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The decay mode c ð2SÞ ! J=c þ �� is proposed in order to experimentally identify the effects of the

coupling of charmonium states to the continuum D �D states. To have a better understanding of such a two-

photon decay process, in this work we restrict ourselves to investigate the contribution of the discrete part,

in which the photons are mainly produced via the intermediate states �cJðnPÞ. Besides calculating the

resonance contributions of �cJð1PÞðJ ¼ 0; 1; 2Þ, we also take into account the contributions of the higher

excited states �cJð2PÞ and the interference effect among the 1P and 2P states. We find that the

contribution of the 2P states and the interference terms to the total decay width is very tiny. However,

for specific regions of the Dalitz plot, off the resonance peaks, we find that these contributions are sizable

and should also be accounted for. We also provide the photon spectrum and study the polarization of J=c .
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I. INTRODUCTION

Electromagnetic processes have always provided invalu-
able probes of the strong interactions, the most prominent
example being the deep inelastic scattering experiments in
the early 1970s which eventually established QCD as the
fundamental theory of the strong interactions. Among the
current challenges of QCD is the description of the plethora
of charmoniumlike states discovered during the past years,
the so-called ‘‘XYZ’’ (for reviews see, e.g., Refs. [1–4]),
that lie above the D �D threshold, and do not fit potential
model expectations. It is widely accepted that the effects of
the coupling of a core charmonium, namely, a mainly c �c
bound state, to a D �D meson pair, the so-called coupled-
channel effects, are an important ingredient to understand
those states.We shall call the latter continuum states and the
former valence states. Wewill argue below that two-photon
transitions between heavy quarkonium states may provide
important experimental information on the continuum-
valence coupling.

Historically, it has been recognized for a long time that
the continuum states may shift the mass spectrum of a pure
c �c state considerably [5–7]. Recently, exploratory inves-
tigations on the mixing between discrete and continuum
states in charmonium have been carried out in lattice QCD
[8]. Lattice QCD has also provided a detailed study of the
so-called ‘‘string breaking’’ in the static approximation [9],
which may be used to extract information on the
continuum-valence coupling [10]. If the heavy quark
mass m is much larger than the remaining scales in the
system, then the heavy quarks move slowly in their center-
of-mass frame, say with a typical velocity vQ � 1, that is,

with typical three momentum mvQ and hence with typical

binding energy mv2
Q. Nonrelativistic QCD (NRQCD)

[11–13] can be used to factorize the contributions from
energies larger or of the order of m, and provides a good
starting point. Recall that the heavy-light meson pair
threshold lies at a typical nonrelativistic energy ��QCD,

according to heavy quark effective theory (HQET) count-
ing rules [14]. Then, if the binding energy of a heavy
quarkonium state lies much below open flavor threshold,
namely, mv2

Q � �QCD one can integrate out energies of

order��QCD. This leads to potential NRQCD (pNRQCD)

in the strong coupling regime [15]. The dynamics of this
effective theory reduces to a heavy quark and a heavy
antiquark interacting through a potential [16–18] (see
[19] for a review). Hence, in order to understand the
properties of these states, there is no need to introduce
explicitly the continuum states if the potential is chosen
appropriately. However, for states close to or above the
open flavor threshold, the coupling of continuum to va-
lence states needs to be addressed, and so far it is not
known how to proceed in a model independent way.1

Hence, most of the analysis has been done by using differ-
ent models. Recently, some general features of the
coupled-channel effects have been obtained in the quark
model [22] under the assumptions that valence-continuum
coupling is described by the 3P0 model [23] and the

interaction between two mesons is negligible. These results
suggest that for the low-lying states the effect of continuum
channels is hidden in the parameters in the potential model.
In Ref. [24], it is mentioned that the radiative transition
process may be sensitive to the continuum components.
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1A hadronic effective theory has recently been introduced to
study particular states very close to threshold, most notably the
Xð3872Þ, which includes coupled-channel effects [20]. See also
[21] for an even more recent proposal.
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However, previous works, based on Cornell coupled-
channel formalism, indicate that the relativistic corrections
[25,26] may be more important than the continuum con-
tributions [27]. Therefore, it is not straightforward to dis-
entangle the continuum contributions in the one-photon
transition process.

Here, we propose a new process, namely, c ð2SÞ !
J=c þ �� which can provide an additional opportunity
to pin down the valence-continuum coupling. From the
theoretical point of view, electromagnetic transitions al-
low a cleaner analysis than hadronic decay processes. At
the amplitude level, the contribution to this two-photon
transition can be divided into two parts. We refer to the
first one as the discrete part, which involves charmonium
states only. The discrete part is dominated by the follow-
ing process: the c ð2SÞ state decays into a real or virtual
�cJðnPÞ state by radiating one photon, and then, the real
or virtual �cJðnPÞ state decays into J=c plus another
photon. This process not only includes the cascade decay
process (on-shell region), but also the off-shell region. We
will study the whole phase space. The second part is
referred to as the continuum part, in which at least one
photon is emitted by an intermediate charmed meson. In
the discrete part, the �cJð1PÞðJ ¼ 0; 1; 2Þ states can be
on-shell, so the total contribution of the discrete subpro-
cess should be much larger than that of the continuum
part. However, when the invariant mass of J=c and one
of the photons is far away from the resonance regions of
the �cJð1PÞðJ ¼ 0; 1; 2Þ states, the discrete part contribu-
tion will drop down very fast. Thus, the contribution of
the continuum part may be important and measurable in
the off-shell region. Let us mention that in Ref. [28], a
similar decay process of BðDÞ� ! BðDÞ þ 2� is sug-
gested to determine the values of the strong couplings
gBðDÞ�BðDÞ� and gBðDÞ�BðDÞ�.

On the experimental side, such a two-photon transition
process has already been studied in the 1970s and 1980s
[29,30]. In recent years, more precise measurements were
carried out by the BESIII [31,32] and CLEO [33,34]
Collaborations. However, they focused on the investigation
of the cascade decay c ð2SÞ ! �cJ þ � followed by
�cJ ! J=c þ � and on the study of the properties of the
�cJ states. Only in Ref. [34], was a discussion made on the
possible amplitude of the two-photon transition in treating
the backgrounds of the �cJ states. Hence, so far, no one has
ever used it to study coupled-channel effects. Recently, the
BESIII [35] Collaboration reported the significant data
excess from the known cascade backgrounds, which was
interpreted as the nonresonance decay of c ð2SÞ !
J=c��. We remark that this measurement is very sensitive
to the line shapes of the �cJ states, especially in the data
selection region.

Because of the above reason, the significance of an
eventual experimental determination of the continuous pro-
cess depends very much on our knowledge on the discrete

states. As far as we know, the discrete contribution has not
been fully studied yet, and only the individual contribution
of each�cJ state is known by using the nonrelativistic Breit-
Wigner formula together with the dynamical factors to
describe the�cJ line shape in the cascade decay of c ð2SÞ !
�cJ þ � and �cJ ! J=c þ � [34]. So, in this paper we
restrict ourselves to analyze the discrete contribution to this
decay assuming that the coupling of c 0 and J=c to D �D is
zero, and leave for a future work, the detailed evaluation of
D �D meson pair loops effects.
In this work, we will use effective field theory methods

to calculate the decay width, the photon spectrum, and the
J=c polarization in the discrete subprocess. A complete
study of the whole contribution of the discrete �cJð1PÞ
states together with some higher radial excitations,
�cJð2PÞ,2 will be carried out. The rest of this paper is
organized as followings: in Sec. II, we will briefly intro-
duce the effective Lagrangian we use and determine the
value of the effective couplings; in Sec. III, we will calcu-
late the discrete contribution to the c ð2SÞ ! J=c þ ��
process and show the results, and the discussion and sum-
mary will be given in the last section.

II. EFFECTIVE LAGRANGIAN FOR
RADIATIVE TRANSITIONS

The heavy quarkonium states are mainly constituted
by a Q �Q pair and classified according to the spectro-
scopic notation n2Sþ1LJ, where n ¼ 1; 2; . . . is the radial
quantum number, S ¼ 0, 1 is the total spin of the heavy
quark pair, L ¼ 0; 1; 2 . . . (or S; P;D . . . ) is the orbital
angular momentum, and J is the total angular momen-
tum. They have parity P ¼ ð�1ÞLþ1 and charge conju-
gation C ¼ ð�1ÞLþS.
As mentioned in the introduction, NRQCD is a good

starting point to describe this system. The LO NRQCD
Lagrangian is invariant under S ¼ SUð2ÞQ � SUð2Þ �Q
spin-symmetry group, an approximate symmetry of the
heavy quarkonium states, that is inherited in the subse-
quent effective theories. We assume that the entire
dynamics of these states can be described by a (non-
perturbative) potential. That is the case if they are in the
strong coupling regime of pNRQCD. This is a reasonable
assumption for the �cJð1PÞ states [36], and to lesser
extend for J=c .3 The remaining states are close to or
above threshold and are subject to the uncertainties due to
the influence of D �D pairs, that we plan to analyze in a
separate work. In any case, we will only use the fact that
the typical energy of the emitted photons is at the ultrasoft

2The contribution of higher nP states, where n � 3, are
ignored.

3There are indications that J=c may well be better described
by the weak coupling regime of pNRQCD [37–39]. At leading
order in this regime, the dynamics is described by a (perturba-
tive) potential, and the multipole expansion also holds.
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scale mv2
Q, and the typical size of the system at the soft

scale 1
mvQ

. This allows us to carry out the multipole

expansion of the photon field about the center-of-mass
coordinate, which means that the photons see the heavy
quarkonium states as pointlike particles. Hence, it is
most convenient to introduce hadronic spin-symmetry

multiplets, in an analogous way as it was initially done
in HQET [14].
For heavy quarkonium states, this formalism was devel-

oped in Ref. [40]. The states have the same radial number n
and the same orbital momentumL can also be expressed by
means of a single multiplet J�1...�L [40],

J�1...�L ¼ 1þ v

2

�
H�1...�L�

Lþ1 �� þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þp XL

i¼1

��i���v���H
�1...�i�1�iþ1...�L

L�

þ 1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L� 1

2Lþ 1

s XL
i¼1

ð��i � v�iÞH�1...�i�1�iþ1...�L

L�1 � 2

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2L� 1Þð2Lþ 1Þp

�X
i<j

ðg�i�j � v�iv�jÞ��H
��1...�i�1�iþ1...�j�1�jþ1...�L

L�1 þ K�1...�L

L �5

�
1� v

2
; (1)

where v� is the four velocity associated to the multiplet
J�1...�L (not to be mistaken by vQ, the typical velocity of
the heavy quark in the heavy quarkonium rest frame),
K

�1...�L

L represents the spin-singlet effective field, and
H�1...�L�1

L�1 ,H�1...�L

L and H�1...�Lþ1

Lþ1 represent the three spin-
triplet effective fields with J ¼ L� 1, L, and Lþ 1, re-
spectively. The four tensors are all completely symmetric
and traceless and satisfy the transverse condition

v�i
K�1...�i...�L

L ¼ 0; v�j
H

�1...�j...�J

J ¼ 0; (2)

i ¼ 1; . . . ; L, j ¼ 1; . . . ; J. The properties of H and K
under parity, charge conjugation and heavy quark spin
transformations can be easily obtained by assuming that
the corresponding transformation rules of the multiplet
J�1...�L follow as:

J�1...�L!P �0J�1...�L
�0; v�!P v�; (3a)

J�1...�L!C ð�1ÞLþ1C½J�1...�L
�TC; (3b)

J�1...�L!S SJ�1...�L
S0y; (3c)

where C is the charge conjugation matrix (C ¼ i�2�0 in
the Dirac representation), and S 2 SUð2ÞQ and S0 2
SUð2Þ �Q correspond to the heavy quark and heavy antiquark
spin-symmetry groups (½S; v� ¼ ½S0; v� ¼ 0).

Since we are going to consider the two-photon decay of
c ð2SÞ into c ð1SÞ via the intermediate states �cJðnPÞ, it
will be helpful to give the explicit expressions of the S- and
P-wave multiplets that follow from Eq. (1). For the L ¼ S
case, we have

J ¼ 1þ v

2
ðH�

1 �� � K0�
5Þ 1� v

2
; (4)

and for the L ¼ P case,

J� ¼ 1þ v

2

�
H

��
2 �� þ 1ffiffiffi

2
p �����v���H1�

þ 1ffiffiffi
3

p ð�� � v�ÞH0 þ K
�
1 �5

�
1� v

2
: (5)

The radiative transitions between mS and nP charmonium
states in the nonrelativistic limit is given by the
Lagrangian:

L ¼ X
m;n

�nP;mS Tr½ �JðmSÞJ�ðnPÞ�v	F
�	 þ H:c; (6)

where �nP;mS is the coupling constant, and F�	 is the
electromagnetic tensor. The Lagrangian in Eq. (6) pre-
serves parity, charge conjugation, gauge invariance, and
heavy quark and antiquark spin symmetry.
Using the effective Lagrangian, it is straightforward to

calculate the E1 transition decay widths:

�ðm3S1 ! n3PJÞ

¼ ð2J þ 1Þ ð�
nP;mS
J Þ2
144�

k3�
ðMmS þMnPÞ4

M3
mSMnP

; (7a)

�ðn3PJ ! m3S1Þ ¼ ð�nP;mS
J Þ2
48�

k3�
ðMmS þMnPÞ4

MmSM
3
nP

; (7b)

where k� is the energy of the emitted photon. The results

are slightly different from those given in Refs. [40,41]. It is
because the initial and final charmonium states can not be
static simultaneously, and we choose different values of v�

for them to maintain the transverse condition in Eq. (2).
Namely, in the vertex (6) we have substituted the velocity
v� in the current that produces the outgoing particle by v�

f ,

its four velocity. The remaining velocities (i.e. the explicit
one and the one in the current that annihilates the incoming
particle) are chosen as v�

i , the four velocity of the incom-
ing particle. The explicit calculations in (7) show that these
changes maintain the spin-symmetry ratios between the
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decay widths of the different states (provided that the same
mass is used for each spin multiplet). Note that vi:vf ¼
1þOðv4

QÞ, and the results of Ref. [41] differ from ours by

Oðv4
QÞ contributions. In (7) we have also allowed the

coupling constant �nP;mS of the spin-symmetry multiplet
to depend on the total angular momentum J, namely,

�nP;mS ! �nP;mS
J ¼ �nP;mS þOð1=m2Þ. In this way we

are accounting for spin-symmetry breaking terms due to
the spin-orbit, spin-spin, and tensor potentials in pNRQCD
(or in potential models). Note that although spin-breaking
terms look like anOð1=mÞ in NRQCD (like in HQET), this
is actually the case only when ultrasoft particles are emit-
ted, for instance, in magnetic transitions, or in processes
involving pseudo-Goldstone bosons [21]. Soft emissions
can only be virtual and lead to the above mentioned
Oð1=m2Þ spin-breaking potentials, which make the cou-
pling constants different at this order. In conventional

potential models, the differences between �nP;mS
J are usu-

ally taken to be of order v2
Q, although on general grounds

they could be as large as order vQ [17]. �nP;mS can, in

principle, be obtained by calculating the matrix element of
the electromagnetic current between the wave functions of
the nP and mS states in pNRQCD (or in any potential
model, see Ref. [42] for a recent review). Nowadays they
can also be obtained from lattice QCD [43,44]. Here we
will determine their values using experimental data, except
for those related to the �cJð2PÞ for which experimental
data is not available. In the last case the values will be
estimated using a potential model.

For the 1P case, the c ð2SÞ ! �cJð1PÞ þ � and
�cJð1PÞ ! J=c þ � processes have been measured with
a very high precision [45], so we can determine the values
of the relevant coupling constants by comparing with the
experimental results. Using the PDG data [45], M2S ¼
3:686 GeV, Mc ð1SÞ ¼ 3:097 GeV, M�cJ

¼ 3:415, 3.511,

3.556 GeV (for J ¼ 0, 1, 2) �c ð2SÞ ¼ 304 keV, ��cJ
¼

10:3, 0.86, 97 MeV (for J ¼ 0, 1, 2), and

Brðc ð2SÞ ! �c0 þ �Þ ¼ 9:62%;

Brð�c0 ! J=c þ �Þ ¼ 1:16%; (8a)

Brðc ð2SÞ ! �c1 þ �Þ ¼ 9:2%;

Brð�c1 ! J=c þ �Þ ¼ 34:4%; (8b)

Brðc ð2SÞ ! �c2 þ �Þ ¼ 8:74%;

Brð�c2 ! J=c þ �Þ ¼ 19:5%; (8c)

we obtain the absolute values of �1P;2S
J and �1P;1S

J listed in
Table I. For the 2P case, only the �c2ð2PÞ [formerly called
Zð3930Þ [46]] has been included in the PDG, so we esti-
mate the relevant parameters with the help of a potential
model.
The spectrum of the 2P states and their radiative decay into
the lower S-wave states have been calculated by numerous
groups (for reviews see, e.g., Ref. [42]). By using the
screened potential, the updated results of the charmonium
spectrum and the E1 transition rates are given in Ref. [26].
In this work, besides setting M�c2ð2PÞ ¼ 3:929 GeV,

Xð3872Þ is assigned to the �c1ð2PÞ state and M�c0ð2PÞ ¼
3:842 GeV is predicted. From the nonrelativistic results of
�ð�cJð2PÞ ! J=c ðc ð2SÞÞ þ �Þ presented in Table IV of
Ref. [26], we obtain the absolute values of the correspond-
ing coupling constants and give them in Table I. Because
the mass differences between the 2P states are much
smaller than the mass gap between the 2P and 2S (1S)
states, in practice we use the center of gravity mass

Mð2PÞ ¼
M�c0ð2PÞ þ 3�M�c1ð2PÞ þ 5�M�c2ð2PÞ

9
; (9)

and the center of gravity coupling constant

�2P;ms 	 �2P;mS
0 þ 3� �2P;mS

1 þ 5� �2P;mS
2

9
; (10)

rather than calculating the contribution of the individual
2P states.

III. DISCRETE CONTRIBUTION TO
c ð2SÞ ! J=c þ 2�

Now, we proceed to calculate the decay rate of the
process c ð2SÞðp0Þ ! J=c ðp1Þ þ �ðp2Þ þ �ðp3Þ via in-
termediate states �cJðnPÞ. Such a 1 ! 3 process can be
described by the following dimensionless variables:

xi ¼ 2p0 
 pi

M2
c ð2SÞ

;
X
i

xi ¼ 2: (11)

In terms of xi, the three-body phase space �ð3Þ can be

written as

d�ð3Þ ¼
M2

c ð2SÞ
2ð4�Þ3 �ð2� x1 � x2 � x3Þdx1dx2dx3: (12)

For each intermediate �cJðnPÞ, there are two Feynman
diagrams, which are shown in Fig. 1. The corresponding

TABLE I. The numerical values of the coupling constants �nP;mS
J ðGeV�1Þ are shown. For the

n ¼ 1 case, the results are obtained by fitting the experimental data, and for n ¼ 2, the results
are determined by comparing with the potential model predictions [26].

�c0ð1PÞ �c1ð1PÞ �c2ð1PÞ �c0ð2PÞ �c1ð2PÞ �c2ð2PÞ
J=c 0.211 0.230 0.228 5:27� 10�2 5:30� 10�2 5:34� 10�2

c ð2SÞ 0.224 0.235 0.273 0.410 0.413 0.416
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Feynman amplitude is denoted by M�cJðnPÞ. Putting the
contributions of the three 2P states together, the total
Feynman amplitude is then divided into four parts:

MTot¼M�c0ð1PÞþM�c1ð1PÞ þM�c2ð1PÞþM�cð2PÞ: (13)

Each ofM on the right-hand side of the above equation can
be obtained from the Lagrangian in Eq. (6) uponmaking the
same replacements as discussed after (6). Since the propa-
gator of the 1P fields may become on-shell, self-energy
corrections must be considered. We approximate them by
introducing a constant decay width, which, parametrically,
is Oðm�2

sv
5
Q;m�v4

QÞ. Being that these figures are much

smaller than mv2
Q, 1=m corrections to the static propagator

must be considered in order to match its size. As an alter-
native, we use relativistic propagators that include them.
For example, the Feynman amplitude of the first diagram in

Fig. 1 forM�c2ð1PÞ, which is the most complicated one, is

M�c2ð1PÞ ¼ �1P;1S
2 �1P;2S

2 Tr

�
1þ v2s

2
�2s�

�
1þ vp

2

�

� ð���1
���1

þ���1
���1

Þ=2������1�1
=3

v2
p � 1þ I � ��c2ð1PÞ=M�c2ð1PÞ

� Tr

�
1þ vp

2
��1� �

1s

1þ v1s

2

�
v	;2Sv	;p

�F
�	
2

�F
�1	1

3 ; (14)

where ��� ¼ ð�g�� þ v�
pv

�
p Þ, �F��

i ¼ p�
i �

��
i � p�

i �
��
i ,

v�
p ¼ ðp�

0 � p�
2 Þ=M�c2ð1PÞ, and ��c2ð1PÞ is the total width

of �c2ð1PÞ. In the above expression, we have omitted the
imaginary unit I, which is a global factor and has no
influence on the final result. For the convenience of further
discussion, we also divided the decay width of the discrete
part into four parts:

�disðc ð2SÞ ! J=c þ ��Þ ¼ �1P
Ind þ �1P

Int þ �2P � �1;2P
Int ;

(15)

where�1P
Ind is the sumof the three individual contributions of

the �cJ states, which is proportional to
P

2
J¼0 jM�cJð1PÞj2,

�1P
Int is the interference between the 1P states

ð�<fPJ�J0M
��cJð1PÞM�cJ0 ð1PÞgÞ, �2P is the contribution

involving the 2P states only, and �1;2P
Int is the interference

contribution between the 1P and 2P states. The ‘‘þð�Þ’’
sign before the last term corresponds to the two possible
relative phase angles 0 ð�Þ between the 1P and 2P states.

We have computed
P jMTotj2 analytically, but the out-

come is too lengthy to be presented here. After doing the
phase space integrals numerically, we obtain that

�1P
Ind ¼ 15:14 keV ’ X

J

�ðc ð2SÞ ! �þ �cJÞ

� Brð�cJ ! J=c þ �Þ;
�1P
Int ¼ 5:95� 10�2 keV;

�2P ¼ 2:80� 10�3 keV;

�1;2P
Int ¼ 4:13� 10�2 keV: (16)

The numerical results yield that on the total decay width
level the effects of the interference among the �cJð1PÞ
states as well as the effect of the 2P states are so small
that they can be neglected. We have also calculated the
photon spectrum d�ð3Þ=dx2, and display the figures for

each part separately in Figs. 2 and 3, respectively.
Since we have chosen different v for the initial and final

states in Eq. (14), we may also have a nontrivial J=c
polarization, which should be zero in the single v case.
Similar to the production case [47], here, we define the
polarization parameter � as

� ¼ �T � 2�L

�T þ 2�L

; (17)

where �T and �L are the decay widths for J=c in the
transverse and longitudinal polarization states, respec-
tively. We calculate � in the rest frame of c ð2SÞ and get
� ’ �0:16. This is slightly different from zero, and we
interpret it as a purely kinematic effect. We find that � is
mainly determined by the resonance contribution, being
the influence of the interference and the 2P terms tiny.
The experimental measurement of the c ð2SÞ ! J=c þ

�� decay can be implemented in the off-mass shell region
of �cJ, i.e., the experimentally sensitive region in Daltiz
plot

0:15<M�� < 0:51 GeV;

3:43<MJ=c� < 3:49 GeV; (18)

where M�� is the invariant mass of the two photons and

MJ=c� is the invariant mass of J=c and the higher energy

photon. These cuts can mostly exclude the contribution
from the highly yielded �cJð1PÞ states. From the photon
spectrum in the cut region indicated in Fig. 4, the different
contributions to the decay width (15) read

�1P
Ind ¼ 4:68� 10�2 keV; �1P

Int ¼ 6:5� 10�3 keV;

�2P ¼ 1:82� 10�4 keV; �1;2P
Int ¼ 4:78� 10�3 keV:

(19)

FIG. 1. The Feynman diagrams for c ð2SÞ decay into J=c þ 2� via intermediate states �cJðnPÞ.
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We have also computed the branching ratio, photon spec-
trum, and the polarization parameter in the cut region. The
result of the branching ratio is

Bcut
disðc ð2SÞ ! J=c þ 2�Þ

¼
8<
:
1:92� 10�4; ðfor 
 ¼ 0Þ
1:60� 10�4; ðfor 
 ¼ �Þ : (20)

The result in Eqs. (19) and (20) shows that, contrary to the
case of the total decay width (16), in the cut region
the effect of interference among 1P states as well as the
contribution from the 2P states can not be ignored. It is
more than 10% of the sum of the separated contributions of

the �cJð1PÞ states. The J=c produced in the cut region
tend to be unpolarized and the polarization parameter in
the cut region becomes �cut ¼ �0:122 and �0:107 for

 ¼ 0 and 
 ¼ �, respectively. If we only include the three
individual contributions of �cJð1PÞ, the value of �cut turns
to be �0:078. Finally, the different contributions to the
photon spectrum in the cut region are shown in Fig. 4.
As mentioned before, the coupling constant �nP;mS is

related to the spatial matrix element hnPjrjmSi ¼R1
0 RnPðrÞRmSðrÞr3dr in potential models. At least three

different potential models, including the Cornell potential
[48] and the screened potential [26], give the phase angle 

to be � [49]. Hence, the 
 ¼ � option in our calculation
appears to be favored.
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FIG. 3. The partial decay width as a function of the photon energy fraction x2: (a) the contribution of the 2P states, corresponding to
�2P in (15), (b) the contribution of the interference terms between the 2P and the three 1P states, corresponding to �1;2P

Int in (15).
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FIG. 2. The partial decay width as a function of the photon energy fraction x2: (a) the individual contribution of the three
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Ind in (15), (b) the contribution of the interference terms between the three �cJ (J ¼ 0, 1, 2)
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Int in (15).

ZHI-GUO HE, XIAO-RUI LU, JOAN SOTO, AND YANGHENG ZHENG PHYSICAL REVIEW D 83, 054028 (2011)

054028-6



IV. DISCUSSION AND SUMMARY

We have estimated the discrete contribution to the
c ð2SÞ ! J=c þ �� due to electric dipole transitions in
the whole phase space and, in particular, in the cut region
used at BESIII. Higher multipole electric transitions and
the magnetic ones are suppressed by at least v2

Q in the

amplitude. This is also the case for contributions arising
from two-photon vertices. The largest uncertainty in our
calculation comes from the fact that we neglect the con-
tribution of nP states for n � 3. This contribution is not
parametrically suppressed by powers of vQ, although we

expect it to be small for the following two reasons: (i) the
propagator of the nP state is increasingly off-shell when n

increases, and (ii) the coupling constants �nP;1S
J and �nP;2S

J

are proportional to the overlap of the radial wave functions
of the corresponding states, which decreases with n. Apart
from this truncation, the estimate is reliable at leading
order in v2

Q. In fact, the modifications we have made in

(14), which introduce terms of higher order in vQ, take into

account relativistic effects in the kinematics, and hence
help in providing a better estimate.

From the point of view of potential models, the leading
corrections to the E1 transition processes, c ð2SÞ ! �cJ þ
� and �cJ ! J=c þ �, mainly arise from the three fol-
lowing sources: (i) relativistic modification of the non-
relativistic wave functions, (ii) finite size effects, and
(iii) contribution of high v2

Q order electromagnetic opera-

tors [42]. In this work, we use the effective Lagrangian,
Eq. (14), to describe the E1 transition process. For the 1P
case, we determine the values of the corresponding cou-
pling constants from the experimental data. Thus, the
effects of (i), which are dominant, are taken into account
in our results, as far as the vertices involving the 1P states
is concerned. Therefore, our results for the two-photon

decay width in the off-shell region are more accurate
than a potential model calculation for the one-photon E1
transition process. Both the corrections due to (ii) and to
(iii) could be taken into account by including higher di-
mensional operators in the vertices (6). As mentioned
before these operators are suppressed by at least order v2

Q.

Let us next discuss how our results compare with the
usual inputs in theMonte Carlo (MC) codes that are used to
analyze the experimental data. In the experimental treat-
ment of the four contributions in Eq. (15) in the peaking
region, usually only the first one, �1P

Ind, is taken into

account, and is often modeled using the nonrelativistic
Breit-Wigner line shape of �cJ and J=c . The other three
components are negligible and generally omitted. But in
the off-shell region, as argued above, the other three com-
ponents will be sizable and have to be considered in the
data treatment. Furthermore, in the off-shell cut region (18)
, even this naive nonrelativistic Breit-Wigner line-shape
description of the individual �cJ states contribution needs
improvement. The reason is that a (single) nonrelativistic
Breit-Wigner is only a good approximation to the line
shape of d�1P=dx2 in the resonance peaking region, as
shown in Fig. 2(a). In the cut region equation (18), which
lies between the �c0 and �c1 resonance peaks, there is no
guarantee that the nonrelativistic Breit-Wigners will pro-
vide a correct description of data. Let us next point out the
main ingredients it misses. In the E1 transition process,
the decay rate is proportional to the factor k3� as shown in

Eq. (7). We may then improve on the nonrelativistic Breit-
Wigner approximation by just introducing the correct pho-
ton energy dependence in each vertex, i.e., the full k3�1k

3
�2

scale factor from the two E1 transitions. Note that if one
only includes the k3� correction due to the first E1 transi-

tion, �1P in the cut region will be overestimated, because
the energies of the two photons are negatively correlated.
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FIG. 4. The discrete contributions to the photon energy spectrum of the c ð2SÞ ! J=c þ �� process in the cut region: (a) the
contribution of the 1P states, corresponding to �1P

Ind and �1P
Int in (15), (b) the contribution of the 2P states and of the interference terms

between 1P and 2P states, corresponding to �2P and to �1;2P
Int in (15), (c) the total contribution for a different relative phase angle 
,

corresponding to the � sign in (15).
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In Fig. 5, the MC simulation results of the line shapes in
the cut region are shown, which are implemented in two
ways. One is done by including the k3�1k

3
�2 correction from

a double E1 transition, and the other one is not. The
difference between these two MC simulation results can
be understood as follows: the E1 transition enhances the
right tail of photon energy peak and depresses the left tail
of the nonrelativistic Breit-Wigner. As a whole, the effect
of the correlated emitted photons in the double E1 tran-
sition increases the �cJ contribution in the cut region. For
comparison, we also plot the effective Lagrangian result of
the sum of the three individual �cJ states contribution in
Fig. 5. It is clear that neither of the simulation results agree
with that of the effective Lagrangian calculation, although
they are qualitatively similar. From the amplitude in
Eq. (14), it can be verified that the k3�1k

3
�2 factor and the

nonrelativistic Breit-Wigner is only the leading-order non-
relativistic approximation of the effective Lagrangian cal-
culation in the off-shell region. Hence, even for a delicate
description of the individual contribution in the off-shell
region, including the double E1 transition correction in
the naive nonrelativistic Breit-Wigner only may not be
enough.
In summary, we have estimated the discrete contribution

to the c ð2SÞ ! J=c þ �� due to electric dipole transi-
tions in the whole phase space and, in particular, in the cut
region in the experimental measurement. We find that for
the full decay width the interference contribution and the
contributions of higher excited states can be safely ne-
glected. However, in the regions of the phase space off
the resonance peaks, their contributions are considerable
and important for a delicate experimental measurement. As
argued in the Introduction, a large deviation of our results
from an experimental observation would indicate that the
effects of the D �D threshold are significant.
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