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We present the results of extensive simulations regarding the critical behavior at the endpoint of the

Roberge-Weiss transition for Nf ¼ 2 QCD. We confirm early evidence, presented in Ref. [M. D’Elia and

F. Sanfilippo, Phys. Rev. D 80, 111501(R) (2009).], according to which the Roberge-Weiss endpoint is first

order in the limit of large or small quark masses, and second order for intermediate masses. A systematic

study of the transition strength as a function of the quark mass in the first order regions, permits us to

estimate the tricritical values of the quark mass separating the second order region from the first order

ones.

DOI: 10.1103/PhysRevD.83.054505 PACS numbers: 11.15.Ha, 12.38.Aw, 64.60.Bd

I. INTRODUCTION

A full understanding of the QCD phase diagram at finite
temperature T and baryon chemical potential �B is one of
the main unreached goals within the standard model of
particle physics. Various questions remain open, which are
of fundamental importance both theoretically and phenom-
enologically, for astrophysics and heavy ion collisions, like
the existence and location of a possible critical endpoint in
the T ��B plane, accessible to experiments.

Lattice QCD simulations, which are in principle the
ideal tool for a full nonperturbative investigation of the
phase diagram, are unfortunately hindered at �B � 0
by the complex nature of the path integral measure (sign
problem). Among other approximate methods, a way to
partially overcome the sign problem is to consider a purely
imaginary quark chemical potential, �q � �B=3 ¼ i�I:

numerical simulations are feasible and information about
real �B can be recovered by analytic continuation tech-
niques [1–15].

Recent literature has pointed out that the phase structure
at finite T and imaginary chemical potential may be im-
portant by its own, and teach us something about the non-
perturbative properties of QCD also at zero or small real
�B [10,16–20]. Such phase structure is characterized by a
periodicity of the partition function

ZðT;�IÞ ¼ Trðe�ð1=TÞðĤ QCD�i�IN̂qÞÞ (1)

in the angular variable � ¼ �I=T, which can be viewed, in
the path integral representation of the partition function,
as a phase rotation of fermion boundary conditions in the
Euclidean temporal direction. It can be shown [21] that the
period in � is 2�=Nc, where Nc is the number of colors.
Such periodicity is smoothly realized in the low tempera-
ture, confined phase, as expected from the fact that only
uncolored states, with Nq multiple of Nc, contribute to the

system dynamics.

The situation is different in the high temperature phase,
as expected from the fact that also colored states appear.
Indeed, as can be explicitly verified by perturbative com-
putations [21], the periodicity is realized in a nonanalytic
way: the system goes through first order lines, known as
Roberge-Weiss (RW) transitions, when � crosses some
fixed values, �k ¼ ð2kþ 1Þ�=Nc, where k is an integer.
For such values of � the system possesses an exact Z2

symmetry, which is spontaneously broken for T > TRW

and unbroken for T < TRW: therefore at T ¼ TRW, which
is in fact the endpoint of the RW lines, a genuine finite T
phase transition takes place for all values of the quark
masses. Such transition coincides with the phase transition
at which charge symmetry is spontaneously broken when a
spatial dimension is compactified below a given critical
size (see e.g. Refs. [22–26] for early lattice studies of such
transition, which has been investigated in the context of
orientifold planar equivalence [27,28]).
The endpoint of the RW lines has been considered by

recent literature [10,16,17,19,20,29], for its possible influ-
ence on the critical properties and on the phase diagram of
QCD. The endpoint can be second order in the 3D Ising
universality class, or first order; in the latter case it is
actually a triple point, from which two further first order
lines depart.
In Ref. [16] first evidence has been presented showing

that, for QCD with two degenerate flavors (Nf ¼ 2), the

endpoint is first order in the limit of small quark masses
and second order for intermediate masses; first order comes
back in the high quark mass regime, where the system
reaches its quenched limit. In the same paper it has been
pointed out that, when the endpoint is first order (triple
point), one of the further first order lines departing from it
can be identified with (part of) the continuation of the
critical line to imaginary chemical potential, thus explain-
ing early evidence [3,4] that the latter meets the RW line
right on its endpoint. A further conjecture, put forward in
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Ref. [16], has been that the nature of the transition at
� ¼ 0 as a function of the quark mass spectrum (which
is summarized in the so-called Columbia plot) is regulated
by the physics of the RWendpoint itself, i.e. that the� ¼ 0
transition is first order only when the first order line depart-
ing from the RW triple point reaches the � ¼ 0 axis.

Recently the numerical study of the RW endpoint has
been extended to Nf ¼ 3 QCD [19], confirming also

for this case the presence of a first order transition for
small and high quark masses, with a second order region
for intermediate masses. Moreover, the authors of Ref. [19]
have suggested that the tricritical behavior which is present
at the two tricritical masses, separating the second order
from the first order regions, may shape the critical line also
for real values of the chemical potential, implying a weak-
ening of the transition with real chemical potentials which
was suggested also by earlier works [30].

All the results and conjectures above call for a more
systematic study of the phase diagram in the T ��I plane,
which is perfectly feasible with present simulation algo-
rithms. The aim of the present work is to move a step in this
direction, by extending in a substantial way the original
results presented in Ref. [16] for Nf ¼ 2 QCD. In particu-

lar we will present results about the critical behavior at the
RW endpoint for a large set of quark masses, confirming
the results of Ref. [16] and giving an estimate for the two
tricritical masses, mt1 and mt2 >mt1, separating the first
order regions from the second order one.

Our first instrument to discern the critical behavior
around the RWendpoint is the finite size scaling of various
susceptibilities. However, an accurate determination of
the critical properties around the tricritical point may be
a nontrivial task. Much can be learned in this direction by
the study of simpler statistical systems, like the 3D 3-state
Potts model in presence of a negative magnetic field h
[31,32], which shares some of the properties of QCD along
the RW lines, i.e. the presence of a residual Z2 symmetry
which gets spontaneously broken at a critical temperature.
In that model the transition is first order for small values of
jhj and second order for large values of jhj, with a tricrit-
ical value of the field, htric, separating the two regimes.1 As
shown in Ref. [31], discerning the correct universality class
close to htric is difficult since, at a given distance from htric,
tricritical scaling will mask the correct critical indexes up
to a given lattice size Lmax, which is regulated by tricritical
crossover exponents. A similar phenomenon is expected
around mt1 and mt2. Following Ref. [31], an alternative
strategy will be to determine parameters which fix the
strength of the first order transition for m<mt1 or
m>mt2, like the latent heat or the gap of the order

parameter, and extrapolate the values of m at which such
parameters vanish, i.e. the first order transition disappears.
Our results have been obtained using standard rooted

staggered fermions on lattices with Nt ¼ 4. The paper is
organized as follows: in Sec. II we give more details about
the discretized version of QCD under investigation and
about the observables and the strategy used for the study
of the critical behavior; in Sec. III we present our numeri-
cal results and finally, in Sec. IV, we discuss our conclu-
sions and perspectives.

II. NUMERICAL SETUP

We shall consider the partition function of Nf ¼ 2 QCD

in presence of an imaginary chemical potential and in the
standard staggered discretization of dynamical fermions,

ZðT; �Þ �
Z

DUe�SG½U�ðdetM½U; ��Þ1=2; (2)

where � ¼ �I=T, SG is the pure gauge plaquette action and
M is the fermion matrix

Mi;j ¼ am�i;j þ 1

2

X3
�¼1

�i;�ðUi;��i;j��̂ �Uy
i��̂;��i;jþ�̂Þ

þ �i;4ðeia�IUi;4�i;j�4̂ � e�ia�IUy
i�4̂;4

�i;jþ4̂Þ: (3)

Here i and j refer to lattice sites, �̂ is a unit vector on the
lattice,�i;� are the staggered phases, a is the lattice spacing

and m is the bare quark mass.
RW transitions take place for � ¼ ð2kþ 1Þ�=3. We

shall consider, in particular, the case � ¼ �: for this value
the residual Z2 symmetry, which is spontaneously broken
at TRW, corresponds to charge conjugation, hence the
imaginary part of the Polyakov loop or, alternatively, the
imaginary part of the baryon number can be taken as
possible order parameters; as in Ref. [16], we shall con-
sider the former. In the following L will stand for the
spatially averaged Polyakov loop trace (normalized by
Nc), hence ImðLÞ is the order parameter.
The order parameter susceptibility is defined by

� � L3
sðhImðLÞ2i � hjImðLÞji2Þ; (4)

where Ls is the spatial size in lattice units, and is expected
to scale, around the transition, as follows:

� ¼ L�=�
s 	ðtL1=�

s Þ; (5)

where t ¼ ðT � TRWÞ=TRW is the reduced temperature.

That means that the quantities �=L�=�
s , measured on differ-

ent lattice sizes, should fall on the same curve when plotted

against 
L1=�
s .

Another relevant quantity is the specific heat C of the
system, which is instead expected to scale as

C ¼ C0 þ L�=�
s 	2ðtL1=�

s Þ; (6)

where C0 is a regular contribution. The values of the
critical indexes �, � and � which are relevant to our

1In the Potts model, of course, one does not observe the
restrengthening of the transition (hence a second tricritical
point), which is present for QCD at low masses and which is
likely caused by the interplay with chiral degrees of freedom.
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analysis are listed in Table I (see e.g. Refs. [33,34]), to-
gether with the values they take for the different critical
behaviors which may take place in our system, i.e. first
order, second order in the universality class of the 3D Ising
model, and tricritical mean field.

A careful verification of Eqs. (5) and (6), as well as of
similar relations giving the finite size scaling behavior of
other relevant quantities, gives information about critical
indexes, hence about the universality class of the transition.
A more direct way, in the case of a first order transition, is
to verify the existence, in the thermodynamical limit, of
finite gaps in the order parameter or in the internal energy
(latent heat), which may be visible by looking at double
peak distributions of physical observables around the
transition, or by studying the large volume limit of some
cumulants.

An example is the Binder-Challa-Landau cumulant [35]
of the energy, which is defined as B4 ¼ 1� hE4i=ð3hE2i2Þ.
It can be shown (see e.g. [36]) that near a transition B4

develops minima whose depth scales as

B4jmin ¼ 2

3
� 1

12

�
Eþ
E�

� E�
Eþ

�
2 þOðL�3

s Þ

¼ 2

3
� 1

3

�
�E

�

�
2 þOð�3

EÞ þOðL�3
s Þ (7)

where E� ¼ lim!�
c
hEi, �E ¼ Eþ � E� and � ¼

1
2 ðEþ þ E�Þ. In particular, the thermodynamical limit of

Bjmin is less than 2=3 if and only if a latent heat is present.
To simplify our analysis we have considered the average
plaquette (sum of the spatial and temporal plaquettes) in
place of the internal energy, since it is a quantity which can
be measured much more easily and, like the internal en-
ergy, is even under the Z2 symmetry which gets broken at
the RWendpoint. To simplify the notation, in the following
we will use the shorthand

B ¼ 2

3
� B4jmin (8)

and from Eq. (7) it follows that B / �2
E, where in our case

by �E we actually mean the gap at the transition in the
average plaquette.

A different, but analogous quantity is the gap of the
order parameter, �, which can be extracted by looking at
the scaling of the maximum of its susceptibility, �, and
using the relation, valid in the large volume limit for a first
order transition,

�max � constþ L3
s

4
�2: (9)

Both �E and � are expected to vanish as we approach a
tricritical mass mtric from the first order side. In particular,
the leading order expected behavior is the following (see
[37] or [38] for a brief summary)

�E / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� htric

p
(10)

and

� /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðh� htricÞ logðh� htricÞj

q
(11)

where we have indicated generically by h the relevant
parameter driving the change from first to second order.
It is clear that h is a function of the quark mass and
that close enough to the tricritical point one can always
set h� htric �m�mtric; however, appropriate choices of
h can improve the region around the tricritical mass where
Eqs. (10) and (11) hold. Our choice will be h�m in the
low mass region and h� 1=m in the high mass region.
It is interesting to notice that Eq. (11) may seem ambig-
uous, since a multiplicative redefinition h ! const� h
changes the functional dependence; however, as long as
ðh� htricÞ � 1, the change is subleading and Eq. (11) still
gives the dominant contribution.
Close to the tricritical points it can be particularly diffi-

cult to discern the correct critical behavior taking place in
the thermodynamical limit. Indeed, while first order/3D
Ising scaling are expected to take place for a continuous
range of values of m and exact tricritical scaling only for
specific values m ¼ mtric, what really happens is that tri-
critical scaling regulates a neighborhood of mtric, whose
size goes to zero as Ls ! 1 according to critical indexes
known as crossover exponents (see e.g. [34,39,40]).
Indeed, the true critical behavior of the system can be

seen only for jtj & jh� htricj1=	, where t is the reduced
temperature and 	 is the crossover exponent, which is by
definition 	 ¼ yh=yt (yt and yh are the renormalization
group eigenvalues of the relevant variables t and h� htric),
in particular	 ¼ 1=2 in our case [37]. Putting the question
the other way around, on a finite lattice of typical size Ls,

jtj can be traded for L�1=�
s and the previous condition

becomes Ls * jh� htricj��=	; in particular, according to
the known tricritical indexes in Table I, one expects tricrit-
ical behavior to dominate and mask the correct thermody-
namical limit up to a critical size

Lc ’ Ajh� htricj�1; (12)

where A is some unknown constant. Such a behavior has
been studied and verified quantitatively in Ref. [31] in the
case of the 3D 3-state Potts model in a negative external
field, which shares part of the symmetries studied in the
present work.

TABLE I. Critical exponents relevant to our analysis.

� � � �=� �=�

3D Ising 0.6301(4) 1.2372(5) 0.110(1) �1:963 �0:175
Tricritical 1=2 1 1/2 2 1

1st Order 1=3 1 1 3 3

ROBERGE-WEISS ENDPOINT IN Nf ¼ 2 QCD PHYSICAL REVIEW D 83, 054505 (2011)

054505-3



The difficulties in discerning the correct critical behav-
ior around mtric may result in a difficult determination of
the tricritical mass itself. For this reason we have followed
the strategy adopted in Ref. [31], i.e. to determine the
cumulant of the plaquette B and the gap of the order
parameter �2 for values of m where a first order transition
is present, and then to determine mtric by fitting data with
the expected behaviors reported in Eqs. (10) and (11).

With the aim of determining the tricritical masses mt1

and mt2 present in the low and high mass regions, respec-
tively, we have studied the critical behavior of the system
for various quark masses, am ¼ 0:005, 0.01, 0.0175, 0.025,
0.03, 0.075, 0.2, 0.5, 1., 1.25, 1.5 and 2.0. For each quark
mass we have made simulations on lattices with Nt ¼ 4
and different spatial sizes Ls, reaching up to Ls ¼ 40when
necessary to correctly discriminate the critical behavior.
Numerical simulations have been performed using the
standard Rational Hybrid Monte-Carlo algorithm [41].
Collected statistics have been typically of the order of
105 trajectories around the critical  and for each value
of Ls.

Apart from results obtained for am ¼ 0:025 and
am ¼ 0:075, which were already partially reported in
Ref. [16], most numerical simulations have been per-
formed on two GPU farms located in Pisa and Genoa and
provided by INFN, consisting of a total of 8 S1070 (32
C1060) NVIDIA GPUs. The numerical code, which runs
almost entirely on the GPUs, has been described in detail
in Ref. [42].

III. NUMERICAL RESULTS

The presence of a first order RWendpoint, i.e. of a triple
point at the end of the RW lines, has clear signatures in the
Monte-Carlo (MC) histories and in the probability distri-
butions of the order parameter and of other quantities. In
Fig. 1 we show the MC histories of the real and imaginary

part of the Polyakov loop for am ¼ 0:0175, where the
endpoint is first order, and a  value around the transition.
Metastabilities are clearly detectable, with ImðLÞ, the order
parameter, taking three distinct possible values, one in the
unbroken and two in the broken Z2 phase. ReðLÞ, which is
Z2 even, takes instead only two distinct values correspond-
ing to the broken and unbroken phase.
In Figs. 2–4 we show the reweighted distribution of

ReðLÞ, at the pseudocritical values of  taking place on
the different lattice sizes, for three values of am in the
heavy quark region, am ¼ 1:5, 1.0 and 0.5, respectively.
For am ¼ 1:5 and am ¼ 1:0 a double peak distribution
clearly develops and deepens as Ls ! 1, indicating a first
order transition, even if in the latter case one has to reach
Ls ¼ 40 to clarify the behavior, indicating that in this case
the first order transition is weaker. For am ¼ 0:5, instead,
the distribution stays single peaked for all explored vol-
umes, suggesting that the endpoint may be second order in
this case: this hypothesis is indeed consistent with the
determination of amt2 presented later.
Similar considerations can be made for the light mass

region. In Figs. 5–7 we show the reweighted plaquette
distributions at the pseudocritical couplings for am ¼
0:005, 0.01 and 0.075, respectively. Double peak distribu-
tions are present for the two lower masses, with the
first order being clearly stronger for am ¼ 0:005. For
am ¼ 0:075 instead, as already shown in Ref. [16], the
distribution stays single peaked, suggesting that the end-
point is second order in this case: this is consistent with
our determination of amt1 (see later).
It is interesting to notice that, when the transition is first

order, a gap develops also in other quantities, including the
chiral condensate, as visible from Fig. 8, where we show
the MC histories of the chiral condensate and of the
Polyakov loop around the RW endpoint. That suggests
that, as for the usual thermal transition at � ¼ 0, a strict

0 10000 20000 30000 40000 50000 60000 70000
RHMC trajectories

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Re(Pol)
Im(Pol)

FIG. 1 (color online). Monte-Carlo histories of the real and
imaginary part of the Polyakov loop for a  value (5.328) around
the critical point and am ¼ 0:0175 on a 163 � 4 lattice.
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FIG. 2 (color online). Reweighted distribution of the real part
of the Polyakov loop at the pseudocritical point for am ¼ 1:5
and various lattice sizes.
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correlation between deconfinement and chiral symmetry
restoration may be present also at the RW endpoint.
These results already fully confirm the outcome of

Ref. [16]: the RW endpoint is first order in the chiral limit
and weakens as the quark mass is increased, until an
intermediate mass region is reached where the transition
is second order; it is first order again in the high quark mass
limit, where it weakens as the quark mass is decreased.
The last result is in some sense trivial since, as already
discussed in Ref. [16], it is expected from the fact that the
SUð3Þ pure gauge transition is first order.
Further confirmations come from looking at the finite

size scaling of the susceptibility of the order parameter, �,
which is shown in Fig. 9 for am ¼ 0:0175, 0.03, 1.5 and 1.
The first order scaling ansatz, Eq. (5), is always verified for
the largest volumes available. However, typically one has
to go beyond some critical size before seeing the correct
asymptotic critical behavior, and this critical size increases
as the transition weakens, i.e. as we approach the tricritical
points. For instance, at am ¼ 1 first order scaling sets in
only for Ls � 32.
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FIG. 3 (color online). Reweighted distribution of the real part
of the Polyakov loop at the pseudocritical point for am ¼ 1:5
and various lattice sizes.
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FIG. 4 (color online). Reweighted distribution of the real part
of the Polyakov loop at the pseudocritical point for am ¼ 0:5
and various lattice sizes.
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FIG. 5. Reweighted distribution of the plaquette (average of
spatial and temporal) at the pseudocritical point for am ¼ 0:005
and various lattice sizes.
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FIG. 6. As in Fig. 5, for am ¼ 0:01.
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FIG. 7. As in Fig. 5, for am ¼ 0:075.
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Similar considerations apply to the second order region.
On the left-hand side of Fig. 10, which is taken from
Ref. [16], we show the finite size scaling of � for
am ¼ 0:075 according to 3D Ising critical indexes: scaling
is fair for the heights of the peaks and less fair for the
widths. On the contrary, we realize that tricritical mean
field indexes perform much better, as apparent from the
right-hand side of Fig. 10 (notice from Table I that �=�,
regulating the height of the peaks, is practically the same
for 3D Ising and tricritical mean field, while 1=�, which
regulates the widths of the peaks, is different). That does
not mean, of course, that am ¼ 0:075 is exactly equal to
one of the two tricritical masses, but rather that it is close
enough to one of them so that a fake tricritical scaling
masks the correct asymptotic scaling at least for sizes up to
Ls ¼ 32. However, we know neither how close we are
to the tricritical mass, nor how large we have to go with
Ls to reach the thermodynamical limit, since we have no a
priori knowledge of the prefactor appearing in Eq. (12).
A quantity which is well suited for discerning 3D Ising

from tricritical behavior is the specific heat C. Indeed the

0 10000 20000 30000 40000

RHMC trajectories
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0.3

chiral condensate
〈 |L| 〉

FIG. 8 (color online). Monte-Carlo histories of the Polyakov
loop (absolute value) and of the chiral condensate for a  value
(5.314) around the critical point and am ¼ 0:01, on a 163 � 4
lattice.
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FIG. 9 (color online). Scaling of the reweighted susceptibility of the imaginary part of the Polyakov loop according to first order
critical indexes for am ¼ 0:0175 (up-left), am ¼ 0:03 (up-right), am ¼ 1:5 (down-left) and am ¼ 1:0 (down-right).
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coefficient �=�, which regulates the scaling of the height
of the singular part of C (see Eq. (6)), changes appreciably
when going from tricritical to 3D Ising critical behavior
(see Table I), hence deviations from tricritical scaling are
expected to appear first in such quantity. A direct measure
of the specific heat of the system is not an easy task,
however the susceptibility of any quantity, sharing the
same transformation properties of the energy under the
relevant Z2 symmetry, is expected to scale in the same
way: examples are given by the plaquette or by the real part
of the Polyakov loop, which are both Z2 even. In Fig. 11 we
show the susceptibility of the real part of the Polyakov loop
as a function of Ls for am ¼ 0:2, which we expect to be in
the 3D Ising region. It is apparent that data follow a linear
behavior (i.e. �=� ¼ 1), with deviations visible only for

Ls � 32 and going in the direction of a smaller value of
�=� (as expected for 3D Ising); in particular, in the figure
we have plotted the result from a linear fit to data up to
Ls ¼ 28.
Therefore, in order to get a more reliable determination

of the tricritical masses, we follow the strategy described in
Sec. II and proceed to a determination of the gap of the
order parameter and of the plaquette as a function of
the quark mass in the first order regions. In Fig. 12 we
plot the maxima of the order parameter susceptibility, �, as
a function of Ls, for am ¼ 0:025, together with a fit to the
asymptotic expected behavior, Eq. (9), from which we
extract �2=4, The same procedure has been repeated for
all quark masses where a first order transition is present.
In Fig. 13, instead, we plot the Binder-Challa-Landau
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FIG. 10 (color online). Scaling of � for am ¼ 0:075 according to 3D Ising critical indexes (left) and to tricritical mean field indexes
(right).

0 10 20 30 40 50
LS

0

1

2

3

4

5

6

FIG. 11 (color online). Maximum of the susceptibility of the
real part of the Polyakov loop as a function of the lattice size Ls

and for am ¼ 0:2, together with a linear fit including sizes
Ls < 32.
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FIG. 12. Maximum of the susceptibility of the order parameter,
�, as a function of the lattice size Ls for am ¼ 0:025, together
with a cubic fit � ¼ constþ �2L3

s=4 including all sizes
(�2=d:o:f: ¼ 0:89).
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cumulant of the plaquette, B (see Eq. (8)), as a function of
1=V for am ¼ 0:025 and am ¼ 0:075: in the first case the
cumulant extrapolates to a nonzero value as V ! 1, with
both linear and quadratic corrections in 1=V clearly visible,
while in the second case data are well described by a power
law and B ¼ 0 as V ! 1, indicating the absence of a gap
in the plaquette.

In Table II we summarize all determinations obtained
for B and �2=4. From such values we can try to determine
the tricritical masses as the points where B and � vanish,
fitting data to the expected behaviors shown in Eqs. (10)
and (11). In Fig. 14 we show the results of such fits in the
low mass region for B and �2=4, respectively. We obtain
amt1 ¼ 0:0428ð24Þ from B. Instead, from �2=4, we get

amt1 ¼ 0:0477ð23Þ if we fix h ¼ m in Eq. (11), however in
this case one should take into account also the systematic
uncertainty related to a possible multiplicative redefinition,
h ¼ Ahm. In order to further check that our results for B
and �2=4 can indeed be described in terms of a common
tricritical mass, we have also performed a combined fit to
all data obtained in the low mass region according to

B ¼ bðam� amt1Þ
�2=4 ¼ cðam� amt1Þ logðAhðam� amt1ÞÞ;

(13)

including directly, in this case, the possible multiplicative
redefinition h ¼ Ahm among the fit parameters. The best
fit gives b ¼ �387ð46Þ, c ¼ 0:17ð6Þ, Ah ¼ �9ð5Þ and
mt1 ¼ 0:043ð2Þ, with a �2=d:o:f: ¼ 0:3=4: the hypothesis
is therefore well verified, but we cannot trust the uncer-
tainties on the parameters deriving by this best fit, since
data for B and �2=4 are correlated; notice also that the
multiplicative constant Ah is poorly determined. Staying
conservative with the error estimate, we take as our final
determination mt1 ¼ 0:043ð5Þ.
In Fig. 15 we show instead the same kind of fits for the

high mass region: in this case we have used 1=ðamÞ as the
relevant variable h, as explained in Sec. II. We obtain
amt2 ¼ 0:71ð4Þ from B. Instead, regarding �2, we notice
that (h� htric) is Oð1Þ and it makes no sense to look for
logarithmic corrections (see Eq. (11)): a simple linear fit
for�2 (see Fig. 15) gives amt2 ¼ 0:67ð3Þ. However, also in
this case we can redefine h ¼ Ah=m and try again a com-
bined fit according to

0 0.0005 0.001 0.0015 0.002

1/LS
3

0

0.0001

0.0002

0.0003
am = 0.025
am = 0.075

FIG. 13. Binder-Challa-Landau cumulant of the plaquette
(see definition in Eq. (8)) as a function of the lattice size for
am ¼ 0:025 and am ¼ 0:075. In the first case a function
B ¼ aþ b=L3

s þ c=L6
s describes well all data with a ¼

0:69ð4Þ � 10�4 and �2=d:o:f: ¼ 0:13. For am ¼ 0:075, instead,
data with Ls > 8 are well described (�2=d:o:f: ¼ 0:69) by a
dependence B ¼ aLb

s (b ¼ 0:62ð2Þ) which gives B ¼ 0 in the
thermodynamical limit.

TABLE II. Estimated values for the thermodynamical limit of
B and �2=4 for values of the quark mass where a first transition
takes place.

am B �2=4

0.005 2:15ð10Þ � 10�4 9:60ð20Þ � 10�3

0.010 1:54ð7Þ � 10�4 8:04ð26Þ � 10�3

0.0175 1:01ð8Þ � 10�4 6:40ð40Þ � 10�3

0.025 0:69ð4Þ � 10�4 5:54ð24Þ � 10�3

0.030 0:48ð7Þ � 10�4 4:60ð50Þ � 10�3

0.035 0:32ð6Þ � 10�4 3:60ð40Þ � 10�3

1.00 0:38ð4Þ � 10�5 2:59ð13Þ � 10�3

1.25 0:58ð7Þ � 10�5 4:16ð36Þ � 10�3

1.50 0:66ð7Þ � 10�5 4:32ð24Þ � 10�3

2.00 0:89ð7Þ � 10�5 5:20ð20Þ � 10�3
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FIG. 14 (color online). Binder-Challa-Landau cumulant of the
plaquette, extrapolated to the thermodynamical limit, and �2=4
for small quark masses where a first order transition is present.
We include the result from a linear fit B1 ¼ bðamt1 � amÞ,
giving the value of the tricritical mass amt1 ¼ 0:0428ð24Þ
and �2=d:o:f: ¼ 0:13 (we have included quark masses
am � 0:0175), and from a fit to Eq. (11), �2=4 ¼
cðamt1 � amÞ logðamt1 � amÞ, giving amt1 ¼ 0:0477ð23Þ and
�2=d:o:f: ¼ 0:37 (we have included quark masses am � 0:01).
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B ¼ b

�
1

am
� 1

amt2

�

�2=4 ¼ c

�
1

am
� 1

amt2

�
log

�
Ah

�
1

am
� 1

amt2

��
;

(14)

leading to amt2 ¼ 0:72ð5Þ and Ah � 10�2, with
�2=d:o:f: ¼ 2:2=4. Also in this case one should take into
account correlations among data for B and �2=4, hence we
prefer to stay conservative in our error estimate and state
amt2 ¼ 0:72ð8Þ.

We notice that both determinations, amt1 ¼ 0:043ð5Þ
and amt2 ¼ 0:72ð8Þ, are consistent with the fact that the
quark masses for which no metastabilities and double
peak distributions are observed (am ¼ 0:075, 0.2, 0.5)
are within the second order region.

IV. CONCLUSIONS AND PERSPECTIVES

We have confirmed the outcome of Ref. [16] regarding
the order of the endpoint of the RW transition for Nf ¼ 2

QCD: a first order endpoint (triple point) is present both in
the low mass and in the high mass limit; the endpoint is
second order for intermediate quark masses, which are
separated from the first order regions by two distinct
tricritical masses. Following an investigation performed
in Ref. [31] for the 3D 3-state Potts model in a negative
external field, which shares part of the same symmetries
studied in the present work, we have performed a careful
study of some parameters directly linked to the strength of
the first order transition, in particular, the Binder-Challa-
Landau cumulant of the plaquette and the gap of the order
parameter; that has permitted to obtain independent and

consistent determinations of the two tricritical masses.
Staying conservative with error estimates, we state as our
final result amt1 ¼ 0:043ð5Þ and amt2 ¼ 0:72ð8Þ. Such
results are summarized in Fig. 16, where we sketch a phase
diagram in the T-mq plane.

The value of amt1 corresponds to a pion mass of the
order of 400 MeV, hence we conclude that for physical
quark masses the RW endpoint should be well inside the
first order region. It is therefore of primary importance to
explore what is the fate of the further first order lines
departing from the triple point. One of them, in particular,
may reach the zero density axis or have a critical endpoint
arbitrarily close to it, which could have great influence on
the physics of strongly interacting matter right above the
deconfinement transition. The question is also strictly con-
nected to the problem of the order of the chiral transition
for Nf ¼ 2 [43,44].

Another important issue is of course to extend our
investigation to Nf � 2 and confirm the conjecture that

the nature of the transition at � ¼ 0 may be regulated by
the physics of the RW endpoint [16], i.e. that the � ¼ 0
transition is first order only when the first order line depart-
ing from the RW triple point reaches the � ¼ 0 axis, and
that tricritical scaling indeed shapes the chiral critical
surface [19].
All these investigations will require extensive numerical

simulations, which are however perfectly feasible since
they involve an imaginary chemical potential. Part of this
program is progress.
We stress that our present results are valid for the

standard rooted staggered discretization of the theory and
for lattices with Nt ¼ 4, corresponding to a lattice spacing
of about 0.3 fm. A key issue is then also to verify that the
main features of the phase diagram remain unchanged

0.0 0.5 1.0 1.5
1 / (a m)

0

0.001

0.002

0.003

0.004

0.005

0.006

∆2
/4

B

0

4e-06

8e-06

1.2e-05

FIG. 15 (color online). Binder-Challa-Landau cumulant of the
plaquette, extrapolated to the thermodynamical limit, and �2=4
for high quark masses where a first order transition is present.
We include the result from linear fits B1 ¼ bð1=ðamt2Þ �
1=ðamÞÞ, giving amt2 ¼ 0:71ð4Þ �2=d:o:f: ¼ 1:09 and
�2=4 ¼ cð1=ðamt2Þ � 1=ðamÞÞ, giving amt2 ¼ 0:67ð3Þ
(�2=d:o:f: ¼ 1:0). All masses have been included in the fit in
both cases.

T
RW

mq0 omt1 mt2

FIG. 16. Sketch of the phase diagram in the T-mq plane which
summarizes our results: in Nf ¼ 2 QCD the endpoint of the

Roberge-Weiss transition is first order close to the chiral and to
the quenched limit and second order for intermediate masses. A
conservative estimate for the two tricritical masses separating the
second order region from the first order ones, for the lattice
discretization adopted in the present work, is amt1 ¼ 0:043ð5Þ
and amt2 ¼ 0:72ð8Þ.
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when changing discretization and/or approaching the con-
tinuum limit. The two tricritical masses could still be
present, but the first order regions could in principle extend
or shrink in a significant way.
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