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We study the phase structure of mixed-action QCD with two Wilson sea quarks and any number of

chiral valence quarks (and ghosts), starting from the chiral Lagrangian. A priori the effective theory allows

for a rich phase structure, including a phase with a condensate made of sea and valence quarks. In such a

phase, mass eigenstates would become admixtures of sea and valence fields, and pure-sea correlation

functions would depend on the parameters of the valence sector, in contradiction with the actual setup of

mixed-action simulations. Using that the spectrum of the chiral Dirac operator has a gap for nonzero quark

mass we prove that spontaneous symmetry breaking of the flavor symmetries can only occur within the

sea sector. This rules out a mixed condensate and implies restrictions on the low-energy constants of the

effective theory.
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I. INTRODUCTION

Dynamical lattice simulations with fermions that pre-
serve chiral symmetry [1–3] are extremely time consum-
ing. The numerical cost typically exceeds simulations
with Wilson or staggered quarks by 1 or 2 orders of
magnitude [4]. For this reason so-called mixed-action
simulations have been proposed, referring to a setup
with either Wilson or staggered sea quarks and domain-
wall or overlap valence quarks; we will refer to such
valence quarks collectively as ‘‘chiral’’ quarks. Even
though mixed-action theories are not unitary, they are
widely believed to have the correct continuum limit. A
key advantage is that the valence sector preserves chiral
symmetry except for soft breaking by mass terms. This is
particularly beneficial for the computation of weak matrix
elements.

Quite a few mixed-action simulations with staggered sea
quarks have already been performed [5]. All these simula-
tions used the configurations generated by the MILC
Collaboration with Asqtad-improved staggered fermions
[6]. Exploratory simulations with twisted-mass Wilson
fermions [7] or clover fermions [8] in the sea sector have
also been reported, and more are expected in the near
future.

Mixed-action theories can be studied in chiral perturba-
tion theory (ChPT) at nonzero lattice spacing [9–11]. In
particular, the dominant source for unitarity violations can
be studied analytically. The scalar correlator, for example,
is a sensitive probe for unitarity violations [12–14]. It has
been shown that the numerical data for the scalar correlator
agree quite well with the predictions of ChPT [15–17],
lending support to the validity of mixed-action ChPT in
describing lattice data.

In this paper we study the phase structure of mixed-
action theories with two Wilson-like sea quarks and any

number of chiral valence quarks (and ghosts). We consider
the ‘‘Aoki’’ or ‘‘large cutoff effects’’ regime, where quark
masses are of order a2, the lattice spacing squared. The
phase diagram for theories with Wilson fermions in the sea
or the valence sector has been studied by various authors
[18–22], and an interesting nontrivial phase structure has
been found. In the two-flavor case, depending on the sign
of a low-energy constant (LEC) in the chiral Lagrangian
[19], there exists either a first-order phase transition with a
nonvanishing minimal pion mass or an Aoki phase [23].
The latter is characterized by the spontaneous breaking of
isospin and parity symmetries, with two of the three pions
turning massless. We expect these scenarios to be present
in the mixed-action theory as well, but a priori the phase
structure might be more complicated.
To make the discussion more concrete, we begin with

the effective chiral theory for the case of two valence
quarks. We find that, indeed, the potential of the effective
theory allows for a richer phase structure. In particular,
depending on the sign of a certain linear combination of
LECs there is a ‘‘mixed’’ phase, characterized by a mixed
condensate built out of a sea and a valence quark.1

A mixed phase of the effective chiral theory immedi-
ately raises a paradox: The mixed condensate spontane-
ously breaks the separate sea and valence flavor
symmetries to the diagonal subgroup. As a result, the
mass eigenstates are admixtures of sea and valence fields.
The masses themselves depend on both the sea and the
valence-quark masses. This means, for example, that the
two-point function of pure-sea-pion fields would become a
superposition of exponentials, all of which depend on the
valence-quark mass. This putative situation is clearly in-
consistent with the very setup of mixed-action theories.
Indeed, in any numerical simulation, by construction the

1As in the Aoki phase, this condensate breaks parity.
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valence and ghost determinants exactly cancel out, and
pure-sea physics cannot possibly depend on the presence
of valence and ghost sectors.

In order to resolve this conundrum we turn to the under-
lying theory, mixed-action QCD. The chiral Dirac operator
of the valence sector has a gap for nonzero valence mass.
Following the arguments of Ref. [24], we prove that none
of the flavor symmetries of the valence-ghost sector can be
broken spontaneously, for any number of valence quarks.
Since a mixed condensate would necessarily break the
valence-ghost flavor symmetry group, this rules out a
mixed condensate.

While showing that all is well in the underlying theory,
this state of affairs calls into question the reliability of the
effective chiral theory, since the latter appears to allow for
a mixed condensate. Specializing once more to the case of
two valence quarks, we derive a mass inequality in the
underlying theory that constrains the mass of mixed
charged pions to be not below the smaller of pure-sea
and pure-valence charged pion masses.2 In the effective
theory, this mass inequality implies an inequality on a
linear combination of LECs. The latter excludes the region
in the phase diagram in which a mixed phase would occur,
thereby preventing the effective theory from making pre-
dictions that are inconsistent with the underlying theory.

In conclusion, the constrained effective theory gives a
consistent description of the possible phase diagram of
mixed-action QCD.

In Sec. II we introduce the effective potential for mixed-
actionQCD for the case of two chiral valence quarks and list
its symmetries. In Sec. III we study patterns of spontaneous
symmetry breaking at the level of the effective theory,
focusing on the mixed condensate. Some technical details
are relegated to the appendixes. The main results are de-
rived in Sec. IV, and Sec. Voffers our concluding remarks.

II. THE EFFECTIVE POTENTIAL
FOR MIXED-ACTION QCD

The chiral effective Lagrangian for the mixed-action
theory with Wilson sea and chiral valence quarks has
been constructed in Refs. [9,10].3 It is written in terms of
the nonlinear field

� ¼
exp

�
2i
f �

�
�!

! exp

�
2
f �̂

�
0
BBB@

1
CCCA: (2.1)

Specializing to the case of two sea and two valence quarks,

� is a four-by-four Hermitian matrix and �̂ a two-by-two
Hermitian matrix, while �! and ! are four-by-two
and two-by-four matrices, respectively, with Grassmann-

valued entries.4 Wewill label the rows and columns of� as

us, ds, uv, dv, ~uv, and ~dv, where u stands for up, d stands
for down, and s and v stand for sea and valence, respec-
tively, while the tilde indicates ghost quarks.
To the order we are working here the potential is [10]

V ¼ � f2

8
strðm̂��1 þ�m̂Þ � f2

8
â strðPS�

�1 þ�PSÞ
� â2WM strðT3�T3�

�1Þ
� â2W 0

8 strðPS�
�1PS�

�1 þ�PS�PSÞ
� â2W 0

6ðstrðPS�
�1 þ �PSÞÞ2

� â2W 0
7ðstrðPS�

�1 � �PSÞÞ2; (2.2)

where str denotes the supertrace. Note that we need ��1

instead of �y, because the ghost part of this nonlinear field
is not unitary. Furthermore, we have that sdetð�Þ ¼ 1, with
sdet the superdeterminant. The parameters m̂ and â are
proportional to the quark mass matrix and the lattice spac-
ing, respectively:

m̂ ¼ 2B0M; â ¼ 2W0a; (2.3)

where M is the real diagonal mass matrix. The parameters
f and B0 are the familiar LECs of continuum ChPT, while
W0, WM, and W 0

i are additional LECs associated with a
nonvanishing lattice spacing. PS is the projector on the sea-
quark sector, with PS ¼ ð1þ T3Þ=2. Explicitly,

M ¼
ms1 0 0

0 mv1 0

0 0 mg1

0
BB@

1
CCA; PS ¼

1 0 0

0 0 0

0 0 0

0
BB@

1
CCA;

T3 ¼
1 0 0

0 �1 0

0 0 �1

0
BB@

1
CCA; (2.4)

where 0 is the two-by-two null matrix and 1 is the two-by-
two unit matrix. ms is the sea-quark mass, mv is the
valence-quark mass, and mg ¼ jmvj is the ghost-quark

mass, which we always choose equal in magnitude to the
valence-quark mass.5 Since the valence determinant does
not depend on the sign of mv, the ghost determinant
cancels the valence determinant exactly for this choice.
We assume isospin symmetry in both the sea and the
valence sector.
In the following, we will absorb the contribution of order

a in the potential into the definition of the sea-quark mass,
which amounts to shiftingms ! ms þ aW0=B0. This is not

2For a review of mass inequalities in standard QCD, see
Ref. [25].

3For an introduction, see, for example, Ref. [26].

4The fact that the two-by-two matrix expð2�̂=fÞ is not unitary
but Hermitian follows from a detailed study of the symmetries in
the ghost sector [22,27,28].

5Note that mg has to be taken positive in order for the QCD
path integral in the ghost sector to be convergent. Consistently,
the sign of the ghost-quark mass cannot be changed by a chiral
symmetry transformation [22].
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only convenient but also justified, since the order-a shift
contributes only to the additive mass renormalization of the
sea-quark mass.

In order to simplify the notation we rescale the potential
by V ! Vf2B0=4, and we write

V ¼ �strðM��1 þ�MÞ � c1 strðT3�T3�
�1Þ

� c2 strðPS�
�1PS�

�1 þ �PS�PSÞ
� c3ðstrðPS�

�1 þ�PSÞÞ2
� c4ðstrðPS�

�1 ��PSÞÞ2; (2.5)

where the new coefficients ci, i ¼ 1; 2; 3; 4, are propor-
tional to the coefficients WM and W 0

i , i ¼ 6; 7; 8. Note that
we also absorbed the factor a2 into the ci, so that these
LECs are now of order a2.

In writing Eq. (2.5), we implicitly assume that all terms
in V are of the same order of magnitude and equally
important for the potential. In other words, we assume
that we are in the Aoki regime [21] with mv and the
(shifted) mass ms both of order a2 in magnitude. Terms
not shown in Eq. (2.5) are at least of order a3, ma� a3 or
m2 � a4, with m�mv �ms.

Mixed-action QCD, and thus the effective Lagrangian
and its potential, are invariant under independent flavor
rotations in the sea and in the valence sector. The symmetry
group G has the structure [9]

G¼Gsea�Gval; Gsea¼Uð2ÞV; Gval¼Uð2j2ÞV: (2.6)

There is no symmetry connecting the sea and the valence
sectors, a consequence of the different fermion formula-
tions used in each sector in the underlying lattice theory. In
the limit of vanishing lattice spacing this group enlarges
to the Uð4j2ÞV symmetry of the partially quenched contin-
uum theory [29]. For a vanishing valence-quark mass the
symmetry group is larger because of the exact chiral sym-
metry in the valence sector. For a detailed description of
the full chiral symmetry group in the valence and ghost
sectors, see Refs. [22,28].

III. PATTERNS OF SPONTANEOUS
SYMMETRY BREAKING

To begin our analysis, it is useful to explore the possible
patterns of spontaneous symmetry breaking. We will first
establish that nothing interesting happens in the ghost sector
and then discuss possible symmetry-breaking patterns in
the sea and valence sectors, in order to provide a context for
the results that will follow in the subsequent section.

A. Ghost sector

The most general ground state has the form

�vac ¼ �q �!
! �g

� �
; (3.1)

where �q is a four-by-four matrix and �g is a two-by-two

matrix. A question that immediately arises is whether the
Grassmann parts! and �! can acquire any nonzero vacuum
expectation values. Intuitively, one would think that this
cannot happen, because a Grassmann-valued scale does not
exist. In AppendixAwewill show that, indeed,! ¼ �! ¼ 0.
The constraint sdetð�vacÞ ¼ 1 implies that both subma-

trices �q and �g are regular and that detð�qÞ ¼ detð�gÞ.
To the order we are working, the block-diagonal form of
the vacuum expectation value �vac implies that the ghost
and quark sectors decouple, and the potential is a sum of
two terms: V ¼ Vq þ Vg. The two-by-two matrix �g is

Hermitian and positive and can be diagonalized by an
isospin transformation in the ghost sector. This means
that �g can be written as

�g ¼
�1 0

0 �2

 !
; (3.2)

with �1;2 > 0. In terms of these two eigenvalues, the ghost-

sector part of the potential then becomes equal to

Vg ¼ jmvjð�1 þ ��1
1 þ �2 þ ��1

2 Þ þ 2c1; (3.3)

which is minimized by �1 ¼ �2 ¼ 1 or, equivalently,
�g ¼ 1.

Thus, the effective theory predicts that isospin in the
ghost sector is unbroken.6 This is in agreement with the
general result we will establish in the underlying theory in
Sec. IVA. As we will see next, the situation in the sea and
valence sectors is more subtle.

B. Scenarios in the sea-valence sector

We begin by introducing a convenient parametrization
of the most general vacuum state in the sea-valence sector.
From the previous subsection we have that detð�gÞ ¼ 1,

and hence detð�qÞ ¼ 1 as well; �q is thus an element of

SU(4). For future use, we subdivide �q into blocks of two-

by-two matrices:

�q ¼ �ss i�sv

i�vs �vv

� �
: (3.4)

Furthermore, if �vv ¼ �v1 is proportional to the unit
matrix (with �v a complex number), �q can be written in

the form

�q ¼ ei�
��
vD

2 i�?
v D

i�?
v D �v1

 !
; D ¼ expði��3=2Þ;

�?
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j�vj2

q
; (3.5)

with � ¼ 0 mod �=2, j�vj � 1, and in which �3 is the
third Pauli matrix. The proof is given in Appendix B.

6This result generalizes to any number of flavors in the ghost
sector.
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Symmetries which might be spontaneously broken by
the ground state are the flavor symmetry G, given in
Eq. (2.6), and the discrete symmetries parity (P) and charge
conjugation (C), under which the field � transforms ac-
cording to

�!P ��1; �!C �T: (3.6)

The vacuum state (3.5) preserves charge conjugation.7

Parity is broken by the Aoki condensate, which corresponds
to � � 0. The mixed condensate, which corresponds to
�?
v � 0 or, equivalently, j�vj< 1, breaks parity too.
We now turn to a more detailed discussion of possible

phases. The trivial vacuum is parametrized by �ss ¼
�vv ¼ 1 and �sv ¼ �vs ¼ 0. A first nontrivial example
is provided by a vacuum expectation value of the form

�q ¼ ei��3 0
0 1

� �
; (3.7)

with a nonvanishing isospin condensate in the sea sector
[this corresponds to �v ¼ 1 and � ¼ 0 in Eq. (3.5)]. This
vacuum state corresponds to the Aoki phase, with sponta-
neous breaking of parity and flavor [23]. The nonsinglet
flavor group SUð2Þsea breaks down to U(1). Associated
with this breaking are two massless Goldstone bosons,
the charged pions ��

ss. The possibility of the Aoki phase
in the sea sector is expected, of course. It has been shown in
Ref. [19] that the existence of the Aoki phase is one of two
possible scenarios for unquenched lattice QCD with two
flavors of Wilson fermions, which is precisely the sea
sector of the mixed-action theory we study here.

A new phase, unique to the mixed-action theory, would
be a phase in which �sv and �vs are nonzero, which
corresponds to a condensate mixing sea and valence
quarks. One way to explore whether such a phase might
occur is to consider the meson masses obtained when the
potential is expanded around the trivial vacuum, �q ¼ 1.

Assuming ms, mv � 0 for the rest of this subsection and
expanding the potential to quadratic order in�, we find the
following tree-level masses for mesons made out of two
sea quarks (Mss), two valence quarks (Mvv), and one sea
and one valence quark (Msv):

M2
ss ¼ B0ð2ms þ 8c2 þ 16c3Þ ¼ B0ð2ms þ 8c02Þ;

M2
vv ¼ 2B0mv;

M2
sv ¼ B0ðms þmv þ 4c1 þ 2c2 þ 8c3Þ

¼ B0ðms þmv þ 4c01 þ 2c02Þ;
(3.8)

where

c01 ¼ c1 þ c3; c02 ¼ c2 þ 2c3: (3.9)

We note that c4 does not contribute; it only contributes to
the sea � mass through a term quadratic in �ss.

First, the valence meson mass vanishes when mv ¼ 0,
consistent with the fact that the valence sector has exact
chiral symmetry. Second, from the expression for Mss, we
see that spontaneous symmetry breaking should take place
in the sea sector when c02 < 0 and ms < 4jc02j, because this
would drive M2

ss to a negative value. This is in agreement
with the ChPTargument of Ref. [19] for the existence of an
Aoki phase.
A new type of phase is suggested by the third

equation of Eq. (3.8). For 2c01 þ c02 < 0, M2
sv becomes

negative when ms þmv is small enough. The negative
curvature at the origin of field space indicates that a
mixed condensate develops, alongside with mixed
Goldstone bosons.
Let us explore this possibility, assuming that c02 > 0 but

2c01 þ c02 < 0. Since c02 > 0 there is no Aoki condensate in
the sea sector. Furthermore, let us assume that the vacuum
takes the form

�q ¼ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
�

 !
; (3.10)

with real �. [This corresponds to choosing all phases
equal to zero in Eq. (3.5).] The effective potential then
reduces to

V0 � 1
4V�c1¼�ðmvþmsÞ��ð2c01þc02Þ�2: (3.11)

If indeed 2c01 þ c02 < 0, we find a minimum at

� ¼ mv þms

2j2c01 þ c02j
; (3.12)

provided that the right-hand side is smaller than 1 (other-
wise, the minimum is at � ¼ 1).
Before we turn to the mass spectrum of this mixed phase,

let us recall the familiar situation on the trivial vacuum.
The nonlinear field is parametrized as � ¼ expðð2i=fÞ�Þ,
where the pseudoscalar field � is expanded as

ffiffiffi
2

p
�¼

�ssþ�0
ss

ffiffiffi
2

p
�þ

ss �vsþ�0
vs

ffiffiffi
2

p
�þ

vsffiffiffi
2

p
��

ss �ss��0
ss

ffiffiffi
2

p
��

vs �vs��0
vs

�svþ�0
sv

ffiffiffi
2

p
�þ

sv �vvþ�0
vv

ffiffiffi
2

p
�þ

vvffiffiffi
2

p
��

sv �sv��0
sv

ffiffiffi
2

p
��

vv �vv��0
vv

0
BBBBB@

1
CCCCCA;

(3.13)

in self-explanatory notation.8 Disregarding the ghost sec-
tor, the flavor symmetry consists of the direct product
SUð2Þsea � SUð2Þval � Uð1Þsea-val.9 Pure-sea fields reside

7For other orientations of the vacuum, charge conjugation has
a more complicated form that involves a flavor rotation.

8For example, �þ
vs is made of a valence antidown quark and a

sea up quark, and ��
sv is made of a sea antiup quark and a

valence down quark. Not all fields are independent due to the
constraint sdetð�Þ ¼ 1, which excludes the ‘‘supersinglet’’ field
[29] from our effective theory.

9The notation Uð1Þsea-val refers to a U(1) transformation with
opposite phases in the sea and valence sectors. The diagonal
Uð1Þsea¼val, where these phases are equal, acts trivially on meson
fields.
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in the upper-left two-by-two block. They transform only
under SUð2Þsea and not under SUð2Þval.

The mixed phase is realized by an expectation value for
neutral, mixed meson fields:

h�vsi ¼ h�svi ¼ ðf= ffiffiffi
2

p Þ�; cos� ¼ �: (3.14)

This breaks the flavor symmetry spontaneously to the
diagonal subgroup SUð2Þsea¼val. Associated with the four
broken generators are the mixed Goldstone pions

�vs � �sv; �0
vs � �0

sv;

�þ
vs � �þ

sv; ��
sv � ��

vs:
(3.15)

The nonzero-mass eigenstates are admixtures of fields with
different transformation properties under the separate sea
and valence flavor groups. The nonvanishing masses de-
pend on both ms and mv. The dependence is explicit, as
well as implicit via � in Eq. (3.12).

Now we are facing a paradox: If, for example, we
calculate the two-point function h�þ

ssð0Þ��
ssðxÞi, we find

that it is a superposition of exponentials coming from the
various nonzero-mass eigenstates of the mixed phase.
These masses all depend on mv,

10 as does the correlation
function itself. But this cannot possibly be correct, be-
cause, by the very setup of mixed-action theories, the sea
sector does not depend on the valence part of the action at
all.

In fact, this observation is a little more subtle than it
appears, because spontaneous symmetry breaking takes
place in the thermodynamical limit, whereas numerical
simulations are always done in finite volume.

In ChPT terminology, the analysis of the potential we
have just carried out corresponds to being in the p regime
for the Goldstone pions of Eq. (3.15). In order to stay in the
p regime in finite volume, one would have to turn on
‘‘seeds’’ for the given symmetry-breaking pattern. These
would take the form of mixed mass terms that couple the
sea and valence quarks. Were such mass terms to be
introduced at the quark level in the underlying theory, the
valence and ghost determinants would no longer cancel
each other. The separation into sea and valence sectors
would no longer apply, and there would be nothing a priori
wrong with finding that properties of what used to be the
sea sector now depend on parameters of what used to be the
valence sector.

Numerical simulations always maintain the exact can-
cellation of valence and ghost determinants, because rather
than having the determinants of two types of quark cancel,
the valence and ghost determinants are never introduced in
the first place. Therefore, at this point the question arises
whether we truly have a paradox. The answer is that the
conflict between the effective and underlying theories is a
real one. Given that no mixed mass terms ever exist in the

actual mixed-action setup, we are always in the � regime
for the Goldstone pions of Eq. (3.15). The correct prescrip-
tion in this regime is to first calculate Feynman diagrams
using chiral perturbation theory for a given orientation of
the condensate and then to integrate the result over all
possible orientations. Let us return to our example of the
two-point function h�þ

ssð0Þ��
ssðxÞi, but now in finite vol-

ume. On the vacuum (3.10), its leading-order (LO) value
will be a superposition of exponentials, as discussed above.
All other orientations of the vacuum may be obtained by
the combination of SUð2Þval and Uð1Þval rotations. These
rotations leave the operators��

ss invariant; hence their two-
point function is unchanged when we integrate over all
orientations of the mixed condensate. The finite-volume
two-point function of pure-sea-pion fields would therefore
depend on mv also when we are in the � regime for the
Goldstone pions of Eq. (3.15). This prediction of the chiral
effective theory is indeed in direct conflict with the very
setup of a mixed-action numerical simulation.

IV. POSSIBLE PHASES

If the ChPT description of QCD with a mixed action is
not to break down, there has to be some mechanism that
excludes the mixed phase of the effective theory. This
section shows that this is indeed the case: Spontaneous
symmetry breaking is entirely confined to the sea sector.
In Sec. IVAwe consider the valence and ghost sectors of

mixed-action QCD for an arbitrary number of flavors.
Following Vafa and Witten [24], we employ a bound on
the spectrum of the chiral Dirac operator to prove that none
of the flavor symmetries of the valence-ghost sector can
break spontaneously formv � 0. This rules out, in particu-
lar, a mixed condensate.
In Sec. IVB we study how this information is commu-

nicated to the effective theory. We begin by deriving a mass
inequality in the underlying theory, which constrains the
mass of mixed charged pions to be not smaller than the
minimum of the masses of pure-sea and pure-valence
charged pions. Specializing (for technical reasons) to the
case of two flavors of valence quarks, we infer from the
mass inequality another inequality that must be satisfied by
the LECs of mixed-action ChPT. The LEC inequality, in
turn, excludes the range of values that produced the para-
dox of the previous section.
Finally, in Sec. IVC we use the results of the first two

subsections to conclude that the only nontrivial phase
structure occurs in the sea sector, where our analysis
reduces to that of Ref. [19].

A. Absence of flavor symmetry breaking in the
valence-ghost sector

In this subsection we prove that the full valence-ghost
flavor symmetry group is not broken spontaneously for
mv � 0. The analysis is carried out in the underlying
theory, mixed-action QCD. We first consider the valence10We checked this by explicit calculation.
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sector alone and then extend the result to include the ghost
sector too.

In order to avoid cumbersome notation we consider a
mixed-action theory with two chiral valence quarks u and
d, with masses mu and md.

11 At this point we assume that
mu and md are both nonzero but not necessarily equal. The
valence-sector action is

S ¼ �uDuþmu �uð1� 1
2DÞuþ �dDdþmd

�dð1� 1
2DÞd;

(4.1)

whereD is a lattice Dirac operator satisfying the Ginsparg-
Wilson relation [30]

f	5; Dg ¼ D	5D: (4.2)

Following Ref. [24], we consider the isospin-breaking
condensate�
�u

�
1�1

2
D

�
u� �d

�
1�1

2
D

�
d

�
A

¼� 1

V
Tr

��
1�1

2
D

��
D

�
1�1

2
mu

�
þmu

��1�½mu!md	
�
:

(4.3)

The subscript A indicates a fixed gauge-field background.
Assuming thatD is 	5 Hermitian,Dy ¼ 	5D	5, it follows
from Eq. (4.2) that D is normal. Thus, D and Dy have a
simultaneous set of eigenfunctions with eigenvalues 
 and

�, respectively. Once again using Eq. (4.2) it follows that

þ 
� ¼ 
�
, so we may write


 ¼ 1� ei�: (4.4)

Moreover, if c is an eigenfunction with eigenvalue 
, 	5c
is an eigenfunction with eigenvalue 
�; hence, the eigen-
values (4.4) come in pairs �� (except possibly at the
isolated points � ¼ 0 or � ¼ �).

Integrating over the gauge field,12 it is now straightfor-
ward to show that the isospin-breaking condensate is equal
to�
�u

�
1� 1

2
D

�
u� �d

�
1� 1

2
D

�
d

�

¼ �
Z �

��
d��ð�Þ

�
mu

m2
u þ 4tan2 1

2�
� md

m2
d þ 4tan2 1

2�

�
;

(4.5)

where �ð�Þ is the spectral density.13 This clearly vanishes
for mu �md ! 0, as long as the common value mu ¼ md

is nonzero. The conclusion is that there is no spontaneous
symmetry breaking of isospin symmetry within the valence
sector.

The previous analysis easily extends to the full valence-
ghost sector. Since Grassmann-valued condensates
cannot occur (Appendix A), this leaves us to consider a
graded-symmetry-breaking condensate of the form

h �qvð1� 1
2DÞqv þ ~qyð1� 1

2DÞ~qi; (4.6)

where qv is a valence quark and ~q is a ghost quark. Note the
plus sign between the valence- and ghost-quark bilinears.
This sign is consistent with the graded symmetries in
UðnjnÞV (with n the number of valence quarks), which
would be broken if this condensate developed a nonvanish-
ing expectation value.14

The condensate (4.6) has a spectral representation simi-
lar to Eq. (4.5), with mu on the right-hand side replaced by
the valence-quark mass mv and md replaced by the ghost-
quark mass mg, which we temporarily take to be different

from mv in order to study symmetry breaking.15 Again, in
the limit mg ! mv this condensate vanishes, for the same

reasons as before, and we conclude that the full valence-
ghost flavor symmetry group is not spontaneously broken.
A corollary is that no mixed condensate can ever occur.

A bilinear sea-valence operator transforms in the funda-
mental representation of the valence-ghost symmetry
group. Since this group does not break spontaneously,
bilinear sea-valence operators cannot acquire nonzero ex-
pectation values.16

We end this subsection with a technical comment. In
order to probe isospin breaking in the sea sector (where it
can occur), we may have to turn on an (infinitesimal)
difference �m between the masses of the up and down
sea quarks. For nonzero �m, the two-flavor Wilson deter-
minant is no longer positive. However, since this only
happens for nonzero �m and at a nonzero lattice spacing,
the effect is of order a�m. In this paper we work to order
m� a2 only, and so we may neglect such effects.17

B. Absence of mixed-phase Goldstone bosons

While in the previous subsection we showed that all is
well in the underlying theory, the puzzle concerning the
phase diagram of mixed-action ChPT remains to be re-
solved. We will begin by deriving a mass inequality relat-
ing pure-sea, pure-valence, and mixed pions in the

11The proof generalizes trivially to any number of chiral
valence quarks.
12The integration measure is non-negative; see below.
13Note that �ð�Þ ¼ �ð��Þ. For a similar expression for the
chiral condensate with overlap fermions, see Ref. [31].

14Recall that ghost-quark fields commute with each other. For
reference, the singlet condensate that does not break UðnjnÞV has
a minus sign between the valence and ghost terms.
15Recall that mg is necessarily positive. Assuming an even
number of valence quarks we may take mv > 0, because, if
mv < 0, we have mv ! jmvj under a nonanomalous chiral
rotation of the valence quarks.
16The same argument excludes a valence-ghost Grassmann
condensate. However, the latter was already ruled out by the
general proof of Appendix A.
17For a discussion of why the argument of Ref. [24] does not
apply to an isospin-breaking condensate in the sea sector, in
which the quarks fields are of the Wilson type, see Ref. [19].
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underlying theory. We will then infer an inequality be-
tween the LECs of mixed-action ChPT, which, as prom-
ised, excludes the region of parameters that gave rise to the
paradox of Sec. III B. As in previous sections, the ChPT-
level analysis is restricted to the case of two valence
quarks.

We begin with the following inequality in mixed-action
QCD:

tr hðSysdðx; yÞ � Syvdðx; yÞÞðSsdðx; yÞ � Svdðx; yÞÞi � 0;

(4.7)

in which Sikðx; yÞ, i ¼ s; v is the sea-, respectively,
valence-quark, propagator. The second index k ¼ u; d de-
notes flavor, up or down.18

Although as it stands inequality (4.7) depends only on
the d propagator, the u propagator will be encountered
shortly. In the isospin-symmetric phase, the up and down
propagators are equal, and Eq. (4.8) below follows from 	5

Hermiticity of the Wilson operator.
When we get back to the effective theory, we will make

use of the inequality only in the symmetric phase.
Interestingly, only little extra effort is needed to extend
the inequality to the phase with broken isospin (the Aoki
phase), so let us make this small detour. In order to account
for the latter possibility, we add a ‘‘twisted’’ mass term of
the form � �qsi	5�3qs to the (sea) Dirac operator, where
qs ¼ ðus; dsÞT . This accomplishes two things. First, it ac-
counts explicitly for isospin breaking. Second, it aligns
isospin breaking along the third direction in isospin space,
so that the relevant condensate, if it forms, would be
proportional to �qs	5�3qs. We now have that

Sysdðx; yÞ ¼ 	5Ssuðy; xÞ	5; (4.8)

also when� � 0. Equation (4.8) holds in any finite volume
and therefore also in the thermodynamical limit where� is
eventually turned off.

Using that Syvdðx; yÞ ¼ 	5Svuðy; xÞ	5 for the chiral over-

lap propagator as well, inequality (4.7) can now be rewrit-
ten as

Gssðx; yÞ þGvvðx; yÞ � Gsvðx; yÞ þGvsðx; yÞ; (4.9)

where

Gijðx; yÞ ¼ h �uiðxÞi	5djðxÞ �djðyÞi	5uiðyÞi: (4.10)

There are no disconnected contributions. (This is true even
if we are inside the Aoki phase, because, with our choice of
the twisted-mass term, any isospin-breaking condensate
must lie in the �3 direction.)

If inequality (4.9) holds in mixed-action QCD, it must
also hold in the low-energy effective theory, in which Gss

corresponds to the sea-pion propagator,Gvv to the valence-
pion propagator, andGvs andGsv to the mixed-pion propa-
gators. Technically, the translation into ChPT is done by
coupling the mixed-action QCD Lagrangian to pseudosca-
lar sources for the operators �uiðxÞ	5djðxÞ and �djðyÞ	5uiðyÞ
[9–11,32]. While the underlying theory is nonunitary,
within the effective theory the decay rates of the relevant
correlation functions are thus interpreted as pion masses.
The LO result can be expressed in terms of the compo-

nent fields of Eq. (3.13) as follows:

h�þ
ssðxÞ��

ssðyÞi þ h�þ
vvðxÞ��

vvðyÞi
� h�þ

svðxÞ��
vsðyÞi þ h�þ

vsðxÞ��
svðyÞi: (4.11)

Here each two-point function is a tree-level (i.e., free)
propagator in the effective theory, with mass determined
by the potential, Eq. (2.2). For a meson of massM, the tree-
level propagator is

Dðx�yÞ¼
Z d4p

ð2�Þ4
eipðx�yÞ

p2þM2
¼ M

4�2r
K1ðMrÞ; (4.12)

in which r ¼ jx� yj. Substituting this into Eq. (4.11)
yields the inequality

MssK1ðMssrÞþMvvK1ðMvvrÞ�2MsvK1ðMsvrÞ; (4.13)

where we used that Mvs ¼ Msv. If all masses are strictly
positive, for large r we can use the asymptotic behavior of
K1,

K1ðzÞ �
ffiffiffiffiffi
�

2z

r
e�z; jzj ! 1; (4.14)

finding

Msv � minðMss;MvvÞ: (4.15)

A nontrivial consequence of the mass inequality (4.15) is
that the LECs appearing in Eq. (2.5), too, are subject to an
inequality. To see this, we take ms and mv large enough
that no spontaneous symmetry breaking takes place, and
the curvatures at the origin of field space, which are given
explicitly by Eq. (3.8), are all positive. We also choose mv

such that Mvv ¼ Mss, which implies that mv ¼ ms þ 4c02.
We now find that the mass inequality (4.15) translates into
the LECs inequality

2c1 � c2 ¼ 2c01 � c02 � 0: (4.16)

LECs are, by definition, independent of the quark masses.
While we have derived the inequality by considering spe-
cial values of the sea and valence masses, it must therefore
hold true for arbitrary values of ms and mv.
We note that in our example leading up to Eq. (3.12), we

assumed that c02 > 0, so that, with Eq. (4.16), c01 þ 2c02 >
c01 � 2c02 � 0. Therefore, c01 þ 2c02 < 0 never occurs,
and the putative vacuum solution Eq. (3.12) is never
encountered.

18While the correlation functions under study depend on two
valence flavors that we have conveniently denoted up and down,
the total number of valence quarks can be any n � 2.
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C. The phase diagram

We now return to the ground state [Eqs. (3.1) and (3.4)],
i.e., to the minimization of the potential (2.5), but subject to
the constraints we have inferred from the underlying the-
ory.19 In Sec. III Awe found that �g ¼ 1. Using the result

of Sec. IVAwe conclude that�vv ¼ 1 as well, while using
the result of both Sec. IVA and Sec. IVB it follows that
�sv ¼ �vs ¼ 0. In addition, we know from Appendix A
that ! ¼ �! ¼ 0. Therefore, only �ss can take on a non-
trivial value, with detð�ssÞ ¼ 1, so that �ss 2 SUð2Þ.
Substituting the vacuum solution

�vac ¼
�ss 0 0
0 1 0
0 0 1

0
@

1
A (4.17)

into the potential (2.5), it reduces to

V¼�ms trð�ssþ�y
ssÞ� 1

2c
0
2ðtrð�ssþ�y

ssÞÞ2; (4.18)

where c02 is defined in Eq. (3.9). This is precisely the
potential which was found in Ref. [19] for QCD with
two Wilson flavors and no valence sector. Depending on
the sign of c02, either isospin and parity are broken in the sea
sector (if c02 < 0 and jmsj is small enough), with ��

ss the
corresponding Goldstone bosons, or there is a first-order
phase transition (if c02 > 0), with a minimum nonvanishing
pion mass at nonzero lattice spacing.

In summary, adding a chiral-fermion valence sector to
the dynamical Wilson-fermion theory enlarges the flavor
symmetry group and, in principle, allows for many new
symmetry-breaking condensates. Nevertheless, none of
these condensates actually develops, and we have recov-
ered the usual two-flavor phase diagram for the sea sector.

V. CONCLUDING REMARKS

The chiral Lagrangian for lattice QCD with a mixed
action, with Wilson sea quarks and chiral valence quarks,
is rather involved. We have studied this chiral Lagrangian
in the case of two sea and two valence quarks in the large
cutoff effects regime m� a2. With no restrictions on the
values of the order-a2 LECs, the phase structure is rather
intricate.

In particular, the effective potential appears to allow for
a mixed phase with a condensate pairing valence with sea
quarks. Such a mixed phase would contradict the very
setup of mixed-action simulations, because pure-sea cor-
relation functions would depend on the parameters of the
valence sector.

As we have shown in this paper, the underlying theory
excludes such a phase. By extending the well-known

argument of Ref. [24], which relies on the existence of a
gap in the spectrum of the chiral Dirac operator for nonzero
mass, we have shown that none of the flavor symmetries of
the valence and ghost sectors can be broken spontaneously,
for any number of valence quarks. This forbids, in particu-
lar, a mixed condensate.
In addition, we have shown that the mixed-pion mass

cannot be smaller than the minimum of the pure-sea and
pure-valence-pion masses. This mass inequality translates
into an inequality between LECs appearing in the chiral
Lagrangian. The inequality, Eq. (4.16), must hold indepen-
dent of the choice of action of the underlying lattice theory.
In terms of the original LECs in Eq. (2.2), the bound reads

2WM �W 0
8 � 0: (5.1)

Without this restriction on the LECs, the effective potential
by itself would allow for a mixed phase. The inequality we
found follows from expanding the effective potential
around the trivial vacuum, i.e., Eq. (3.8), and imposing
the mass inequality (4.15). It is possible that more con-
straints on these LECs exist that would follow from a
complete study of the effective potential for arbitrary
�vac, by imposing the constraints we found in the under-
lying theory.
Not surprisingly, we recover the well-known conclusion

of Ref. [19] about the possible phase structure in the sea
sector. If c02 > 0, there is a first-order transition when ms

changes sign, and the pion mass is always larger than zero;
if c02 < 0, a second-order transition occurs for small
enough ms, in which isospin and parity are spontaneously
broken [23]. This raises the question whether an inequality
might also be derived for c02 by considering the charged and
neutral pion masses in the sea sector. The reason that this is
not possible, however, is that the neutral pion propagator in
QCD with broken isospin contains ‘‘disconnected’’ dia-
grams, so that the arguments of Sec. IVB do not apply.
Note that in Sec. IVB we only considered propagators for
charged pions, making sure that no disconnected contribu-
tions appear.20

Finally, we expect that our conclusions generalize to
other mixed actions with a chiral valence sector. For in-
stance, if the sea quarks are staggered, they might exhibit a
nontrivial phase structure [33]. In a mixed-action theory
with a staggered sea sector, this nontrivial phase structure
would remain confined to the sea sector, just as in the case
we considered in this paper.
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APPENDIX A: ABSENCE OF
GRASSMANN-VALUED

CONDENSATES

In this appendix we prove that Grassmann-valued con-
densates cannot arise. To be concrete, we consider a pos-
sible h �qs~qvi, where qs is a sea quark and ~qv a ghost quark.
The relevant part of the path integral is of the form21

ZðqÞ �
Z YN

i¼1

d~q�i d~qid �qidqi exp½� �qXq

� �qA~q� ~qyBq� ~qyY~q	; (A1)

where X corresponds to the sea-quark Dirac operator and Y
to the ghost-quark Dirac operator. Here the variables qi and
�qi, i ¼ 1; . . . ; N, are independent Grassmann-valued (fer-
mionic) variables, and the variables ~qi are bosonic,
c-number variables. The matrices X and Y contain
c-number entries, while the matrices A and B are
Grassmann-valued. Of course, the matrices A and B vanish
in mixed-action QCD. But, in order to study the possible
occurrence of a mixed sea-ghost condensate, one chooses
(appropriate entries of) A and B nonzero, and then one
takes the limit of A and B to zero after the volume has been
taken to infinity.

Let us first recall the standard case for which also the ~qi
are fermionic.22 An example is the formation of an Aoki
condensate for two flavors of Wilson fermions. In this case
we would take X ¼ Y equal to the Hermitian Wilson-Dirac
operator, and we may take Aij ¼ mA�ij and

Bij ¼ �mB�ij.
23 Without loss of generality, we may as-

sume that X has been diagonalized:

Xij ¼ xi�ij: (A2)

We then find that

XN
i¼1

h �qi~qiiðqÞ �� @

@mA

ZðqÞ ¼�ZðqÞXN
i¼1

m

x2i þm2
; (A3)

where in the last step we took mA ¼ mB ¼ m and where

h. . .iðqÞ is the unnormalized expectation value with partition

function ZðqÞ. After averaging over the gauge field and
taking the infinite-volume limit, followed by the limit
m ! 0, one finds a nonvanishing condensate if and only

if there is a nonzero density of near-zero modes [34],
because

lim
m!0

m

x2 þm2
¼ ��ðxÞ: (A4)

Now let us return to the case in which the ~qi are bosonic.
The entries of A and B are now fermionic, and we can, in
fact, use this to work out what happens in any basis. Taking
Aij ¼ 
�ii0�jj0 for some fixed values of i0 and j0, the

integral (A1) now evaluates to

ZðqÞ ¼ sdet
X A
B Y

� �
¼ detðX � AY�1BÞ= detðYÞ

¼ detðXÞ expð�trðX�1AY�1BÞÞ= detðYÞ
¼ detðXÞð1� trðX�1AY�1BÞÞ= detðYÞ; (A5)

and we find (taking Grassmann derivatives to be left de-
rivatives)

@ZðqÞ

@

¼ �ðY�1BX�1Þj0i0 detðXÞ= detðYÞ: (A6)

It is clear that in this case, in contrast to the standard case
reviewed above, no nonvanishing value can occur for a
Grassmann-valued condensate in the limit that B ! 0. The
basic reason is that we can always expand the condensate
in terms of the components of A and B, resulting in a finite
polynomial in those components. When we take A and B to
zero, the corresponding Grassmann-valued condensates
will thus always vanish. We conclude that when we con-
sider the vacuum expectation value for the field � in
Eq. (2.1), we can set ! ¼ �! ¼ 0.
Two more comments are appropriate. First, one might

wonder what would happen if one takes the matrices A and
B to be bosonic. In this case, Q ¼ �qA~qþ ~qyBq is
Grassmann-valued, and it is easy to see, by expanding
the exponent in Eq. (A1) in terms of Q, that in this case
the partition function does not depend on A and B at all.
Condensates would thus trivially vanish.
Our second comment is that the same question can also

be studied in ChPT. In other words, one can assume that
a priori ! and �! in Eq. (2.1) do not vanish. One then finds
that the equations of motion (for constant fields) in the
effective theory dictate that ! and �! vanish. This is, of
course, consistent with the QCD-based argument given
above.

APPENDIX B: PROOF OF EQ. (3.5)

Consider the matrix [cf. Eq. (3.4)]

�q ¼ �ss i�sv

i�vs �vv

� �
; (B1)

where all the entries on the right-hand side are two-by-two
matrices with complex entries. As we have seen, �q is

21The argument for the vanishing of h �qv~qvi, with qv a valence
quark, is similar, except that in this case X ¼ Y.
22In that case, the qyi , like the �qi, are independent fermionic
variables as well.
23For mA ¼ mB this corresponds to an Aoki condensate point-
ing in the �2 direction in isospin space.
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an element of SU(4). The unitarity constraint �q�
y
q ¼ 1

provides constraints on the submatrices:

�ss�
y
ss þ �sv�

y
sv ¼ 1; (B2a)

�vs�
y
vs þ �vv�

y
vv ¼ 1; (B2b)

�sv�
y
vv ¼ �ss�

y
vs: (B2c)

The effective theory is invariant under independent flavor
rotations in the sea and the valence sector. With Vs 2
Uð2Þsea and Vv 2 Uð2Þval, �q transforms into

�0
q ¼ Vs�ssV

y
s iVs�svV

y
v

iVv�vsV
y
s Vv�vvV

y
v

 !
: (B3)

We now want to prove that this matrix can be brought into
the form (3.5) if �vv ¼ �v1, with �v an arbitrary complex
number.

First, from Eq. (B2b) we conclude that

�vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j�vj2

q
C; (B4)

where C 2 Uð2Þ. We also find the bound j�vj � 1.

Equation (B2c) implies that �sv�
y
vv�vv�

y
sv ¼

�ss�
y
vs�vs�

y
ss, and hence

j�vj2�sv�
y
sv ¼ ð1� j�vj2Þ�ss�

y
ss: (B5)

Substituting this into Eq. (B2a), we obtain �ss�
y
ss ¼

�vv�
y
vv ¼ j�vj2, and we may thus write �ss as

�ss ¼ ��
vA; (B6)

where A 2 Uð2Þ. From Eq. (B5) we obtain �sv ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j�vj2

p
B, with, from Eq. (B2c), B ¼ ACy.

Performing a flavor transformation with Vv ¼ Cy, we
can thus write �q as

�q ¼ ��
vA i�?

v A
i�?

v 1 �v1

� �
; (B7)

where we introduced �?
v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j�vj2
p

.
The matrix A can be written as expði
��

�Þ, where �� ¼
ð1; ~�Þ. Hence we can define U ¼ expð�i
��

�=

2Þ, with AU2 ¼ 1. Performing a flavor rotation with
Vs ¼ U and writing Uy ¼ ei�V with V 2 SUð2Þ simpli-
fies �q to

�q ¼ ei�
��
ve

i�V2 i�?
v V

i�?
v V �ve

�i�

� �
: (B8)

Finally, the SU(2) matrix can be diagonalized by a flavor
transformation Vs ¼ Vv such that

V ! D ¼ expði��3=2Þ: (B9)

Absorbing the phase e�i� into �v, we arrive at

�q ¼ ei�
��
vD

2 i�?
v D

i�?
v D �v

� �
: (B10)

This is precisely Eq. (3.5). Because�q 2 SUð4Þ, it follows
that detð�qÞ ¼ e4i� ¼ 1 and thus that � ¼ 0 mod �=2.
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