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The coefficients determining the dilepton decay angular distribution of vector particles obey certain

positivity constraints and a rotation-invariant identity. These relations are a direct consequence of the

covariance properties of angular momentum eigenstates and are independent of the production mecha-

nism. The Lam-Tung relation can be derived as a particular case, simply recognizing that the Drell-Yan

dilepton is always produced transversely polarized with respect to one or more quantization axes. The

dilepton angular distribution continues to be characterized by a frame-independent identity also when the

Lam-Tung relation is violated. Moreover, the violation can be easily characterized by measuring a one-

dimensional distribution depending on one shape coefficient.
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I. INTRODUCTION

Dilepton decay angular distributions directly reflect the
average angular momentum composition of the decaying
state. Their measurements place strong constraints on the
characteristics and topology of the participating production
processes and can thus provide key information for the
understanding of the mechanisms of fundamental interac-
tions. In this paper we show how rotation covariance
implies the existence of completely general constraints
on the coefficients of the dilepton decay angular distribu-
tion of a J ¼ 1 particle. These constraints are valid for any
superposition of production mechanisms and are indepen-
dent of the chosen polarization frame. In particular, as first
noted in Ref. [1], the parameters characterizing the polar
and azimuthal anisotropies of the distribution satisfy a
frame-independent identity, directly reflecting a basic rota-
tional property of J ¼ 1 angular momentum eigenstates.
The well-known Lam-Tung relation [2], a result specific to
Drell-Yan production in perturbative QCD, can be derived
as a particular case of this identity by simply noting that
all subprocesses, up to Oð�sÞ contributions, produce
transversely polarized dileptons, albeit with respect to
different quantization axes. This result allows us to discern
what in this relation embodies the dynamical content of the
specific processes involved and what reflects completely
general kinematic properties. The existence of a frame-
independent identity can be seen as a generalization of the
Lam-Tung relation. In fact, it is always possible to define a
frame-independent polarization observable, even when the
Lam-Tung relation is violated (or for processes different
from Drell-Yan production). We also show that the value of
this observable (and, hence, possible violations of the Lam-
Tung relation) can be measured by simply determining a
single-variable angular distribution. As an illustration of
how simple and powerful the application of the frame-
independent formalism can be, we consider the significant

violations of the Lam-Tung identity measured in pion-
nucleus experiments. The intensively-studied possibility
that these effects are caused by higher-order corrections
in perturbative QCD is generally agreed to have been ruled
out by detailed calculations [3,4]. The same conclusion can
be reached in a much simpler way by considering rota-
tional invariance and symmetry properties.

II. ANGULAR DISTRIBUTION OF DILEPTON
DECAYS OF VECTOR STATES

We start by expressing the observable dilepton angular
distribution in a form that keeps track of the angular
momentum composition of the decaying state. We study
first the case of a single production ‘‘subprocess’’, here
defined as a process where the considered vector state V is
formed as a given superposition of the three J ¼ 1 eigen-
states, Jz ¼ þ1, �1, 0 with respect to a chosen polariza-
tion axis z:

jVi ¼ bþ1j þ 1i þ b�1j � 1i þ b0j0i: (1)

The calculations are performed in the V rest frame, where
the common direction of the two leptons define the refer-
ence axis z0, oriented conventionally along the direction of
the positive lepton. The adopted notations for axes, angles
and angular momentum states are illustrated in Fig. 1. We
assume helicity conservation at the dilepton vertex, in the
limit of vanishing lepton masses. The dilepton system has
thus angular momentum projection�1 along z0, i.e. it is an
eigenstate of Jz0 , j‘þ‘�; 1; l0i, with l0 ¼ þ1 or �1. This
state can also be expressed as a superposition of eigenstates
of Jz, j‘þ‘�; 1; li with l ¼ 0, �1, as

j‘þ‘�; 1; l0i ¼ X
l¼0;�1

D1
ll0 ð#;’Þj‘þ‘�; 1; li; (2)

whereD1
ll0 are complex coefficients describing the rotation

of a J ¼ 1 state from the set of axes ðx; y; zÞ to the set
ðx0; y0; z0Þ [5],
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D 1
ll0 ð#;’Þ ¼ eiðl0�lÞ’d1ll0 ð#Þ; (3)

with

d10;�1 ¼ � sin#=
ffiffiffi
2

p
;

d1�1;�1 ¼ ð1þ cos#Þ=2;
d1�1;�1 ¼ ð1� cos#Þ=2:

(4)

The amplitude of the partial process VðmÞ ! ‘þ‘�ðl0Þ
represented in Fig. 1 is

Bml0 ¼
X

l¼0;�1

D1�
ll0 ð#;’Þh‘þ‘�; 1; ljBjV; 1; mi

¼ BD1�
ml0 ð#;’Þ; (5)

where we imposed that the transition operator B is of
the form h‘þ‘�; 1; ljBjV; 1; mi ¼ B�ml because of angu-
lar momentum conservation, with B independent of m
(for rotational invariance). The total amplitude for
V ! ‘þ‘�ðl0Þ, where V is given by the superposition
written in Eq. (1), is

Bl0 ¼
X

m¼0;�1

bmBD1�
ml0 ð#;’Þ ¼

X
m¼0;�1

amD1�
ml0 ð#;’Þ: (6)

The probability of the transition is obtained by squaring
Eq. (6) and summing over the (unobserved) spin align-
ments (l0 ¼ �1) of the dilepton system, with equal weights
attributed, for parity conservation, to the two configura-
tions. Using Eqs. (3) and (4) one finally obtains the angular
distribution

Wðcos#;’Þ / X
l0¼�1

jBl0 j2

/ N
ð3þ �#Þ ð1þ �#cos

2# þ �’sin
2# cos2’

þ �#’ sin2# cos’þ �?
’ sin

2# sin2’

þ �?
#’ sin2# sin’Þ; (7)

with N ¼ ja0j2 þ jaþ1j2 þ ja�1j2 and

�# ¼ N � 3ja0j2
N þ ja0j2

;

�’ ¼ 2Re½a�þ1a�1�
N þ ja0j2

;

�#’ ¼
ffiffiffi
2

p
Re½a�0ðaþ1 � a�1Þ�
N þ ja0j2

;

�?
’ ¼ 2 Im½a�þ1a�1�

N þ ja0j2
;

�?
#’ ¼ � ffiffiffi

2
p

Im½a�0ðaþ1 þ a�1Þ�
N þ ja0j2

:

(8)

In this paper we consider inclusive production.
Therefore, for all of the popular choices of frame, the xz
plane coincides with the production plane, containing the
directions of the colliding particles and of the decaying
particle itself. The last two terms in Eq. (7) introduce an
asymmetry of the distribution by reflection with respect to
the production plane, an asymmetry which is not forbidden
in individual events. In hadronic collisions, due to the
intrinsic parton transverse momenta, for example, the
‘‘natural’’ polarization plane does not coincide event-by-
event with the experimental production plane. However,
the symmetry by reflection must be a property of the
observed event distribution, integrating over many events,
when only parity-conserving processes contribute. Indeed,
the terms in sin2# sin2’ and sin2# sin’ are unobservable
because they vanish on average. In the presence of n

contributing production processes with weights fðiÞ, the
most general observable distribution can be written as

Wðcos#;’Þ ¼ Xn
i¼1

fðiÞWðiÞðcos#;’Þ

/ 1

ð3þ �#Þ ð1þ �#cos
2# þ �’sin

2# cos2’

þ �#’ sin2# cos’Þ; (9)

where WðiÞðcos#;’Þ is the ‘‘elementary’’ decay distribu-
tion corresponding to a single subprocess [given by
Eqs. (7) and (8), adding the index ðiÞ to the decay parame-
ters]. Each of the three observable shape parameters,
X ¼ �# , �’ and �#’, is a weighted average of the corre-

sponding parameters, XðiÞ, characterizing the single sub-
processes,

FIG. 1. Sketch of the decay V ! ‘þ‘�, showing the notations
we use for axes, angles and angular momentum states. The y and
z0 axes are oriented towards the reader.
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X ¼
P

n
i¼1 g

ðiÞXðiÞP
n
i¼1 g

ðiÞ ; (10)

with gðiÞ ¼ fðiÞN ðiÞ=ð3þ �ðiÞ
# Þ.

III. POSITIVITY CONSTRAINTS

Equation (8) implies the relations

1� �ðiÞ
’ ¼ ðjaðiÞþ1 � aðiÞ�1j2 þ 2jaðiÞ0 j2Þ=ðN ðiÞ þ jaðiÞ0 j2Þ;

�ðiÞ
# � �ðiÞ

’ ¼ ðjaðiÞþ1 � aðiÞ�1j2 � 2jaðiÞ0 j2Þ=ðN ðiÞ þ jaðiÞ0 j2Þ;
j�ðiÞ

#’j �
ffiffiffi
2

p jaðiÞ0 jjaðiÞþ1 � aðiÞ�1j=ðN ðiÞ þ jaðiÞ0 j2Þ;
j�?ðiÞ

#’ j � ffiffiffi
2

p jaðiÞ0 jjaðiÞþ1 þ aðiÞ�1j=ðN ðiÞ þ jaðiÞ0 j2Þ; (11)

where the index ðiÞ now explicitly denotes the single-
subprocess quantities. Equation (11) implies the fol-
lowing relations between the coefficients of the angular
distribution:

ð1� �ðiÞ
’ Þ2 � ð�ðiÞ

# � �ðiÞ
’ Þ2 � 4�ðiÞ2

#’;

ð1þ �ðiÞ
’ Þ2 � ð�ðiÞ

# þ �ðiÞ
’ Þ2 � 4�?ðiÞ2

#’ :
(12)

From these expressions we finally reach the following set
of inequalities:

j�’j�1

2
ð1þ�#Þ; �2

#þ2�2
#’�1; j�#’j�1

2
ð1��’Þ;

ð1þ2�’Þ2þ2�2
#’�1 for �’<�1=3: (13)

Here we have dropped the index ðiÞ because these relations
are completely general and valid for any superposition of
production processes, as can be verified using Eq. (10)

(being gðiÞ > 0) and, for the two quadratic relations, the
Schwarz inequality,�Pn

i¼1 g
ðiÞXðiÞP

n
i¼1 g

ðiÞ

�
2 �

P
n
i¼1 g

ðiÞXðiÞ2P
n
i¼1 g

ðiÞ : (14)

Equation (13) implies, for example, j�’j � 1, j�#’j �ffiffiffi
2

p
=2, j�’j � 0:5 for �# ¼ 0 and �’ ! 0 for �# ! �1.

There is an alternative notation, widespread in the litera-
ture, where the coefficients �, �=2 and � replace, respec-
tively, �# , �’ and �#’. In that case, hence, we have

j�j � 2. The most general domain for the three angular
parameters is represented in Fig. 2. The upper plot also
illustrates the meaning of specific points of the �# , �’

plane in terms of angular momentum state of the decaying
particle. The six points indicated on the border of the
triangle are the combinations of observable parameters
corresponding to pure eigenstates of Jx, Jy and Jz with

eigenvalues 0 or �1. In particular, the three vertices rep-
resent univocally the well-defined cases in which all con-
tributing production processes lead to the same, fully
longitudinal polarization along the x, y or z axes. The three
points lying on the sides of the triangle, however, can either
be the result of purely transverse polarizations along the x,

y and z axes, or of suitable mixtures of angular momentum
eigenstates and/or superpositions of different processes,
polarized along different axes.

IV. POLARIZATION-FRAME-INDEPENDENT
OBSERVABLE

The rotation-covariance properties of the generic J ¼ 1
state defined in Eq. (1) imply two propositions.
(i) Proposition 1: The amplitude combination bþ1 þ

b�1 is invariant by rotation around the y axis.
(ii) Proposition 2: There exists a quantization axis z?

with respect to which b?0 ¼ 0; if b0, bþ1 and b�1 are

real, z? belongs to the xz plane.
In fact, for successive rotations about, respectively, the z

and y axes by angles ’ and #, a pure J ¼ 1, Jz angular
momentum eigenstate jmi transforms according to the
relation [analogous to Eq. (2), but describing the inverse
rotation]

jmi ¼ X
m0¼0;�1

D1�
mm0 ð#;’Þjm0i: (15)

In the basis of the rotated eigenspace, the state in Eq. (1)
has components

b0k ¼
X

m¼0;�1

bmD1�
mkð#;’Þ: (16)

For a rotation in the production plane (about y: ’ ¼ 0),

FIG. 2 (color online). Allowed regions for the decay angular
parameters (shaded areas). The upper plot also indicates the
points corresponding to pure angular momentum configurations
and to specific values of the rotation-invariant observable F ,
introduced in Sec. IV.
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b0þ1 þ b0�1 ¼
X

m¼0;�1

bm½d1m;þ1ð#Þ þ d1m;�1ð#Þ�

¼ bþ1 þ b�1; (17)

where we have used (Eq. (4)) d1�1;þ1ð#Þ þ d1�1;�1ð#Þ ¼ 1,

d10;þ1ð#Þ þ d10;�1ð#Þ ¼ 0. This proves Proposition 1. We

now address Proposition 2 taking jVðiÞi defined with real b0
(always possible). After a generic rotation, the zero-
helicity component becomes [Eqs. (16), (3), and (4)]

b00ð#;’Þ ¼ b0 cos#� 1ffiffiffi
2

p ðbþ1e
i’�b�1e

�i’Þ sin#: (18)

It can be verified explicitly that the equation b00ð#;’Þ ¼ 0
has always a solution, given by

cos#? ¼ RþR� þ IþI�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b20ðR2þ þ I2�Þ þ ðRþR� þ IþI�Þ2

q ;

cos’? ¼ Rþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þ þ I2�

q ;

sin’? ¼ � I�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þ þ I2�

q ;

(19)

where R� ¼ Reðbþ1 � b�1Þ and I� ¼ Imðbþ1 � b�1Þ. If
all three amplitudes are real, then ’? ¼ 0 and the rotation
is around the y axis.

We remind that the decay amplitudes am are simply
proportional to the angular momentum components bm.
Therefore, Proposition 1 and the obvious rotation invari-
ance of ja0j2 þ jaþ1j2 þ ja�1j2 imply that, for each sub-
process ðiÞ, the quantity

F ðiÞ ¼ 1

2

jaðiÞþ1 þ aðiÞ�1j2
jaðiÞ0 j2 þ jaðiÞþ1j2 þ jaðiÞ�1j2

(20)

(included between 0 and 1) is independent of the chosen
frame. Using also Eqs. (8) and (10), we find that the
following combination of observable parameters of the
dilepton decay distribution is frame independent (invariant
by rotation about the y axis):

F ¼
P

n
i¼1 f

ðiÞN ðiÞF ðiÞP
n
i¼1 f

ðiÞN ðiÞ ¼ 1þ �# þ 2�’

3þ �#

: (21)

The upper plot in Fig. 2 shows the loci of points in the �# ,
�’ plane corresponding to F ¼ 0, F ¼ 1=2 and F ¼ 1.
The F ¼ 0 and F ¼ 1=2 lines include the cases of,
respectively, full longitudinal and full transverse polariza-
tions with respect to any axis belonging to the production
plane. The uniquely defined F ¼ 1 point corresponds to
the theoretical case of a full longitudinal polarization along
the y axis.

We mention, for completeness, that the quantity

G ¼
P

n
i¼1 f

ðiÞN ðiÞGðiÞP
n
i¼1 f

ðiÞN ðiÞ ¼ 1þ �# � 2�’

3þ �#

; (22)

with

G ðiÞ ¼ 1

2

jaðiÞþ1 � aðiÞ�1j2
jaðiÞ0 j2 þ jaðiÞþ1j2 þ jaðiÞ�1j2

; (23)

is invariant by rotation about the x axis. Finally, the pa-
rameter �# itself is invariant by rotation about z.

V. POLARIZATION-FRAME-INDEPENDENT
ANGULAR DISTRIBUTION

Clearly, we can determine the frame-invariant polariza-
tion observable F through the measurement of the
two-dimensional, three-parameters angular distribution of
Eq. (9). This procedure is particularly useful when per-
formed in two sufficiently different reference frames, to
probe systematic effects caused by experimental biases [6],
since different values of �# and �’, but identical values of

F , are expected in each frame. However, it may be con-
venient to determine F directly from a one-dimensional,
single-parameter angular distribution. The distribution it-
self must be, like F , invariant by rotation about the y axis.
This restricts the possibilities for the definition of the
corresponding angular variable to

cos� ¼ sin# sin’; (24)

where � is the angle formed by the lepton with the y axis.
The cos� distribution must be of the form

wðcos�Þ / 1þ ��cos
2�; (25)

as any parity-conserving distribution of the angle formed
with respect to an axis, when only J ¼ 1 wave functions
are involved. The relation of �� to �# , �’ and F can be

found by imposing the condition

hcos2�i ¼
Z þ1

�1
cos2�wðcos�Þdðcos�Þ

¼
Z 2�

0

Z þ1

�1
ðsin# sin’Þ2Wðcos#;’Þdðcos#Þd’;

(26)

with the result

�� ¼ � �# þ 3�’

2þ �# þ �’

¼ 1� 3F
1þF

: (27)

VI. THE LAM-TUNG RELATION
AS A PARTICULAR CASE

It has been noticed long ago that, in the case of Drell-
Yan production, the shape parameters �# and �’ obey the

frame-independent expression �# þ 4�’ ¼ 1, commonly

known as the ‘‘Lam-Tung relation’’ [2]. Although the
dilepton production cross section is substantially modified
by QCD corrections, the relation between the different
helicity contributions to this cross section remains un-
changed up to Oð�sÞ, a seemingly surprising feature.
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Relatively small corrections affect the angular distribution
when subsequent orders in �s are taken into account [3,4].
Given its robustness within perturbative QCD, deviations
from the Lam-Tung relation have been considered as a
signal of higher twist contributions [7] or nonperturbative
effects caused by intrinsic parton kT [8] or even parton
saturation [9].

Actually, the Lam-Tung relation is a particular case of
the more general invariant relation presented in Eq. (21).
Indeed, in Drell-Yan production up to Oð�sÞ, neglecting
parton transverse momenta, the topology of each contrib-
uting subprocess (quark-antiquark annihilation without or
with single gluon emission, Compton-like quark-gluon
scattering, etc.) is characterized by one reaction plane,
coinciding with the experimental production plane.

Therefore, as mentioned in Sec. II, we can set �?ðiÞ
’ ¼

�?ðiÞ
#’ ¼ 0 for each single subprocess, ðiÞ. Imposing this

condition in Eq. (8), we find that the three partial decay

amplitudes, aðiÞm , and, therefore, the corresponding angular

momentum components, bðiÞm , have the same complex
phase. Proposition 2 implies, then, that the observed dilep-
ton distribution is a superposition of subdistributions
characterized by

�ðiÞ?
# ¼ þ1; �ðiÞ?

’ ¼ 2F ðiÞ � 1; �ðiÞ?
#’ ¼ 0; (28)

each one referred to a specific polarization axis zðiÞ? be-
longing to the production plane. Assuming helicity
conservation at the production vertex (i.e., that the partic-
ipating quarks are massless), the zero-order quark-
antiquark annihilation process in Drell-Yan production,
Fig. 3(a), leads to a decay anisotropy of the kind
1þ cos2# with respect to the direction of the relative
momentum between quark and antiquark, experimentally
approximated by the Collins-Soper (CS) frame [10]. In the
Oð�sÞ processes, on the other hand, the photon couples to
one real quark and to the intermediate virtual quark, this
latter having a well-defined momentum. Also in this case
helicity conservation leads to a decay anisotropy of the
kind 1þ cos2# but now with respect to the direction of the
relative momentum between the real and virtual quarks.
Experimentally, this quantization axis corresponds to the
Gottfried-Jackson [(GJ) [11]] axis for the processes pre-
sented in Fig. 3(b) and 3(c) and to the helicity axis for the
process shown in Fig. 3(d).

Effectively, therefore, all subprocesses contributing to
Drell-Yan production up to Oð�sÞ lead individually to the
same kind of fully transverse, purely polar decay anisot-
ropy, even if with respect to three different natural axes,

zðiÞ?. In each case �ðiÞ?
’ ¼ 0, meaning that F ðiÞ ¼ 1=2 for

all subprocesses [Eq. (28)] and, thus, implying F ¼ 1=2.
This latter equation coincides with the Lam-Tung relation.
In other words, we have shown that the frame indepen-
dence of the Lam-Tung relation is a simple kinematic
consequence of the rotational properties of the J ¼ 1 an-
gular momentum eigenstates [leading, in general, to
Eq. (21)], while its specific form (F ¼ 1=2) derives from
the dynamical input that all contributing subprocesses
produce transversely polarized states.
Deviations from the Lam-Tung relation are often pa-

rametrized in terms of the quantity � ¼ �# þ 4�’ � 1 in

the experimental and theoretical literature. However, the
correspondingly assumed relation �# þ 4�’ ¼ 1þ� is

not frame invariant [it cannot be rewritten in the form of
Eq. (21) for a certain value of F ], and, hence, the ‘‘viola-
tion level’’ expressed by � depends on the frames used in
the analyses. We propose that future searches for violations
of the Lam-Tung relation evaluate the (frame invariant)
deviation of F from 1=2.
Following the considerations of Sec. V, tests of the Lam-

Tung relation can be performed by simply determining the
cos� distribution and measuring the deviation of �� from
the value �1=3. Vice versa, in regimes where the validity
of the Lam-Tung relation (or, more generally, the intrinsic
transverseness of the polarization) can be considered as a
characterizing feature of the physical process under study,
the event distribution

wðcos�Þ / 1� 1

3
cos2� (29)

can be used to check the purity of the selected signal
sample and/or to provide an event-by-event criterium for
signal-background discrimination.

VII. VIOLATION OF THE LAM-TUNG RELATION
IN PION-NUCLEUS DATA

Violations of the Lam-Tung relation in Drell-Yan angu-
lar distributions were searched for in several experimental
conditions. ‘‘Anomalous’’ effects were evidenced in pion-
nucleus experiments, which measured large azimuthal an-
isotropies increasing with pT and a strong reduction of the
transverse polarization at high x1 (momentum fraction of
the annihilating antiquark in the beam pion). The largest
effects, measured by E615 [12], are shown in Fig. 4.
Figure 5 shows the values of F derived from the angular
distributions measured by E615, as well as by NA10 [13],
as a function of x1 (a), and of the dimuon mass M (b) and
transverse momentum pT (c). The condition F ¼ 1=2 is
increasingly violated with increasing pT , while there is no
significant dependence on x1 orM. The panel (d) shows the

FIG. 3. Oð�0
sÞ and Oð�1

sÞ processes for Drell-Yan production,
giving rise to transverse dilepton polarizations along different
quantization axes: Collins-Soper (a), Gottfried-Jackson (b, c)
and helicity (d).
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E866 results, obtained in pp and pd interactions at
800 GeV [14], perfectly consistent with the Lam-Tung
expectation. The most significant deviations from purely
transverse dilepton polarization are measured by E615 for
1<pT < 1:5 GeV=c and hx1i ’ 0:6, in �-W collisions
at 252 GeV, and by NA10 for 1:5<pT < 2 GeV=c
and hx1i ’ 0:4, in �-W and �d collisions at 286 GeV.
The corresponding values of F � 1=2 are, respectively,
0:109� 0:015 and 0:058� 0:018.

Contrary to what the strong pT dependence might sug-
gest, we can easily exclude that the enhancement of F
with respect to 1=2 is the result of an event-by-event tilt
between the polarization axis used in the experimental
analysis and the natural axis, caused by the intrinsic
transverse momenta of the partons. This observation can
be easily understood by considering the leading-order
1þ cos2#CS distribution and two extreme categories of
events, in both of which the instantaneous natural axis
(direction of the collision between partons) is significantly
tilted with respect to the Collins-Soper axis, but towards
two orthogonal directions: in one case the natural axis
belongs to the plane of the colliding hadrons, in the other
case it belongs to the perpendicular plane. The first type
of events has a distribution characterized by �# < 1 and
�’ > 0, while F , unaffected by rotations around the

axis perpendicular to the production plane, remains 1=2.

 [GeV/c]
T

p
0 0.5 1 1.5 2 2.5 3

ϕλ

0

0.2
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1x
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.5

1

1.5 b)

FIG. 4 (color online). The E615 measurements of the Drell-
Yan azimuthal anisotropy as a function of pT (a) and of the polar
anisotropy as a function of x1 (b). The points are slightly
displaced in the horizontal axis for improved visibility.
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FIG. 5 (color online). The frame-invariant parameter F as a
function of dilepton kinematic variables, derived from Drell-Yan
measurements obtained with pion (a–c) and proton (d) beams.
The E866 data points are slightly displaced in the horizontal axis
for improved visibility.
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The second event distribution is rotated with respect to the
previous one by an angle �=2 about the z axis, implying
that �’, the coefficient of the term sin2# cos2’, becomes

negative, given that cos2ð’� �=2Þ ¼ � cos2’. On the
other hand, �# remains unchanged (and smaller than 1).
Therefore, F < 1=2. In conclusion, parton transverse mo-
menta lead on average to a reduction, rather than an
enhancement, of the overall observable anisotropy and,
hence, of F . The anomalous experimental observations
cannot, therefore, be the geometrical consequence of a
deviation of the experimental axis from the quantization
axis of the elementary processes. They must reflect intrin-
sic properties of the production mechanism, not properly
described considering only lowest-order perturbative
processes.

Furthermore, we can also say that these anomalies can-
not be caused by relatively rare subprocesses, contributing
as higher-order ‘‘perturbations’’ in a standard QCD ap-
proach to the study of Drell-Yan production. We derive
this observation in the next lines, as a good example of the
usefulness of the formalism presented in this paper. The
maximum deviation of F from 1=2 measured by E615,
0:109� 0:015, allows us to deduce, using Eq. (21), that the

fraction of dilepton events violating the condition F ðiÞ �
1=2 is at least as large as 0:22� 0:03. Such a fraction
would already have to be considered a very large contri-
bution to the Drell-Yan production yield, certainly not a
‘‘perturbation’’. However, the real value must be even
larger because this lower limit corresponds to an extreme

hypothesis: F ðiÞ is always either 1=2, in the case of stan-
dard Oð�0

sÞ and Oð�1
sÞ processes, or 1, in the case of the

anomalous (hypothetical) ‘‘higher-order processes’’ violat-
ing the Lam-Tung relation. In reality, the standard pro-

cesses should have F ðiÞ < 1=2, accounting for the parton
transverse momenta effect mentioned above, and the

anomalous processes should have F ðiÞ values smaller

than the extreme limit of F ðiÞ ¼ 1. In these more realistic
conditions, in order to reproduce the E615 measurement
the fraction of Drell-Yan dileptons produced by the anoma-
lous processes would need to be comparable to the con-
tribution of the ‘‘lowest-order’’ processes represented in
Fig. 3. Furthermore, such additional mechanisms, charac-

terized by F ðiÞ values approaching 1, would produce the
dilepton in a rather uncommon angular momentum state,
where the m ¼ þ1 and m ¼ �1 component amplitudes
have comparable magnitudes and interfere constructively,

so as to maximize jaðiÞþ1 þ aðiÞ�1j. In particular, the limiting

case F ðiÞ ¼ 1 corresponds to the angular momentum state
1ffiffi
2

p j þ 1i þ 1ffiffi
2

p j � 1i, which is invariant by rotation around

the y axis. As mentioned in Sec. III, this specific point of
the phase space must be univocally attributed to the decay
of a pure eigenstate of Jy with eigenvalue 0 (top panel in

Fig. 2), and it is impossible to reproduce it with a super-
position of different states. In conclusion, attributing the
violation of the Lam-Tung relation in pion-nucleus data to
the existence of anomalous ‘‘higher-order’’ processes in a
perturbative-QCD approach is equivalent to say that a very
large fraction of Drell-Yan dileptons is produced in a fully
(longitudinally) polarized state with respect to the quanti-
zation axis perpendicular to the production plane. This is
an extremely peculiar and unrealistic scenario, requiring
the existence of a production mechanism that would lead,
essentially in each and every event, to a very exotic con-
figuration of the dilepton spin.

VIII. SUMMARY

The average angular momentum composition of a vector
state is reflected in the shape of its dilepton decay angular
distribution [Eqs. (7)–(10)]. The parameters of the distri-
bution can only take values inside a well-defined domain
[Eq. (13)]. For a specific mixture of production processes
in a given kinematic condition, there always exists a
polarization observable F [Eq. (21)] independent of the
choice of the quantization axis (belonging to the produc-
tion plane). The Lam-Tung relation represents the particu-
lar case F ¼ 1=2 (independent of production kinematics),
meaning that all subprocesses produce transversely
polarized difermions with respect to any polarization
axis belonging to the plane of the colliding hadrons. F
can be determined from a single-variable distribution
(Eqs. (24)–(27)), facilitating, in particular, measurements
of the violation of the Lam-Tung relation. The significant
violations of this relation found in pion-nucleus experi-
ments cannot be ascribed to the contribution of anomalous
higher-order processes because rotational invariance and
topological symmetry properties rule out a ‘‘perturbative’’
interpretation of the phenomenon.
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