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Bethe-Salpeter equation for doubly heavy baryons in the covariant instantaneous approximation
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In the heavy quark limit, a doubly heavy baryon is regarded as composed of a heavy diquark and a light
quark. We establish the Bethe-Salpeter equations for the heavy diquarks and the doubly heavy baryons,
respectively, to leading order in a 1/m expansion. The Bethe-Salpeter equations are solved numerically
under the covariant instantaneous approximation with the kernels containing scalar confinement and one-
gluon-exchange terms. The masses for the heavy diquarks and the doubly heavy baryons are obtained, and
the nonleptonic decay widths for the doubly heavy baryons emitting a pseudoscalar meson are calculated

within the model.
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L. INTRODUCTION

The past few years have seen many important develop-
ments concerning hadron colliders, especially the advent
of the LHC. Recently, the discovery of and searches for
double charm baryons have been reported by various ex-
perimental collaborations [1-4]. One is convinced that
more and more doubly heavy baryons will be observed in
the near future. Consequently, it is an urgent task for
theorists to investigate the properties of these states.

On the other hand, the existence of three valence quarks
in a baryon makes the theoretical study much more com-
plicated than the case of mesons. People have suggested
the presence of diquark structure in a baryon and have
studied the properties of heavy baryons in such a picture
[5-9]. No matter whether the diquark is a real physical
object or simply a theoretical approximation, this picture
reduces the three body system to a two body problem
which is much simpler for investigation.

In recent years, heavy quark effective theory has been
widely used in the study of doubly heavy baryons [10-17].
Two heavy quarks are reasonably bound into a color-
antitriplet heavy diquark whose radius is much smaller
than the typical scale (1/Aqcp) of the nonperturbative
QCD interactions in the heavy quark limit (my > Aqcp,
m denotes the heavy quark mass). The leftover light quark
involved in the baryon moves in the color field induced by
the heavy diquark. Unlike the heavy quark and light quark
system, the internal motion in the heavy diquark cannot be
ignored even at leading order in the 1/m expansion. This
is because the relative momentum in the heavy diquark is
not simply O(Aqgcp), but ~a?mg as calculated in the
Coulomb potential model [11,18].
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As a formally exact equation to describe the relativistic
bound system, the Bethe-Salpeter (BS) equation was ini-
tially formulated in Minkowski space based on the relativ-
istic quantum theory [19,20]. However, it is difficult to
solve the BS equation in Minkowski space due to its
singular behavior. In order to overcome this difficulty,
with the so-called “Wick rotation”, the formalism for the
BS equation in Euclidean space was developed and inves-
tigated in detail [21-24]. With the perturbation theory
integral representation, the BS equation was solved in
Minkowski space for the scalar and fermion systems
[25-30]. Recently, based on the Nakanishi integral repre-
sentation of the BS amplitude and the projection of the BS
equation on the light-front plane, a new method for solving
the BS equation in Minkowski space was proposed and was
applied to study the electromagnetic form factor [31-36].
In another formalism to solve the BS equation, the cova-
riant instantaneous approximation is adopted in the kernel.
In recent decades, this formalism has been successfully
used to investigate heavy mesons, heavy baryons, and
exotic states [7-9,12,37-44].

Based on the diquark picture of the composition of the
doubly heavy baryon, we will establish the BS equations
for both the heavy diquarks and the doubly heavy baryons
in the leading order of a 1/m, expansion. Motivated by
the potential model, the kernel for the BS equation is
assumed to be composed of the scalar confinement and
one-gluon-exchange terms [45]. We will solve the BS
equations numerically under the covariant instantaneous
approximation [41-44]. Since the heavy diquark is not
really a point object, a few form factors for the effective
vertex of the heavy diquark coupling to the gluon are
introduced to reflect the inner structure of the heavy di-
quark. These form factors will be expressed in terms of the
BS wave functions obtained for the heavy diquarks.
Finally, we will calculate the nonleptonic decay widths
for the doubly heavy baryons emitting a pseudoscalar
meson in the BS formalism.
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The remainder of this paper is organized as follows. In
Sec. II, we establish the BS equation for the heavy diquarks
in the leading order of 1/m, expansion. We also give the
normalization conditions for the BS wave functions for the
heavy diquarks in this section. In Sec. III, the form factors
for the effective vertex of the heavy diquark coupling to the
gluon are derived from the BS wave functions obtained for
the heavy diquarks. In Sec. IV, we establish the BS equa-
tion for the doubly heavy baryons at leading order in the
1/m expansion. The normalization conditions for the BS
wave functions for the doubly heavy baryons are also given
in this section. In Sec. V, the nonleptonic decay widths for
the doubly heavy baryons emitting a pseudoscalar meson
are calculated in the BS formalism. Section VI is reserved
for our summary and some discussions.

I1. BS EQUATION FOR HEAVY DIQUARKS

In general, the parity of a ground state baryon is positive.
Since the parity of quark is supposed to be positive, the
parity of the diquark involved in a ground state baryon
should be positive. Because of the Pauli principle, two
quarks with the same flavor can only constitute an
axial-vector diquark. On the other hand, two quarks with
different flavors can constitute either a scalar diquark or an
axial-vector diquark. It can be easily shown that a heavy
diquark which is in the ground state can not be a tensor
diquark.

Suppose two heavy quarks Q; and Q, (with masses m,
and mg,, respectively) compose a ground state heavy
diquark. Define two ratios A; = mgy /(mg, + mgp,) and
Ay =myg, [(mg, + mgp,). The BS wave function for the
heavy diquark is defined as follows:

Xpy (X1, %2)ap = 9KOIT ¢ (x))], ‘ﬁz(xz)'HPD, k)

. d4p .
=e ZP“Xf(ZW)4XPD(P)aﬁ€ wro (1)

X pyp (X2, X1) g = &P, KIT s (x2) 007 (x1)},10)

. d*p _ .
= elPDXj.(Zﬂ.)At XPD(P),Baelpx, 2)

where | and ¢, stand for the field operators of the heavy
quarks Q; and Q,, respectively, i, j, k represent the color
indices, o and S represent the spin indices, X = A;x; +
Ayx, is the coordinate of the heavy diquark mass center,
X = x; — x, is the relative coordinate of the two heavy
quarks, Pp is the momentum of the heavy diquark, and p is
the relative momentum between the two heavy quarks.

The BS equation for the heavy diquark can be written in
the following form (details can be found in Ref. [9]):
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4 )
X, (9) = S(p) @ S(p2) [ By @9,k 9 (p — p)

+ 1@ IK“D(p — p"xp,(p"), €)

where p; = A\Pp + p and p, = A,Pp — p are the mo-
menta of heavy quarks Q; and Q,, respectively, and S(p)
and S(p,) are the propagators of heavy quarks Q; and Q,,
respectively. K('¢) and K/ are the one-gluon-exchange
and scalar confinement terms of the kernel for the BS
equation given by (after imposing the covariant instanta-
neous approximation [41-44]):

8im a,
K19(p, = pl) = ==~ @
S 3 (p,— p)? — w?
and
f) dimk 303 ,
K (pt —(2m)*é (Pz - pt)

L P R
« j‘ 4’k dimk
Q@m)* [=(pr = k)* + w2
where a, and « are the coupling parameters related to
one-gluon-exchange and scalar confinement terms, respec-
tively, p, is the transverse projection of the relative mo-
mentum (p) along the heavy diquark momentum (Pp) (see
the definition below Eq. (8)), the second term of K€ is
introduced to remove the infrared singularity near the point
p) = p,, and the small parameter w is introduced to avoid
the divergence in the numerical calculations. This kernel is
motivated by the potential model which has been success-
fully applied in mesons [45]. Furthermore, we assume that
the kernel of the heavy diquark is related to the meson by
the one-half rule [46,47].
Equation (3) can be written in a more usual matrix form
as [9]

(&)

4!
7,0 = S(p) [ 55T, 07K 9, )

+ ¥b, (PVK“D(p, — pHIS(=py), (6)

where ¥p, (p) = Cxp,(p) (C is the charge conjugation
matrix) and the superscript T represents the transpose of
the spinor indices.

In the leading order of a 1/m, expansion, the heavy
quark propagators [S(p;) and S(p,)] can be written as

le(‘”D + 1)

S(py) =1
P1 Zle()leD + P — (1)QI

+ ig)’ @

and

sz(yD )

S(py) = — :
(p2) 2 Q ( Asz + P + C()Q lS)

®)

where mp and v are the mass and velocity of the heavy
diquark, respectively, p; = p - vp and p;° = p* — pvh
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are the longitudinal and transverse projections of the rela-
tive momentum (p) along the heavy diquark momentum

(Pp), respectively, the energy wg, , = ‘/szm) — pande

is the infinitesimal. As studied in Refs. [10,11], |p,| is
O(a?my). Consequently, |p,|/my terms should not be
neglected in calculations carried out to leading order in
the 1/m expansion.

Substituting Egs. (7) and (8) into Eq. (6), one finds the
following two constraints for the BS wave function for the
heavy diquarks:

pXp,(P) = Xp, (D) 9)

X5 (Pop = — b (p). (10)

Then, taking these constraints into account in the BS
equation for the positive parity and zero angular momen-
tum ground state of the heavy diquark system, the BS wave
functions for the scalar and the axial-vector heavy diquarks
can be parametrized in the following forms, respectively:

W5 (p) = (w, + DY Sy, (1)
and

797 (p) = (v, + DEV S, (12)
where 552) is the rth polarization vector of the axial-vector

heavy diquark, f| and f, are the Lorentz-scalar functions
of p?, p;, and P2 = m3,.

After some algebra, we find that the BS scalar wave
functions for both the scalar heavy diquark (f;) and the
axial-vector heavy diquark (f,) satisfy the same integral

equation as follows:

o, Mo,

fp) =
T wgwg,(—mp + wp, + @)

3,/
DIV, -

N + ylef) _
(277_)3 pl) (pl‘

POIF(P),
(13)

where we define f(p,) = fd”’fl(z)(p), v = —jgs),
and V() = —iK(f),

In general, the normalization condition for the heavy
diquark can be written as (after imposing the covariant
instantaneous approximation on the kernel) [9]

d*pd*p’ 0 o
(5 AR (P) =L, (P P10 0, (')
D

1112

36 Jij2
=1,

(14)

where i i1(2) and ]1(2) represent the color indices of the heavy
quarks, 6;";2 5;‘] 5;22 5" 5”, and I”'zm‘(p p') stands

for the inverse of the four pomt function,
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IR0 (p, pl) = 8171852 2m) 8% (p — p')
X [S(p1)yol "' [S(p2)yol ™.

Now, it is straightforward to obtain the normalization
condition for the BS wave function for the heavy diquark
as the following:

1 d*p
6 (2m)

X S(=p1)e] + T AS(—p) X5 (p)S(2)ES(p2)
X xp, ()T =1,

(15)

AT =M S(=p )RS (p)S(p2) X, (1))

(16)

(1, 0), )(Pu(p,) and )((‘) (p,) are the transverse
projections of the BS wave function given by

where ¢ =
X p,(P) = —iS(p) "' x5, (P)S(=p))~", (A7)

and

X#)(p) = CXLp, (=p)C", (18)

respectively.
For the scalar heavy diquark, the transverse projections

of the BS wave function [¥p, (p,) and )((C) (p,)] can be
obtained from Egs. (17) and (18) as follows, respectively:

¥ r,(P) = Fs,(p)Y’ + Fi,(p)op Y, (19)
and
X5 () =T (p)YS = Fo(pipy,  0)
where
fo(po) = B )3 [V“g)(p, pi) +4veD(p, — pD1f(ph),
1)
and

- d3p/ -
Folp) = | 55V = p) = 2VD(p, = pDIF(pD.
(2m)
(22)
After substituting Egs. (19) and (20) into Eq. (16),
carrying out the trace calculation, and integrating out the
longitudinal momentum p;, we obtain the normalization

condition for the BS wave function for the scalar heavy
diquark as the following:

d*p, Epmg mg,(Amg wg, + Aymg,wg))

Qm)? 3mpwy wp (—mp + wy, + wg,)?
X [J;sl(pz) + .f.yz(pt)]z =1,

where E, = Pp - €.
For the axial-vector heavy diquark, the transverse pro-
jections of the BS wave function [ )((’) (p,) and j?gz)(")(p,)]

(23)
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can be obtained from Egs. (17) and (18) as follows, re-
spectively:

W) = Fo,(p)ED + Fo (p)vpen, (24

and
) = =Fo (pIED + Fo (p)Up g, (25)
where
% Epi g / (cf) NTF(
Fulp) = G250V, = pl) + 2V, = PP,
(26)

and

< dp! ~
Fole) = [ SEVI90,~ piel). @)

Analogously, the normalization condition for the BS
wave function for the axial-vector heavy diquark is given
by

d*p, Epmg mg (Amg wg, + Aymg,wg))

Q27 3mpwp wp (—mp + wy, + wg,)?
X [fo,(p) + Fo,(p)P = 1. (28)

In the numerical calculations, we take the constituent
masses of the heavy quarks to be m;, = 4.88 GeV and
m,. = 1.486 GeV which were obtained by fitting the real
spectra of charmonium and bottomonium in Ref. [48]. The
parameters in the kernel a; = 0.4 and k = 0.18 are deter-
mined by fitting the experimental data for heavy meson
spectra [45]. In order to solve the integral Eq. (13), we
discretize the integration region into n pieces (with n
sufficiently large). Then Eq. (13) becomes an eigenvalue
equation for the n dimensional vector f. After solving the
eigenvalue equation, the heavy diquark masses are ob-
tained and are displayed in Table I. We find that the heavy
diquark masses are independent of the heavy diquark spin
and only determined by the flavors of the constituent heavy
quarks. In Fig. 1, the normalized BS scalar wave functions
for the heavy diquarks are shown. It can be seen that the
amplitudes of the BS scalar wave functions do not distin-
guish the different spins of the heavy diquarks. As dis-
cussed in Refs. [10,11], unlike the heavy quark and light
quark system, only the spin symmetry survives (when the
diquark mass is below ~10 GeV) in the leading order
1/mg expansion for the heavy diquark system. Our results
are consistent with this statement.

TABLE I. Values of the heavy diquark masses used here.
mg, (GeV) 4.88 4.88 1.486
my, (GeV) 4.88 1.486 1.486
mp (GeV) 9.80 6.55 3.23
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FIG. 1. The normalized BS scalar wave functions [f(p,)] for
the heavy diquarks. The solid, dashed, and dotted lines are for
the heavy diquarks composed of double b quarks, b and ¢
quarks, and double ¢ quarks, respectively.

III. FORM FACTOR OF HEAVY DIQUARK
COUPLING TO GLUON

Since the heavy diquark is not really a point object and
its radius is enhanced by In?m,, with respect to 1/mg, we
introduce a few form factors for the effective vertex of the
heavy diquark coupling to gluon to reflect the inner struc-
ture of the heavy diquark.

The effective current for the scalar heavy diquark cou-
pling to a gluon is given as follows [5]:

Y
I = ig, = (Ph, + P F,(Q%), (29)

where g is the coupling constant of the strong interaction,
A (a=1,2,...,8) denote the Gell-Mann color matrices,
F,(Q?) is the form factor for the effective vertex, P,’;i and
ng are the momenta of the initial and final heavy diquarks,

respectively, and Q7 is the square of the momentum
transfer.

On the other hand, the effective current for the scalar
heavy diquark coupling to a gluon can be written as the
following in the BS equation formalism (The Feynmann
diagram for the vertex is shown in Fig. 2):

/‘a
JH = igsT(M{L + M%), (30)

Q,p,)

0« o

Q(py) % Q (py)

‘O Q.(p,)

Q,(py) O*

FIG. 2. The schematic diagram for the heavy diquark coupling

to gluon. Q, (p(l')) and Qz(p(z')) stand for the heavy quarks Q; and

0, with momenta pl” and p(z/ ), respectively.
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where
4 o4 d'p' 404 (c) z / /
(277) 8*(Pp, — Pp, — k) [ or? ) 2y Q2m)*8*(py — ph) X TH[S(—p1)Xp o, (POS(P2) X, (PDS(=pi)vH]
(3D
and
d4 (c)
MY = = Cm ¥y~ P, — ) [0 [ a0k, = p) X TS PO, (SIS e, ()

(32)

where k denotes the momentum carried by the gluon, p and p’’”) in this section denote the relative momenta of final and

initial heavy diquarks, respectively.

Then, comparing Eq. (29) with Eq. (30), one can get the form factor [F,(Q?)] in the leading order of a 1/ mp expansion

as follows:
F (QZ) _ (27T)4 d3p, mZQ]sz[fsl(pt) + .st(pt)][f‘sl(p;) + fs2(p;)]
s 3m (277')3 a)Qla)Qza)/Ql(mD - (UQl - (UQZ)(mD - sz(D - |pt|\/£)2 — 1cosf — a)/Ql)

+

Mg, ngztfsl (p) + Fop)llfa(p!) + Fa(ph]

wg,wg,wh, (Mmp —wg, — wg,)(mp —

where the velocity transfer @ = vp, - vp ; (vp, and v p, are
the velocities of the initial and final heavy diquarks, re-
spectively), p;(”) _ p/(//) », and p/(//) _ p/(//) _ p/(//) D,
are the longitudinal and transverse projections of the initial

heavy diquark relative momenta [p/’’] along their

momenta  (Pp), respectively, wj = Jle - pP,
wph, = ‘/mQ — p/’2, and 0 is the angle between p, and

Pgn( sz o UD‘[PDI vD.f)’
Now, let us turn to the effective current of the axial-
vector heavy diquark coupling to gluon [5]:

A
Joub = ig,—-[g"P(P}, + Pp)F,,(Q%)
— (P}, g" + P} gHP)F, (0?)
+ P Pp (P, + PE)F, (O] (34

where F,, (0%), F,,(Q?), and F,,,(Q?) are the form factors
for the effective vertex.

Analogously, the effective current of the axial-vector
heavy diquark coupling to the gluon can be written as
follows in the BS equation formalism:

24
]ozll«ﬁ = igs?(M?'uB + M;‘#ﬁ), (35)

(33)
wg, & + |pIV@? — 1cosh — w )}

where
d4 /
M?”B - _ (277')464(PD —PDf k)[(277)4 ,[(277)4
X Q) 8*(py = ph) X THS(=pO) i) (p0)
X S(p2) X, (PDS(=pi)v*] (36)
and
d4 1
M;wﬁ - _ (277)484(PD —Pp, — Ic)[(27T)4 ,[(277)4

X @m)*8*(py = pi) X TS(=p) X5)"(p)

X S(p2)v*S(ps )XPD (r)] (37)

As discussed in Ref. [5], the contribution of the F U3(Q2)
term is suppressed at small and intermediate momentum
transfer, O, since such a term is multiplied by high powers
of momenta. Consequently, F U3(Q2) is ignored in our
calculation. Comparing Eq. (34) with Eq. (35), we derive
the other two form factors [F, (Q?) and F, (Q%)] in the
leading order of a 1/m expansion as follows:
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F, (%) = 52277)4 & r. { my mo,[f, (p) + fuz(p,)][fu: (p)) + fuj(pé)]
mp J (2m) wg,wg,wp (Mp — wg, — wp,)(mp — wp, & — Ip,|N@* — 1cosh — wp,)
. mo,m,[Fo, (p) + Fo,(P)ILFu, (1) + Fon (P)] } (38)
wg,wo,wp (Mp — wg, — @p,)mp — Wy & + |p,|\/ﬁcosﬁ — wy, ,
F,,(0%) = 0.

It can be seen that the form factors for both the effective
vertex of the scalar heavy diquark coupling to the gluon
and the effective vertex of the axial-vector heavy diquark
coupling to the gluon are equal to each other in the leading
order of a 1 /mQ expansion. So, we redefine the form
factors as F(Q?) = F((Q?) = F,, (Q? for convenience.

It is well known that when Q? — 0, the heavy diquark is
seen by the gluon as a point particle without the inner
structure, and hence the form factor for the effective vertex
should be normalized to unity. When Q? — oo, the gluon
can see the individual quarks inside the diquark, and hence
the form factor for the effective vertex should approach to
zero. We calculate the form factors with the BS wave
functions obtained numerically for the heavy diquarks.
The dependence of the form factors on the square of the
momentum transfer is shown in Fig. 3. We can see that
the behavior of our results coincides with the tendency of
the above physical picture.

IV. BS EQUATION FOR DOUBLY
HEAVY BARYONS

As discussed in Sec. I, the doubly heavy baryon can be
regarded as a bound state of a heavy diquark and a light
quark in the heavy quark limit.

Let us define the ratios 1, = m;/(m; + mp) and
1ny = mp/(m; + mp) (m; is the light quark mass) for

1.0 ' | | |

sl -..“?..\\\ |
. -
= f \‘;\““‘““““un—————— :

. -

OO L L L L
0 2 4 6 8 10

Q° (GeV?d)

FIG. 3. The normalized form factors for the vertices of the
heavy diquark coupling to gluon as a function of the square of
the momentum transfer. The solid, dashed, and dotted lines
represent the heavy diquark composed of double b quarks, b
and ¢ quarks, and double ¢ quarks, respectively.

convenience. The BS wave function for the doubly heavy
baryon composed of a scalar heavy diquark and a light
quark is defined as the following:

xep(yi, y2) = OIT,(y1) b p(2)IP)

. 44 .
P [ Sx@e (39

where ¢, and ¢ stand for the light quark field and the
scalar heavy diquark field, respectively, Y = n,y; + 15y,
is the coordinate of the doubly heavy baryon mass center,
y = y; — ¥, is the relative coordinate, P is the momentum
of the doubly heavy baryon, and ¢ is the relative momen-
tum between the heavy diquark and the light quark.

It is straightforward to derive the following BS equation
for the doubly heavy baryon containing a scalar heavy
diquark and a light quark:

4 1
xe(@) = Si(ay) [ %G(P, ¢ xr(@)Snlqs). (40)

where g, = P + g and g, = m,P — g are the momenta
of the light quark and the heavy diquark, respectively,
S;(q,) and Sp(q,) are the propagators of the light quark
and the heavy diquark, respectively, G is the kernel which
is, motivated by the potential model, given by [45]

—iG(P,q,q") =1®1Vi(q,q") + v, ®T*Vy(q,q'), (41)

where T* = (¢4 + ¢4 )F(Q?) is the effective vertex of a
gluon with two scalar heavy diquarks, which has been
derived in Sec. IIl. V| and V, are the scalar confinement
and one-gluon-exchange terms given in the following,
respectively, (after imposing covariant instantaneous ap-
proximation [41-44]):

k!
Vilg, — q1) = T Q28 (q, — q1)
t t
&k, 8k’
, (42)
(277)3 [_(Qr - kz)2 + MZ]Z
and
167 g
Volg, — q1) = — . (43)

3 (¢, —q)*— p?

where qE') is the transverse projection of the relative mo-
mentum (g) along the baryon momentum (P), the second
term of V is introduced to remove the infrared singularity

056006-6



BETHE-SALPETER EQUATION FOR DOUBLY HEAVY ...

near the point g, = ¢}, and the small parameter w is
introduced to avoid the divergence in the numerical calcu-
lations. As discussed in Ref. [7], the dimension of «’ is
three and that of « in the meson case is two. This extra
dimension in «’ should be caused by nonperturbative dia-
grams which include the form factor effects at low mo-
mentum region. We expect that k¥’ ~ Aqcpk, since Agep is
the only parameter related to confinement. In the numerical
calculations, we let «’ vary between 0.01 GeV? and
0.06 GeV? [8,39,49].

The light quark propagator can be written as the follow-
ing form [9,44]:

Si(q1) = iﬂl:

A Ay ]
nTM+q —w,+ie nM+q +w —ie
(44)

where M and v are, respectively, the mass and velocity of
the doubly heavy baryon, ¢; = ¢ - v and ¢} = g* — q,v*
are the longitudinal and transverse projections of the rela-

tive momentum (g) along the doubly heavy baryon mo-
mentum (P), respectively, w; = 4/m; — g7, and AJ" are the
projection operators given by

PHYSICAL REVIEW D 83, 056006 (2011)

w, = V(g, + my)

AF =
! 2(1)1

(45)

In the leading order of a 1/m, expansion, the propagator
of the scalar heavy diquark can be written as

i

Sp(q)) = (46)

2mp(n,M — g, — mp + ig)

After writing down the most general form for the BS
wave function and taking into account its property under
parity transformation, we can parametrize the BS wave
function for the doubly heavy baryon with a scalar heavy
diquark and a light quark in the following form:

xp(q) = (g5, + 4,8, )u(v), 47)
where u(v) is the spinor of the doubly heavy baryon,
gs, and g, are the Lorentz-scalar functions of g7, q; and
P? = M.

Defining &,,,(q;) = % 85, One finds that the BS
scalar wave functions satisfy the coupled integral equa-
tions as follows:

i (q) — — dq; (m+ 0)[Vi(q, — q) + 2mpF(Q*)Va(gq, — q))] 2 (q)
Esi Mt 2m)? 4omp(M — mp — w;) 85\
d*q; Vilq, — q1) = 2mpF(Q*)Va(q, — q)) B
(277)3 4wlmD(M —mp — wl) ;gsz(q;)r (48)
5 (g,) = — dq; Vilq, — q)) + 2mpF(Q*)Va(q, — q1) F ( )
8\l (2m)3 4owmp(M — mp — w;) 1
_ f dq, (m; — w)[Vi(q, — q) — 2mpF(Q*)Va(q, — )] q, - qz 7 (). 49)
m)3 dowmp(M — mp — ;) q7 Es\dr

The normalization condition for the doubly heavy
baryon with a scalar heavy diquark and a light quark is
given by (after imposing the covariant instantaneous ap-
proximation on the kernel)

i i d4 ! i1i2ja)1
i3} [ i@ s)[ Irla.4) |

X XP(q ’ SI) = 653” (50)
where i(,) and j,(,) represent the color indices of the heavy
diquark and the light quark, respectively, s is the spin

index for the doubly heavy baryon and 11>/ is the inverse
of the four point propagator defined as follows:

13210 (g, g') = 6171 61212m)*6%(q — ¢')S;(91)S5 (¢2).
(51

After some algebra, Eq. (50) can be written in the
following form:

6f(2 )4{ [ xp(g)xXr(q)Si(q)(—in1£)S:(q1)Sp(g2)]

+ Trlxp (90 Xp(g)(—2im2) g2 - £81(q1)SH(g2) ]} =
(52)

where & = (1,0), ¥r(g,) and Xp(g,) are the transverse
projections of the BS wave functions given as follows:

xp(q:) = —iS(q1)" " xp(@)Sp(g2) 7", (53)
and

xr(q) = —iSp(g2) " xp(@)Si(g)) 7", (54)
respectively.

Then, one can derive the transverse projections of the BS
wave functions from Eqs. (53) and (54), respectively:

xrelq) = [hs (q) + 4.h,(q)Tuv), (55)
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and
X plg) = a()hy, (q) + q,hy,(q,)], (56)
where
a) = [ Vg, ~ ) + 2mpF(0)
si\qy Q) 1\qd: — 4; mpF(Q
X Va(q, — qDgs, (q)), (57
and
d’q, 1

(27 24Mmpw3 (=M + mp

PHYSICAL REVIEW D 83, 056006 (2011)

3 !
)= [ (‘Z’T")g[qu, — 4) = 2mpF(Q)Va(q, — q1)]

o
x 0t (). (58)
qi
After substituting Egs. (55) and (56) into Eq. (52) and

integrating out the longitudinal momentum ¢;, the normal-
ization condition can be written in the following form:

) {(m; + 0)2n,Mw? + En(mmp — wmp + 2myw; + Mo, — Mm;)
1

+ Eni (=M + mp + 20’1)‘112)53, (q) + 4wiqi(n,M + nlE)ﬁs,(CIz)ﬁsz(%) + 2nM(m; — w)qi w7
+ En (=M + mp + 2w)qt + Eny(m; — o) (=mmp — wmp — 2me; + M(m; + 0)))q?h% (q)} = 1, (59)

where £ = P - ¢.

Now let us define the BS wave function for the doubly
heavy baryon composed of an axial-vector heavy diquark
and a light quark as follows:

Xp (1, y2) = QOIT ¥, (y)AL(y2) | P)
. a* .
= e"PYfﬁx’pf(q)e"‘”’, (60)

where A7 (y,) stands for the axial-vector heavy diquark
field.

The BS equation for the doubly heavy baryon with an
axial-vector heavy diquark and a light quark is given by

d4q/
(2m)*
where S7°(gq,) is the propagator of the axial-vector
heavy diquark and G, is the kernel for the BS equation
given by

_iGpV(P) q, q/) = _ngI ® IVI(q: Cll)
- ’yﬂ ® r,u,pVVZ(q> q/)» (62)

wor = Qo + 65,)8,,F(Q?) is the effective ver-
tex for the axial-vector heavy diquark coupling to the
gluon, which was derived in Sec. III.

X5 (@)= S/(q)) G,,(P.q.4)x5(q)Sh (q2),  (61)

where I

dq; (m + w)[Vi(q, — q1) + 2mpF(Q*)Va(q, — )] .

I
In the leading order of a 1/m, expansion, the propagator
of the axial-vector heavy diquark can be written as

M — vk

Sp (g2) = = (63)

i —.
2mp(maM = q; — mp + ie)

Similar to the case of the doubly heavy baryon contain-
ing a scalar heavy diquark, we can parametrize the BS
wave function for the doubly heavy baryon containing an
axial-vector heavy quark and a light quark in the following
form:

Xp (@) = (84, + 480, ut(v), (64)

where u*(v) is the spinor of the heavy baryon, g, and
gy, are the Lorentz-scalar functions of g?, g, and
P> = M?. When the spin of the doubly heavy baryon is
1/2, ut(v) = \/%(7” + v#)y’u(v), while the spin of the
doubly heavy baryon is 3/2, u*(v) is the Rarita-Schwinger
vector spinor.

After defining g,,, (q,) = %gulm, one can find that
the BS scalar wave functions satisfy the coupled integral
equations in the following:

gvl (QI) = -

Zv,(q1)

(277)3 4a)lmD(M - mp — (1)1)
dq; Vilg, — q) — 2mpF(Q*)V,(q, — q;) s
_ %3 1\49: — 4; 3 i o\q:y — q; g, q;gvz(q;)’ 65)
(27T) 4a)lmD(M mp a)l)
7 (g) = — d*q; Vilg, — qi) + 2mpF(Q*)V,(q, — qi)g @)
va it Qm)? 4o mp(M — mp — w)) vt
_ [ Pai (m— w)Vi(g, — q) = 2mpF(Q*)Valq, — q)] 4. i . 66)
(27T)3 4(UlmD(M —mp — wl) q% gvz qi)-
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The normalization condition for the BS wave function
for the doubly heavy baryon with an axial-vector heavy
diquark and a light quark is given by

iy, [dYqd*q’ _ F) iz
i, [ 0 X (g, S)[apolpw(q, q’)] xp(q', ")
= Oyl (67)

where Iﬁ;izlffj " is the inverse of the four point propagator
defined as follows:

320 (g, ') = 8191 822 2m)* 8% (q — ¢)S; (q1)Sp L, (0).

(68)

After some algebra, Eq. (67) can be written in the
following form:

_i[d
6J 2m)*
XATt xpo(a) Xpp(a0)Si(q1)(—in1£)S,(q,)S (42)]
=Tt Xpo (g0 Xpp (@) (i12) (202" €8 — G20 — G2 &)
X S1(q)S5 (q2)Sp" ()]t =1, (69)

where ¥p,(q,) and i/pp(q,) are the transverse projections
of the BS wave functions given by

X ro(q) = —iS1(q1) " 'x8(@)Spac(q) ", (70)

d’q, 1
(2m)} 2dMmpwi(—M + mp + w;)?

PHYSICAL REVIEW D 83, 056006 (2011)

and

Xreplq) = _iSDp,B(‘]Z)71}1€(Q)S1(41)71r (71)

respectively.
From Egs. (70) and (71), we get the expressions for the
transverse projections of the BS wave functions as follows:

X rola) =[hy (q) + 4.1, (g)u,(v), (72

and
X/Pp(%) = ’/_‘p(v)[ﬁu,(%) + Qtﬁvz(%)]’ (73)
where
h, (q,) = ﬁ[V (g, — q)) + 2mpF(Q?)
v\t (277_)3 1\t t D
X Vy(q: — 9118, (q1), (74)
and
3 dq!
F,(q) = ﬁ[vl (9 — q}) — 2mpF(Q?)
X Vg, — q))] q’q’f” 2.,(q). (75)

After substituting Eqgs. (72) and (73) into Eq. (69) and
integrating out the longitudinal momentum g¢,, the normal-
ization condition can be written in the following form:

{(ml + (1)1)[27]2MC()12 + Enl(mlmD — wmp + 2mla)l + M(l)l - Mml)

+ En (=M + mp + 20))¢?1h% (q,) + 4w?q?(n:M + n,E)h, (g)h,,(q,) + 2n,M(m; — w,)q? o?
+ Eny(=M + mp + 20)qt + Eny(m; — w))(—mmp — o;mp — 2mw; + M(m; + o))q?h3,(q,)} = 1. (76)

In our calculation, we take the constituent masses of
the light quarks as m, =m,; = 0.33 GeV, m, =
0.45 GeV, and the scale of nonperturbative interaction
Agcep = 0.2 GeV. In order to solve the coupled integral
Egs. (48) and (49), we discretize the integration region
into n pieces (with n sufficiently large). In this way the
integral equations are transformed into coupled matrix
equations for the n dimensional vectors g, ,. Then, it is
easy to obtain the eigenvalue equations for g;, , . The same
method is applied in dealing with the coupled integral
Egs. (65) and (66). After solving the eigenvalue equations,
we obtain masses of the doubly heavy baryons shown

TABLE II.
k' = 0.01(0.06) GeV.

|
in Table II. The mass of the =, . obtained in our model
is consistent with the experimental value, 3518.9 =
0.9 MeV [50]. The obtained BS scalar wave functions
for the doubly heavy baryons composed of a heavy
diquark and a light quark are displayed in Figs. 4 and 5.
One finds that the masses and the amplitudes of BS
scalar wave functions for the doubly heavy baryons
are independent of the spins of both the heavy diquarks
and the doubly heavy baryons. In fact, this is just the
consequence of the heavy diquark spin symmetry. So, we
redefine g; = g,,), and g, = gy, in Figs. 4 and 5 for
convenience.

Values of the masses of baryons containing two heavy quarks. The lower (upper) masses correspond to

I
I

bb bc

111

Dy Qe Q

cc

M (GeV) 10.08 ~ 10.10 6.83 ~ 6.85

3.52 ~3.56

10.18 ~ 10.19 6.94 ~ 6.95 3.62 ~ 3.65
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V. NONLEPTONIC DECAY OF DOUBLY
HEAVY BARYONS

In this section, we will apply the obtained BS wave
functions to calculate the nonleptonic decay widths for
the doubly heavy baryons emitting a pseudoscalar meson
in the BS formalism. The Hamiltonian describing such
decays reads [51]

G
He = chbVZD(0101 + a,0,), (77)

V2

120 —m™m™m—————— 7

—
Q
~

1]
1

100 Zop

80 E

0.4 0.6 0.8
lq| (GeV)

120 T T T

oo
=}
o
N}

100 |

0.4 0.6 0.8
g (GeV)
120 ; : :

©) 2,

[1]

100
80
40

20

0 ! | B
0.0 0.2 0.4 0.6 0.8

la| (GeV)

FIG. 4. The normalized BS scalar wave functions for the
doubly heavy baryons (E o) composed of a heavy diquark
and a light quark (u, d). The solid (dotted) lines are for «' =
0.01 (0.06) GeV. The upper solid and dotted lines are for g,(g,)
in unit of GeV~!. The lower solid and dotted lines are for g,(q,).

PHYSICAL REVIEW D 83, 056006 (2011)

where V., and Vj, are the elements of Cabibbo-
Kobayashi-Maskawa matrix, U and D stand for the
fields of the light quarks involved in the decay,
0, =[Dy’(1 — Y)Uley,(1 —y°)b] and 0, =
[ey7(1 = ¥ )UIDy,(1 = ¥°)b]. a; and a, in Eq. (77)
are defined as the linear combination of Wilson coefficients
(c; and ¢p), a; =c, +¢/N, and a, = ¢, + ¢|/N,,
where N, is an effective number of colors which includes
nonfactorizable color-octet effects in the hadronization
process. Because of the lack of knowledge about

80 T T T

60 ]

20

O L L
0.0 0.2 0.4 0.6 0.8
la| (GeV)
80 T T T
o (b) &
0 ! ! -
0.0 0.2 0.4 0.6 0.8
la] (GeV)
80 T T T
© 2,
60 E

40 f....

20

0 L L M T 2 -
0.0 0.2 0.4 0.6 0.8

la] (GeV)

FIG. 5. The normalized BS scalar wave functions for the
doubly heavy baryons ({p,) composed of a heavy diquark
and a strange light quark (s). The solid (dotted) lines are for ' =
0.01 (0.06) GeV. The upper solid and dotted lines are for g,(g,)
in unit of GeV~!. The lower solid and dotted lines are for &,(g,).

056006-10



BETHE-SALPETER EQUATION FOR DOUBLY HEAVY ...

hadronization, a; and a, are treated as free parameters and
determined by fitting experimental data [52,53]. Since
b — ¢ decays are energetic, the factorization assumption
can be applied in our calculation. Hence the decay ampli-
tude of the two body nonleptonic decay becomes the
product of two matrix elements: one is related to the decay
constant of the factorized pseudoscalar meson and the
other is the weak transition matrix between the initial
and final doubly heavy baryon states,

<:32<Pf>P<k>|:gz,(P,->>
—EGFvchszal [ & {(P(R)ID(z)
X ys(1 = ¥ )U(2)|0ye~*

X (EGUPIBERY (1 = ¥)c@IEG P, (78)

where P(k) stands for the pseudoscalar meson with mo-
= (%)

mentum k, So0' stands for the doubly heavy baryon

composed of a (an) scalar (axial-vector) heavy diquark
and a light u (or d) quark.

The first matrix element on the right hand side of
Eq. (78) is related to the decay constant of the pseudoscalar
meson, fp, which is defined as

(PID(2)y (1 = ¥)U(I0) = —ifpk. (79)

The decay amplitude [Eq. (78)] is classified into three
cases according to different initial and final doubly heavy
baryon states as follows:

M = (Bgc(Pp)PR)|EG,(P)), (80)
= (Bo (PP E G, (P)), 1)
= (B (Pp)PR)IE gy (Py)). (82)

) d*Pp d*pP,,
Ol ()Y (1 = ¥)e@)ey l0) = 3 [ 25 Pr @mP 6Py, i, — P )6(Pn, -
A

PHYSICAL REVIEW D 83, 056006 (2011)

b(p,) ;P ® ¢ py)

Q(p,)

PofB)

I (q,)

FIG. 6. The Feynman diagram for the nonleptonic decays of
doubly heavy baryons emitting a pseudoscalar meson (P), taking
the decay amplitude M, for instance. E,.(P;) and Ej,(P;)
stand for the states of the final and initial doubly heavy baryons
with momenta P, and P;, respectively. d)QC(PDf) and @7, (Pp,)
stand for the diquark states involved in the final and initial
doubly heavy baryons with momenta Pp, and P, , respectively.

b(py), c(p}), O(p,), and I(g;) stand for different quark fields
with corresponding momenta. P(k) stands for the emitted meson
with momentum k.

Let us first calculate the decay amplitude M. The
Feynman diagram for /M is shown in Fig. 6. M, is related
to the BS wave functions through the following equation:

1

M, = _\/_—GFVcbVl*JDalka(rfd4(x1x2y1yzzlz2z)

X e " xp, (x0, x1)S; (x1 = y1)xp, (1, ¥2)
X Sp'e = Zl)SD,w(Zz - )’2)<0|¢Qc(11)b(2)
X (1 = ¥)c(@ @, (22)10), (83)

where Xp, and ,\/f.f‘_ stand for the BS wave functions for the
final and initial doubly heavy baryons, respectively, ¢,
and ¢y, are the diquark field operators involved in the final
and initial doubly heavy baryons, respectively.

The matrix element in Eq. (83) is related to the BS wave
functions for the heavy diquarks through the following
equation:

- P%),»z)

d*pd*p' e " N
5 | G @™ (p = PO TAS(=POXE, (PDS(P2)Xo, (P
X S(=p)(1 = y)y71e"™ x e’iZ(”Df"”Df“‘)e*"zl”nfe*fzzf’n,-, (84)

where X(C) and X()‘) are the BS wave functions for the
heavy dlquarks involved in the final and initial doubly
heavy baryons, respectively, mp and mp, are the masses
of the heavy diquarks involved in the final and initial
doubly heavy baryons, respectively, Pp ol = Ppy, v
(v; denotes the velocity of the initial doubly heavy baryon)

B pE I sudi
and Ppi = Pp,, — Pp,ivi are the longitudinal and

transverse projections of the final (initial) heavy diquark
momentum (PD ,) along the initial doubly heavy baryon
momentum (P) respectlvely, and £”W is the Ath polar-
ization vector of the axial-vector heavy diquark involved in
the initial doubly heavy baryon.

Substituting Eq. (84) into Eq. (83), the decay amplitude
M, can be written in momentum space as follows:
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Mlz \/i

1
GV Vipafoko@m) 34 (P, — Py~ ) [

PHYSICAL REVIEW D 83, 056006 (2011)

d4qd4ql
Q2m)

(277)454(41 - ‘1/1)

X 2m)?*8(Pp, — \fmp, = Ph )8(Pp,; = yfmp, = Ph )xp,(a)Si(q)Xe, ()

1 d4pd4p/
N 494
52 | G Cmi s -

ph) TH[S(— Pl)X(C) (pt)S(pz))(“) (p)S(=pA = y2)yT1&"W.

(85)

Analogously, we can derive the other two decay amplitudes (M, and M5) in the BS formalism as follows:

1

My = ——=GpVyVypa frk,2m)* 64 (P; — P — k),[

V2

d4qd4ql

Bt 751 — )

x (277)26(Psz — i, = P V8P, — \md, = Pb )k, (a)Si(a) Rr, ()

d4pd4p/

et @m* 8,
)\)U

and

M3=

— p5) Tr[S(—pj )XP AN}

1 *
~ 5 OrVesVipa ko (2m)'6* (P, = Py — /

532,, (P)S(—=p)(1 = ¥°)y71EM ™, (86)

d4qd4ql
Q2m)®

@Qm)*6*(q1 — 4})

X 2m)*8(Pp,; — ‘/m%)f — P} )8(Pp, — ylmp, — Ph ) xp, (a)Si(a1) Xp,(q))

d4pd4pl
@2m)?

where £7) is the A’th polarization vector of the axial-
vector heavy diquark involved in the final doubly heavy
baryon.

The differential decay width for the two body decay
reads [50]
|k|

dl' = I.’MI2

32 Ty (88)

where () denotes the solid angle, M stands for the decay
amplitude, M, is the mass of the initial baryon, and |K| is
the absolute value of the three momentum of the particles
in the final state in the rest frame of the initial state.
Numerically, the parameters in the Hamiltonian
(Gp, Vg, and Vyp), and the masses and the decay con-
stants of the pseudoscalar mesons are taken to have the

@m)*8*(p2 = p) THIS(=pD)RE,  (PDS(P2)Xp,, (PIS(=p1)(1 = ¥y 1™,

(87)

V., =0.0412, V,,=0.97418, V, =V, = 0.2255,
Ve = 09742, m, = 0.1396 GeV, mg = 0.4937 GeV,
mp = 1.8696 GeV, mp_ = 19685 GeV, fr=
0.1304 GeV, fx = 0.1555 GeV, fp = 0.2058 GeV, and
fp, = 0.273 GeV. Our predictions for the nonleptonic
decay widths for the doubly heavy baryons emitting a
pseudoscalar meson are shown in Tables III, IV, V, and
VI, where the superscripts % and % denote the spin of the

doubly heavy baryons.

VI. SUMMARY AND DISCUSSION

In the heavy quark limit, a doubly heavy baryon can be
regarded as a bound state composed of a heavy diquark and
a light quark. We first establish the BS equations for

following values [50]: Gp = 1.16637 X 107 GeV~2,  both the heavy diquarks and the doubly heavy baryons,
TABLE III. Predictions for the nonleptonic decay widths for the doubly heavy baryons emitting 7 meson.

Process Decay width (10_14a% GeV) Process Decay width (10_14a% GeV)
T(E0? — 227 0.343 ~ 0.362 Q" — a2 0.591 ~ 0.607
T(E72 — 220/ ) 0.205 ~ 0.211 QY — ;27 0.380 ~ 0.381
I(E,3? — 5,5 4110 ~ 4.234 r(Q%? — ;02 ) 7.606 ~ 7.643
T(E/? — 527 0.848 ~ 1.101 rQl? — Q*“/” ) 1.708 ~ 1.876
r(= — 5:2 ) 0.415 ~ 0.587 QU — ) 0.965 ~ 1.019
I(=%7 — 518 8.626 ~ 12.110 Q%% — *“/2 ) 19.435 ~ 20.529

056006-12



BETHE-SALPETER EQUATION FOR DOUBLY HEAVY ...

PHYSICAL REVIEW D 83, 056006 (2011)

TABLE IV. Predictions for the nonleptonic decay widths for the doubly heavy baryons emitting K meson.

Process Decay width (10742 GeV)
(=, — E)/7K) 0.265 ~ 0.267
N(Ey"" — 507K 0.165 ~ 0.171
(=, = E,%7K) 3.317 ~ 3.425
T2}/ — 2d7K) 0.649 ~ 0.845
r(E;? — 517K) 0.328 ~ 0.466
L(E,"? - Bk 6.810 ~ 9.612

Process Decay width (10742 GeV)
T — )7k 0.469 ~ 0.482
T, — Q7 k) 0.307 ~ 0.308
T — Q7 K) 6.150 ~ 6.170
rQy/? — Qi'?k) 1.313 ~ 1.557
P — Qil?K) 0.767 ~ 0.806

r(Q;%? — Q:%?k)

15.436 ~ 16.237

Predictions for the nonleptonic decay widths for the doubly heavy baryons emitting D meson.

TABLE V.
Process Decay width (107 5a? GeV)
T,/ — E\/?D) 0.818 ~ 0.832
N(E,"" — E,0D) 0.693 ~ 0.741
T, — 5,27 D) 13.885 ~ 14.834
I(g)/” — 2d/? D) 1.136 ~ 1.528
r(E;"? - =:1p) 0.945 ~ 1.464

r(ES? — 502 p)

19.525 ~ 30.028

Process Decay width (107 15a? GeV)
T,y — 0/ p) 1.404 ~ 1.466
L@, — 0,2 ) 1.292 ~ 1.319
L@, — ;D) 25.873 ~ 26.419
ry/? — ai"?p) 2.434 ~ 2552
r@;"? — "2 p) 2.383 ~ 2.426

r(@,> — i)

47.895 ~ 48.741

TABLE VL

Predictions for the nonleptonic decay widths for the doubly heavy baryons emitting D; meson.

Process Decay width (1071242 GeV)
T, — 0)/”p,) 0.511 ~ 0.515
T, — ;b)) 0.471 ~ 0.483
L@ — ;D)) 9.437 ~ 9.668
r@Qy/? — Qi'?py) 0.794 ~ 0.828
L, — i) 0.828 ~ 0.851

Process Decay width (107!%a? GeV)
r(E,/ — E4/”D,) 0.285 ~ 0.290
N(Ey"" — 5,07 D,) 0.253 ~ 0.271
L(E — E,07D,) 5.065 ~ 5.435
r(g)/” — 24D, 0.368 ~ 0.497
r(g,0"” — 5i”D,) 0.328 ~ 0.513
Lg% — 2:7D,) 6.763 ~ 10.520

Q%% — Q% p,) 16.650 ~ 17.099

respectively, in the leading order of a 1/m, expansion.
The kernel for the BS equation contains the scalar confine-
ment and one-gluon-exchange terms, which are motivated
by the potential model and successfully used in the cases of
mesons and heavy baryons containing a single heavy
quark. Since the size of the heavy diquark is enhanced by
lnzmQ with respect to 1/m, we also introduce a few form
factors to the effective vertex for the heavy diquark cou-
pling to the gluon in order to reflect the inner structure of
the heavy diquark.

The BS equations are solved numerically under the
covariant instantaneous approximation, which is suitable
for the weakly bound states of both the heavy diquark and
the doubly heavy baryon. The obtained masses of the
doubly heavy baryons are consistent with those from the

lattice simulations [54,55]. It is found that the properties of
both the heavy diquarks and the doubly heavy baryons are
independent of their spin in the leading order of a 1/m,
expansion.

As we know, the superflavor symmetry relates doubly
heavy baryons to heavy mesons, and hence the form factors
of the transitions of doubly heavy baryons are reduced
to the Isgur-Wise function, which is well known for heavy
mesons [10,11,56]. The calculation of the doubly heavy
baryon transitions is greatly simplified under the super-
flavor symmetry at the cost of ignoring the derivation from
nonpointlike spatial dispersion of the heavy diquark. In this
work, we directly calculate the decay amplitudes for the
doubly heavy baryons using the BS wave functions ob-
tained for both the heavy diquark and the doubly heavy
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baryons, instead of employing the superflavor symmetry.
We give the predictions for the nonleptonic decay widths of
doubly heavy baryons emitting a pseudoscalar meson. Our
results will be tested in the future experiments.

In our calculation, for the propagators of the heavy
diquarks and the light quarks involved in the bound states,
we simply assume the forms of free propagators with the
masses of the heavy diquarks and the light quarks taken to
be the constituent ones. Actually, the real propagators
should be solved using the Dyson-Schwinger equation. In
such an approach, one has to guarantee the consistency
between the kernel of the BS equation and that of the
Dyson-Schwinger equation as required by the axial-vector
Ward-Takahashi identity [24]. This is a very complicated
procedure and needs more careful investigations in the
future.

At the HERA-B and Tevatron facilities more than 10°
events involving double charm baryons are expected, while
at the LHC one can expect about 10° events [57]. Since the
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available energy at the LHC is much higher than the
masses of 2. and 5, it is believed that their production
rates should be comparable. The decay widths of the
doubly heavy baryons we present in this work will be
tested in the forthcoming experiments.

Since the BS equations are established at the leading
order in a 1/mg expansion, we do not distinguish the
different spins of both the heavy diquarks and the doubly
heavy baryons. Such differences should happen at
O(1/myg). 1/mg corrections will be studied in the future.
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