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We study the Landau gauge gluon and ghost propagators of SUð3Þ gauge theory, employing the

logarithmic definition for the lattice gluon fields and implementing the corresponding form of the

Faddeev-Popov matrix. This is necessary in order to consistently compare lattice data for the bare

propagators with that of higher-loop numerical stochastic perturbation theory. In this paper we provide

such a comparison, and introduce what is needed for an efficient lattice study. When comparing our data

for the logarithmic definition to that of the standard lattice Landau gauge we clearly see the propagators to

be multiplicatively related. The data of the associated ghost-gluon coupling matches up almost com-

pletely. For the explored lattice spacings and sizes discretization artifacts, finite size, and Gribov-copy

effects are small. At weak coupling and large momentum, the bare propagators and the ghost-gluon

coupling are seen to be approached by those of higher-order numerical stochastic perturbation theory.
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I. INTRODUCTION

During the last years lattice studies on the Landau gauge
gluon and ghost propagators have clearly [1–4] not con-
firmed the asymptotic infrared behavior as postulated by
the Gribov-Zwanziger scenario [5,6] or required by the
Kugo-Ojima confinement criterion [7]. The inconsistency
seems to be related to the treatment of the Gribov problem,
i.e., the nonuniqueness of the Landau gauge condition in
the nonperturbative regime (at least in finite volumes). In
our opinion, it is still unclear, whether the lattice formal-
ism—for a fixed gauge—requires a reformulation in order
to become consistent with a Becchi-Rouet-Stora-Tyutin
(BRST)-invariant continuum theory or whether the contin-
uum approach itself needs to be reformulated (see also
[8,9]). We would like to stress that until now no complete
gauge-fixing prescription for the Landau gauge has been
agreed upon (see, e.g., [10,11] and references therein). At
the same time it is clear that the gauge-invariant lattice
formulation of SUðNÞ Yang-Mills theories does provide
confinement of quarks and gluons. Also in the context of
gauge-variant approaches, there are clear signals that
quarks and gluons (and ghosts) are not part of the physical
spectrum, for example, by the violation of reflection pos-
itivity [12–14]. The exact mechanism of confinement,
however, is still unknown. It should be added though that
a direct link between quark confinement, as measured by
the Polyakov-loop order parameter, and the infrared be-
havior of ghost and gluon Green’s functions has been
established recently [15].

However, the infrared asymptotics can only be one
aspect. Another, by no means less important, should be

the computation of QCD’s elementary two- and three-point
functions in the intermediate (around 1 GeV) and ultravio-
let momentum region. This would allow, for example, to
determine essential phenomenological parameters, like the
QCD scale�

MS
, or gluon and quark condensates (see, e.g.,

[16–21]). Moreover, such calculations are important to
arrive at renormalized propagators, and eventually also at
vertex functions, which, calculated on the lattice and ex-
trapolated to the continuum limit, could serve as input to a
Bethe-Salpeter or Faddeev equations based hadron
phenomenology (see, e.g., [22] for a status report).
Therefore, the validity of multiplicative renormalizabil-

ity in the nonperturbative regime as well as the speed of
convergence to the continuum limit, and its uniqueness, are
essential questions that need to be addressed on the lattice
in this context. For the gluon field this has been done in the
past [23–27], in particular, there with respect to the ques-
tion of universality of its definition on the lattice. Also,
more recently, first steps towards continuum-limit-
extrapolated lattice data for the gluon and ghost propaga-
tors have been presented [4,28].
With our study we intend to provide further input to such

projects, placing here particular emphasis on connecting
lattice Monte Carlo (MC) studies with those of lattice
perturbation theory (LPT). Specifically, we will confront
its numerical variant, the numerical stochastic perturbation
theory (NSPT) [29,30], with lattice Monte Carlo data of the
gluon and ghost propagators and the associated ghost-
gluon coupling in the Landau gauge [31]. This will help
to quantify the region where predictions of NSPTare valid.
So far, most MC studies of these gauge-variant objects

have used (what we call below) the linear definition
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AðlinÞ
xþ�̂=2;� ¼ 1

2iag0
ðUx;� �Uy

x;�Þjtraceless (1)

with a, g0 denoting the lattice spacing and the bare cou-
pling, respectively. On the lattice, however, the definition
of the gluon field (and also of the Faddeev-Popov operator)
is in no way unique. One can of course equally well use
another definition, for example, that of the modified lattice
Landau gauge [32],1 or the quadratic definition

AðquadÞ
xþ�̂=2;� ¼ 1

4iag0
½ðUx;�Þ2 � ðUy

x;�Þ2�jtraceless (2)

which has been studied and compared with the linear
definition in Refs. [23,24]. It was also shown there that
both converge towards the same continuum limit.

Yet another definition is known as the logarithmic defi-
nition of the lattice gluon field,

AðlogÞ
xþ�̂=2;� ¼ 1

iag0
logðUx;�Þ: (3)

This definition has been put forward for lattice MC studies
by Furui and Nakajima (see, e.g., [25,36–39]). It is also the
definition being used in lattice perturbation theory (see,
e.g., the monograph in [40]) and NSPT. Since we are
aiming at a quantitative comparison of NSPT with lattice
MC data, below we will mainly concentrate on this
definition.

The respective control functional for the Landau gauge,
the quadratic norm

jj�jj2 ¼ X
x

tr�ðxÞ�yðxÞ (4)

is given in terms of the lattice divergence

� ¼
�X

�

@�A�

�
ðxÞ � X

�

ðAxþ�̂=2;� � Ax��̂=2;�Þ � 0 (5)

for each of these definitions.
When expanded in terms of the lattice spacing all these

definitions of the gluon field agree at leading order, but
differ beyond that (see, e.g., [35]). It is because of these
differences why the corresponding Jacobian factors
(Faddeev-Popov determinants) differ in the integration
measure and why the respective lattice Landau gauge
condition (jj�jj2) cannot be simultaneously satisfied (see,
e.g., [23,24] or below). For a consistent setup of the Landau
gauge on the lattice one therefore has to employ the

corresponding lattice expressions for the gauge functional
and the Faddeev-Popov operator. These are available in the
literature for all above-mentioned approaches. For practi-
cal reasons, though, mostly the linear definition has been
adopted.
However, in order to assess the genuine nonperturbative

effects in the measured two- and three-point functions, it is
desirable to have as a reference point an understanding of
the perturbative behavior of these functions in higher-order
lattice perturbation theory. In recent years such higher-loop
results for the lattice gluon and ghost propagators became
available using numerical stochastic perturbation theory
[29,30]. These results are for individual momenta at a fixed
lattice size and are usually obtained for the logarithmic
definition. The advantage of NSPT is that the loop-order
that can be achieved only depends on the available compu-
tational resources. There are no other restrictions. However,
if one wants to confront the unrenormalized NSPT results
directly with corresponding data from lattice Monte-Carlo
simulations, one cannot expect the convergence of the
former to the bare MC data, when different lattice gluon
field definitions are employed. Of course, if multiplicative
renormalization is in place the bare propagators for the
different definitions are related through finite renormaliza-
tions, but for a comparison with NSPT this would bring
additional uncertainties. For a quantitative comparison it is
thus desirable to use the same lattice definition of the
respective gluon field and the Faddeev-Popov operator. In
addition, lattice NSPT results take the influence of the
hypercubic group into account and thus allow for a com-
parison of the respective propagators at more off-diagonal
momenta which are usually excluded by cuts.
We therefore find it worthwhile to complement the ex-

isting data for the Landau gauge gluon and ghost propa-
gators by new sets for the logarithmic definition of the
lattice gluon fields and the corresponding Faddeev-Popov
operator. The bare propagators can then be confronted
directly (i.e., without any additional renormalization) to
the results from NSPT. We think that this way much more
precise information can be obtained on the regime where
NSPT holds.
Note that for a renormalization-group invariant, like, for

example, for the ghost-gluon coupling, denoted�MM
s ðq2Þ in

the minimal momentum subtraction (MOM) scheme
[19,41], no rescaling of the data would be necessary,
when comparing data obtained for different lattice discre-
tization.2 Data for this coupling, extracted either for the
linear or the logarithmic definition, should match up com-
pletely, apart from artifacts due to the lattice discretization.
This has been argued and, for SUð2Þ, also explicitly shown
already in [35]. This coupling thus serves a reasonable

1Note that the modified lattice Landau gauge actually provides
more than just another lattice discretization of the involved fields
[32]. It is a potential candidate to overcome the 0=0 Neuberger
problem on the lattice [33,34]. Nonetheless, one could borrow
the gluon field and Faddeev-Popov operator definitions in the
modified lattice Landau gauge if an alternative discretization of
the standard lattice Landau gauge is desired. So far this would be
possible for a Uð1Þ or SUð2Þ gauge theory, and has been done for
the latter, for example, in [35]).

2It is important though, that the bare lattice gluon and ghost
dressing functions is for the same type of lattice discretization,
and the correct tree-level value is obtained when the links are set
to one (see also [35]).
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object to systematically investigate discretization effects.
Below we will further corroborate these findings for the
gauge group SUð3Þ and compare the available data sets to
corresponding ones of NSPT.

Altogether, our aim is threefold:
(1) To check universality of the employed lattice defi-

nitions by comparing MC results obtained for the
logarithmic and linear definition. Such a study is not
really new, but we do it simultaneously for the gluon
and ghost propagator and the associated ghost-gluon
coupling. We confirm that, at least in the momentum
ranges considered throughout this paper, the
propagators are indeed related to each other by
multiplicative renormalization, and that these renor-
malization constants are such that they exactly can-
cel each other in the coupling as expected.

(2) To compare nonperturbative and perturbative lattice
results obtained for exactly the same set of parame-
ters. We emphasize that (in this study) we are not
intending to fit lattice results in the perturbative
range with higher-order perturbation theory as ob-
tained in the continuum by [41–43]. This has been
the intention in the lattice references [16–21,37].
Here we are rather interested to locate the momen-
tum region where predictions of NSPT are still a
good approximation to Monte Carlo results.

(3) To report in some detail on the realization and
performance of the gauge-fixing algorithm required
for the logarithmic definition, as well as to assess the
importance of the Gribov ambiguity in this setting.

The paper is organized as follows: In Sec. II we briefly
review the lattice Landau gauge for the linear and the
logarithmic definition of gluon fields. Section III is then

devoted to gauge-fixing algorithms, first for AðlinÞ
xþ�̂=2;�, and

then for A
ðlogÞ
xþ�̂=2;�. For the latter we test three different

implementations: an unaccelerated, a Fourier-accelerated,
and a multigrid-accelerated gauge-fixing algorithm. We
will argue that one should preconditioning these by first

fixing the gauge field configuration such that AðlinÞ
xþ�̂=2;� is

transversal, before the actual gauge fixing of A
ðlogÞ
xþ�̂=2;�

starts. A comparison of the three different implementations
including their parameters is given at the end of Sec. III. In
Sec. IV we present expressions for the gluon and ghost
propagators for the logarithmic definition. A brief study on
the impact of the Gribov ambiguity is also discussed there.
Further results are then presented in Sec. V, where we first
compare the gluon and ghost propagators for the logarith-
mic definition with those for the linear definition, and then
discuss lattice discretization and finite-volume effects. We
will demonstrate that data for the coupling �MM

s ðq2Þ
matches up for both definitions without any rescaling. In
Sec. VI we finally confront our MC results for the propa-
gators and the coupling to the recent results from NSPT
[29,30]. We will argue that for large � ¼ 6=g20 and large

momenta the MC data must be restricted to the trivial (i.e.
real-valued) Polyakov-loop sector in order to reach good
agreement.3 In Sec. VII we will draw our conclusions. A
detailed discussion of the multigrid-accelerated gradient
algorithm follows in the Appendix.

II. LATTICE IMPLEMENTATIONS
OF THE LANDAU GAUGE

On the lattice the fundamental degrees of freedom are
the link variables Ux;�, which are elements of the SUð3Þ
gauge group. If one is interested in gauge-variant quanti-
ties, like, for example, the gluon propagator, one has to
adopt a definition for the gluon field Axþ�̂=2;� in terms of

these links. Above, we mentioned three ways of defining a
gluon field on the lattice, the linear and logarithmic defi-
nition will be considered below.

A. Linear definition of the gluon field

We first recall the linear definition [Eq. (1)]. For this the
Landau gauge condition on the lattice (setting the lattice
spacing a ¼ 1),

�ðlinÞðxÞ ¼
�X

�

@�A
ðlinÞ
�

�
ðxÞ � P

�
ðAðlinÞ

xþ�̂=2;� � AðlinÞ
x��̂=2;�Þ

¼ 0 (6)

is realized, if the gauge functional

FðlinÞ
U ½g� ¼ 1

4V

X
x;�

�
1� 1

3
Re trgUx;�

�
(7)

is in a (local) minimum for a given gauge-fixed con-
figuration

gUx;� ¼ gxUx;�g
y
xþ�̂: (8)

Here, gx 2 SUð3Þ is the gauge transformation field that—
finally—should put the unfixed gauge field Ux;� to the

Landau gauge. As there are many local minima (‘‘Gribov
copies’’), we assume that unique gauge fixing is achieved
by searching for the global minimum for each configura-
tion U. In practice, one can only try to get as close as
possible to the global extremum. We call this general
prescription the ‘‘minimal Landau gauge.’’ The minimiza-

tion of FðlinÞ
U ½g� can be accomplished by an overrelaxation

algorithm or a combination of a simulated annealing and
overrelaxation (see below). This allows to fulfill the
Landau gauge condition (6) with the required local
numerical precision.

B. Logarithmic definition of the gluon field

In the continuum, the Landau gauge can also be formu-
lated as a minimization problem of the functional

3Note this was argued for SUð2Þ already in [44].
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FðcontÞ
A ½g� ¼ 1

Nc

X
�

Z
d4xtr½gA�ðxÞgA�ðxÞ� (9)

with respect to gðxÞ 2 SUð3Þ acting on A�ðxÞ according to
gA�ðxÞ ¼ gðxÞA�ðxÞgyðxÞ þ i

g0
gðxÞ@�gyðxÞ: (10)

The direct transcription of the continuum extremization
problem to the lattice leads to the minimization of a lattice
gauge functional

FðlogÞ
U ½g� ¼ 1

4VNc

X
x;�

tr½gAðlogÞ
xþ�̂=2;�

gAðlogÞ
xþ�̂=2;�� (11)

for the logarithmic definition of the lattice gluon field
[Eq. (3)]. The violation of transversality then can always
be checked by computing the divergence

�ðlogÞðxÞ ¼
�X

�

@�A
ðlogÞ
�

�
ðxÞi

� X
�

ðAðlogÞ
xþð�̂=2Þ;� � AðlogÞ

x�ð�̂=2Þ;�Þ � 0: (12)

Note that the logarithmic definition requires a diagonal-
ization of the neighboring SUð3Þ link matrices each time
the divergence (12) is evaluated.

We will see that the two lattice Landau gauge conditions
[Eqs. (6) and (12)]—if imposed on an arbitrary gauge field
configuration—will result in rather different gauge-fixed
fields. However, the gluon propagators calculated from the

respective gluon fields, i.e., AðlogÞ
xþ�̂=2;� or AðlinÞ

xþ�̂=2;�, will be

seen to be related to each other approximately by a finite
multiplicative renormalization. Note also that the gluon
fields transformed into momentum space will be transver-

sal, q� ~A�ðqÞ ¼ 0, only if the gauge-fixing procedure fits to

the respective definition of Axþ�̂=2;�.

III. LANDAU GAUGE FIXING: DIFFERENT
ALGORITHMS ARE REQUIRED

A. Linear definition

The linear form of the gauge functional in Eq. (7)
suggests to use a relaxation method for its minimization
(Los Alamos type gauge fixing): at given lattice site x the
gauge transformation field gx is replaced by g0x such that
the expression

Re trfg0xWxg (13)

is maximized for a given Wx, where

Wx �
X
�

ðUx;�g
y
xþ�̂ þUy

x��̂;�g
y
x��̂Þ:

This is also known as a ‘‘projection onto SUð3Þ’’
g0x � ProjSUð3ÞW

y
x : (14)

For SUð3Þ g0x is typically found using the Cabibbo-
Marinari decomposition [45], such that the local SUð3Þ
update of gx proceeds via three successive SUð2Þ updates.
Formally, the update can be viewed as the replacement

gx ! g0x � rxgx with rx ¼ g0xg
y
x : (15)

The speed of convergence is usually improved by replacing
the relaxation steps by overrelaxation (OR) steps,

gx ! r!x gx: (16)

The overrelaxation parameter ! has to be optimized in the
interval 1<!< 2. The required power of the update
matrix rx is approximated via the truncated series

r!x ¼ XN
n¼0

�nð!Þ
n!

ðrx � 1Þn; (17)

where N ¼ 3 or 4, and

�nð!Þ ¼ �ð!þ 1Þ
�ð!þ 1� nÞ : (18)

In order to check the Gribov ambiguity, the OR proce-
dure can be repeated for a number of initial random gauges

gðiÞinitial, i ¼ 1; . . . ; Ncopy typically resulting in different final

gauge transformations gðiÞfinal for a given lattice gauge field

U. The different gauge-transformed fields are known as
‘‘gauge copies.’’ They lead to a corresponding distribution

of gauge-functional values FðiÞ ¼ FðlinÞ
U ½gðiÞ� (the set of

local minima) instead of a unique, but usually unknown
absolute minimum.

To shift the distribution of FðiÞ to smaller values, the
initial random gauge transformation can be replaced by
one obtained using a simulated annealing algorithm (SA)
for gauge fixing. SA is a Markov chain MC process simu-
lating a Gibbs measure of the form

PU;Tg
½g� / exp

�
�FðlinÞ

U ½g�
Tg

�
(19)

for the field of gauge transformations g, where the gauge
temperature Tg is lowered step by step after one or a few

Markov steps according to some protocol (‘‘SA schedule’’)
such that the process never passes through real equilibrium
states. To our knowledge, the method has been very suc-
cessfully applied for the first time fixing to the maximally
Abelian gauge in [46].
It turned out that with respect to computer time as well

as with respect to finding smaller FðiÞ, repeating a com-
bined SAþ OR algorithm is more efficient, than repeating
the OR algorithm with initial random gauge transformation
(see [47,48]). For the results presented below we have
employed the SAþ OR algorithm to gauge fixing the

fields AðlinÞ [Eq. (1)] but also to precondition the gauge

fixing of AðlogÞ [Eq. (3)] (for details see below).
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For the SA algorithm we have changed the gauge tem-
perature TgðisÞ for every new MC sweep (is) according to

the SA schedule

TgðisÞ ¼
�
ðT5

g;min � T5
g;maxÞ is � 1

Niter � 1
þ T5

g;max

�
1=5

(20)

proposed in [47] with a restriction to Niter ¼ 3500 iter-
ations. We have used the initial maximal gauge tempera-
ture value Tg;max ¼ 0:45 and the final minimal value

Tg;min ¼ 0:01.

B. Logarithmic definition

For the logarithmic definition of the gluon field (for
brevity we call the corresponding algorithm logarithmic
gauge fixing), the starting point is the local divergence
Eq. (12) evaluated at all lattice sites x. The gauge trans-
formations gx (at a given lattice site x) is updated locally by
gx ! rxgx where rx is the exponentiated local divergence
of gA� evaluated at x according to Eq. (12), i.e.,

rx ¼ exp

�
�i�

�X
�

@�
gA

ðlogÞ
�

�
ðxÞ

�
: (21)

The step size � has to be tuned. We call this method the
local unaccelerated steepest gradient algorithm (the origi-
nal ‘‘Cornell type’’ gauge fixing discussed in Ref. [49]).

It is well known that this update suffers from critical
slowing down which can be ameliorated using a Fourier-
accelerated version [49]: at each lattice site gx ! rxgx
using

rx ¼ exp

�
�i�F̂�1

�
q2max

q2
F̂

��X
�

@�
gA

ðlogÞ
�

�
ðxÞ

���
; (22)

instead. Here F̂ denotes the Fourier transformation from

the space-time lattice to the 4-momentum lattice and F̂�1

the reverse transformation, respectively, [for q2 see (29)
and (30)]. One recognizes a sort of smearing of the diver-
gence with the inverse Laplacian. We notice that Furui and
Nakajima [50] have also used a nonlocal algorithm in the
form of a Newton-Raphson-type construction of rx using
the nonvanishing divergence as a source and the inverse
Hessian (Faddeev-Popov operator, expanded in A� to some

finite order) in place of the inverse Laplacian.
Fast Fourier transformations are less efficient if the

lattice is fully parallelized. This could become a problem
for large lattices. We circumvented this problem by using
the multigrid-accelerated steepest gradient algorithm [51].
In fact, the last expression for rx can be written as

rx ¼ exp

�
�i�q2max�

�1

�X
�

@�
gAðlogÞ

�

�
ðxÞ

�
: (23)

The inversion of the Laplacian on an arbitrary source is a
standard problem for a multigrid algorithm. Details on our

implementation of the multigrid-accelerated gradient algo-
rithm are given in the Appendix.
We faced the problem that the logarithmic gauge fixing

fails to finish successfully for 10% to 50% of all attempts,
when starting from a random gauge transformation. The
exact failure rate depends on the gauge-fixing method, and
grows with the lattice size. A similar problem only rarely
occurs in case of the linear gauge fixing using the standard
OR algorithm. We found, however, that the logarithmic
algorithm works successfully in 99% of the cases if the
divergence [Eq. (12)] is already sufficiently small at the
start. This can be achieved by preconditioning the loga-
rithmic by a linear gauge fixing. The remaining 1% of
cases is dealt with by just repeating the gauge fixing.

C. Comparing the two gauge fixing prescriptions

For both types of gauge fixing a stopping criterion is
needed. This criterion is fulfilled as soon as the respective

divergence, ð@�gAðlinÞ
� ÞðxÞ or ð@�gA

ðlogÞ
� ÞðxÞ is sufficiently

small. We have applied the criterion

max
x

tr½ð@�gA�ÞyðxÞð@�gA�ÞðxÞ�< 10�14: (24)

To demonstrate the relation between the two different
gauge-fixing algorithms we compare now the history of the
overrelaxation and of the Fourier-accelerated gradient al-
gorithm. Both are applied to the same configuration on a
164 lattice (generated using the Wilson plaquette action at
� ¼ 6:0).
We used ! ¼ 1:68 and N ¼ 3 [see Eq. (17)] for the

linear gauge-fixing method (in this case the OR algorithm
without the SA-preconditioning step) and � ¼ 0:07
[Eq. (22)] for the logarithmic gauge fixing (i.e., the
Fourier-accelerated gradient algorithm).
In Fig. 1 we compare how the local maxima of the

squared divergence of AðlinÞ and AðlogÞ behave while either
the overrelaxation (left panel) or Fourier-accelerated
gradient algorithm (right panel) proceeds. When the OR

algorithm fixes the Landau gauge the divergence of AðlinÞ is
successively reduced. This cannot be simultaneously

achieved by AðlogÞ. On the other hand, when the gradient

algorithm fixes the Landau gauge the divergence of AðlogÞ
becomes smaller with every iteration, while the divergence

of AðlinÞ stays almost unchanged. We notice that the local
maximum of the squared divergence of the ‘‘wrong gauge
field’’ never becomes less than Oð1Þ. This is the result of
only few isolated defects, as it can be seen by a comparison
with the corresponding space-time averaged quantities
(Fig. 2). The space-time average defined through jj�jj2
[Eq. (4)] reaches a precision of 10�4, typically after
Oð100Þ or Oð200Þ iterations. To reach the same precision
for all lattice sites more iterations are needed. We notice
that the space-time average of the squared divergence of
the ‘‘wrong gauge field’’ never becomes less thanOð10�2Þ.
Comparing the linear and the quadratic definition of the
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gluon field the authors of Refs. [23,24] have observed a

similar difference of jj�ðquadÞjj2 and jj�ðlinÞjj2.
Local operators constructed in terms of the gauge-

fixed gluon fields can only be sufficiently precise if the
respective gauge-fixing method has been used for each
A�. However, as a preconditioner we can (and we do)

use the linear gauge fixing (via the SAþ OR algorithm)
before applying logarithmic gauge fixing. As mentioned

above, this helps much to reduce the number of un-
successful gauge fixing attempts for the latter. For the
linear definition the SAþ OR algorithm always
converges.
Preconditioning is not without effect on the final gauge

fixing, however. The quality of gauge fixing achieved by
the (linear) preconditioner influences the quality of the
final (logarithmic) gauge fixing. This is illustrated in
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FIG. 1 (color online). History of maximal values of the squared divergence of the two gluon field definitions during gauge fixing by
overrelaxation (left) and the Fourier-accelerated gradient method (right). Example configuration on a 164 lattice at � ¼ 6:0.
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FIG. 2 (color online). Same as in Fig. 1 but for the space-time average of the squared divergence of the respective A�.
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FIG. 3 (color online). The effect of replacing OR (left) by SAþ OR (right) as preconditioner. The figure shows a histogram of final
FðlogÞ values for 100 gauge-fixed copies (164 lattice, � ¼ 6:0). The multigrid-accelerated gradient method was used for the gauge-
fixing.
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Figs. 3 and 4 at � ¼ 6:0 for a 164 and 324 lattice, respec-
tively. These figures show the effect of replacing pure OR

by SAþ OR (with respect to AðlinÞ) as preconditioner for
the logarithmic gauge fixing (performed with the
multigrid-accelerated gradient method) on the distribution

of the final gauge functional values F
ðlogÞ
U ½gðiÞ�. This com-

parison is again for a 164 lattice at � ¼ 6:0.
As is well known for the linear gauge fixing, we

typically find smaller gauge-functional values also for
the logarithmic case, when the SAþ OR algorithm is
used instead of the OR algorithm for this preconditioning
step. This becomes even more pronounced increasing the
lattice size where the number of local minima naturally
increases.

D. Performance of different realizations
of the logarithmic gauge fixing

We compare now the logarithmic gauge fixing (without
SAþ OR preconditioning) in three versions: the unaccel-
erated gradient algorithm, the Fourier-accelerated gradient
algorithm, and the multigrid-accelerated gradient algo-
rithm. The advantage of the latter is that it is easy paral-
lelizable. Our code employes a further developed version
of the algorithm used by Cucchieri and Mendes for the
Landau gauge in SUð2Þ gauge theory [52]. In the Appendix
our implementation of the multigrid-accelerated gradient
algorithm is described in greater detail.

In Fig. 5 (left) we show the average number of iterations
of the multigrid-accelerated algorithm as a function of the
step size parameter � (again for a 164 lattices with � ¼
6:0). With increasing � the mean number of iterations
decreases monotonously until it reaches an optimal value
� ¼ �opt. Further increasing � beyond that value leads to

instabilities and is therefore avoided. In Table I we sum-
marize our values on �opt, for the three algorithms and

different lattice sizes and �. Because of limited computing
resources, for the larger lattices we could afford to fix the
gauge only by means of the multigrid-accelerated gradient

algorithm (in its parallelized version).4 Figure 5 (right)
presents the scaling of the average iteration number with
the lattice size for the three logarithmic gauge-fixing algo-
rithms with their respective �opt (again all for � ¼ 6:0).

We find that these numbers to scale like

Niter ¼ CVz: (25)

Values for C and z are summarized in Table II.
Apparently, the two accelerated algorithms perform

much better compared to the unaccelerated one, which is
mainly due to a much smaller C [compare Oð10Þ versus
Oð100Þ]. The values for z are almost the same for all the
three algorithms. We favor the multigrid gauge-fixing al-
gorithm because it is easy to parallelize.

IV. GLUON AND GHOST PROPAGATORS
FOR AðlinÞ

� AND AðlogÞ
�

A. Gluon propagator

We are interested in the gluon and ghost propagators for
the linear and logarithmic definition. With the lattice gluon

field AðlinÞ and AðlogÞ, respectively, the bare gluon propaga-
tor is defined as

Dab
�;�ðx; yÞ ¼ hAa

xþ�̂=2;�A
b
yþ�̂=2;�iU; (26)

where h. . .iU denotes the ensemble average over gauge-
fixed configurations. As in most of the applications we
evaluate it within the lattice Fourier representation

~Dab
��ðqðkÞÞ ¼ 1

V
h ~Aa

�ðkÞ ~Ab
�ð�kÞiU (27)

with
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FIG. 4 (color online). Same as Fig. 3, but for a 324 lattice.

4The lattice ensembles at � ¼ 9:0 have only been used for
comparison with NSPT. Larger lattice sizes could be simulated
by NSPT only quite recently. They were not available at the time
when the MC studies described here were finished.

SUð3Þ LANDAU GAUGE GLUON AND GHOST . . . PHYSICAL REVIEW D 83, 054506 (2011)

054506-7



~A a
�ðkÞ ¼

X
x

Aa
xþ�̂=2;�e

ik�ðxþ�̂=2Þ; (28)

where the abbreviation k � x ¼ P
�

2�k�x�
L�

has been used.

L� denotes the lattice size in the � direction. The integers

k� 2 ð�L�=2;þL�=2� count the momentum modes

within the Brillouin zone. The lattice momenta can be
written in two forms,

�q �ðkÞ ¼
2�k�
aL�

(29)

and

q�ðkÞ ¼ 2

a
sin

�k�

L�

¼ 2

a
sin

a �q�

2
: (30)

The latter is the one that appears in the lattice tree-level
expression for the gluon propagator, and therefore taken as
the corresponding physical momentum.
For the lattice spacing dependence að�Þ we adopt [53]

and use r0 ¼ 0:5 fm to assign physical units to a. Table III
lists the lattice spacing values used in this study.
Supposing that all nondiagonal components in the color

ða; bÞ and the Euclidean indices ð�; �Þ vanish, one can
average ~Dab

�� over the diagonal elements

Dðq2Þ � 1

8

X
a

1

3

X
�

~Daa
��ðqðkÞÞ: (31)

The factor 1=3 is due to the transversality of the gluon field
with respect to the vector q�ðkÞ that leaves only three

independent modes. The gluon dressing function is

ZGlðq2Þ ¼ q2Dðq2Þ: (32)

B. Ghost propagator

For the ghost propagator the situation is somewhat dif-
ferent. It is the two-point function of the ghost fields ca and
�cb, and these fields are only implicitly defined through the
Faddeev-Popov operator Mab

xy . Therefore, the bare ghost

propagator is defined as the ensemble average of the in-
verse Faddeev-Popov operator, i.e.,

Gabðx; yÞ ¼ hcaðxÞ �cbðyÞi ¼ hðM�1Þabxy iU: (33)

As mentioned the form of the Faddeev-Popov operator
depends on the definition adopted for the gluon field.
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FIG. 5 (color online). The number of iterations needed to reach the stopping criterion. Left: as a function of the step size parameter �
of the multigrid-accelerated algorithm (lattice size 164, � ¼ 6:0). Right: as a function of the lattice size for the three investigated
logarithmic gauge fixing algorithms (� ¼ 6:0).

TABLE I. Optimal values �opt for the three different logarith-
mic gauge-fixing algorithms for � ¼ 6:0 and 9.0, and different
lattice sizes. Because of the high demand of computation time,
�opt has not been determined for the unaccelerated and the

Fourier-accelerated algorithm on lattices larger than 164.

Algorithm � 84 124 164 244 324

Unaccelerated 6.0 0.130 0.130 0.110 � � � � � �
Fourier-accelerated 6.0 0.070 0.070 0.070 � � � � � �
Multigrid-accelerated 6.0 0.070 0.070 0.075 0.70 0.70

Unaccelerated 9.0 0.125 0.125 0.125 � � � � � �
Fourier-accelerated 9.0 0.065 0.065 0.065 � � � � � �
Multigrid-accelerated 9.0 0.065 0.065 0.075 � � � � � �

TABLE II. The exponent and coefficient, z and C, of Eq. (25)
for the three different logarithmic gauge-fixing algorithms.

Algorithm C z

Unaccelerated 110 0.33(4)

Fourier-accelerated 13 0.3(4)

Multigrid-accelerated 11 0.3(4)

TABLE III. Values for the lattice spacing að�Þ and its inverse
as used in this study. We used the formula given in [53] with
r0 ¼ 0:5 fm.

� að�Þ in fm a�1ð�Þ in GeV

5.8 0.1364 1.4464

6.0 0.0932 2.1184

6.2 0.0677 2.9137

6.4 0.0513 3.8445
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Generally, on the lattice one can decompose the Faddeev-
Popov operator as follows:

Mab
xy ¼ Aab

x �xy �
X
�

ðBab
x;��xþ�̂;y þ Cab

x;��x��̂;yÞ: (34)

For the linearly defined gluon fields one determines the
Faddeev-Popov operator as the Hessian of the gauge func-

tional FðlinÞ with respect to infinitesimal gauge transforma-
tions. This leads to the following form of the adjoint
representation matrices entering (34)

Aab
x ¼ Re tr

�
fTa; TbgX

�

ðUx;� þUx��̂;�Þ
�
;

Bab
x;� ¼ 2Re tr½TbTaUx;��;

Cab
x;� ¼ 2Re tr½TaTbUx��̂;��; (35)

where Ta (a ¼ 1; . . . ; 8) denote the generators of SUð3Þ.
For the logarithmic definition the following form of the

adjoint representation matrices is used:

Aab
x ¼ X

�

½�ab
x��̂;� þ�ab

x;� � Ac
xþ�̂=2;�f

abc�;

Bab
x;� ¼ �ab

x;�; Cab
x;� ¼ �ab

x��̂;� � Ac
x��̂=2;�f

abc; (36)

where (written up to fourth order in the gluon field)

�ab
x;� ¼

�
iAxþ�̂=2;�

1�Uy
x;�

�
ab

� �ab þ i

2
Aab
xþ�̂=2;� � 1

12
ðA2

xþ�̂=2;�Þab

� 1

720
ðA4

xþ�̂=2;�Þab (37)

with the gluon field Aab, its square ðA2Þab etc. taken in the
adjoint representation.

The Faddeev-Popov operator is inverted with a
Laplacian-preconditioned conjugate gradient algorithm

and a color-diagonal plane wave source as explained
in [54].
For both the linear [Eq. (35)] and the logarithmic defi-

nition [Eq. (36)] the ghost propagator in the momentum
space is given by [q ¼ qðkÞ]

Gabðq2Þ ¼ 1

V

X
x;y

he�2�ik�ðx�yÞ½M�1�abxy iU ¼ �abGðq2Þ: (38)

The corresponding ghost dressing function is

ZGhðq2Þ ¼ q2Gðq2Þ: (39)

C. Momentum cuts

On the lattice, the Oð4Þ symmetry of the continuum
Euclidean space-time is broken to the discrete Hð4Þ sym-
metry. In order to minimize the resulting artifacts, due to
the finite lattice volume and spacing we apply two
momentum cuts: a cone and a cylinder cut [55].5 The
cone cut removes all (low) lattice momenta k ¼
ðk1; k2; k3; k4Þ with at least one vanishing ki. It is applied
to minimize finite-volume effects associated with these
lattice momenta. The cylinder cut removes all momenta
which are not close to a multiple of one of the space-time
diagonal unit vectors n ¼ ð1=2Þð�1;�1;�1;�1Þ. For a
symmetric lattice, this criterion can be formulated as

X4
i¼1

k2i �
�X4
i¼1

kini

�
2 � 1: (40)

These two cuts removed most of the lattice artifacts from
the data. The remaining artifacts can be assessed using
different lattice spacings a and lattice volumes V.
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FIG. 6 (color online). Left: the bare gluon propagator Dðq2Þ from the logarithmic gluon field definition and the relative difference
�Dðq2Þ in percent between fc and bc configurations generated at � ¼ 6:0 for lattice size 324. Right: the corresponding bare ghost
propagator Gðq2Þ with its relative difference �Gðq2Þ.

5For an alternative approach see, e.g., Ref. [56].
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D. Gribov ambiguity for AðlogÞ
� propagators

In order to carry out a first check of the Gribov ambi-
guity of the gluon and ghost propagators for the logarith-

mic definition A
ðlogÞ
� we used 100 (30) configurations for a

164 (324) lattice (again all for � ¼ 6:0). For the larger
lattice we expect a stronger influence of the actual selection
among the gauge-fixed copies.

Employing the SAþ OR preconditioned, multigrid-
accelerated gradient algorithm we fix the gauge for each
configuration 10 times starting from different random ini-
tializations of the gauge transformation field gx. As in [57]
for each configuration we have calculated the gluon- and
ghost propagator for the first (random) gauge-fixing attempt
(first copy, fc) and for the gauge field with the lowest gauge
functional value achieved (best copy, bc). Figure 6 shows
the gluon propagatorDðq2Þ and the ghost propagatorGðq2Þ,
respectively, averaged over the first and best copies, respec-
tively. In the lower panels of the figures we present also the
corresponding relative differences �D and �G �
‘‘(ðfc� bcÞ=bc)’’ of the fc andbc results given in percent.

The gluon propagator does not show any effect of the
Gribov ambiguity beyond statistical noise (‘‘Gribov
noise’’) over the whole momentum range, while the ghost
propagator seems to exhibit a slight systematic shift within
the low-momentum region. This shift is approximately 1%
for the 324 lattice, while for the 164 lattice it turns out to be
negligible. The small effect of the Gribov ambiguity is
certainly a consequence of the preconditioning step for
which the SAþ OR algorithm has been employed.
Whether it becomes more enhanced, when taking global
Zð3Þ-flip transformations into account [4,58,59], remains
to be seen.

In the following, we will always rely on bc results.

V. MONTE CARLO RESULTS
FOR THE PROPAGATORS

A. Comparing propagator results for AðlinÞ
� and AðlogÞ

�

To get a better insight into discretization effects we
compare now the gluon and ghost dressing functions for
the logarithmic and linear definition. Unfortunately
though, we have to restrict the discussion to relatively
small lattice sizes.

The data presented are based on ensembles of gauge
field configurations with statistics as given in Table IV.

We consider first the gluon dressing function calculated
for the linear and logarithmic definition on a 124 and 164

lattice at � ¼ 6:0 and � ¼ 9:0. Note that the latter was
chosen only in order to compare with available NSPT
results (see Sec. VI). Figure 7 shows the data for the bare
dressing function versus the lattice momentum squared.
We clearly see the expected momentum-independent offset
between the results for the logarithmic and the linear
definition.
This is even better seen in Fig. 8, where the ratio

Cgluonðq2Þ ¼ DðlinÞðq2Þ
DðlogÞðq2Þ (41)

is shown versus momentum. For both � values, we observe
the ratio to be constant within statistical errors over the
whole momentum region, and to depend on �. Thus, the
bare gluon propagators differ for the two definitions but are
related to each other by a finite �-dependent multiplicative
renormalization constant. As a consequence both defini-
tions will lead to the same propagator when renormalized
in aMOM scheme, the latter being defined by the condition
that the propagator equals its tree-level expression at some
subtraction momentum q2 ¼ �2. Of course, this multi-
plicative renormalizability has been numerically demon-
strated here only for finite volume and corresponding
restricted momentum range under consideration.
Also for ghost propagator we clearly see the offset

between the dressing functions for the logarithmic and
linear definitions (see Fig. 9 for the data at � ¼ 6:0 and
9.0).
Similar to Fig. 8, in Fig. 10 we show the ratio

Cghostðq2Þ ¼ GðlinÞðq2Þ
GðlogÞðq2 (42)

as a function of the momentum squared q2. For both values
of �, we see an approximately constant ratio over a wide
momentum range. The deviation seen at the smallest mo-
menta for � ¼ 9:0 remains within statistical errors. In
Table V we list the values for Cgluon and Cghost. As ex-

pected, their ratios happen to be related as

Cgluon � C2
ghost � 1: (43)

This implies that the ghost-gluon coupling �MM
s ðq2Þ (see

Sec. VC) determined directly from the gluon and ghost
dressing functions is the same for the logarithmic or linear
definition.

B. Finite-volume and lattice discretization effects

Next we analyze discretization and finite-volume ef-
fects. In this section the discussion will be restricted to
the propagators for the logarithmic definition.
Corresponding data for ghost-gluon coupling, �MM

s ðq2Þ,
is then discussed in the next section.

TABLE IV. Statistics of Monte Carlo ensembles. Nconf gives
the number of analyzed configurations and Ncopy of inspected

gauge copies for each. Values are the same for all �.

Lattice Nconf Ncopy

124 200 10

164 100 10

244 50 10

324 30 10
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FIG. 7 (color online). The bare gluon dressing function for � ¼ 6:0 (left) and � ¼ 9:0 (right) versus the lattice momentum squared.
The data is for two lattice sizes. Filled symbols are for the logarithmic definition and open symbols for the linear.
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When checking lattice discretization artifacts, we fix the
physical volume such that it approximately equals that of
all data for different að�Þ. In contrast, finite-volume effects
will be analyzed for a fixed � varying the lattice size.

To analyze lattice discretization artifacts for the gluon
and ghost propagators we compare their renormalized
dressing functions at � ¼ 5:8, 6.0, and 6.2. Using the
respective lattice sizes 164, 244, and 324, the physical
volume is then roughly V ’ ð2:2 fmÞ4. For the renormal-
ization we chose � � 3:2 GeV, which we find lies well
below the momenta where discretization artifacts could
affect the renormalization. The corresponding data is
shown in Fig. 11 suggesting that, with respect to precision
of the data, lattice discretization artifacts are reasonably
small.

To check finite-volume effects we choose � ¼ 6:0 and
vary the lattice size from 164, 244 and 324. This has been
arranged for the data in Fig. 12 where we compare the
renormalized gluon and ghost dressing functions. One
clearly sees that finite-volume effects are negligible above
1 GeV, the momentum where the gluon dressing function
has its maximum. AtOð1Þ GeV and below a slight volume
dependence becomes visible. The overall behavior resem-

bles that which has been observed for AðlinÞ in other studies.
In order to see these effects well below 1 GeV, much larger
lattices are needed, for example, as those studied for the
linear definition in [3].

C. The running coupling

The running coupling �sðq2Þ for Yang-Mills theories
can be defined in various ways. Here we use the coupling

of ghost-gluon vertex in a particular (minimal) MOM
scheme (see [31,60] as well as the more recent papers
[19,41]). It can be defined in terms of the bare, i.e., un-
renormalized gluon and ghost dressing functions ZGl and
ZGh as follows:

�MM
s ðq2Þ ¼ g20

4�
ZGlða2; q2ÞZ2

Ghða2; q2Þ: (44)

It is a renormalization-group invariant quantity, i.e., shift-
ing the cutoff a�1 or transforming the right hand side into
renormalized quantities and changing their subtraction
momentum � within the given MOM scheme should not
alter �MM

s ðq2Þ. Therefore, we can compute it directly from
the bare lattice dressing functions at an arbitrary large
enough cutoff value a�1ð�Þ, as long as multiplicative
renormalization is ensured and additive lattice artifacts
are suppressed. In what follows we shall omit the super-
script MM for simplicity.
First, we check effects due to the lattice discretization

and the finite volume. In order to investigate lattice dis-
cretization effects we present on the left-hand side of
Fig. 13 the running coupling �sðq2Þ for different lattice
spacings but fixed physical volume [as above we choose
again V ¼ ð2:2 fmÞ4]. Apparently, there are some system-
atic lattice discretization effects, suggesting that for the
given (rather small)� additive lattice artifacts are small but
not negligible. This is in agreement with the findings in
[19]. These artifacts should disappear for large �. On the
right-hand side of Fig. 13, we show data for different
physical lattices sizes but fixed lattice spacing [again we
choose � ¼ 6:0]. Based on that figure we have to conclude
that finite-volume effects seem to be negligible for the
considered momentum range.
In Fig. 14 we finally compare the coupling for the

logarithmic and the linear definition. We decided to
show data for various lattice sizes and � values in a
single plot to demonstrate that altogether the data for the
two definitions matches up almost completely.
Regrettably, there are some small deviations due to the
different lattice spacings and volumes, but this should be
expected. The almost perfect overlap of the two curves
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FIG. 10 (color online). The ratio Cghost according to (42) relating the ghost propagator for the two definitions of the gluon field and
the Faddeev-Popov operator, respectively, for 124 and 164 lattices generated at � ¼ 6:0 (left) and � ¼ 9:0 (right).

TABLE V. The ratios Cgluon and Cghost [Eqs. (41) and (42)] for
the linear and logarithmic definition.

Lattice � Cgluon Cghost

124 6.0 0:82� 0:02 1:1013� 0:0007
124 9.0 0:91� 0:03 1:0510� 0:0010
164 6.0 0:82� 0:03 1:0996� 0:0006
164 9.0 0:91� 0:04 1:0460� 0:0040
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agrees, of course, well with what we saw above for the
ratios of the propagators [see Eq. (43)]. That is, �sðq2Þ
will not differ calculated either for the standard (linear)
approach (as in [19]) or for the logarithmic approach as
done here. Unfortunately, we cannot say which approach
comes with the smaller lattice discretization artifacts.
This is left for a future study.

VI. COMPARISON WITH NSPT

We now turn to the NSPT results of [29,30,61] which
below we will compare to our data. Let us start first with
some facts on NSPT.
NSPT is a numerical approach to lattice perturbation

theory that allows to circumvent the difficulties of
the standard diagrammatic approach and facilitates
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FIG. 11 (color online). Renormalized gluon (left) and ghost dressing function (right) for the logarithmic definition and various lattice
spacings a ¼ að�Þ. The physical volume is fixed to V ¼ ð2:2 fmÞ4. Data has been renormalized at q ¼ � � 3:2 GeV.
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automatized perturbative calculations. It has its roots in
stochastic quantization and is based on a modified
Langevin equation equipped with stochastic gauge fix-
ing corresponding to a gauge fixing term ð@�A�Þ2=ð2�Þ
at finite �.6 For our purposes it is actually a hierarchy
of first-order evolution equations associated with the
various parts of the gauge field when expanded in terms
of the lattice coupling g0 / 1=

ffiffiffiffi
�

p
:

Ux;� ¼ 1þX
l�1

��l=2UðlÞ
x;�;

AðlogÞ
xþ�̂=2;� ¼ X

l�1

��l=2AðlÞ
xþ�̂=2;�; (45)

From a numerical point of view, these different parts,
representing first, second, third etc. orders, are sepa-
rately dealt within the code. The maximal addressable
order of perturbation theory is thus limited by the
available computing resources (CPU time and memory).

The Langevin simulation is implemented in an Euler
scheme with a finite evolution time step. Lattice observ-
ables, in our case the ghost [29] and gluon [30] propaga-
tors, are evaluated taking the long-time average, order by
order in a loop expansion in even powers of g0.
Contributions from odd powers vanish within the statistical
errors. As for any Langevin simulation, one then has to
take the limit to vanishing time step. This is in addition to
the continuum limit and the limit of infinite volume.

Regardless of this, the NSPT results for a finite lattice
volume can be confronted directly with standard MC re-
sults for a given �, supposed the lattice size and definition
of the studied observable is the same in both approaches.

But before such a comparison is possible, the limit� ! 0
(minimal Landau gauge) has to be taken. This is arranged
such that a sequence of configurations (separated byOð50Þ
Langevin time steps) undergoes a Fourier-accelerated
gauge-fixing procedure, after which the individual gluon

fields, AðlÞ
� , each associated with particular perturbative

order (gl0), are transversal within machine precision.

As in standard lattice perturbation theory, an expanded
version of the logarithmic relation between the gluon fields
and the transporters [compare (3)] is taken into account up
to the maximal order of perturbation theory addressed in
the given case. Correspondingly, the gauge functional and
the structure of the Faddeev-Popov operator are the same
as in Eqs. (37) and (38).

The gluon two-point function in n-loop order is then
defined as a convolution of the bilinears of gluon fields (in
momentum space) in complementary orders:

�abDðnÞ
��ðpðkÞÞ ¼

� X2nþ1

l¼1

½ ~Aa;ðlÞ
� ðkÞ ~Ab;ð2nþ2�lÞ

� ð�kÞ�
�
U
: (46)

The Faddeev-Popov operator [explicitly written in Eq. (38)
up to fourth order] can be expanded in terms of products of

various AðlÞ, with the termMðnÞ collecting all terms of order
gn0 . This structure allows to express the inverse of the

Faddeev-Popov operator also as an expansion in orders
of g0 in a recursive way, without the need of explicitly

inverting any other than the zeroth order term, Mð0Þ ¼ �
(the Laplacian).
A reasonable ‘‘convergence’’ of the NSPT results up to

few loops (three or four are available now) requires a small
bare coupling g0, i.e., a large �. However, the bare cou-
pling g0 is known to be a poor expansion parameter [63].
One can speed up convergence by ‘‘boosting,’’ i.e., trading
the bare coupling constant by an effective ‘‘boosted’’
coupling g2b ¼ g20=Ppertðg20Þ> g20, where Ppert is defined

by the average perturbative plaquette. Its expansion is
determined within the Langevin simulations, along with
the propagators. The effect of the larger boosted coupling
is overcompensated by the rapid decay of the expansion
coefficients with respect to g2b.
We now compare our data for the logarithmic definition

to the NSPT results of [29,30,61].
One should be aware that on small lattices, with sizes

like 124 or 164, and for the larger � values, the
Monte Carlo lattice gauge fields will be in a pseudo-
deconfinement phase. This can be monitored by the
‘‘spatially’’ averaged Polyakov loops, actually in all four
directions. It is well known that the agreement of
Monte Carlo results with standard LPT requires that the
Monte Carlo simulation is guaranteed to stay in the trivial
Polyakov sector [44]. For SUð3Þ this means, that the aver-
age Polyakov loops in all four directions have to be located
in the sector of predominantly real values. Let us denote
averages in this sector by the corresponding phases
(0,0,0,0), in distinction to results obtained from
Monte Carlo configurations without taking notice of the
Polyakov sector. Note that one can easily switch between
the Polyakov-loop sectors by applying global Zð3Þ trans-
formations on all link variables attached to and pointing
forward, orthogonal to an arbitrary three-dimensional
plane. While at � ¼ 9:0 the MC results for the gluon and
ghost dressing functions clearly depend on the Polyakov-
loop sector, for� ¼ 6:0 the Polyakov-loop values fluctuate
closely around the origin of the complex plane, i.e., in the
confined phase. In this case the choice of a sector should
not influence the behavior of the propagators or dressing
functions. In what follows, for the detailed comparison all
Monte Carlo configurations at � ¼ 9:0 have been flipped
to the real sector (0,0,0,0) if necessary, before the gauge
fixing has been performed.
Let us first confront the tree level and the cumulative

one-loop and two-loop contributions to the gluon dressing
function with the results from Monte Carlo simulations
(see Fig. 15). The simulations have been performed for a
164 lattice at � ¼ 6:0 and � ¼ 9:0, the same values as for

6For a study of an approximate Landau gauge within a
Langevin approach see Ref. [62].
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the NSPT results. For the reader’s convenience, we present
the NSPT data the sameway theMonte Carlo data has been
present above. When looking at the data in Fig. 15 we see
the NSPT results approaches the MC data with increasing
loop order. As expected though, this is less the case for

� ¼ 6:0, but for � ¼ 9:0 the NSPT data almost
approaches the MC data.
We see a similar behavior for the bare ghost dressing

function in Fig. 16. For this the speed of convergence of the
NSPT results can be assessed from the difference between
two-loop and three-loop [29]. The three-loop result is al-
ready very close to the MC result for � ¼ 9:0 and at the
largest available momenta.
Next we illustrate the effect of ‘‘boosting’’ the perturba-

tive expansion. For this we use the currently available
NSPT results (up to four/two loops (L � 12=L ¼ 16, 20,
32) for the gluon propagator and up three loops (L � 20)
for the ghost propagator) and confront them with corre-
sponding MC data. This is shown in Fig. 17 where also the
bare inverse coupling � and its boosted value �boost are
given. As expected, boosting moves the NSPT data closer
to the MC results, but they cannot be reached, certainly not
at � ¼ 6:0.
Last but not least, the running coupling, �sðq2Þ, as

calculated from the NSPT dressing functions, both
summed up to the available orders, is compared to the
Monte Carlo results at � ¼ 6:0 and 9.0. The corresponding
data is shown in Fig. 18, again for naive and boosted
perturbation theory. We see that the running coupling
from Monte Carlo simulations is approached from below
up to 7% for � ¼ 6:0 and practically approached within
the present errors for � ¼ 9:0.
Concluding this section, one can say that our MC results

for the logarithmic approach to Landau gauge propagators
support the validity of the NSPT calculation for the gluon
as well as for the ghost propagator. In fact, the NSPT
results do not coincide with the MC data but they become
closer with increasing order of the perturbative expansion.
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FIG. 14 (color online). Running coupling for various lattice
sizes and � values. Filled symbols are for the logarithmic
definition, while open symbols are for the linear one.
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Also, the difference between the NSPT and MC data
becomes smaller for larger �, suggesting the difference
to be related to nonperturbative effects NSPT results
cannot provide.

VII. CONCLUSIONS

In this paper we have studied an alternative approach to
compute the SUð3Þ Landau gauge gluon and ghost pro-

pagators on the lattice. This approach uses a logarithmic
ansatz [Eq. (3)] for the definition of the lattice gluon fields
from a given gauge field configuration. It is thus best suited
to compare lattice MC data for these propagators with
results from NSPT. We have started the task by first ex-
ploring some options for an efficient algorithm that fixes
gauge field configurations to the Landau gauge for the
logarithmic case. We find a multigrid-accelerated gradient
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FIG. 16 (color online). Comparison of MC with NSPT results for the bare ghost dressing function at (cumulative) 1-loop, 2-loop, and
3-loop level at � ¼ 6:0 (left) and � ¼ 9:0 (right). The lattice size is 164.
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method with a preconditioning step of simulated annealing
and subsequent overrelaxation, applied to the linearly de-
fined gluon field, to be a good choice. The method is also
easy parallelizable.

With this algorithm at our disposal we have compared
the bare lattice propagators for the logarithmic and the
linear definition of gluon fields. As expected, we see
them to differ by multiplicative factors that depend on �.
Those factors are such that they perfectly cancel when one
considers �sðq2Þ. Apart from some small lattice discretiza-
tion artifacts, data for the running coupling matches up
almost completely, as it should for a renormalization-group
invariant object. It is thus also an ideal quantity to assess
discretization artifacts.

For the logarithmic definition we have checked Gribov
copy, finite size, and lattice discretization effects, and find
them to be small for momenta q > 1 GeV.

Finally, we have compared our MC data for the loga-
rithmic definition with results from NSPT. These are avail-
able up to four loops for the gluon propagator, and up to
three loops for the ghost propagator. We find a reasonable
convergence at large momentum. Note that for this it is
important that during the MC process the gauge field
configurations are kept in the correct (real-valued)
Polyakov-loop sector. For large �, these may easily pass
a pseudo-deconfinement phase transition.

Our results altogether support universality with re-
spect to the two lattice realizations of the SUð3Þ
Landau gauge theory studied herein. In as far this
universality persist in the low-momentum region remains
to be seen.

We emphasize that the universality of different lattice
definitions we have observed in this paper assumes a
unique Landau gauge fixing based on the (global) minimi-
zation of a corresponding gauge functional. For an alter-
native view of dealing with the Gribov copy problem see
Refs. [10,11].
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APPENDIX A: MULTIGRID FOURIER-
ACCELERATED GAUGE FIXING

For our implementation of a parallel version of the
Fourier-accelerated gauge fixing we follow Goodman and
Sokal [51,64], using the representation of the Fourier trans-
formation of 1=q2 in position space:

F̂�1

�
q2max

q2
F̂

��X
�

@�
gA

ðlogÞ
�

�
ðxÞ

��

¼ q2max�
�1

�X
�

@�
gAðlogÞ

�

�
ðxÞ: (A1)

This leads us to a simple inversion of the Laplacian, i.e.,
to solving the four-dimensional Poisson equation
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FIG. 18 (color online). Comparing naive and boosted LPT (based on NSPT) data for the running coupling constant �sðq2Þ to
corresponding MC data for a 124 lattice. Left: � ¼ 6:0. Right: � ¼ 9:0. For the LPT data, the gluon (ghost) dressing function up to
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� ð�vÞðxÞ ¼
�X

�

@�A
ðlogÞ
�

�
ðxÞ (A2)

using, for example, the local Jacobi method. To avoid
critical slowing down inherent to this method we use the
multigrid algorithm by solving (A2) successively on the
original (fine) lattice and on several coarser lattices. In
order to use our multigrid algorithm for various lattice
sizes we implement the multigrid with a symmetric lattice
decomposition.

On each sublattice one has to solve a system of linear
equations

Ahvh ¼ fh; (A3)

where the superscript h describes the respective lattice
spacing h ¼ a; 2a; 4a; 8a; . . . . Comparing with (A2) we
can see that Aa ¼ �. For switching between the lattices,
one defines interpolation matrices I as

Ah0 ¼ Ih0;hA
h½Ih0;h�T vh0 ¼ Ih0;hv

h; fh
0 ¼ Ih0;hf

h (A4)

and projection matrices P

Ah ¼Ph;h0A
h0 ½Ph;h0 �T vh ¼Ph;h0v

h0 ; fh ¼Ph;h0f
h0 :

(A5)

h0 always denotes the lattice with the finer spacing, while h
denotes the coarser lattice. The matrix structure (in terms
of the lattice sites) of these equations is left implicit. The
projection matrices are the transposed interpolation matri-
ces (with respect to the indices pointing to lattice sites)

Ph;h0 ¼ ½Ih0;h�T: (A6)

The matrices were chosen in the way that the operator Ah0

got the same structure on all sublattices (i.e., Ah0 ¼ �h0). In
practice, the multigrid algorithm is realized by jumping
between the finest and various coarser lattices. This is
summarized in the flow chart in Fig. 19.
Solving Eq. (A3) before the projection is called pre-

smoothing, and postsmoothing after the interpolation, re-
spectively [65]. To solve Eq. (A3) we use the Jacobi
method with a fixed number of 20 iterations. Hence, we
did not solve Eq. (A3) at high numerical accuracy on the
sublattices. Nevertheless, the accuracy of this calculation
seems to have only a minor influence on the total number
of iterations needed to fix the Landau gauge. For the
parameter 	, we chose the value 	 ¼ 2, i.e., the so-called
W cycle.
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