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Motivated by recent attempts to find nontrivial infrared fixed points in 4-dimensional lattice gauge

theories, we discuss the extension of the renormalization group transformations to complex coupling

spaces for OðNÞ models on L� L lattices, in the large-N limit. We explain the Riemann sheet structure

and singular points of the finite L mappings between the mass gap and the ’t Hooft coupling. We argue

that the Fisher’s zeros appear on ‘‘strings’’ ending approximately near these singular points. We show that

for the spherical model at finite N and L, the density of states is stripwise polynomial in the complex

energy plane. We compare finite volume complex flows obtained from the rescaling of the ultraviolet

cutoff in the gap equation and from the two-lattice matching. In both cases, the flows are channelled

through the singular points and end at the strong coupling fixed points, however strong scheme

dependence appear when the Compton wavelength of the mass gap is larger than the linear size of the

system. We argue that the Fisher’s zeros control the global properties of the complex flows. We briefly

discuss the implications for perturbation theory, proofs of confinement, and searches for nontrivial

infrared fixed points in models beyond the standard model.

DOI: 10.1103/PhysRevD.83.056009 PACS numbers: 11.10.Hi, 11.15.Ha, 64.60.ae, 75.10.Hk

I. INTRODUCTION

Recently, there has been a renewed interest [1–9] in the
possibility [10] of finding nontrivial infrared (IR) fixed
points in asymptotically free gauge theories with enough
matter fields. A particularly interesting situation is when in
addition to the nontrivial IR fixed point one ultraviolet
(UV) fixed points also appears at larger coupling. It has
been argued [11,12] that in this type situation, a parameter
can sometimes be varied in such a way that these two fixed
points coalesce and then disappear in the complex plane.

This observation has motivated us [13] to study complex
extensions of renormalization group (RG) flows in the
complex coupling plane. The main result is that the
Fisher’s zeros—the zeros of the partition function in
the complex coupling plane—act as a ‘‘gate’’ for the RG
flows ending at the strongly coupled fixed point. This can
be seen as a complex extension of the general picture
proposed by Tomboulis [14] to prove confinement: the
gate stays open as the volume increases and RG flows
starting in a complex neighborhood the UV fixed point
(where we have asymptotic freedom) may reach the IR
fixed point where confinement and the existence of a mass
gap are clearly present.

More generally, constructing RG flows in complex
spaces could improve our understanding of the conver-
gence of expansions (such as weak coupling and strong
coupling expansions) that are used in the neighborhood of
fixed points. Even though complexification is often used
for hydrodynamical flows, we are only aware of two pre-
vious studies of complex RG flows: one for exactly solv-
able lattice models [15] and one discussing the possibility
of chaotic behavior in the decimation of one-dimensional
Ising models with complex coupling [16].

In the following we discuss two complex extensions of
RG flows for OðNÞ models on L� L lattices, in the
large-N limit. The models are introduced in Sec. II. We
provide a closed form expression for the partition function
in the approximation where the nonzero modes of the
Lagrange multiplier are neglected. This is justified in the
large-N limit where we have equivalence with the spherical
model. In Sec. III, we study the map between the mass gap
M2 and the ’t Hooft coupling �t ¼ 1=b. We show that the
map requires a Riemann surface with qþ 1 sheets and 2q
cuts in the �t plane, where q is an integer of order L2. By
connecting the sheets in a specific way, we construct one
circle at infinity in the �t plane (or around 0 in the b plane)
that maps into the circle at infinity in the M2 plane and q
others that maps in small regions near real interval ½�8; 0�.
In Sec. IV, we use the closed form of the partition

function of Sec. II to calculate the Fisher’s zero at finite
L and N. We show empirically that these zeros appear on
‘‘strings’’ coming from infinity in the b plane and ending
near the singular points of the map discussed in Sec. III.
This is consistent with the infinite volume picture provided
in Ref. [17]. The density of zeros on these strings scales
like L2 and N. The results of this section can be com-
pared to what is found for other models, for instance in
Refs. [18–21] where one- and two-dimensional structures
have been observed.
In Sec. V, we show that the density of states is piecewise

polynomial on q horizontal strips in the energy plane. We
discuss the conjecture that connects the Fisher’s zeros with
the zeros of the second derivative of the logarithm of the
density of states. In Sec. VI, we extend two RG methods to
the complex b plane. The first one is based on a simple
rescaling of the cutoff in the gap equation. The second one
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is a procedure called the two-lattice matching [22,23]. All
the numerical calculations are done with L and N even.

Before embarking into the technical discussion, it is
important to keep in mind our various motivations. From
a practical point of view, it is easier to calculate Fisher’s
zeros than to construct RG flows and establishing a clear
connection should provide more robust ways to decide
about the existence of nontrivial IR fixed points. The
more general question of understanding the analytic prop-
erties of the map between the coupling and the mass gap
in the complex plane is also important and includes the
correction to asymptotic scaling. This question can be
studied explicitly for the models considered here and the
results illustrate the intricate pattern that can be produced
by combining lattice artifacts and finite size effects.
Possible implications for lattice gauge theory will be dis-
cussed in the conclusions.

II. THE MODEL

The partition function for the OðNÞ nonlinear sigma
model on a square, or more generally hypercubic lattice
with volume V ¼ LD reads

Z ¼ C
Z Y

x

dN�x�ð ~�x: ~�x � 1Þe
�ð1=g20Þ

P
x;e

ð1� ~�x: ~�xþeÞ
: (1)

We denote the inverse ’t Hooft coupling as b � 1=�t �
1=g20N. The constraint ~�x: ~�x ¼ 1 can be implemented by

introducing a Lagrange multiplier M2
x at every lattice site.

After this is done, the action becomes quadratic in ~� and
the Gaussian integration can be performed. It can be shown
that in the large-N limit only the zero mode of the
Lagrange multiplier, denoted M2 hereafter, survives [24].
With this simplification, the partition function becomes

ZðbÞ ¼ �ðNV
2 Þ

2�iðbNV
2 ÞðNV=2Þ�1

I
C
dM2eðVN=2Þ½bM2�LðM2Þ�; (2)

with

L ðM2Þ ¼ 1

V

X
k

ln

�
2
XD
i¼1

ð1� cosðkiÞÞ þM2

�
: (3)

The contour of integration, denoted C, encircles the real
interval ½�8; 0�, also called ‘‘the cut.’’ When Reb > 0, C
can be deformed into a vertical line with an arbitrary
positive real part and a semicircle at infinity going counter-
clockwise from �=2 to 3�=2 which gives no contribution
in the limit of infinite radius. Similarly, when Reb < 0, C
can be deformed into a vertical line with a negative real
part smaller than �8 and a semicircle at infinity going
clockwise from �=2 to ��=2. The prefactor has been
adjusted in order to have Zð0Þ ¼ 1 and the finite volume
momenta take the values k ¼ 2�

L n with n a vector of

integers modulo L.

For N even, the exponential of �VðN=2ÞLðM2Þ is a
product of poles located at the real negative values

M2
j ¼ �2

XD
i¼1

ð1� cosðkiÞÞ: (4)

The integer j indexes the various values taken while k runs
over its V possible values k ¼ 2�

L n. The number of distinct

poles will be discussed in Sec. III where it is denoted
qþ 1. The number of times a given value of M2

j occurs

will be denoted nj and we have
P

jnj ¼ V.

By calculating the residues, we get a general expression
of the form

ZðbÞ ¼ X
i;j

aij

�
1

b

�
i
eðVNbM2

j Þ=2; (5)

where aij are coefficients depending on the order i and the

pole M2
j . For a given j, the pole is of order njN=2 and the

index i runs between VN=2� 1 and ðV � njÞN=2. An

explicit expression for D ¼ 2, L ¼ 4, N ¼ 2 is given in
Eq. (A1) in the Appendix. Despite the apparent singular-
ities at b ¼ 0, ZðbÞ is an entire analytical function and
has a regular expansion at b ¼ 0. For instance for D ¼ 2,
L ¼ 4, N ¼ 2,

ZðbÞ ¼ 1� 64bþ 35 328b2

17
� 2 326 528b3

51
þOðb4Þ:

(6)

If in addition L is even, then for every M2
j , there is an

associatedM2
j0 ¼ �8�M2

j obtained by changing all the ki
into �� ki and one can see that aij0 ¼ ð�1Þiaij. This
guarantees that

Zð�bÞ ¼ eb4VNZðbÞ (7)

as explained in [17].
It should be noted that the number of independent aij

grows like L2 � N. This proliferation of terms makes
calculations performed in the next sections slow when L
or N becomes too large. For illustrative purpose, we will
often use L ¼ 4 and N ¼ 2. This allows us to give explicit
formulas of decent size as in the Appendix. However,
it should be kept in mind that Eq. (2) is only a good
approximation of the original partition function [Eq. (1)]
for large N.

III. THE GAP EQUATION, SINGULAR
POINTS, AND CUTS

In the large-N limit, it is possible to calculate the parti-
tion function in the saddle point approximation. Varying
M2, we obtain the gap equation:

b ¼ dLðM2Þ=dM2 � BðM2Þ; (8)

with
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B ðM2Þ � ð1=VÞX
k

1

2ðPD
i¼1ð1� cosðkiÞÞ þM2

; (9)

¼ ð1=VÞ X
qþ1

j¼1

nj

M2 �M2
j

; (10)

where nj is the number of times the poleMj appears in the

sum over the k and qþ 1 the number of distinct poles. The
explicit form of BðM2Þ in the case D ¼ 2 and L ¼ 4 is
given in Eq. (A2) in the Appendix. From now on D ¼ 2 is
assumed in all the examples. The precise value of q de-
pends on accidental degeneracies but generally increases
like L2. From Fig. 1 and Table I, we see that most of the
values of 2q follow the relation ðL=2þ 1Þ2 or ðL=2þ
1Þ2 � 1 with exceptions every three or six data points. In
general, after reducing to a common denominator, we
obtain a rational form:

B ðM2Þ ¼ QðM2Þ=PðM2Þ; (11)

where Q and P are polynomials of degrees q and qþ 1,
respectively.

We now discuss the poles, zeros, and singular points
of the mapping between b and M2 given by the gap
Equation (8). From Eq. (4), the qþ 1 poles of B are real
and between �8 and 0. �8 and 0 are always poles and on
the real interval between them (that we call ‘‘the cut’’
hereafter), BðM2Þ is zero once between each pair of suc-
cessive poles. In addition to these q zeros, BðM2Þ is also
zero when M2 becomes infinite. This also makes qþ 1
zeros. In general, b ¼ BðM2Þ takes all the complex values
qþ 1 times when M2 is varied over the whole complex
plane. Thus, the inverse map between the mass gapM2 and
b requires a Riemann surface with qþ 1 sheets in the b
plane. To decide where to put the cuts and how to join

different sheets, we need to study the singular points where
@b=@M2 ¼ 0. This occurs when P0Q� PQ0, a polynomial
of degree 2q, vanishes. The 2q roots of P0Q� PQ0 appear
in complex conjugate pairs in the M2 plane. This is illus-
trated in Fig. 2 for L ¼ 4 and 8. We notice that as L
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FIG. 1 (color online). The relation between L and 2q for
D ¼ 2 is shown.

TABLE I. L and 2q.

L 2q L 2q L 2q L 2q

2 4 16 80 30 220 44 528

4 8 18 100 32 288 46 576

6 16 20 120 34 324 48 580

8 24 22 144 36 328 50 676

10 36 24 148 38 400 52 728

12 40 26 196 40 440 54 784

14 64 28 224 42 472 56 840
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FIG. 2 (color online). Zeros, poles, and singular points of
bðM2Þ in the M2 plane for 4� 4 and 8� 8 lattices are shown.
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increases the region where the singular points appear
shrinks along the cut. A log-log plot of the largest imagi-
nary part of the singular points versus L is rather irregular
but suggests that the height of the region where the singular
points appear is of the order 1=L. In the infinite volume
limit, the singular points become dense and cover the
½�8; 0� cut.

The image of a singular point M2
sing in the b plane is

BðM2
singÞ. At infinite volume, BðM2Þ becomes an integral

with four logarithmic singularities [17]. The image of two
lines of points located very close above and below the
½�8; 0� cut, span four curves forming a cross shaped figure
that can be seen in Fig. 3. For comparison, the 288 singular
points for a 32� 32 lattice are also displayed. We find that
the real part of the closest singular points (CSP) move to
infinity while the imaginary part stays at 1

8 as the volume

increases. Near a singular pointM2
sing, we have ðBðM2

sing þ
�zÞ �BðM2

singÞÞ / ð�zÞ2 and we need two sheets to invert

the function in the neighborhood of BðM2
singÞ.

In order to construct the qþ 1 sheets, we start with the
region of theM2 plane where jM2 þ 4j � 8. In this region
we have b ’ 1=M2. We call this sheet the ‘‘main’’ sheet
because it contains the usual strong coupling region where
b is small, real, and positive corresponding to a m2

gap large,

real, and positive. As we now consider smaller values of
jM2 þ 4j, and correspondingly larger values of b on the
main sheet, we start running into singular points and need
to decide on the location of the cuts. A simple choice is to
take the cuts on vertical lines in the b plane going from the
images of singular points with positive imaginary part
to increasing values of the imaginary part and from the

images of singular points with negative imaginary part to
decreasing values of the imaginary part. The cuts are
shown for L ¼ 4 in Fig. 4. We can now construct the
inverse image of the two branches of a cut on the main
sheet. They end up on two real negative values ofM2 where
b becomes infinite. The complex conjugate of the inverse
image of these two branches corresponds to the complex
conjugated cut in the b plane. Joining the two together, we
obtain an oval shaped region in the M2 plane located
symmetrically across the cut. If we vary M2 inside each
of the oval shapes, b runs over the whole complex plane
forming the other q sheets. This construction is illustrated
for L ¼ 4 where q ¼ 4 in Fig. 4. If a curve in theM2 plane
enters an oval shaped region say on the left of the critical
point and exits on the right of this critical point, then its
image in the b plane will wrap around the image of the
singular point. In Sec. VI, we will show that the cuts in the
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FIG. 3 (color online). The blending small crosses (x, blue) are
the b images of two lines of points located very close above and
below the ½�8; 0� cut in infinite volume; the crosses (þ ) are the
images of the singular points for L ¼ 32. The images of the 4
closest singular points appear as boxes.
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FIG. 4 (color online). Singular points and cuts in the b plane
for L ¼ 4 (top) and their inverse images in the M2 plane are
shown.
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b plane and the boundaries of the oval shaped regions are
important to understand the RG flows.

IV. FISHER’S ZEROS

In this section, we discuss the Fisher’s zeros of the
partition function at finite N and L and the way their
density scales with these quantities. Later we will show
that these zeros play an important role in controlling the
RG flows. The coefficients aij in the large-N expression

Eq. (5) can be calculated exactly at finiteN and L using the
residues theorem. We can then search for the zeros of the
partition function by using Newton’s method and check
that the number of zeros found inside a given region of the
b plane encircled by a closed curve C is consistent with

I
C
dbðdZ=dbÞ=Z ¼ i2�

X
q

qnqðCÞ; (12)

where nqðCÞ is the number of zeros of order q insideC. The

results are shown in Fig. 5 for L ¼ 6. We see that the zeros
form linear structures (strings) ending at locations close to
the (N-independent) singular points. Similar pictures are
found for other not too large values of L and N where
similar calculations are feasible. In all the examples con-
sidered, we also found that the zeros closest to the real axis
always have an imaginary part larger than 1=8 in absolute
value; in other words, they never get closer to the real axis
than the CSP.

The density of zeros increases with N and L. We calcu-
lated the density of zeros in the b plane (number of zeros in
a given area of the b plane taken as large as possible). The
results are shown in Fig. 6. The fits of these log-log plots
show that at fixed L ¼ 2, the density grows like N1:000 and
at fixed N ¼ 2, the density grows like L2:027. This data is

consistent with the idea that the density of zeros increases
like the number of fields (NV).

V. DENSITY OF STATE

Another way to obtain information about the location of
the Fisher’s zeros is to calculate the density of states nðEÞ
in the complex energy plane. First, we consider the case
where the energy E is real. The density of states nðEÞ is the
inverse Laplace transform of the partition function:

nðEÞ ¼ N

2�i

Z Kþi1

K�i1
dbebNEZðbÞ: (13)

The contour of integration is a vertical line in the complex
b plane with a constant positive real part K otherwise
arbitrary. For L even, the relation between ZðbÞ and
Zð�bÞ given in Eq. (7) implies that
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f’’=0
sing.

FIG. 5 (color online). Zeros of partition function for L ¼ 6,
N ¼ 2 (boxes), and images of the singular points of bðM2Þ
(crosses) are shown. The images of the solutions f00 ¼ 0 dis-
cussed in Sec. V are given with the third symbol.
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FIG. 6 (color online). The number of zeros in a fixed region of
the b plane for N ¼ 2, L variable (top) and L ¼ 2, N variable
(bottom) is shown.
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nð4V � EÞ ¼ nðEÞ: (14)

We can now use the form of the partition function given in
Eq. (5) to obtain an explicit form. The only poles of the
integrand are at b ¼ 0. If Eþ V

2 M
2
j > 0, we can close the

contour by adding a semicircle at infinity to the left
and calculate the residue of the pole of order i at b ¼ 0.
If Eþ V

2 M
2
j < 0 we can close the contour by adding a

semicircle at infinity to the right and the closed contour
includes no poles. Since all theM2

j are real and negative, it

is clear that nðEÞ ¼ 0 for E< 0. For L even, Eq. (14)
implies that nðEÞ ¼ 0 for E> 4V. The final result for E
real and L and N even is that the density of states is
piecewise polynomial for 0 � E � 4V and zero outside
this interval. An explicit form will be given in Eq. (15).

We now generalize this construction to the case where E
is complex. If we consider ebNE on a circle at infinity in the
b plane, the expression blows up on one-half of the circle
and decays on the other half. If we insist on being able to
define the density of states by integrating Eq. (5) term by
term then the only way to extend the definition is to rotate
the line integral in such a way that bE is purely imaginary
at both ends. The argument about the closing of the con-
tour goes as before and we enclose the poles at 0 if
ReðEþ V

2 M
2
j Þ> 0. The final result is

nðEÞ ¼ N
X
i;j

aij
ðNEþ NV

2 M2
j Þi�1

ði� 1Þ! �

�
Re

�
Eþ V

2
M2

j

��
:

(15)

Figure 7 shows the function for L ¼ 4 and N ¼ 2 follow-
ing an explicit formula given in Eq. (A3) in the Appendix.

In summary, we have constructed a complex extension
of the density of states that is stripwise polynomial in the
complex E plane. As the polynomials associated with nðEÞ
in two contiguous strips are different, it is unavoidable that

some of their derivatives will be different at the boundary.
However, the discrepancies only appear at some order that
increases with VN=2. This can be seen from the discussion
in Sec. II, where we discuss the range of powers of 1=b
appearing in the partition function. As we cross the bound-
ary of a strip ReðEÞ ¼ VjM2

j j=2, we add terms of the form

ðEþ V
2 M

2
j Þi�1 which vanish at the boundary if i > 1. This

term generates a discontinuity in the i� 1-th derivative.
The lowest value of i occurring is ðV � njÞN=2, where nj
is the number of times the poleM2

j appears. Consequently,

the lowest derivative at which a discontinuity occurs
is ðV �MaxjðnjÞÞN=2� 1. For instance, for L ¼ 4,

MaxjðnjÞ ¼ 6, and the lowest order is 5N � 1. It can in-

deed be proven that for L even, MaxjðnjÞ ¼ 2ðL� 1Þ and
that it corresponds to M2

j ¼ �4 for which ‘‘mirror’’ mo-

menta can be paired in maximal number.
Interestingly, we can use the large-N limit to obtain

finite volume thermodynamics from the density of states.
At large N, by saddle point approximation of the Laplace
transform of Eq. (13), we obtain that

bðEÞ � f0 ¼ n0ðEÞ
NnðEÞ ; (16)

which is similar to the standard thermodynamical relation
� ¼ @S=@E.
Equation (16) provides a mapping of vertical strips of

the E plane into the b plane. The solutions of f00ðEÞ ¼ 0
give the singular points of this mapping. These singular
points can be found strip by strip by finding the solutions of
the polynomial equation:

 0

 0.06

 0.12

 0  16  32  48  64

n(
E

)

E

FIG. 7 (color online). The density of state function for
L ¼ 4 and N ¼ 2 is shown.
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FIG. 8 (color online). The singular points, zeros of partition
function, and Reðf00Þ ¼ 0 in the E plane for L ¼ 2, N ¼ 4. The
line (red), corresponds to Reðf00Þ ¼ 0 with Reðf00Þ> 0 above it.
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nðEÞn00ðEÞ ¼ ðn0ðEÞÞ2; (17)

which belongs to that vertical strip [assuming that nðEÞ �
0]. We can then compare the b images of these singular
points using Eq. (16) strip by strip. Figure 5 shows the
images of these singular points for L ¼ 6, N ¼ 2 together
with the images of the singular points of bðM2Þ and the
zeros of partition function in b plane. We see that the
singular points of bðEÞ seem to cluster is the same region
as the singular points of bðM2Þ but with a slightly broader
range. We conjecture that in the infinite volume limit, both
types of singular points will accumulate on the outside
boundary of the crossed shaped curve displayed in Fig. 3
(image of the cut in the infinite volume limit).

In the saddle point approximation, it can be argued [25],
that Fisher’s zeros can only appear as images of regions in
the E plane where Reðf00Þ> 0. In Fig. 8, we see that the
inverse image of the Fisher’s zeros appears in the region
Reðf00Þ> 0 even at small values of N and L.

VI. COMPLEX RG FLOWS FOR OðNÞ
In this section, we construct complex RG flows using

two different methods. The first one is based on a rescaling
of the UV cutoff in bðM2Þ given by the saddle point relation
Eq. (8), the second is a complex extension of the two-
lattice matching proposed in Ref. [22,23]

A. Rescaling of M2

Equation (8) can be interpreted as a relation between the
bare coupling and the UV cutoff keeping the renormalized
mass, or mass gap, fixed. As the UV cutoff is lowered, the
coupling increases and ultimately, b flows to zero. More
specifically, M2 ¼ m2

R=�
2 and we follow the change in b

under the change � ! �=s. In the literature the rescaling
factor s is often denoted b, but we are already using this
symbol for the inverse ’t Hooft coupling. Under this
change, M2 ! s2M2 and we can follow the trajectory in
the b plane. In the following, we will iterate the trans-
formation with s ¼ 2 in order to allow a comparison with
the other method for which s ¼ 2 is the simplest possibil-
ity. The initial values of M2 were taken on a small circle
around the origin in the M2 plane and then multiplied
repeatedly by 4. We can visualize these trajectories as
‘‘rays’’ coming out of the origin in the M2 plane.

At infinite volume, as long as the trajectories in the M2

do not cross the cut, the corresponding trajectories in the b
plane will stay inside the cross shaped image of the cut
shown in Fig. 3. Sample trajectories are shown on Fig. 9
(top panel) and illustrate this idea. The flatness of the flow
at larger values of Reb can be understood from the ap-
proximate logarithmic scaling of b and the fact the rescal-
ing factor is real and does not affect the phase of the rays.

At finite volume, the cut acquires a thickness and a
structure described in Sec. III. If the ray crosses the oval
shaped regions on two sides of the singular point (see

Fig. 4), then the corresponding trajectory in the b plane
will wrap around the image of the singular point in the b
plane using another Riemann sheet. At very small M2,
we have bðM2Þ ’ 1=ðL2M2Þ (instead of a logarithmic
dependence) and we have inverted rays at infinity in the
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FIG. 9 (color online). Top panel: RG flows by rescaling and an
image of the cut at infinite volume; middle panel: flows by
rescaling, singular points, CSPs, zeros of partition functions
(N ¼ 2), and f00 ¼ 0 (N ¼ 2) in the b plane for 6� 6 lattice
system; bottom panel: RG flows for the 2-lattice matching
between 8� 8 and 4� 4 lattices. Circles and triangles are the
singular points for L ¼ 4 and L ¼ 8.
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b plane. By small, we mean that the other poles at M2
j can

be neglected which occurs if M2 � 1=L2, in other words,
if the Compton wavelength is larger than the volume of the
system. Sample trajectories are shown in Fig. 9 (middle
panel) for L ¼ 6. The two singular points which have the
closest distance to the real axis are called the CSPs.

B. Two-lattice matching

The 2-lattice matching [22,23] is another method that
can be used to obtain complex RG flows. We will be
matching observables Rðb; LÞ from systems with different
lattice spacing but equal physical sizes. Under a RG trans-
formation, the lattice spacing increases (a ! sa) and the
number of sites decreases (L ! L=s), but the physical
length La stays constant. In the following, we compare a
2n � 2n lattice with ’t Hooft coupling bwith a 2n�1 � 2n�1

lattice with ’t Hooft coupling b0. The 2n � 2n model is
blocked n� 1 times while the coarser lattice model is
blocked n� 2 times. For an arbitrary lattice with
L ¼ 2q, we define the ratio of correlations of block ob-
servables (sum of all the spins inside a L=2� L=2 block B
or its nearest neighbor block NB);

Rðb; LÞ �
hð P
x2B

~�xÞð P
y2NB

~�yÞib;L
hð P
x2B

~�xÞð
P
y2B

~�yÞÞib;L
: (18)

Note that Rðb; LÞ is independent of the rescaling of the
fields that needs to be performed in order to get an explicit
form for the RG transformation. Note also that in order to
define the numerator and denominator separately, we need
to divide by the partition function, but these normalization
factors cancel in the ratio. In the large-N limit, the corre-
lations are the same as for a Gaussian model with a mass
M2 defined as a function of b by Eq. (8). By using the
binary decomposition of the integers between 1 and 2n�1,
in the Fourier decomposition of the two-point function, we
obtain

hðX
x2B

~�xÞð
X

y2NB

~�yÞib;2n ¼
X
k

cosð2n�1k1ÞHðkÞGðkÞ;

hðX
x2B

~�xÞð
X
y2B

~�yÞib;2n ¼
X
k

HðkÞGðkÞ;
(19)

with

H ðkÞ ¼ Yn�1

l¼1

½ð1þ cosð2lk1ÞÞð1þ cosð2lk2ÞÞ; (20)

and the lattice propagator

G ðkÞ ¼ 1=½2ð2� cosðk1Þ � cosðk2ÞÞ þM2�: (21)

After performing the sums over the momenta, Rðb; 2nÞ
reduces to a ratio of polynomials in M2 understood as
function of b. Examples are given in Equations (A4)–
(A6) in the Appendix. As explained in Sec. III, there are

qþ 1 values ofM2 corresponding to one values of b. In the
following, we always select the value corresponding to
the ‘‘main sheet.’’ This includes the circle at infinity where
the conventional strong coupling behavior applies. In other
words, we exclude the q other values of M2 corresponding
to the small oval shaped region surrounding the cut.
A complex RG map can be constructed as follows.

Given an initial complex value of b, we determine M2ðbÞ
corresponding to the main sheet. Using Eqs. (18) and (19),
this results in a unique numerical value for Rðb; 2nÞ. We
then match this number with Rðb0; 2n�1Þ expressed as a
ratio of polynomials in M02. This results in a certain
number of solutions for M02. We only keep the ones
corresponding to the main sheet. Each of these selected
solutions determines a unique value of b0. If more than one
remain, we only keep the one closest to b. In order to
quantify the level of ambiguity associated with this choice,
we define the ambiguity A as

A ¼ jb� b0jmin

jb� b0jnext-to-min

; (22)

where jb� b0jmin is the distance between b and the closest
solutions and jb� b0jnext-to-min the distance to the next
closest solution. If there is only one solution A ¼ 0 (jb�
b0jnext-to-min ¼ 1). There is also the logical possibility that
none of theM02 solutions correspond to the main sheet, but
we never encountered this case in practical calculations.
In Fig. 9 (bottom panel), light regions correspond to small
values of A while dark-colored regions stand for values of
A close to 1 (maximal ambiguity). When jb� b0jmin ’
jb� b0jnext-to-min it is not clear that we can define a RG
flow, and not surprisingly chaotic behavior is often ob-
served in these circumstances. Unambiguous flows tend to
stay in light-colored regions while ambiguous flows go into
the dark regions and jump to other fixed points. By looking
at all the singular points, we find that the CSPs are close to
the edges of dark-colored regions, which gives us the idea
that the unambiguous RG flows are bounded by the singu-
lar points and the features of all the RG flows are controlled
by the CSP. Figure 9 shows the RG flows starting from the
first fixed point on the real positive axis (b0 ¼ 0:64) with
the singular points of 4� 4 and 8� 8 lattice systems.
In order to understand the fixed points on the real axis

more systematically, we study the RG transformation in the
smallM2, large b limit. For very smallM2, the pole at zero
dominates in Eq. (8) and we have b ’ 1=ðM2L2Þ. The other
poles have small contributions provided that M2 � 1=L2,
in other words, when the Compton wavelength is larger
than the linear size of the system. In the same limit, the
matching condition becomes

M02 ’ 4ð1� B=L2ÞM2; (23)

with B a constant that wewill determine later. We now only
consider the real solutions of b and calculate the change of
the coupling �b � b� b0. Numerical results are shown in
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Fig. 10 where a comparison with the rescaling method is
made. In the infinite volume limit, the rescaling fromM2 to
4M2 leads to the relation: �b ¼ 1

2� ln2 and for large b,

there is no nontrivial fixed point. Putting everything to-
gether, we get the approximate finite volume formula:

�bðbÞ ’ �ðB=L2Þbþ ln2

2�
: (24)

This implies the that we have an approximate fixed point

b?app � ln2

A2�
L2: (25)

In Table. II, we compare the numerical fixed points b?num
with the approximate b?app with B ¼ 30:5, and find the

approximate model provides reasonable estimates for large
volume. For comparison, �b can also be calculated with
the rescaling method. In this case M02 ¼ 4M2 and if M2 is
finite and nonzero, the denominator of all the terms in b0
are strictly larger than for b, consequently b0 < b and there

is no nontrivial fixed point. In summary, we see that dis-
crepancies between the two RG methods occur in the limit
where the Compton wavelength is larger than the size of
the system. Otherwise, the RG flows going through the
CSP are very similar for the two methods.

C. Comparison of the two methods

In this subsection we argue that in the infinite volume
limit, the two RG flows discussed in the two previous
subsections should coincide. By construction, the infinite
volume of the RG flows illustrated in Fig. 9 (middle panel)
turn into those of Fig. 9 (top panel). It is nevertheless
interesting to figure out in detail how it occurs. As we
take initial conditions corresponding toM2 ¼ �ei�, we see
that as � becomes slightly larger than �=2, the linear RG
trajectories in the M2 plane cross the rightest oval shaped
region discussed in Sec. III on the both sides of the upper
singular point. As a consequence, the corresponding RG
flows in the b-plane wrap around the CSP which is the
image of the first singular point, before going to 0. In the
infinite volume limit, the CSP moves to infinity and we
recover Fig. 9 (top panel). In some sense, the finite volume
provides a regularization and gives a mathematical mean-
ing to what happens for initial conditions corresponding to
the cut.
The two-lattice matching relies on the fact that if we

apply the RG transformation enough times, the RG flows
are projected on the unstable manifold which is one-
dimensional for the models considered here. In this limit,
the flows from the two lattices can be compared unambig-
uously. From the way we set up the calculation, it is clear
that we reach an infinite number of RG transformation in
the infinite volume limit [we block-spin ln2ðLÞ times]. In
this limit, the finite volume fixed point goes to infinity like
L2 and it is plausible that the unambiguous flows of Fig. 9
(bottom panel) become similar to those of Fig. 9 (top
panel).

VII. CONCLUSIONS

In summary, we have extended two types of RG trans-
formations to complex coupling spaces for OðNÞ models
on L� L lattices in the large-N limit. The three graphs
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FIG. 10 (color online). �b versus b from rescaling (top) and 2-
lattice matching (bottom) is shown.

TABLE II. Numerical solutions of fixed points and approxi-
mate solutions from �b ¼ 0.

L b?num b?app

4 0.320 0.058

8 0.648 0.23

16 1.47 0.93

32 4.36 3.70

64 15.5 14.82

128 59.9 59.3

256 237 237
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of Fig. 9 illustrate possible outcomes in models where
calculations are more difficult such as asymptotically free
lattice gauge theories. Our general expectation is that at
infinite volume, almost horizontal flows come from the
large � region where the logarithmic scaling characteristic
of asymptotic freedom holds. The flows are then funneled
through a continuous boundary whose shape is a lattice
artifact. For instance, if we had used a continuum model
with a sharp cutoff, the boundary would be flat instead of
the shape seen in Fig. 9 (top panel). The existence of this
boundary reflects the fact that we try to extend the mapping
betweenM2 and b, we encounter a cut in theM2 plane and
the boundary is the image in the b plane of a close curve
tightly enclosing the cut.

At finite volume, the continuous boundary is replaced by
a loosely defined region where complicated or ambiguous
trajectories are observed (see also Fig. 1 in Ref. [13]).
Empirically, this region seems to coincide with the region
where the images of the singular points of the mappings
bðM2Þ or bðEÞ, and the ends of strings of Fisher’s zeros
appear. As the volume increases, the number of zeros in a
fixed area of the b plane increases like the volume and N
and we believe that the Fisher’s zeros become dense
outside of the boundary mentioned above. Figure 3 in
Ref. [13] suggests that it will also be the case in lattice
gauge theory. Our numerical study supports the idea that by
monitoring the lowest zeros of asymptotically free theories
when the volume increases, we can determine if the RG
flows reach the region where a mass gap is present or if
instead a nontrivial IR fixed point is encountered. We are
planning to investigate the scaling of the Fisher’s zeros in
SUð3Þ Nf flavors and also to investigate the question of

the corrections to asymptotic scaling [26] in the com-
plex plane.

The complex flows described here are in some sense the
simplest possible ones and we expect similar complex
flows for SUð2Þ lattice gauge theory in 4 dimensions. In
contrast, for Uð1Þ lattice gauge theory in 4 dimensions it
appears that the Fisher’s zeros pinch the real axis as
L�x [27] with 2 � x � 4. A more precise estimate for x
will be discussed in a forthcoming preprint [28]. In this
case, we expect complex RG flows similar to those of the 3
dimensional Ising or OðNÞ models where two phases are
present.

Complex flows for models with a conventional second-
order phase transition have been constructed for the hier-
archical model [13]. More recently, it has been found that
the qualitative behavior of the complex flows can be modi-
fied by lowering the adjustable parameter (usually denoted
c) below the critical value (c ¼ 1) where a second-order
phase transition is possible. As c reaches 1, the nontrivial
fixed point moves to infinity. As c is further lowered,
a pair of complex conjugated nontrivial complex fixed
points appear [29]. In general, it seems likely that by
considering actions with tunable parameters, it is possible

to create interesting patterns for the complex RG flows. For
hierarchical models with slightly modified interactions, it
is possible to create additional fixed points and study their
effects on the discrete�� function. In particular, we would
like to understand if by constructing a continuous Calan-
Symanzik� reproducing approximately the discrete one, it
is possible to relate the nontrivial complex fixed points to
the complex zeros of the continuous � function. This will
also be discussed in Ref. [29].
For the models considered here, a richer complex flow

behavior could be obtained by adding new terms in the
energy function and considering higher dimensional com-
plex flows. One possibility that comes to mind is to add a
term inspired by the Witten-Wess-Zumino term in the
continuum. Multidimensional RG flows can exhibit
intricate global properties sorted in Ref. [30]. Their com-
plexification appears to be a completely open field of
investigation.
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APPENDIX: NUMERICAL EXAMPLES

The numerical values of 2q for L up to 42 are given in
Table I. We also provide the explicit form for the partition
function, BðM2Þ and the density of states for D ¼ 2, L ¼
4, N ¼ 2.

ZðbÞ ¼ � 1 576 575e�128b

4 722 366 482 869 645 213 696b15

� ½3456bð2 097 152b4 þ 174 080b2 þ 2655Þe64b
� 5e128b þ 5þ 40e96bð294 912b3 � 202 752b2

þ 53 472b� 5255Þ þ 40ð294 912b3 þ 202 752b2

þ 53 472bþ 5255Þe32b�

¼ 1� 64bþ 35 328b2

17
� 2 326 528b3

51

þ 737 607 680b4

969
þOðb5Þ; (A1)

B4�4ðM2Þ ¼ 1
16ð1=M2 þ 4=ð2þM2Þ þ 6=ð4þM2Þ
þ 4=ð6þM2Þ þ 1=ð8þM2ÞÞ: (A2)
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nðEÞ ¼ 5

7 968 993 439 842 526 298 112
½�644 087 808ðE� 48Þ11�ðE� 48Þ � 73 801 728ðE� 48Þ12�ðE� 48Þ

� 2 994 432ðE� 48Þ13�ðE� 48Þ � 42 040ðE� 48Þ14�ðE� 48Þ � 10 882 507 603 968ðE� 32Þ9�ðE� 32Þ
� 32 848 478 208ðE� 32Þ11�ðE� 32Þ � 12 845 952ðE� 32Þ13�ðE� 32Þ � 644 087 808ðE� 16Þ11�ðE� 16Þ
þ 73 801 728ðE� 16Þ12�ðE� 16Þ � 2 994 432ðE� 16Þ13�ðE� 16Þ þ 42 040ðE� 16Þ14�ðE� 16Þ
þ E14�ðEÞ � ðE� 64Þ14�ðE� 64Þ�: (A3)

We also give the explicit form of the first Rðb; 2lÞ with M2 understood as a function of b as explained in Sec. VI.

Rðb; 2Þ ¼ 8þ 2M2

8þ 8M2 þ ðM2Þ2 ; (A4)

Rðb; 4Þ ¼ 2þM2

2þ 4M2 þ ðM2Þ2 ; (A5)

and

Rðb; 8Þ ¼ 32þ 82M2 þ 54ðM2Þ2 þ 13ðM2Þ3 þ ðM2Þ4
32þ 222M2 þ 314ðM2Þ2 þ 153ðM2Þ3 þ 30ðM2Þ4 þ 2ðM2Þ5 : (A6)
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