood that they refer to the funda-
mental representation. Examples of cases that we do not
include in the table because the two-loop result cannot be
considered reliable include the following (with formal
values of �IR;2‘;fund listed): N ¼ 2, Nf ¼ 5, where

�IR;2‘;fund ¼ 11:4; N ¼ 3, Nf ¼ 9, where �IR;2‘;fund ¼
5:2; and N ¼ 4, Nf ¼ 11, 12, where �IR;2‘;fund ¼ 14, 3.5.

For reference, the estimate in Eq. (B1) of �cr from the
analysis of the Dyson-Schwinger equation for the fermion
propagator, in the one-gluon exchange approximation,
takes the form in Eq. (B1) for a fermion in the fundamental

TABLE II. Values of Nf;b2z, Nf;b3z;�, and Nf;b4z;j, i ¼ 2; 3, for
SUðNÞ with Nf fermions in the fundamental representation. We

only list physical, i.e., real, non-negative values. Thus, since
Nf;bz4;1 < 0, is not included.

N Nf;max Nf;b2z ðNf;b3z;�; Nf;b3z;þÞ ðNf;b4z;2; Nf;b4z;3Þ
2 11 5.55 (3.99, 27.6) none

3 16.5 8.05 (5.84, 40.6) none

4 22 10.61 (7.73, 53.8) (9.51, 11.83)
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representation. As listed in Table IV, this has the respective
values 1.4, 0.79, and 0.56 for N ¼ 2; 3; 4, respectively
(where we quote the results to two significant figures but
do not mean to imply that they have such a high degree of
accuracy). Setting �cr ¼ �IR;2‘ yields the resultant esti-

mates of Nf;cr which, rounded to the nearest integers, are

8, 12, and 16 for these values of N. We denote these as
�DS estimates since they combine a calculation of �IR

from the perturbative two-loop � function with the (one-
gluon exchange approximation to the) Dyson-Schwinger
equation.

As Nf approaches its maximum value Nf;max allowed by

the constraint that the theory be asymptotically free, b2
reaches its most negative value, namely b2 ¼ �CAð7CA þ
11CfÞ. Clearly, for Nf values such that b2 is only negative

by a small amount and �IR;2‘ is large, the perturbative

calculation is not reliable. As Nf increases further in the

range (3.1) and �IR;2‘ decreases, the calculation becomes

more reliable. In Table II we list the numerical values of
Nf;b2z for some illustrative values of N. At the two-loop

level, depending on whether �IR;2‘ is smaller or larger than

a critical value for fermion condensation, this is an exact or
approximate infrared fixed point of the renormalization
group for the gauge coupling. The existence of such an
IRFP is of fundamental importance in determining how the
theory evolves from the ultraviolet to the infrared [40]. In
particular, as mentioned above, this determines whether, as
the scale � decreases sufficiently to a scale � (depending
on the groupG and the fermion content),� grows to a large
enough size to produce fermion condensates or, on the
contrary, the coupling never gets this large and the theory
evolves into the infrared in a chirally symmetric manner,
without ever producing such fermion condensates.
Note that in the former case, the fermions involved in the
condensates get dynamical masses of order � and are

TABLE III. Values of the (approximate or exact) IR zeros in � of the SUðNÞ beta function with
Nf fermions in the fundamental representation, for N ¼ 2; 3; 4, calculated at n-loop order, and

denoted as �IR;n‘. For each N, we only give results for the integral Nf values in the range (3.7),

where the theory is asymptotically free and the two-loop beta function has an infrared zero. For
the four-loop beta function, the cubic equation (3.32) has three zeros, one of which is negative,
one of which is �IR;4‘, and the third of which is positive but farther from the origin. We include

the latter, denoted as �4‘;u. We also list zeros from the [1,2] and [2,1] Padé approximants to the

four-loop beta function.

N Nf �IR;2‘ �IR;3‘ �IR;4‘ �IR;4‘;½1;2� �IR;4‘;½2;1� �4‘;u

2 7 2.83 1.05 1.21 2.30 1.16 4.12

2 8 1.26 0.688 0.760 0.952 0.741 3.11

2 9 0.595 0.418 0.444 0.475 0.438 2.395

2 10 0.231 0.196 0.200 0.202 0.200 1.97

3 10 2.21 0.764 0.815 1.47 0.807 5.62

3 11 1.23 0.578 0.626 0.871 0.616 3.29

3 12 0.754 0.435 0.470 0.561 0.462 2.295

3 13 0.468 0.317 0.337 0.367 0.333 1.78

3 14 0.278 0.215 0.224 0.231 0.222 1.48

3 15 0.143 0.123 0.126 0.127 0.125 1.29

3 16 0.0416 0.0397 0.0398 0.0398 0.0398 1.15

4 13 1.85 0.604 0.628 1.14 0.625 6.94

4 14 1.16 0.489 0.521 0.776 0.516 3.49

4 15 0.783 0.397 0.428 0.556 0.422 2.30

4 16 0.546 0.320 0.345 0.407 0.340 1.73

4 17 0.384 0.254 0.271 0.298 0.267 1.40

4 18 0.266 0.194 0.205 0.215 0.203 1.19

4 19 0.175 0.140 0.145 0.149 0.145 1.05

4 20 0.105 0.091 0.092 0.0930 0.0921 0.947

4 21 0.0472 0.044 0.044 0.0444 0.0443 0.870

TABLE IV. Estimates of �cr;R from the one-gluon exchange
approximation to the Dyson-Schwinger equation for the fermion
propagator. Values are listed for SUðNÞ with 2 � N � 6 and the
representations R ¼ (i) fundamental (fund), (ii) adjoint (adj),
(iii) symmetric rank-2 tensor (S2), and (iv) antisymmetric
rank-2 (A2).

N �cr;fund �cr;adj �cr;S2 �cr;A2

2 1.40 0.52 0.52 �
3 0.79 0.35 0.31 0.79

4 0.56 0.26 0.23 0.42

5 0.44 0.21 0.19 0.29

6 0.36 0.17 0.16 0.22
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integrated out of the effective low-energy field theory
applicable for scales �<�, so that the further evolution
into the infrared is governed by a different beta function.

It is useful to observe how rapidly the numbers Nf;b2z

approach their large-N values. The number Nf;b2z;fund has

the large-N expansion

Nf;b2z;fund ¼ N

�
34

13
þ 102

ð13NÞ2 þ
306

ð13Þ3N4
þO

�
1

N6

��

¼ N

�
2:615þ 0:603 55

N2
þ 0:1393

N4
þO

�
1

N6

��
:

(3.11)

As is evident from Table II, the values of Nf;b2z;fund ap-

proach the leading asymptotic form for moderate N, as a
result of the fact that the subleading term in Eq. (3.11) is
suppressed by 1=N2.

It is of interest to consider the ’t Hooft large-N limit,
where

N ! 1 with �N fixed: (3.12)

In a theory with fermions in the fundamental representa-
tion, in order for them to have a non-negligible
effect in this limit, one considers the simultaneous
Veneziano limit

Nf ! 1 with r � Nf

N
fixed: (3.13)

In the combined limit of Eqs. (3.12) and (3.13), the range of
r satisfying the requirement of asymptotic freedom and the
condition that b2 < 0 so that the two-loop beta function has
an IR zero is [41]

34

13
< r <

11

2
; i:e:; 2:615< r < 5:5: (3.14)

C. Coefficient b3 and three-loop behavior
of the beta function

The three-loop beta-function coefficient b3 is a quadratic
function of Nf with positive coefficients of its N0

f and N2
f

terms and a negative coefficient of its Nf term. Hence,

regarded as a function of the formal real variable Nf, it is

positive for large negative and positive Nf, and positive at

Nf ¼ 0. The derivative of b3 with respect to Nf is

db3
dNf

¼ Tf

�
� 1415

27
C2
A � 205

9
CACf þ 2C2

f

þ TfNf

�
88

9
Cf þ 316

27
CA

��
: (3.15)

For the fermion representations R that we consider here, for
small values of Nf, this derivative db3=dNf is negative, so

that in this region ofNf, b3 decreases from its positive value

at Nf ¼ 0 as Nf increases. Because b3 is a quadratic

polynomial in Nf, the condition that it vanishes gives two

formal solutions for Nf, namely

Nf;b3z;� ¼ ð1415C2
A þ 615CACf � 54C2

f � 3
ffiffiffiffiffiffiffiffiffiffi
FRb3

p Þ
4Tfð79CA þ 66CfÞ ;

(3.16)

and

FRb3 ¼ 122 157C4
A þ 109 578C3

ACf þ 25 045C2
AC

2
f

� 7380CAC
3
f þ 324C4

f: (3.17)

Given that FRb3 > 0, as is the case here, so that the values
Nf;b3z;j are real, it follows that b3 is positive in the intervals

Nf < Nf;b3z;� andNf > Nf;b3z;þ and negative in the interval

Nf;b3z;� <Nf < Nf;b3z;þ. The valueNf;b3z;þ and the neigh-

borhood of Nf values in the vicinity of Nf;b3z;þ are not of

interest here because they are larger than the maximal value
Nf;max allowed by the requirement of asymptotic freedom,

Nf;b3z;þ >Nf;max: (3.18)

Thus,b3 only changes sign once forNf in the asymptotically

free interval 0 � Nf < Nf;max. As Nf approaches Nf;max

from below, b3 decreases to a negative value given by

ðb3ÞNf¼Nf;max
¼�CA

24
½1127C2

Aþ44Cfð14CA�3CfÞ�:
(3.19)

For fermions in the fundamental representation, this is

ðb3ÞNf¼Nf;max;fund
¼ � 701

12
N3

c þ 121

12
Nc þ 11

8Nc

: (3.20)

As is clear from Table II, for this case

Nf;b3z;1 <Nf;b2z: (3.21)

We noted above that any physically reliable zero of the beta
function must be present already at the level of the two-loop
beta function, since this is themaximal scheme-independent
part of this function. Hence, in analyzing such a zero for the
case under consideration where the fermions transform ac-
cording to the fundamental representation of SUðNÞ, we
only consider the interval (3.7). Combining this fact with
our results (3.21) and (3.18), it follows that b3 is negative
throughout all of the interval (3.7) of interest here. For this
fundamental-representation case, the Nf;b3z;j with j ¼ 1; 2

have the large-N expansions

Nf;b3z;1¼N

�
1:911þ0:3244

N2
þ0:06844

N4
þO

�
1

N6

��
(3.22)

and

Nf;b3z;2¼N

�
13:348þ1:667

N2
þ0:3978

N4
þO

�
1

N6

��
: (3.23)

Here, Nf;max ¼ 5:5N.

At three-loop order, the equation for the zeros of the beta
function, aside from the zero at a ¼ 0, is b1 þ b2aþ
b3a

2 ¼ 0. Formally, this equation has two solutions for a
and hence for �, namely
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��z;3‘;� ¼ 2�

b3

�
�b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � 4b1b3

q �
: (3.24)

Since b2 must be negative in order for the beta function to
have a scheme-independent infrared zero, and since for
fermions in the fundamental representation we have shown
that b3 < 0 in the relevant interval (3.7), we can rewrite this
equivalently as

��z;3‘;� ¼ 2�

jb3j
�
�jb2j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ 4b1jb3j

q �
: (3.25)

In order for a given solution to be physical, it must be
real and positive. As is evident from Eq. (3.25), the solution
corresponding to theþ sign in Eq. (3.24) [i.e., the� sign in
Eq. (3.25)] is negative and hence unphysical. Thus, there is
a unique physical solution for the IR zero of the beta
function to three-loop order, namely

�IR;3‘ ¼ ��z;3‘;�: (3.26)

Illustrative values for this IR zero of the beta function at
three-loop order are listed in Table IV.

For an arbitrary fermion representation for which � has
a two-loop IR zero, we observe that the value of this zero
decreases when one calculates it to three-loop order, i.e.,

�IR;3‘ < �IR;2‘: (3.27)

This can be proved as follows. We have

�IR;2‘ � �IR;3‘ ¼ 2�

jb2b3j
�
2b1jb3j þ b22

� jb2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ 4b1jb3j

q �
: (3.28)

The expression in square brackets is positive if and only if

ð2b1jb3j þ b2Þ2 � b22ðb22 þ 4b1jb3jÞ> 0: (3.29)

But the difference in (3.29) is equal to the positive-definite
quantity b21b

2
3, which proves the inequality (3.27). This

inequality is evident in Table IV.

D. Coefficient b4 and four-loop behavior of �

The four-loop beta-function coefficient b4 was calcu-
lated in Ref. [29]. We next analyze its behavior as a
function of Nf and the result four-loop IR zero of the

beta function. The coefficient b4 is a cubic polynomial in
Nf which has positive coefficients of its N

0
f, and N

3
f terms.

Hence, regarded as a function of the formal real variable
Nf, b4 is negative for large negative Nf, positive for

Nf ¼ 0, and also positive for large positive Nf. For fermi-

ons in the fundamental representation, the derivative at
Nf ¼ 0 is

�
db4
dNf

�
Nf¼0

¼�
�
485513

1944
þ20

9

ð3Þ

�
N3

þ
�
58583

1944
�548

9

ð3Þ

�
N

þ
�
�2341

216
þ44

9

ð3Þ

�
N�1�23

8
N�3; (3.30)

where 
ðzÞ is the Riemann zeta function,


ðsÞ ¼ X1
n¼1

1

ns
(3.31)

and 
ð3Þ ¼ 1:202 056 90 . . . . This derivative is negative for
all N. (In the complex N plane, it has six zeros at three
complex-conjugate pairs ofN values.) It follows that, again
as a function of the formal real variable Nf, b4 has a local

maximum at a negative value of Nf and then decreases

through positive values as Nf increases toward 0 and

passes through 0 into the interval of physical values.
The detailed behavior of b4 in the physical asymptoti-

cally free interval 0 � Nf � Nf;max depends on N. In

particular, one may determine the value of Nf where b4
has a minimum and whether b4 has any zeros for positive
Nf. For SU(2), b4 decreases to a minimum positive value

as Nf ascends through the approximate value Nf ¼ 5:8,

and then increases monotonically for larger Nf, so that it is

positive-definite for all non-negative Nf, in particular, the

asymptotically free region 0 � Nf < 11. For SU(3), b4 is

also positive-definite for all non-negative Nf, reaching a

local minimum as Nf ascends through a value of approxi-

mately 8.2 and then increasing monotonically for larger
Nf. However, for SU(4), b4 is positive for 0 � Nf � 9:51,

negative for the interval 9:51 � Nf � 11:83, and positive

again for Nf > 11:83, with zeros at Nf ’ 9:51 and Nf ’
11:83. We list these zeros of b4 as a function of Nf in

Table II. (Again, we recall that the physical values of Nf

are, of course, restricted to non-negative integers.) Thus,
this reversal of sign occurs in the interval of interest here,
0 � Nf < 22, where the SU(4) theory is asymptotically

free. For SU(5), b4 behaves in a manner qualitatively
similar to the SU(4) case; it is positive for 0 � Nf �
11:18, negative in the interval 11:18 � Nf � 15:18, and

positive for larger values of Nf, vanishing at Nf ’ 11:18

and Nf ’ 15:18. Thus, again, b4 reverses sign in the region

0 � Nf < 22:5 where the SU(5) theory is asymptotically

free. Thus, in contrast with b2 and b3, which are negative
throughout the interval of Nf of interest (and b1, which is

positive), b4 can, for N � 4, vanish and reverse sign in this
interval.
At the four-loop level, the equation for the zeros of the

beta function, aside from a ¼ 0, is the cubic equation

b1 þ b2aþ b3a
2 þ b4a

3 ¼ 0: (3.32)
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This equation has three solutions for a and hence for �,
which will be denoted ��z;4‘;j, j ¼ 1; 2; 3. Since the coef-

ficients b‘ are real, there are two generic possibilities for
these three roots, namely, that they are all real, or that one
is real and the other two form a complex-conjugate pair.
The properties of the roots are further restricted by the
asymptotic freedom condition that b1 > 0, the existence of
a two-loop IR zero, which requires that b2 < 0, and the fact
that, as we have shown, for the relevant range (3.7) of Nf,

where these conditions are met, b3 < 0. As is evident in
Table IV, we find that for the values of N and Nf that we

consider, the roots of Eq. (3.32) are real. For all of the
values ofN andNf where there is a reliable two-loop value

for an IR zero of the beta function (i.e., where it does not
occur at such a large value of � as to render the perturba-
tive calculation untrustworthy), one of these roots is nega-
tive and hence not physical, one of them, namely, the
minimal positive one, is the physical IR zero, which we
will denote aIR;4‘ ¼ �IR;4‘=ð4�Þ, and there is a third root at
a larger positive value. This third root, denoted a4‘;u ¼
�4‘;u=ð4�Þ, is not relevant for our analysis, since the initial
value of � at a high-energy scale � is assumed to be close
to zero, so that as the scale � decreases, � increases and
approaches the (positive) zero of the beta function closest
to the origin, namely �IR;4‘ [42].

It is straightforward to display the analytic expressions
for the root�IR;4‘, but we shall not need this for our analysis.

We list numerical values for �IR;4‘ for various values of N
and Nf in Table IV. For completeness, we note the specific

sets ðN;NfÞ where �IR;2‘ is so large that we consider the

analysis via the perturbative beta function unreliable: these
are ðN;NfÞ ¼ ð2; 6Þ, (3,9), (4,11), and (4,12).

E. Estimates of zeros of the four-loop beta function
via Padé approximants

For the beta function, or more conveniently, the reduced

function with the prefactor removed,
P‘max�1

j¼0 bja
j�1, it is

useful to calculate and analyze Padé approximants, since
these provide closed-form expressions that, by construc-
tion, agree with the series to the maximal order to which it
is calculated. The expansion for ��� to ‘ ¼ 4 loop order can
be used in two ways. First, one can simply solve the cubic
equation ��� ¼ b1 þ b2aþ b3a

2 þ b4a
3 ¼ 0 and obtain

the three roots, one of which is the root of interest, giving
the IR zero. Secondly, one can calculate Padé approxim-
ants, e.g., the [2,1] and [1,2] approximants, and determine
their zeros. The [1,2] Padé approximant has a single zero at

a�z;4‘;½1;2� ¼
�IR;4‘;½1;2�

4�
¼ b1ðb1b3 � b22Þ

b32 � 2b1b2b3 þ b21b4Þ
: (3.33)

Taking into account the fact that b2 and b3 are negative in
the relevant interval (3.7), this can be rewritten as

TABLE V. Values of the ‘-loop coefficients �c‘ in the series
expansion (2.5) for the anomalous dimension �m, as functions of
N and Nf, for the range (3.1), where the theory is asymptotically

free.

N Nf �c1 �c2 �c3 �c4

2 0 0.358 0.318 0.310 0.329

2 1 0.358 0.302 0.254 0.234

2 2 0.358 0.286 0.195 0.143

2 3 0.358 0.270 0.134 0.0577

2 4 0.358 0.254 0.0712 �0:0218

2 5 0.358 0.239 0.006 56 �0:0952

2 6 0.358 0.223 �0:0601 �0:162

2 7 0.358 0.207 �0:129 �0:222

2 8 0.358 0.191 �0:199 �0:274

2 9 0.358 0.175 �0:272 �0:319

2 10 0.358 0.1595 �0:346 �0:355

3 0 0.637 0.853 1.26 2.03

3 1 0.637 0.825 1.11 1.64

3 2 0.637 0.796 0.957 1.27

3 3 0.637 0.768 0.801 0.909

3 4 0.637 0.740 0.642 0.561

3 5 0.637 0.712 0.479 0.227

3 6 0.637 0.684 0.312 �0:0926

3 7 0.637 0.656 0.142 �0:396

3 8 0.637 0.628 �0:0313 �0:683

3 9 0.637 0.599 �0:208 �0:953

3 10 0.637 0.571 �0:389 �1:21

3 11 0.637 0.543 �0:573 �1:44

3 12 0.637 0.515 �0:760 �1:65

3 13 0.637 0.487 �0:951 �1:85

3 14 0.637 0.459 �1:145 �2:02

3 15 0.637 0.431 �1:34 �2:18

3 16 0.637 0.402 �1:54 �2:31

4 0 0.895 1.60 3.17 6.86

4 1 0.895 1.56 2.89 5.88

4 2 0.895 1.52 2.61 4.93

4 3 0.895 1.48 2.32 4.00

4 4 0.895 1.44 2.03 3.09

4 5 0.895 1.40 1.73 2.21

4 6 0.895 1.36 1.43 1.36

4 7 0.895 1.33 1.12 0.526

4 8 0.895 1.29 0.808 �0:275

4 9 0.895 1.25 0.492 �1:05

4 10 0.895 1.21 0.170 �1:79

4 11 0.895 1.17 �0:157 �2:50

4 12 0.895 1.13 �0:488 �3:18

4 13 0.895 1.09 �0:825 �3:83

4 14 0.895 1.05 �1:17 �4:45

4 15 0.895 1.01 �1:51 �5:025

4 16 0.895 0.969 �1:86 �5:57

4 17 0.895 0.930 �2:22 �6:08

4 18 0.895 0.890 �2:58 �6:54

4 19 0.895 0.850 �2:95 �6:97

4 20 0.895 0.811 �3:32 �7:37

4 21 0.895 0.771 �3:69 �7:71
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a�z;4‘;½1;2� ¼
�IR;4‘;½1;2�

4�
¼ b1ðb1jb3jþb22Þ
jb2j3þ2b1jb2jjb3j�b21b4Þ

:

(3.34)

The two zeros from the [2,1] approximant are

a�z;4‘;½2;1�;� ¼ b2b3 � b1b4 � ½ðb2b3 � b1b4Þ2 � 4b1b3ðb23 � b2b4Þ�1=2
2ðb2b4 � b23Þ

: (3.35)

Taking account of the fact that b2 and b3 are negative in the relevant interval (3.7), this can be rewritten as

a�z;4‘;½2;1�;� ¼ b1b4 � jb2jjb3j � ½ðjb2jjb3j � b1b4Þ2 þ 4b1jb3jðb23 þ jb2jb4Þ�1=2
2ðjb2jb4 þ b23Þ

: (3.36)

The expression in Eq. (3.36) with the� sign in front of the
square root is negative and unphysical, while the expres-
sion with the þ sign in front of the square root yields the
estimate of the IR fixed point, as�IR;4‘;½2;1� ¼ 4�a�z;4‘;½2;1�.
As is evident from Eqs. (3.33) and (3.35), the zeros of the
[1,2] and [2,1] Padé approximants incorporate information
on � up to four loops. One readily verifies that in the limit
b4 ! 0, the zero of the [1,2] Padé reduces to the two-loop
result a ¼ �b1=b2, and the two zeros of the [2,1] Padé
reduce to those obtained from the three-loop beta function
(3.36). We list the values of �IR obtained from the zeros of
the [1,2] and [2,1] Padé approximants to the four-loop beta
function for the case of fermions in the fundamental rep-
resentation in Table IV.

From our calculations of �IR at the three- and four-loop
level for SUðNÞ with fermions in the fundamental repre-
sentation, we can make several remarks. Although n-loop
calculations of the beta function for n � 3 loops are
scheme-dependent, the results obtained with the present

MS scheme provide a quantitative measure of the accuracy
of the scheme-independent two-loop result. For a given N,
as Nf increases above the minimal value Nf;b2z, where the

IR zero first appears, and as the resultant�IR;2‘ decreases to

values & 1, the difference between �IR;2‘ and the higher-

loop values �IR;n‘ for n ¼ 3; 4 decrease. As is evident from
Table IV, the value of �IR;n‘ generically decreases as one

goes from n ¼ 2 to n ¼ 3 loops and then increases by a
smaller amount as one goes from n ¼ 3 to n ¼ 4 loops, so
that �IR;4‘ is smaller than �IR;2‘. In the same region of Nf

values such that �IR;2‘ is reasonably small, the values

obtained via the [1,2] and [2,1] Padé approximants to the
four-loop beta function are close to those obtained from the
zeros of this beta function itself.

IV. EVALUATION OF THE ANOMALOUS
DIMENSION �m AT THE INFRARED ZERO OF �

In this section we evaluate the anomalous dimension of
� � �m, calculated to the n-loop order in perturbation the-
ory, at the (approximate or exact) IR zero of the beta function
to this order, �IR;n‘, for n ¼ 2; 3; 4. We denote these as

�n‘ð�IR;n‘Þ. We focus here on general results and their

application to the case of fermions in the fundamental rep-
resentation, and discuss higher-dimensional representations
in subsequent sections. In general, this anomalous dimension
must be positive to avoid unphysical singularities in fermion
correlation functions. The coefficients c‘ that enter in
Eq. (2.5) used in this calculation are listed in Table V.
A running fermion mass �ðkÞ, that is dynamically

generated at a scale �, decays with Euclidean momentum
k >� like

�ðkÞ ��

�
�

k

�
2��m

(4.1)

up to logs. Since, for k >�, the running coupling � is
smaller than the critical value �R;cr and there is no sponta-

neous chiral symmetry breaking, it follows that �ðkÞ must
decrease toward zero as k=� ! 1. In turn, this implies that
�m < 2. Hence, a physical value of �m must lie in the range

0< �m < 2: (4.2)

For values of Nf such that the theory evolves into the

infrared in a chirally symmetric manner, so that the IR
zero of the beta function is exact, the same upper bound
follows from a related unitarity consideration [43].
Using the two-loop result for � and evaluating it

at the two-loop value of the IR zero of the beta function,
we have

�2‘ð�IR;2‘Þ ¼
Cfð11CA � 4TfNfÞð455C2

A þ 99CACf þ ð180Cf � 248CAÞTfNf þ 80T2
fN

2
fÞ

12ð�17C2
A þ ð10CA þ 6CfÞTfNfÞ2

: (4.3)

For the fundamental representation, this is
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�2‘ð�IR;2‘Þ ¼
ðN2 � 1Þð11N � 2NfÞð1009N3 � 99N � ð158N2 þ 90ÞNf þ 40NN2

fÞ
12ð�34N3 þ ð13N2 � 3ÞNfÞ2

: (4.4)

We list numerical values of �ð�IR;2‘Þ in Table VI for the
illustrative values N ¼ 2; 3; 4 and, for each N, a set of Nf

values in the range (3.7). For sufficiently smallNf > Nf;b2z

in each N case, �IR;2‘ is so large that the formal value of
�2‘ð�IR;2‘Þ is larger than 2 and hence unphysical; we
enclose these values in parentheses to indicate that they
are unphysical artifacts of a perturbative calculation at an
excessively large value of �.

In the large-N, large-Nf limit of Eqs. (3.12) and (3.13)

with r � Nf=N, Eq. (4.4) reduces to

�2‘ð�IR;2‘Þ ¼ ð11� 2rÞð1009� 158rþ 40r2Þ
12ð�34þ 13rÞ2 þO

�
1

N2

�
:

(4.5)

For r ¼ 4 corresponding to the asymptotic value of
Nf;cr;fund in Eq. (B2), �2‘ð�IR;2‘Þ ¼ 113=144 ’ 0:785,

which is the same as the large-N limit of Eq. (4.7).
One may evaluate �2‘ð�IR;2‘Þ at Nf equal to the value

Nf;cr;fund predicted by the one-gluon exchange (ladder)

approximation to the Dyson-Schwinger equation for the
fermion propagator, given in Eq. (B2). This is somewhat
formal, since these values of Nf;cr;fund are not, in general,

integers and hence not actually physical; for example,
Nf;cr;fund ¼ 7:86; 11:91; 15:94 for N ¼ 2; 3; 4). This proce-

dure yields the result

�2‘ð�IR;2‘;Nf;cr;fundÞ ¼ 565N4 � 706N2 þ 225

144ðN2 � 1Þð5N2 � 3Þ : (4.6)

For the illustrative cases N ¼ 2; 3; 4, this anomalous di-
mension takes the values 0.88, 0.82, and 0.80, respectively.
As N ! 1, Eq. (4.6) has the expansion

�2‘ð�cr;fundÞ ¼ 113

144
þ 11

40N2
þO

�
1

N4

�
: (4.7)

Since the estimate (B2) is close to 4N even for the smallest
value, N ¼ 2, and asymptotically approaches 4N as
N ! 1, it is worthwhile to compare the above values of
�, viz., 0.88, 0.82, and 0.80 forN ¼ 2; 3; 4, with �2‘ð�IR;2‘Þ
evaluated at the nearest physical, integer values of Nf,

namely Nf ¼ 8; 12; 16 for N ¼ 2; 3; 4. This procedure

yields �2‘ð�IR;2‘Þ ¼ 0:75; 0:77; 0:78, as recorded in

Table VI. To within the strong-coupling theoretical uncer-
tainties of these calculations, these values are mutually
consistent.
A closely related approach is to evaluate the two-loop

expression for �m at � ¼ �cr;R, where �cr;R is the estimate

of the critical coupling for fermion condensation obtained
from the one-gluon exchange approximation to the Dyson-
Schwinger equation, and then substitute Nf ¼ Nf;cr from

the �DS analysis (see Appendix B). This yields the result

�2‘ð�cr;R;Nf ¼ Nf;cr;RÞ ¼
21C2

A þ 128CACf þ 225C2
f

144CfðCA þ 3CfÞ :

(4.8)

For the fundamental representation, this reduces to the
same result as was obtained in Eq. (4.6).
We have evaluated the three-loop result for � at the

three-loop value of the IR zero of the beta function, which
we denote as �3‘ð�IR;3‘Þ, and the four-loop result for � at

TABLE VI. Values of the anomalous dimension in the SUðNÞ
theory with Nf fermions in the fundamental representation �m,

calculated to the n-loop order in perturbation theory and eval-
uated at the IR zero of the beta function calculated to this order,
�IR;n‘, for ‘ ¼ 2; 3; 4. We denote these as �n‘ð�IR;n‘Þ. For

sufficiently small Nf > Nf;b2z in each N case, �IR;2‘ is so large

that the formal value of �2‘ð�IR;2‘Þ is larger than 2 and hence

unphysical; we indicate this by placing these values in paren-
theses.

N Nf �2‘ð�IR;2‘Þ �3‘ð�IR;3‘Þ �4‘ð�IR;4‘Þ
2 7 (2.67) 0.457 0.0325

2 8 0.752 0.272 0.204

2 9 0.275 0.161 0.157

2 10 0.0910 0.0738 0.0748

3 10 (4.19) 0.647 0.156

3 11 1.61 0.439 0.250

3 12 0.773 0.312 0.253

3 13 0.404 0.220 0.210

3 14 0.212 0.146 0.147

3 15 0.0997 0.0826 0.0836

3 16 0.0272 0.0258 0.0259

4 13 (5.38) 0.755 0.192

4 14 (2.45) 0.552 0.259

4 15 1.32 0.420 0.281

4 16 0.778 0.325 0.269

4 17 0.481 0.251 0.234

4 18 0.301 0.189 0.187

4 19 0.183 0.134 0.136

4 20 0.102 0.0854 0.0865

4 21 0.0440 0.0407 0.0409
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the four-loop value of the IRFP, which we denote as
�4‘ð�IR;4‘Þ. We list the resultant values in Table VI.

From our calculations of �m for the case of fermions in
the fundamental representation, we can make several ob-
servations. Although computations of �IR;n‘ and

�n‘ð�IR;n‘Þ are scheme-dependent for n � 3 loops, they

provide a useful measure of the accuracy of the lowest-
order results. As was the case with the position of �IR;n‘

itself, we find that, for a given N and for Nf reasonably

well above Nf;b2z so that the perturbative calculation of

�IR;n‘ is not too large, the value of �n‘ð�IR;n‘Þ generically
decreases as one goes from n ¼ 2 to n ¼ 3 loops. Some of
this decrease can be ascribed to the decrease in�IR;n‘ going

from (n ¼ 2)-loop to (n ¼ 3)-loop order. At the four-loop
level, �4‘ð�IR;4‘Þ tends to be smaller than �3‘ð�IR;3‘Þ for
values of Nf from Nf;b2z to values of Nf slightly above the

middle of the range (3.7), while for values of Nf in the

upper end of this range, �4‘ð�IR;4‘Þ is slightly larger than

�3‘ð�IR;3‘Þ. In general, for the values of Nf where �IR is

sufficiently small that the calculation may be trustworthy,
the value of the anomalous dimension evaluated at the IR
zero of the beta function (both calculated to n-loop order)
�n‘ð�IR;n‘Þ, is somewhat smaller than unity.

Several recent high-statistics lattice simulations have
been carried out on an SU(3) gauge theory with a varying
number Nf of fermions in the fundamental representation

in the range 6 � Nf � 12 [8,11–15,24]. This work has

yielded evidence for a regime of slowly running gauge
couplings for Nf & 12, consistent with the presence of

an IR zero of the beta function, in agreement with the
earlier continuum estimates in Ref. [1]. Ref. [11] also
found a considerable enhancement of h �c c i=f3P in the
SU(3) theory with Nf ¼ 6. Further lattice simulations

and analysis of data should yield values of �m that can
be compared with our higher-loop calculations in
this paper. A preliminary study of the SU(2) theory with
Nf ¼ 6 fermions has also been reported [21].

V. ADJOINT REPRESENTATION

In this section we analyze the SUðNÞ theory with Nf

copies of a Dirac fermion, or equivalently, 2Nf copies of a

Majorana fermion, in the adjoint representation. For this
case, the general expression for the maximal value of Nf

allowed by the requirement of asymptotic freedom,
Eq. (3.2), reduces to

Nf;max;adj ¼ 11

4
; (5.1)

i.e., restricting Nf to the integers Nf;max ¼ 2. The general

expression in Eq. (3.5) for the value of Nf at which b2
changes sign from positive to negative with increasing Nf

reduces to

Nf;b2z;adj ¼ 17

16
¼ 1:0625: (5.2)

Hence there is only one (integer) value of Nf, namely

Nf ¼ 2 Dirac fermions (equivalently, Nf ¼ 4 Majorana

fermions), for which the theory is asymptotically free
and has an IR zero of the two-loop beta function. This
zero occurs at

�IR;2‘;adj ¼ 2�

5N
’ 1:257

N
for Nf ¼ 2: (5.3)

Specializing the general formula for the critical coupling
�cr;R from the one-gluon exchange approximation to the

Dyson-Schwinger equation, Eq. (B1) (see Appendix B) for
the present case where R is the adjoint representation, one
obtains �cr;adj ¼ �=ð3NÞ. Formally setting �IR;2‘;adj ¼
�adj;cr yields the corresponding estimate for the critical

number Nf;cr ¼ 83=40 ¼ 2:075. This may be rounded off

to the nearest integer, giving Nf;cr for the adjoint represen-

tation. In view of the theoretical uncertainty in such an
estimate, due to the strong-coupling nature of the physics
involved, an SUðNÞ gauge theory with Nf ¼ 2 adjoint

fermions could be either slightly inside the chirally broken,
confined side of Nf;cr or slightly on the other side, where

the theory is chirally symmetric and the evolution into the
infrared is governed by an exact conformal IR fixed point.
For the present case of Nf ¼ 2 fermions in the adjoint

representation of SUðNÞ, the coefficients of the beta func-
tion are b1 ¼ N, b2 ¼ �10N2, b3 ¼ �ð101=2ÞN3, and

b4 ¼ N2

�
1843

18
N2 � 312

�
� 4
ð3ÞN2ðN2 þ 72Þ: (5.4)

At the four-loop level, the beta function has three zeros
away from the origin, one of which is the four-loop IR zero,
denoted �IR;4‘;adj. For N ¼ 2, the others form an unphys-

ical complex-conjugate pair, while for the other values of
N that we consider, the others consist of a negative one and
a another, denoted �4‘;u, which is not relevant to our study,

since it is not reached by evolution of the coupling starting
at small� for large�. We list the numerical values of these
zeros in Table VII.
The coefficients �c‘ in Eq. (2.5) for � for this case

are �c1 ¼ 3N=ð2�Þ, �c2 ¼ ð11N2Þ=ð8�2Þ, and �c3 ¼
�N3=ð2�3Þ, with �c4 given by

�4 �c4 ¼ N2

8

�
9� 5395

192
N2

�
þ 15

16

ð3ÞN2ðN2 � 9Þ: (5.5)

[The term in �c3 proportional to 
ð3Þ and the terms in �c4
proportional to 
ð4Þ and 
ð5Þ vanish for the adjoint repre-
sentation for arbitrary Nf.]

Evaluating the two-loop expression in Eq. (4.3) for �m at
the IR zero of the beta function, also calculated at the two-
loop level, �IR;2‘;adj, we obtain
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�2‘;adjð�IR;2‘;adjÞ¼
ð11�4NfÞð277�34Nfþ40N2

fÞ
6ð�17þ16NfÞ2

; (5.6)

so that for the Nf ¼ 2 case of interest here,

�2‘;adjð�IR;2‘;adjÞ ¼ 41

50
¼ 0:820 for Nf ¼ 2: (5.7)

It is also of interest to evaluate the two-loop �m at the
value of�cr from the one-gluon exchange (ladder) approxi-
mation to the Dyson-Schwinger equation. With Nf ¼ 2,

this yields

�2‘ð�cr;adjÞ ¼ 47

72
’ 0:653: (5.8)

Evaluating the three-loop result for �m at the IR zero of
the beta function calculated at the three-loop level,
�IR;3‘;adj, for the Nf ¼ 2 case of interest, we obtain

�3‘;adjð�IR;3‘;adjÞ ¼ 0:543 for Nf ¼ 2; (5.9)

which is again independent ofN. At the four-loop level, the
value of �4‘;adjð�IR;4‘;adjÞ does depend slightly on N. We

list the values of these anomalous dimensions in
Table VIII. The most recent simulations of a lattice gauge
theory with SU(2) gauge group andNf ¼ 2 fermions in the

adjoint representation report �m ¼ 0:49� 0:13 [23]. This
is in agreement with the calculations of �m here at the
three- and four-loop level, to within the uncertainties of the
respective calculations.

VI. SYMMETRIC AND ANTISYMMETRIC RANK-2
TENSOR REPRESENTATIONS

In this section we consider the SUðNÞ theory with Nf

fermions in the symmetric or antisymmetric rank-2 repre-
sentation, denotedS2 andA2. Since a number of formulas are
similar for these two cases, we will often give these in a
unified way for both cases, denoted T2 (for rank-2 tensor
representation), with � signs distinguishing them. For S2,
our analysis applies for any N, while for A2, we restrict to
N � 4, since the A2 representation is the singlet for SU(2)
and is equivalent to the conjugate fundamental representation
for SU(3). Note that for SU(4), the A2 representation is self-
conjugate. Also, since for SU(2) the S2 representation is the
same as the adjoint representation, which has already been
analyzed, we only consider the illustrative values N ¼ 3, 4.
For the two T2 cases, the general expression for the

maximal value ofNf allowed by the requirement of asymp-

totic freedom, Eq. (3.2), reduces to

Nf;max;T2 ¼ 11N

2ðN � 2Þ ; (6.1)

where the � refers to S2 and A2, respectively. As N
increases from 2 to 1, Nf;max;S2 increases monotonically

from 2.75 to 11=2 ¼ 4:5, and as N increases from 3 to 1,
Nf;max;A2 decreases monotonically from 16.5 to the same

limit, 4.5. The physical values of Nf;max in both cases are

the greatest integral parts of these rational numbers.
For these representations, the general expression in

Eq. (3.5) for the value of Nf at which the beta function

coefficient b2 changes sign from positive to negative with
increasing Nf takes the form

TABLE VIII. Values of the anomalous dimension �m in an SUðNÞ gauge theory with Nf ¼ 2
(Dirac) fermions in the adjoint representation, calculated to the n-loop order in perturbation
theory and evaluated at the IR zero of the beta function calculated to this order, for n ¼ 2; 3; 4.
We denote these as �n‘;adjð�IR;n‘;adjÞ. We also list the value of �2‘;adj evaluated at � equal to the

�DS estimate, Eq. (B1), for �cr;adj).

N �2‘;adjð�IR;2‘;adjÞ �3‘;adjð�IR;3‘;adjÞ �4‘;adjð�IR;4‘;adjÞ �2‘;adjð�cr;adjÞ
2 0.820 0.543 0.500 0.653

3 0.820 0.543 0.523 0.653

4 0.820 0.543 0.532 0.653

TABLE VII. Values of the (approximate or exact) IR zeros in � of the SUðNÞ beta function
with Nf ¼ 2 fermions in the adjoint representation, for N ¼ 2; 3; 4, calculated at n-loop order,

and denoted as �IR;n‘;adj. For the four-loop beta function, the cubic Eq. (3.32) has three zeros, one

of which is �IR;4‘;adj. Depending on N, there may be another real zero, denoted �4‘;u;adj, at a

larger value of �. We also list zeros from the [1,2] and [2,1] Padé approximants to the four-loop
beta function.

N �IR;2‘;adj �IR;3‘;adj �IR;4‘;adj �IR;4‘;½1;2�;adj �IR;4‘;½2;1�;adj �4‘;u;adj

2 0.628 0.459 0.450 0.455 0.449 -

3 0.419 0.306 0.308 0.317 0.308 9.38

4 0.314 0.2295 0.234 0.242 0.233 3.29
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Nf;b2z;T2 ¼ 17N2

ðN � 2Þð8N � 3� 6N�1Þ : (6.2)

As a consequence of the general inequality (3.6), it follows
that Nf;b2z;S2 <Nf;max;S2 and Nf;b2z;A2 <Nf;max;A2. For

N ¼ 2, the S2 representation is just the adjoint representa-
tion, so we only consider the illustrative values N ¼ 3; 4.
The respective intervals Nf;b2z;S2 <Nf < Nf;max;S2 for

which the SUðNÞ gauge theory is asymptotically free and
has an IR zero of � are 1:06<Nf < 2:75 for N ¼ 3 and

1:22<Nf < 3:30 for N ¼ 4. These ranges imply that the

only physical integral values of Nf satisfying these con-

ditions are Nf ¼ 2, 3 for both SU(3) and SU(4).

For large N, Nf;b2z;T2 has the series expansion

Nf;b2z;T2 ¼ 17

23
� 323

26N
þ 6137

29N2
� 103 547

212N3
þO

�
1

N4

�
: (6.3)

As N increases from 2 to 1, Nf;b2z;S2 increases monotoni-

cally from 17=16 ¼ 1:0625 to 17=8 ¼ 2:125, and as N
increases from 3 to 1, Nf;b2z;A2 decreases monotonically

from 8.05 to the same limit, 2.125. This limit is twice the
(N-independent) value of Nf;b2z;adj ¼ 17=16 for the adjoint

representation. Thus, for large N, the range (3.7) where the
SUðNÞ theory with Nf fermions in the S2 or A2 represen-

tation is asymptotically the same for both, namely, 17=8<

Nf < 11=2; restricting Nf to physical, integer values, this

range consists of the three values Nf ¼ 3; 4; 5.

For our further discussion we assume that Nf is in the

range Nf;b2z;T2 <Nf < Nf;max;T2 where the theory is

asymptotically free and the two-loop beta function has an
IR zero, for the respective cases S2 and A2. This zero
occurs at the value

�IR;2‘;T2 ¼
2�ð11N � 2NfðN � 2Þ

�17N2 þ Nfð8N2 � 19N � 12N�1Þ : (6.4)

We have calculated �IR;n‘;S2 and �IR;n‘;A2 up to n ¼ 4
loops and list the results in Tables IX and X. The resultant
�DS estimates for Nf;cr in the case of the S2 representation

and N ¼ 2; 3; 4 are Nf;cr;S2 ¼ 2:1; 2:5; 2:8, respectively.

For the A2 representation with N ¼ 4, one has Nf;cr;A2 ¼
8:1.
The two-loop expression for the anomalous dimension,

evaluated at � ¼ �IR;2‘;T2, is

�2‘;T2ð�IR;2‘;T2Þ

¼ ðN � 2ÞðN � 1Þ½11N � 2ðN � 2ÞNf�½Nð554N2 � 99N � 198Þ þ ð�34N3 � 22N2 � 360ÞNf þ 20NðN � 2Þ2N2
f�

12½�17N3 þ ðN � 2Þð8N2 � 3N � 6ÞNf�2
:

(6.5)

We list values of �2‘;S2ð�IR;2‘;S2Þ for N ¼ 2; 3; 4 in
Table XI and values of �2‘;A2ð�IR;2‘;A2Þ for N ¼ 4 in
Table XII with ‘ ¼ 2; 3.

It is also of interest to evaluate the two-loop expression
for � at the estimated � ¼ �cr;T2. This yields

�2‘;T2ð�cr;T2Þ ¼
322N2 � 225N � 450� 10NðN � 2ÞNf

432ðN � 2ÞðN � 1Þ :

(6.6)

We list these values in Tables XI and XII.

Evaluating the two-loop anomalous dimensions at the
two-loop IR zero of the beta function, �2‘;T2ð�IR;2‘;T2Þ, for
Nf equal to the respective �DS-estimated critical values,

we obtain (again with T2 and the � signs referring, re-
spectively, to S2 and A2)

�2‘;T2ð�IR;2‘;T2ÞjNf¼Nf;cr;T2

¼ 374N4 � 578N3 � 931N2 � 900N þ 900

144ðN � 2ÞðN � 1Þð4N2 � 3N � 6Þ : (6.7)

This has the large-N expansion

TABLE IX. Values of the (approximate or exact) IR zero in �
of the SUðNÞ beta function with Nf ¼ 2 fermions in the sym-

metric rank-2 (i.e., S2) representation, for N ¼ 3; 4, calculated at
n-loop order, and denoted as �IR;n‘;S2.

N Nf �IR;2‘;S2 �IR;3‘;S2 �IR;4‘;S2

3 2 0.842 0.500 0.470

3 3 0.085 0.079 0.079

4 2 0.967 0.485 0.440

4 3 0.152 0.129 0.131

TABLE X. Values of the (approximate or exact) IR zero in �
of the SU(4) beta function with Nf fermions in the antisym-

metric rank-2 (i.e., A2) representation, for the range 5 �
Nf � 10 where the theory is asymptotically free and has an IR

zero of the beta function, calculated at n-loop order, and denoted
as �IR;n‘;A2.

N Nf �IR;2‘;A2 �IR;3‘;A2 �IR;4‘;A2

4 6 2.17 0.664 0.770

4 7 0.890 0.437 0.502

4 8 0.449 0.287 0.319

4 9 0.225 0.174 0.184

4 10 0.090 0.080 0.082
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�2‘;T2ð�IR;2‘;T2ÞjNf¼Nf;cr;T2
¼ 187

288
� 17

128N
þO

�
1

N2

�
: (6.8)

The leading term has the value 187=288 ’ 0:649.
From a lattice study of SU(3) gauge theory with Nf ¼ 2

fermions in the S2 (sextet) representation, Ref. [18] found
that this theory is characterized by slow running behavior
consistent with an (exact or approximate) IR fixed point,
and further reported that �m < 0:6 where it was measured.
For SU(3), the estimate of �cr;S2 in Eq. (B1) gives �cr;S2 ¼
�=10 ¼ 0:31. Our results for the IR zero of� and the value
of �m at this zero for N ¼ 3 and Nf ¼ 2 are listed in

Tables IX and XI. We find that �IR;n‘;S2 is approximately

0.84 at n ¼ 2-loop level and decreases somewhat to 0.50 at
three-loop level. The two-loop result for �m is unphysically
large, while the three-loop value of �m at the correspond-
ing three-loop IR zeros of � is about 1.3. These are some-
what larger than the values reported in Ref. [18], although
in assessing this comparison, one must take account of the
significant strong-coupling uncertainties in our calculation
stemming from the fact that �IR;S2 �Oð1Þ. Our evaluation
of the two-loop expression for �m at the ladder-Dyson-
Schwinger estimate of �cr;S2, is 0.65.

VII. EFFECTS OF NONZERO FERMION MASSES

The global chiral symmetry that is operative if the
fermions are massless, and the way that it is broken by
fermion condensates, is well-known, and we do not review
it here. However, it is worthwhile to comment on the
situation in which some fermion masses are nonzero. In

this paper we generally assume that the fermions have zero
intrinsic masses in the Lagrangian describing the high-
scale physics, and the only masses that they acquire arise
dynamically if they are involved in condensates that form
as the gauge interaction becomes sufficiently strongly
coupled in the infrared. This is a well-motivated assump-
tion if the vectorial gauge theory arises as a low-energy
effective field theory from an ultraviolet completion which
is a chiral gauge theory. In turn, this is natural if the latter
theory becomes strongly coupled, since it can then form
fermion condensates that self-break it down to the vectorial
subgroup symmetry. However, one may also choose to
focus on the vectorial gauge theory as an ultraviolet-
complete theory in itself. In a vectorial gauge theory, an
intrinsic (bare) mass term for a fermion c ,Lm ¼ �m �c c ,
is allowed by the gauge invariance. Hence, one may con-
sider a more general situation in which the fermions may
have such intrinsic (hard) masses in the high-scale
Lagrangian [44]. In this case, as the reference scale �
decreases below the value of the hard mass of some fer-
mion mf, the beta function changes from one that includes

this to one that excludes this fermion. If the hard fermion
masses are small compared with the scale� in the situation
where the theory confines and breaks chiral symmetry
spontaneously, then these hard masses have only a small
effect. However, if some of the hard fermion masses are
sufficiently large, then as� decreases below their scale and
the corresponding fermions are integrated out of the low-
energy theory below this scale, this can significantly
change the infrared properties of the resultant theory.

TABLE XI. Values of �m in an SUðNÞ gauge theory with Nf fermions in the symmetric rank-2
tensor representation S2, calculated to the n-loop order in perturbation theory and evaluated at
the IR zero of the beta function calculated to this order, for n ¼ 2; 3; 4. We denote these as
�n‘;S2ð�IR;n‘;S2Þ. We also list �2‘;S2 evaluated at � equal to the estimate Eq. (B1) for �cr;S2.

N Nf �2‘;S2ð�IR;2‘;S2Þ �3‘;S2ð�IR;3‘;S2Þ �4‘;S2ð�IR;4‘;S2Þ �2‘;S2ð�cr;S2Þ
3 2 (2.44) 1.28 1.12 0.653

3 3 0.144 0.133 0.133 0.619

4 2 (4.82) (2.08) 1.79 0.659

4 3 0.381 0.313 0.315 0.629

TABLE XII. Values of �m in an SUðNÞ gauge theory with Nf fermions in the antisymmetric
rank-2 tensor representation A2, calculated to the n-loop order in perturbation theory and
evaluated at the IR zero of the beta function calculated to this order, for N ¼ 4 and n ¼ 2; 3; 4.
We denote these as �n‘;A2ð�IR;n‘;A2Þ. We also list �2‘;A2 evaluated at � equal to the estimate Eq.

(B1) for �cr;A2.

N Nf �2‘;A2ð�IR;2‘;A2Þ �3‘;A2ð�IR;3‘;A2Þ �4‘;A2ð�IR;4‘;A2Þ �2‘;A2ð�cr;A2Þ
4 6 (9.78) 1.38 0.293 0.769

4 7 (2.19) 0.695 0.435 0.750

4 8 0.802 0.402 0.368 0.732

4 9 0.331 0.228 0.232 0.713

4 10 0.117 0.101 0.103 0.695
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In applications of slowly running gauge theories to
technicolor theories, at the scale �TC where the SUðNTCÞ
gauge coupling grows to Oð1Þ and is influenced by the
presence of an approximate IR zero of the TC beta func-
tion, there can also be non-negligible effects due to four-
fermion operators arising from the higher-lying extended
technicolor dynamics [4–6,10,45,46], and these can affect
the scaling properties of �c c . Similar comments apply for
topcolor-assisted technicolor [4,47].

VIII. CONCLUSIONS

In this paper we have studied the evolution of an asymp-
totically free vectorial SUðNÞ gauge theory from high
scales to the infrared taking account of higher-loop correc-
tions to the beta function and the anomalous dimension �m

for fermions in the fundamental, adjoint, and rank-2 sym-
metric and antisymmetric representations S2 and A2. We
have compared our results with lower-order calculations.
We have shown that, for fixed N and Nf, in the range for

which the two-loop beta function has an IR zero, the value
of this zero decreases as one goes from the two-loop to the
three-loop calculations, and we have determined this de-
crease quantitatively. Going further, we have shown that
there is a smaller fractional increase in the value of this IR
zero when calculated to four-loop accuracy, with the final
four-loop result still smaller than the two-loop value. We
have analyzed instanton effects and have demonstrated that
they tend to increase the value of the IR zero of the beta
function somewhat. A major part of our work has been the
evaluation of the anomalous dimension �m of �c c at the IR
zero of the beta function at the ‘ ¼ 2; 3; 4-loop levels. This
zero is approximate or exact, depending on whether for a
givenN, the value ofNf is below or above the critical value

Nf;cr below which there is spontaneous chiral symmetry

breaking associated with the formation of a fermion con-
densate. We have found that this �m at the (approximate or
exact) IR zero of the beta function decreases as one goes
from two-loop to three-loop order, and that the four-loop
values also tend to be somewhat less than those at the two-
loop level. The values that we have calculated for �m at the
IR zero of the beta function tend to be somewhat smaller
than unity. We have compared our higher-loop calculations
with results from recent lattice simulations and have
found general agreement. We believe that the higher-loop
calculations reported here should provide a useful refer-
ence for comparison with ongoing and future lattice
measurements.
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APPENDIX A

For the reader’s convenience, we list the three-loop beta

function coefficient, in the MS scheme [28],

b3 ¼ 2857

54
C3
A þ TfNf

�
2C2

f �
205

9
CACf � 1415

27
C2
A

�

þ ðTfNfÞ2
�
44

9
Cf þ 158

27
CA

�
: (A1)

The four-loop coefficient is given in Ref. [29] and is a
cubic polynomial inNf. We note that the coefficients of the

N0
f (which is independent of the fermion representation) is

positive, and the coefficient of the N3
f term is positive for

an arbitrary fermion representation.
Our normalizations for the quadratic Casimir and trace

invariants of a Lie group are standard. The quadratic
Casimir invariant C2ðRÞ for the representation R is given

by
PoðGÞ

a¼1

PdimðRÞ
j¼1 ½DRðTaÞ�ij½DRðTaÞ�jk ¼ C2ðRÞ�ik, where

a, b are group indices, oðGÞ is the order of the group, Ta are
the generators of the associated Lie algebra, and DRðTaÞ is
the matrix form of the Ta in the representation R. The trace

invariant TðRÞ is defined by
PdimðRÞ

i;j¼1 ½DRðTaÞ�ij 	
½DRðTbÞ�ji ¼ TðRÞ�ab.

From the calculations of the coefficients of the pertur-
bative expansion of the anomalous dimension �m in the

MS scheme to four-loop order in Ref. [30], we record the
three-loop coefficient

c3 ¼ 2Cf

�
129

2
C2
f �

129

4
CfCAþ 11413

108
C2
A

þCfTfNfð�46þ 48
ð3ÞÞ�CATfNf

�
556

27
þ 48
ð3Þ

�

� 140

27
T2
fN

2
f

�
(A2)

We have used the four-loop coefficient c4 from Ref. [30]
for our calculations, but it is too lengthy to reproduce here.

APPENDIX B: BETA-DYSON-SCHWINGER
ESTIMATE OF Nf;cr

In this appendix we briefly review the �DS estimate
of Nf;cr. In the one-gluon exchange (also called ladder)

approximation to the Dyson-Schwinger equation for the
fermion propagator with an initially massless fermion in
the representation R of the gauge group, one finds a solu-
tion with a dynamically generated, nonzero fermion mass
if the coupling �ð�Þ exceeds a critical value �cr;R given by

[1,2,48]

�cr;R ¼ �

3Cf

: (B1)

Setting this equal to the two-loop expression for the
IR zero of � then yields an estimate for Nf;cr to this order,

namely
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Nf;cr ¼
CAð66Cf þ 17CAÞ
10TfðCA þ 3CfÞ : (B2)

We call this the �DS estimate of Nf;cr since it combines a

calculation of �IR from the � function with the estimate of
�cr;R from the ladder approximation to the Dyson-

Schwinger equation for the fermion propagator. In the
same ladder approximation, one finds �m ¼ 1 at � ¼
�cr;R [1] (which also holds for the DS analysis at a UV-

stable fixed point [49]). For the gauge group SUðNÞ with
the illustrative values of N used for the tables, namelyN ¼
2; 3; 4, Nf;cr;fund is equal to 7.9, 11.9, and 15.9, respectively,

with the large-N form Nf � 4N. For S2, the symmetric

rank-2 tensor representation, N ¼ 2, 3, 4, Nf;cr;S2 is equal

to 2.075, 2.5, and 2.9, increasing toward the limit 11=2 ¼
5:5 in the large-N limit. In the case of A2, the antisym-
metric rank-2 tensor reprepresentation, for N ¼ 3, the
result is the same as for the fundamental representation,
while for N ¼ 4, one has Nf;crit;A2 ’ 8:1, and as N ! 1,

Nf;crit;A2 decreases toward the limit 11=2.

One understands that a priori there could be significant
uncertainty in these estimates because of the strong-
coupling nature of the physics involved and the one-gluon
approximation used for the solution of the Dyson-
Schwinger equation. Moreover, the DS equation analysis
is semiperturbative in the sense that it contains polynomial
dependence on �, and it neglects nonperturbative effects
associated with confinement and instantons. However, cor-
rections to the one-gluon exchange approximation have
been analyzed and found not to be too large [2]. Recent
lattice simulations for SU(3) are in broad agreement, to

within the uncertainties, with the above prediction of
Nf;cr � 12 [11–15,24]. Some of the success of the �DS

prediction for Nf;cr may arise from the fact that two major

physical effects that it ignores, namely, confinement and
instantons, would shift Nf;cr in opposite directions and

hence tend to cancel each other out [34].

APPENDIX C: PADÉ RESULTS

In this appendix we collect some relevant results on Padé
approximants. Given a Taylor (or asymptotic) series
expansion around z ¼ 0 for the function fðzÞ

fðzÞ ¼ Xnmax

n¼0

fnz
n; (C1)

one can construct a set of ½p; q� Padé approximants,
namely, rational functions comprised of a numerator poly-
nomial of degree p and a denominator polynomial of
degree q, such that pþ q ¼ nmax � 1, of the form
ðPp

j¼0 pjz
jÞ=ðPq

k¼0 qkz
kÞ. Without loss of generality, one

can divide numerator and denominator by q0, so that, after
redefinition of the coefficients, one has

½p; q�fðzÞ ¼
Pp

j¼0 pjz
j

1þPq
k¼1 qkz

k
: (C2)

The pþ qþ 1 coefficients pj with 0 � j � p and qk with

1 � k � q are uniquely determined in terms of the fn
coefficients with 0 � n � nmax by expanding the ½p; q�
Padé approximant in a Taylor series around z ¼ 0 and
solving the set of nmax linear equations.
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