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We compute the amplitudes for the insertion of various operators in a quark 2-point function at one loop

in the RI0 symmetric momentum scheme, RI0/SMOM. Specifically we focus on the moments n ¼ 2 and 3

of the flavor nonsinglet twist-2 operators used in deep inelastic scattering as these are required for lattice

computations.
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I. INTRODUCTION

Lattice gauge theories are the main theoretical tool for
exploring the nonperturbative régime of the strong nuclear
force by simulating the underlying quantum field theory
which is the nonabelian gauge theory of quarks and gluons,
(QCD). The numerical techniques allow one to explore the
infrared region where perturbation theory becomes im-
practical because the value of the parameter controlling
the expansion, which is the coupling constant, becomes
large. Briefly, one uses the path integral formalism but with
the space-time continuum replaced by a discrete Euclidean
grid. Then one can construct Green’s functions numeri-
cally, representing, for example, bound state particle spec-
tra, and make measurements of the masses. While
overlooking many of the technical aspects of this proce-
dure at this point, it is a remarkable achievement that the
formalism is in more than solid agreement with nature.
Aside from determining particle spectra, one of the current
main problems is to measure matrix elements of operators
in the nonperturbative region. These are important in, for
instance, understanding the structure of nucleons if one
focuses on the operators relating to deep inelastic scatter-
ing. These were introduced originally in [1] which sub-
sequently produced an intense industry to determine the
operator anomalous dimensions for arbitrary moments to

eventually three loops in the MS renormalization scheme,
[2–7]. Indeed there has been a large degree of progress in
the area of measuring matrix elements of quark bilinear
currents and operators and the associated renormalization
constants by the QCDSF collaboration, [8–14], and others
[15–24]. However, in order to make reliable measurements
and hence accurate predictions one has to overcome vari-
ous theoretical difficulties. Aside from those relating spe-
cifically to the lattice, there is the problem of ensuring the
results match what would be expected at high energies. In
other words, the Green’s function depends on some refer-
ence momentum value and the numerical simulations, in
principle, make measurements not only at low but also at
high energies. In the latter case perturbation theory is
actually valid there and hence is a reliable complementary
tool. Therefore, if the same Green’s function is computed

to several loop orders then it ought to be the case that the
numerical measurements will overlap at large energies.
Given this, it is sometimes the situation when there are
accurate large loop order results that the continuum esti-
mate is used to assist with normalizing the lattice
measurements.
This brief overview clouds some of the more technical

aspects of the overall procedure. For instance, all the
operators of interest undergo renormalization. While this
is not a major problem, since the formalism to carry out a
renormalization has been established for many years now,
there is the problem of the relation of a continuum renor-
malization to what is performed in practice on the lattice.
For instance, the standard practice in high energy problems
is to dimensionally regularize QCD and then to subtract the
resulting divergences, which are manifested as poles in the
regularizing parameter �, in a minimal or modified mini-

mal way. The latter scheme, MS, is the main procedure
primarily as convergence is improved by removing a spe-
cific finite part in addition to the basic poles. The main
advantage of this mass independent renormalization
scheme is that one can compute to very high loop order
when the quarks are massless and even to a reasonable
order in some cases when there are massive quarks. While
this provides accurate results for the lattice to match, there
is a technical problem to be overcome which is that the
lattice computations are invariably in a nonminimal renor-
malization scheme. So to make a proper comparison for
matching at high energy one has to convert the results to
the same scheme. One of the more widely used lattice
schemes is the RI0 scheme, [25,26], which denotes the
modified regularization invariant scheme. It is a modifica-
tion of the RI scheme, [25,26], where the essential differ-
ence is in the way the quark wave function renormalization
constant is defined. Briefly, the difference between the RI0
and RI schemes is in a differentiation of the quark 2-point
function with respect to the momentum. As the derivative
has a financial cost for the lattice, the RI0 scheme is more
efficient and hence is the default scheme in this respect,
[25,26]. Both these lattice schemes are mass dependent

renormalization schemes and are a hybrid of MS and
MOM schemes. By this we mean that in the main 2-point
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functions are renormalized according to a MOM type
subtraction while three and higher point functions are

renormalized using MS. This ensures, for example, that
the RI and RI0 scheme coupling constants are the same as

that of the MS scheme, [25,26]. While introduced in
[25,26], the renormalization of QCD in the continuum
has been studied in the Landau gauge in [27] and later in
a general linear covariant gauge in [28].

Consequently, with interest in measuring matrix ele-
ments on the lattice relating to nucleon structure there
has been a need to carry out the continuum RI0 renormal-
ization of the same Green’s functions. These involve the
low moment flavor nonsinglet twist-2 Wilson operators
which arise in the deep inelastic scattering formalism.
Indeed three loop results are available in RI0 in [28–30].
As these renormalization constants are determined by in-
serting the operator into a quark 2-point function with
massless quarks then one could apply standard algorithms
such as MINCER, [31,32], to achieve high loop orders.
However, from a technical point of view this renormaliza-
tion is carried out at a point of exceptional momentum
since the operator is inserted at zero momentum. In this
configuration one is effectively dealing with a reduced
2-point function. It has recently been pointed out, [33],
that for matrix elements relating to quark masses, one
could have infrared issues in extracting reliable results in
the nonperturbative region as a consequence of this mo-
mentum configuration. To circumvent this technicality an
alternative scheme has been developed which is called the
RI0/SMOM scheme, [33]. It differs from the RI0 scheme in
that 3-point functions are not subtracted at an exceptional
point but instead at a symmetric point. This means that
none of the external momenta are nullified, so that the
potential infrared singularity embedded within the loga-
rithms of the Green’s function are bypassed, [33]. While
the one loop computations were performed in [33], this has
recently been extended to two loops in [34,35] for the
scalar and tensor currents. However, given that there is
recent interest in measuring twist-2 flavor nonsinglet op-
erator matrix elements on the lattice for low moments,
[23], it is the purpose of this article to present the first
one loop computations for the moments n ¼ 2 and 3.
Although lattice computations focus on the Landau gauge,
partly because that gauge is less complicated to fix numeri-
cally, the Green’s function with the operator insertion is
gauge dependent. So in developing another renormaliza-
tion scheme to overcome one technical problem there are
potential numerical errors in measurements from gauge
fixing issues. Instead, all our results will be in a general
linear covariant gauge. While the renormalization of these
Wilson operators has already been carried out for the RI0
scheme, [28–30], it may appear to be rather simple to
follow that procedure for the latest scheme. This is not
the case for an elementary reason. This has to do with the
fact that the Wilson operators mix under renormalization,

[36]. It is widely accepted that the flavor singlet Wilson
operators mix among themselves and the flavor nonsinglet
ones do not, [1–3]. Indeed in the original context of [1–3]
this is the situation. However, that is only the case for the
latter set if the Green’s function containing the operator
does not have a momentum flowing out of the operator
itself. If there is a net momenta flow through the operator
then they mix into a set of total derivative operators. Given
that the RI0/SMOM scheme is at nonexceptional momenta
then this mixing cannot be ignored. It has been studied to
three loops in a practical situation in [36] where a similar
problem for the lattice was examined but in a context
which involves a Green’s function which is gauge inde-
pendent but contains two operators. Indeed the mixing
matrix for the two Wilson operators we consider here

was calculated to three loops in the MS scheme. Without
including the mixing in [36] the operator correlation func-
tion did not correctly satisfy the renormalization group
equation at two and three loops.
The article is organised as follows. We review the prob-

lem and the necessary background in Sec. II. All our results
are collected in Sec. III and Sec. IV where we give all the
amplitudes as a function of the gauge parameter of an

arbitrary linear covariant gauge for both the MS and
RI0/SMOM schemes. We conclude in Sec. V and include
an appendix. It contains the bases of tensors into which all
the Green’s functions are decomposed together with the
coefficients of the projection tensors which project out
each specific amplitude.

II. PRELIMINARIES

In this section, we recall the background to the problem
and the calculational setup. First, the various operators we
will be considering, which are gauge invariant, are:

S � �c c ;

V � �c��c ;

T � �c���c ;

W2 � S �c��D�c ;

@W2 � S@�ð �c��c Þ;
W3 � S �c��D�D�c

@W3 � S@�ð �c��D�c Þ;
@@W3 � S@�@�ð �c��c Þ (2.1)

where the first three operators are included for checking
purposes and all derivatives, both ordinary and covariant,
act to the right. In (2.1) S means total symmetrization in
the free Lorentz indices and we use the same labelling and
notation as [36] for ease of reference. For instance, at
certain points in this respect we will refer to the level W2

or W3. By this we will mean either the specific operator
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with that label or the set of operators within that level
which are additionally either @W2 or @W3 and @@W3

respectively. Like [36], it will be clear from the context
which is meant. As discussed already one must include
these additional total derivative operators within each level
since there is mixing between the operators. Such mixing
must be included when there is a momentum flowing
through the operator insertion in the Green’s function
irrespective of the number of such included operators.
For the earlier RI0 scheme computations of the anomalous
dimensions, the mixing issue was not relevant since the
operator was inserted at zero momentum, [28–30]. Given
that we are considering operators with free Lorentz indices,
whether they relate to deep inelastic scattering or not, we
cannot follow the earlier prescription of [1–3]. There the
free Lorentz indices of the matrix elements were con-

tracted with a null vector, ��, which projected out that

part of the matrix element containing the divergence. The
reason that we have to take a different approach resides in
the fact that on the lattice measurements are made for
various individual components of the free indices.
Therefore, we have to take a more general approach and
decompose our Green’s functions into a basis of Lorentz
tensors which have the same symmetry structure as the
operator which is inserted into the Green’s function. For
the tensor current this means that the basis has to be
antisymmetric in the two free indices since ��� ¼ 1

2 �½��; ���. In the case of the two Wilson operators each
operator in the respective levels are totally symmetric in
the indices and are traceless in d-dimensions, [1]. To be
specific we have

SOW2
�� ¼ OW2

�� þOW2
�� � 2

d
���O

W2�
� ;

SOW3
��� ¼ OW3

S��� � 1

ðdþ 2Þ ½���O
W3�
S�� þ ���O

W3�
S�� þ ���O

W3�
S�� � (2.2)

with

OW3

S��� ¼ 1

6
½OW3

��� þOW3
��� þOW3

��� þOW3
��� þOW3

��� þOW3
���� (2.3)

where the basic operators are

OW2
�� ¼ �c��D�c ;

OW3
��� ¼ �c��D�D�c (2.4)

and D� is the usual covariant derivative. These are the
same definitions as used in earlier computations, [28–30].
The total derivative operators in the same respective levels
satisfy these same template definitions. (We have sup-
pressed the free flavor indices but note that these are flavor
nonsinglet operators.)

Next we recall the key points concerning the mixing of
the operators in levelsW2 andW3. First, as we are working
with massless quarks there are no lower dimensional op-
erators to be included and there is no mixing between
levels. Next the particular choice of operators, (2.1), means
that while there is mixing the mixing matrix of renormal-
ization constants is upper triangular and given by, [36],

ZW2

ij ¼ ZW2

11 ZW2

12

0 ZW2

22

0
@

1
A (2.5)

and

ZW3

ij ¼
Z
W3

11 Z
W3

12 Z
W3

13

0 ZW3

22 ZW3

23

0 0 Z
W3

33

0
BBB@

1
CCCA: (2.6)

Again we avoid a clumsy index on the matrix elements by
using a numerical map to the respective sets fW2; @W2g and
fW3; @W3; @@W3g respectively. Here the superscript indi-
cates the level. Once these have been determined in a
specific renormalization scheme, then the anomalous di-
mension matrix is deduced from

�O
ij ¼ �

d

d�
lnZO

ij (2.7)

with

�
d

d�
¼ �ðaÞ @

@a
þ 	�	ða;	Þ @

@	
(2.8)

where 	 is the gauge parameter of the canonical linear
covariant gauge and 	 ¼ 0 corresponds to the Landau
gauge. Although the operators we are considering are
gauge invariant, in a mass dependent renormalization
scheme, such as RI0 or RI0/SMOM, the anomalous dimen-
sions can depend on the gauge. This is why we have
included the second term on the right side of (2.8).
However, for the one loop computation here the leading
term is scheme independent so that there is no gauge
dependence at this order. In order to compare with the
structure of our RI0/SMOM results later, we recall the three

loop MS scheme anomalous dimension mixing matrices,
[36], are
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�W2

11 ðaÞ ¼
8

3
CFaþ 1

27
½376CACF � 112C2

F � 128CFTFNf�a2

þ 1

243
½ð5184
ð3Þ þ 20920ÞC2

ACF � ð15552
ð3Þ þ 8528ÞCAC
2
F

� ð10368
ð3Þ þ 6256ÞCACFTFNf þ ð10368
ð3Þ � 560ÞC3
F

þ ð10368
ð3Þ � 6824ÞC2
FTFNf � 896CFT

2
FN

2
f�a3 þOða4Þ;

�W2

12 ðaÞ ¼ � 4

3
CFaþ 1

27
½56C2

F � 188CACF þ 64CFTFNf�a2

þ 1

243
½ð7776
ð3Þ þ 4264ÞCAC

2
F � ð2592
ð3Þ þ 10460ÞC2

ACF

þ ð5184
ð3Þ þ 3128ÞCACFTFNf � ð5184
ð3Þ � 280ÞC3
F

� ð5184
ð3Þ � 3412ÞC2
FTFNf þ 448CFT

2
FN

2
f�a3 þOða4Þ;

�W2

22 ðaÞ ¼ Oða4Þ (2.9)

and

�
W3

11 ðaÞ ¼
25

6
CFaþ 1

432
½8560CACF � 2035C2

F � 3320CFTFNf�a2

þ 1

15552
½ð285120
ð3Þ þ 1778866ÞC2

ACF � ð855360
ð3Þ þ 311213ÞCAC
2
F

� ð1036800
ð3Þ þ 497992ÞCACFTFNf þ ð570240
ð3Þ � 244505ÞC3
F

þ ð1036800
ð3Þ � 814508ÞC2
FTFNf � 82208CFT

2
FN

2
f�a3 þOða4Þ

�
W3

12 ðaÞ ¼ � 3

2
CFaþ 1

144
½81C2

F � 848CACF þ 424CFTFNf�a2 þOða3Þ;

�W3

13 ðaÞ ¼ � 1

2
CFaþ 1

144
½103C2

F � 388CACF þ 104CFTFNf�a2 þOða3Þ; �W3

22 ðaÞ

¼ 8

3
CFaþ 1

27
½376CACF � 112C2

F � 128CFTFNf�a2

þ 1

243
½ð5184
ð3Þ þ 20920ÞC2

ACF � ð15552
ð3Þ þ 8528ÞCAC
2
F

� ð10368
ð3Þ þ 6256ÞCACFTFNf þ ð10368
ð3Þ � 560ÞC3
F

þ ð10368
ð3Þ � 6824ÞC2
FTFNf � 896CFT

2
FN

2
f�a3 þOða4Þ;

�W3

23 ðaÞ ¼ � 4

3
CFaþ 1

27
½56C2

F � 188CACF þ 64CFTFNf�a2

þ 1

243
½ð7776
ð3Þ þ 4264ÞCAC

2
F � ð2592
ð3Þ þ 10460ÞC2

ACF

þ ð5184
ð3Þ þ 3128ÞCACFTFNf � ð5184
ð3Þ � 280ÞC3
F

� ð5184
ð3Þ � 3412ÞC2
FTFNf þ 448CFT

2
FN

2
f�a3 þOða4Þ;

�W3

33 ðaÞ ¼ Oða4Þ (2.10)

where 
ðzÞ is the Riemann zeta function, a ¼ g2=ð16�2Þ
and Nf is the number of massless quarks. The group
Casimirs are defined by

TaTa ¼ CF; TrðTaTbÞ ¼ TF�
ab;

facdfbcd ¼ CA�
ab (2.11)

where Ta are the Lie group generators with structure
functions fabc and 1 � a � NA where NA is the dimension
of the adjoint representation.
We turn now to the setup for the particular Green’s

function we are interested in which is hc ðpÞOi
�1...�ni

ð�p

�qÞ �c ðqÞi and is illustrated in Fig. 1. The independent
external momenta we use are p and q and are the momenta
flowing into the external quark legs. Thus there is a
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momentum of (pþ q) flowing out through the operator
insertion whose location is indicated by the circle contain-
ing a cross. In order to determine the renormalization con-

stants for the basic operators in theMS andRI0 schemes one
chooses q ¼ �p. However, for the RI0/SMOM scheme the
two momenta are left unconstrained. Instead to define
the symmetric point of subtraction for the renormalization
the square of the momenta satisfy, [33–35],

p2 ¼ q2 ¼ ðpþ qÞ2 ¼ ��2 (2.12)

which imply

pq ¼ 1

2
�2 (2.13)

where � is the renormalization scale introduced to ensure
the coupling constant is dimensionless in d-dimensions.
Given this, the Green’s function is decomposed into a basis
of independent Lorentz tensors, P i

ðkÞ�1...�ni

ðp; qÞ, with as-

sociated amplitude, �Oi

ðkÞðp; qÞ, which is the value we will

compute at the symmetric subtraction point,

hc ðpÞOi
�1...�ni

ð�p� qÞ �c ðqÞijp2¼q2¼��2

¼ Xni
k¼1

P i
ðkÞ�1...�ni

ðp; qÞ�Oi

ðkÞðp; qÞ: (2.14)

Here the bracketed subscript k labels the tensor of the basis
and the superscript i is the operator level label, (2.1). The
explicit tensors for each level are given in Appendix A
together with the method which allows one to compute
the amplitude itself via a projection onto the Green’s func-
tion with free indices. The same tensor basis and projection
is used for each level. The total number of projectors, ni, is
different for each level and recorded in Table I. It is worth
noting that the basis of projection tensors which we use for
each level is not unique. They are constructed from the basic
momentum vectors, �-matrices and metric tensors avail-
able, in such a way that each final tensor has the same
symmetry structure as its associated operator insertion, as
well as being traceless in d-dimensions. However, to con-
struct all the tensors in each set of projectors we have
isolated all the basic one loop tensor integrals within each
computation. These are then decomposed into their own
tensor basis with their associated scalar integrals. For
instance,

Z
k

k�k�

k2ðk� pÞ2ðkþ qÞ2
��������p2¼q2¼��2

¼ 4

½d� 2�
�
���

�
1

4
I1 þ 1

3
I2 þ 1

6
I3 þ 1

6
I4 þ 1

3
I5

�

þ p�p�

�2

�
1

3
I1 þ 4

9
ðd� 1ÞI2 þ 2

9
ðd� 1ÞI3 þ 2

9
ðd� 1ÞI4 þ 1

9
ðdþ 2ÞI5

�

þ p�q�

�2

�
1

6
I1 þ 2

9
ðd� 1ÞI2 þ 1

9
ð4d� 7ÞI3 þ 1

9
ðd� 1ÞI4 þ 2

9
ðd� 1ÞI5

�

þ q�p�

�2

�
1

6
I1 þ 2

9
ðd� 1ÞI2 þ 1

9
ðd� 1ÞI3 þ 1

9
ð4d� 7ÞI4 þ 2

9
ðd� 1ÞI5

�

þ q�q�

�2

�
1

3
I1 þ 1

9
ðdþ 2ÞI2 þ 2

9
ðd� 1ÞI3 þ 2

9
ðd� 1ÞI4 þ 4

9
ðd� 1ÞI5

��
(2.15)

where
R
k ¼

R
ddk
ð2�Þd and

I1 ¼
Z
k

1

ðk� pÞ2ðkþ qÞ2
��������p2¼q2¼��2

;

I2 ¼
Z
k

ðkpÞ2
k2ðk� pÞ2ðkþ qÞ2

��������p2¼q2¼��2
;

I3 ¼ I4 ¼
Z
k

kpkq

k2ðk� pÞ2ðkþ qÞ2
��������p2¼q2¼��2

;

I5 ¼
Z
k

ðkqÞ2
k2ðk� pÞ2ðkþ qÞ2

��������p2¼q2¼��2
; (2.16)

are the basic scalar integrals. This together with the other
relevant tensor integrals is substituted back into the main
computation and the index contractions are performed.
This ensures that no basis tensor is overlooked in the
procedure of constructing the basis. Once the basis is

p↑ q↑

p+q↑

FIG. 1. Graphical illustration of the Green’s function,
hc ðpÞOi

�1...�ni
ð�p� qÞ �c ðqÞi, used to renormalize operators in

the RI0/SMOM scheme.

TABLE I. Number of projectors for each operator insertion.

i S V T W2 W3

ni 2 6 8 10 14
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established we determine the explicit projection of
Appendix A. This is used to check the final results.
Moreover, having found the tensor basis at one loop it
can then be applied directly in a two loop calculation.

In addition, for the �-algebra we use the generalized
basis of �-matrices which has been introduced in [37–39]
with more explicit details of their properties given in
[40,41]. Briefly, we define these new matrices, �

�1...�n

ðnÞ , by

�
�1...�n

ðnÞ ¼ �½�1 . . .��n� (2.17)

which is totally antisymmetric in the Lorentz indices for
n � 1 and the square bracket notation includes the overall
factor of 1=n!. So, for instance, �ð0Þ is the unit matrix,

�ð0Þ ¼ I, and��� ¼ �
��
ð2Þ . Though wewill invariably retain

�� for n ¼ 1. One advantage of this basis is that

tr ð��1...�m

ðmÞ ��1...�n

ðnÞ Þ / �mnI
�1...�m�1...�n (2.18)

where I�1...�m�1...�n is the unit matrix in this �-space,
[37–41]. As a result of this there is a partitioning of the
projection matrix into sectors with different �ðnÞ as is

evident in the examples in Appendix A. Two final points
concerning the projectors are worth emphasizing. First, our
choice of basis tensors, P i

ðkÞ�1...�ni

ðp; qÞ, only has meaning

strictly at the symmetric subtraction point. Away from this
point there will be a bigger basis set of tensors since then
wewould havep2 � q2,p2 � ðpþ qÞ2 and q2 � ðpþ qÞ2
as is evident from the explicit forms given in Appendix A.
Second, at the symmetric point the number of independent
tensors in each case is clearly larger than that of the
asymmetric forward subtraction point considered in the
RI0 scheme. For instance, in the case of the scalar there
are two tensors in the basis unlike the unique one of the RI0
scheme. In this case the additional basis element is �pq

ð2Þ
where we use the convention that the appearance of a
momentum vector in place of a Lorentz index indicates
the contraction of that index with that momentum. Clearly
this object vanishes if either momentum is zero or one is
proportional to the other, corresponding to the RI0 scheme
momentum configuration. As regards the tensor basis for
each of the operators, the use of the generalized matrices
��1...�n

ðnÞ is important in regarding the basis as complete.

This is because they span spinor space in d-dimensions,
[37,39], with n being any positive integer. Therefore, it is
natural to make use of them in dimensionally regularized
computations. Though for the operators considered here n
never exceeds 4. If there were more than two independent
momenta then obviously a larger value of n would be
necessary. As �

�1...�n

ðnÞ clearly form the basis of the spinor

vector space of the tensor basis decomposition, the
Lorentz vector space part of the overall basis for each
operator is then made complete by building Lorentz
tensors from combinations of elements of the set
f���; p�; q�;��1...�n

ðnÞ g. These have, of course, to be

consistent with the symmetries of the Lorentz indices of
the operator inserted in the Green’s function. From this it is
clear that our basis is complete for each operator, as there is
no room to build additional tensors from the basic struc-
tures of the Lorentz and spinor vector spaces.
Given that there is more than one amplitude for each

operator insertion, we have to be careful in defining the
renormalization constant in the RI0/SMOM scheme. For all
the cases we consider here the ultraviolet divergence re-
sides in a subset of the amplitudes which in fact contains at
least one element except for the special case of the vector
current. For V the RI0/SMOM scheme renormalization has
to be treated separately. If, for the moment, we denote this
representative basis tensor by the label 0 then we define the

renormalization constant for the operatorO, ZRI0=SMOM
O , by

the condition

lim
�!0

½ZRI0
c ZRI0=SMOM

O �O
ð0Þðp; qÞ�jp2¼q2¼��2 ¼ 1 (2.19)

where ZRI0
c is the quark wave function renormalization

constant in the RI0 scheme which is given in [27,28]. The
reason why the value in the original RI0 scheme is used has
been discussed in [33–35]. In determining the final renor-

malization constant ZRI0=SMOM
O , we follow the procedure of

[42] for automatic Feynman diagram computations. In
other words we compute all diagrams in terms of their
bare quantities which here are essentially the coupling
constant and the gauge parameter. Then the renormalized
parameters are introduced by rescaling with the already
determined coupling constant and gauge parameter renor-
malization constants. Although the latter should be taken to
be in the RI0 scheme to the one loop order we are working,
any scheme effect will not show up until two loops. While
this is a standard procedure for introducing counterterms,
the main issue here is that this rescaling from bare to
renormalized quantities must also include the mixing of
the operators. Therefore, in constructing our amplitudes,
which are recorded in sections three and four, the matrices
(2.5) and (2.6) have been included. In practical terms this
means that the renormalization constants are found by first
fixing those in the last row of each matrix. Then those in
the next row are determined and repeated until the ultimate
row is found. This is similar to the method used in [36] to
deduce (2.9) and (2.10). The basic reason for this literal
bottom up approach is that the counterterms to be deter-
mined are intertwined due to the triangularity of the matrix
and this is the systematic way to disentangle them.
However, in defining the RI0/SMOM scheme here in the
general terms indicated in (2.19) one has to be careful in
any situation involving the vector current due to the under-
lying Slavnov-Taylor identity which affects this operator.
We will discuss this caveat in more detail later as it arises
not just in the case of the vector current itself but is
embedded in each set W2 and W3.
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Having concentrated on the general quantum field theo-
retic formalism that is used, we now comment on the
practicalities of the calculation. We use standard tools for
this. All the algebra is carried out with the symbolic
manipulation language FORM, [43]. The three one loop
Feynman diagrams are generated in electronic form by
the QGRAF package, [44], with the output converted into
FORM input notation. This procedure appends indices and

labels to all the fields. Various FORM modules were then
used to insert the basic Feynman rules for the propagators
and vertices before those of the particular operator of
interest. The ni amplitudes were then projected out by
the theory given in Appendix A for successive Green’s
functions. These are first determined by constructing all the
basic tensor integral decompositions akin to (2.15). Once
determined we construct the tensor basis and repeat the
computation by use of the projections given in
Appendix A. The final part is to actually substitute the
explicit values of the master one loop scalar integrals. This
may have required integration by parts but for the most part
the resulting integrals are one loop with only two propa-
gators such as I1. These bubbles are simple to determine.
The remaining integral isZ

k

1

k2ðk� pÞ2ðkþ qÞ2
��������p2¼q2¼��2

¼ 9s2
�2

þOð�Þ (2.20)

where s2 ¼ ð2 ffiffiffi
3

p
=9ÞCl2ð2�=3Þ and Cl2ðxÞ is the Clausen

function which was evaluated in [45]. We use dimensional
regularization in d ¼ 4� 2� dimensions. Given these in-
gredients we have been able to determine all the one loop
amplitudes for the set of operators (2.1) where we have
repeated the calculation for S, V and T as an elementary
check on our programmes. We correctly reproduced all the
one loop expressions given in [33–35] for both anomalous
dimensions and amplitudes.

III. QUARK CURRENTS.

Having concentrated on describing the background to
the problem and the methodology of the computations, we
turn to the mundane task of recording the explicit ampli-
tudes. In this section we do this successively for the scalar,
vector and tensor currents. In [33–35] the anomalous di-
mensions were computed at one and two loops for the
scalar and tensor cases in the RI0/SMOM schemes. In

addition the one loop amplitudes in the MS scheme were
given for each of the three operators in [33]. In the appen-
dix we give the explicit mapping between our amplitudes,

�O
ðkÞðp; qÞ, for the quark currents and those defined in [33]

in order to compare. Though we note that we are in full
agreement with the results of [33]. Since lattice computa-
tions will measure various directions and then extract
estimates for the overall Green’s function it seems appro-

priate to provide the amplitudes for theMS scheme, as well
as for RI0/SMOM, as ultimately the former is the reference

scheme one will map to. Equally the explicit MS expres-

sions will be useful for lattice groups who convert to MS
first before comparing to the high energy expressions
rather than work in the RI0/SMOM directly in order to do
the matching. This seems appropriate since it will be noted
later that there is not a definitive RI0/SMOM scheme
especially when operators have Lorentz indices such as
the Wilson operators. Moreover, while providing results
for both schemes may appear to introduce a degree of
redundancy, because at one loop there is overlap in the
actual expressions for the amplitudes between the schemes,
this is not preserved at two loops, [46]. Also for the Wilson
operators the results in both schemes will be useful to
ensure that we have preserved properties of the sets of
operators in each level between schemes. For the scalar

current we have the MS result at one loop

�S
ð1Þðp; qÞjMS ¼ �1þ CF

�
27

2
s2 � 4� 2	þ 9

2
s2	

�
a

þOða2Þ;
�S

ð2Þðp; qÞjMS ¼ CF½3s2	� 3s2�aþOða2Þ: (3.1)

To make contact with other work in this area, [33], we note
the relations

C0ð1Þ ¼ 9s2 ¼ 2

3
c 0
�
1

3

�
�
�
2�

3

�
2

(3.2)

where c ðzÞ is the derivative of the logarithm of the Euler
�-function and C0ð!Þ was the function used in [33] to
interpolate between the symmetric and exceptional mo-
menta scheme choices. While this case has already been
analyzed in [33–35] we discuss it here as it raises several
issues with regard to defining the subsequent RI0/SMOM
scheme renormalization constants for the Wilson opera-
tors. For instance, it would appear that the definition of the
scheme can be given in several ways. Given this form for
the Green’s function, one could either define the
RI0/SMOM scheme operator renormalization constant by
absorbing the finite part of the 1 direction. Alternatively
one could take the projection of the Green’s function by
some tensor, such as that of the Born term, and then absorb
whatever the finite part emerges into the renormalization
constant. For the scalar case this would actually give the
same renormalization constant because of (2.18). However,
for other operators there appears to be a degree of freedom
in how one can actually define the scheme. Though, of
course, one would retain the fundamental criterion of
(2.19) to ensure there are no corrections beyond the leading
order. As these methods are equivalent here we note that
we reproduce the scalar current results of [33] for the
renormalization constant

ZS ¼ 1þ CF

�
� 3

�
� 4þ 27

2
s2 � 	þ 9

2
s2	

�
aþOða2Þ

(3.3)
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where we use the notation that all expressions will be in

RI0/SMOM unless explicitly indicated to be in MS. The
resulting amplitudes are

�S
ð1Þðp; qÞ ¼ �1þOða2Þ;

�S
ð2Þðp; qÞ ¼ CF½3s2	� 3s2�aþOða2Þ (3.4)

where channel 2 is the same as the MS expression.
However, this will not be the case at two loops, [46].
The situation for the vector current is more in-

volved partly because of the increase in amplitudes

with one free Lorentz index. First, the MS amplitudes
are

�V
ð1Þðp; qÞjMS ¼ �1þ CF½2� 3s2 � 2	þ 6s2	�aþOða2Þ;

�V
ð2Þðp; qÞjMS ¼ �V

ð5Þðp; qÞjMS ¼ CF

�
8

3
� 6s2 � 4

3
	þ 6s2	

�
aþOða2Þ;

�V
ð3Þðp; qÞjMS ¼ �V

ð4Þðp; qÞjMS ¼ CF

�
4

3
� 2

3
	þ 6s2	

�
aþOða2Þ;

�V
ð6Þðp; qÞjMS ¼ �6CFs2aþOða2Þ: (3.5)

Here the renormalization constant for the current is

ZVjMS ¼ 1þOða2Þ: (3.6)

This value derives from the fact that the vector current is a
physical operator and undergoes no renormalization to all
orders in perturbation theory. Moreover this is a conse-
quence of the Slavnov-Taylor identity. Turning to the
RI0/SMOM situation, it is tempting to define the renormal-
ization constant in this case by either the projection by the
Born tensor or by taking the coefficient of the channel 1
amplitude. This would lead to a renormalization constant
in the RI0/SMOM scheme with a nonzero finite part.
However, this would be inconsistent with the Slavnov-
Taylor identity. In addition as the MS renormalization
constant is unity to all orders then this implies, [47], that
the RI0/SMOM renormalization constant is already deter-
mined and equivalent to (3.6). Therefore, we have for the
vector current renormalization

ZV ¼ 1þOða2Þ: (3.7)

In order to see that this is equivalent with the Slavnov-
Taylor identity one can contract the Green’s function with
the vector ðpþ qÞ� as this is the momentum flowing
through the inserted operator. This procedure corresponds
to the renormalization of the divergence of the current. In
terms of (3.5) the combination of amplitudes in this con-
traction proportional top is

�V
ð1Þðp;qÞ�

1

2
�V

ð2Þðp;qÞ�
1

2
�V

ð5Þðp;qÞ¼�1þOða2Þ: (3.8)

A different combination determines the coefficient for
the piece involving q but with the same result. The fact
that there is no OðaÞ correction is because we have
renormalized the quark 2-point functions in an RI0
scheme and the wave function renormalization constant
defined in this way leaves the 2-point function as unity
to all orders. Hence the Slavnov-Taylor identity is sat-
isfied. We have checked that this is also the situation in
the MS case and, moreover, this has been extended to
two loops in RI0/SMOM, [46], where it was verified that
the Slavnov-Taylor identity was consistent in that case
too in keeping with the general argument given in [33].
Crucial to this analysis is knowledge of the full basis of
tensors into which the Green’s function can be written.
Although the channel 6 amplitude appears to be de-
coupled due to the �ðnÞ basis we use, omitting it would
lead to an inconsistent operator renormalization. Finally,
in considering the Slavnov-Taylor identity in this way it
would have become clearer if a different combination of
tensors was used in the basis rather than the ones given
in Appendix A. In other words we could have used a
basis where all but one tensor in the basis vanished when
contracted by ðpþ qÞ� whence the presence of the
Slavnov-Taylor identity would have been explicit.
Finally, we note the RI0/SMOM scheme amplitudes after
renormalization are

�V
ð1Þðp; qÞ ¼ �1þ CF½2� 	� 3s2 þ 6s2	�aþOða2Þ;

�V
ð2Þðp; qÞ ¼ �V

ð5Þðp; qÞ ¼ �CF

�
6s2 � 8

3
� 6s2	þ 4

3
	

�
aþOða2Þ;

�V
ð3Þðp; qÞ ¼ �V

ð4Þðp; qÞ ¼ CF

�
4

3
� 2

3
	þ 6s2	

�
aþOða2Þ;

�V
ð6Þðp; qÞ ¼ �6CFs2aþOða2Þ: (3.9)
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As this particular Green’s function is symmetric under
swapping the two independent momenta, then two pairs
of the amplitudes are equivalent. The different values for
�V

ð1Þðp; qÞ in both schemes is due to the fact that the finite

parts of the quark wave function are not the same in each
scheme.
For the tensor case we provide the same information as

the previous cases. First, the MS amplitudes are

�T
ð1Þðp; qÞjMS ¼ �1þ CF

�
2� 15

2
s2 � 2	þ 15

2
s2	

�
aþOða2Þ;

�T
ð2Þðp; qÞjMS ¼ CF½9s2 þ 3s2	�aþOða2Þ;

�T
ð3Þðp; qÞjMS ¼ �T

ð6Þðp; qÞjMS ¼ CF

�
4

3
� 6s2 � 4

3
	þ 6s2	

�
aþOða2Þ;

�T
ð4Þðp; qÞjMS ¼ �T

ð5Þðp; qÞjMS ¼ CF

�
2

3
� 3s2 � 2

3
	þ 3s2	

�
aþOða2Þ;

�T
ð7Þðp; qÞjMS ¼ CF

�
8

3
� 12s2 � 8

3
	þ 12s2	

�
aþOða2Þ;

�T
ð8Þðp; qÞjMS ¼ �CF½9s2 þ 3s2	�aþOða2Þ: (3.10)

The earlier comments concerning how one actually defines
the RI0/SMOM scheme apply here. In [33,35] the finite part
of the tensor current renormalization constant was defined
by contracting the Green’s function with ���

ð2Þ and ensuring
that the resulting expression had no a dependence after
renormalization. Following that with our amplitudes we
find exact agreement with the divergent and finite parts of
the same renormalization constant as, [33],

ZT ¼ 1þ CF

�
1

�
þ 4

3
� 9

2
s2 � 1

3
	þ 9

2
s2	

�
aþOða2Þ:

(3.11)

As in the vector case with this projection to define the
renormalization constant the �ð0Þ and �ð4Þ sectors do not
contribute but are part of the full Green’s function at the
symmetric subtraction point. Indeed we have checked that
the full expression for the two loop amplitude, [46], leads
to the same renormalization constant as [35]. However, if
one were to follow an alternative way of defining the
RI0/SMOM renormalization constant by merely using the
coefficient of channel 1 which is where the divergence
resides then one would have another expression for ZT

which is

ZTjalt RI0=SMOM ¼ 1þ CF

�
1

�
þ 2� 15

2
s2 � 	

þ 15

2
s2	

�
aþOða2Þ: (3.12)

This alternative definition is of course dependent on the
choice of basis tensors. One feature of it is that the
numerical value of the finite part in the Landau gauge is

significantly smaller than the corresponding part of (3.11).
Indeed with a judicious choice of the projection basis it
might be possible to have a rapidly converging series for
the conversion function. However, that requires a higher
loop analysis, [46]. Returning to the original RI0/SMOM
scheme definition of [33–35] the amplitudes are

�T
ð1Þðp;qÞ¼�1þCF

�
2

3
�3s2�2

3
	þ3s2	

�
aþOða2Þ;

�T
ð2Þðp;qÞ¼CF½9s2þ3s2	�aþOða2Þ

�T
ð3Þðp;qÞ¼�T

ð6Þðp;qÞ¼CF

�
4

3
�6s2�4

3
	þ6s2	

�
aþOða2Þ;

�T
ð4Þðp;qÞ¼�T

ð5Þðp;qÞ¼CF

�
2

3
�3s2�2

3
	þ3s2	

�
aþOða2Þ;

�T
ð7Þðp;qÞ¼CF

�
8

3
�12s2�8

3
	þ12s2	

�
aþOða2Þ;

�T
ð8Þðp;qÞ¼�CF½9s2þ3s2	�aþOða2Þ: (3.13)

Similar to the vector case there is a clear symmetry here
because the Green’s function is symmetric under the inter-
change of p and q which is responsible for the two pairs of
equivalent amplitudes which is clear from the explicit
tensor definitions given in Appendix A.

IV. DEEP INELASTIC SCATTERING OPERATORS

The situation for both moments of the flavor nonsinglet
twist-2 Wilson operators is more involved due to the
operator mixing issue as well as the issue with the

Slavnov-Taylor identity noted previously. First, the MS
amplitudes for n ¼ 2 are
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�W2

ð1Þ ðp; qÞjMS ¼ CF

�
2s2 � 11

6
� 1

3
	

�
aþOða2Þ;

�W2

ð2Þ ðp; qÞjMS ¼ �1þ CF

�
23

6
� 5s2 � 5

3
	þ 6s2	

�
aþOða2Þ;

�W2

ð3Þ ðp; qÞjMS ¼ CF

�
16

27
þ 4

3
s2 � 8

9
	þ 4s2	

�
aþOða2Þ;

�W2

ð4Þ ðp; qÞjMS ¼ �CF

�
16

3
s2 � 71

27
� 8s2	þ 16

9
	

�
aþOða2Þ;

�W2

ð5Þ ðp; qÞjMS ¼ �CF

�
20

3
s2 � 100

27
� 16s2	þ 26

9
	

�
aþOða2Þ;

�W2

ð6Þ ðp; qÞjMS ¼ CF

�
20

3
s2 � 28

27
� 4s2	þ 14

9
	

�
aþOða2Þ;

�W2

ð7Þ ðp; qÞjMS ¼ �CF

�
2

3
s2 � 37

27
� 4s2	þ 2

9
	

�
aþOða2Þ;

�W2

ð8Þ ðp; qÞjMS ¼ �CF

�
40

3
s2 � 128

27
� 8s2	þ 16

9
	

�
aþOða2Þ;

�W2

ð9Þ ðp; qÞjMS ¼ � 1

3
aþOða2Þ;

�W2

ð10Þðp; qÞjMS ¼ CF

�
1

3
� 6s2

�
aþOða2Þ;

�@W2

ð1Þ ðp; qÞjMS ¼ �@W2

ð2Þ ðp; qÞjMS ¼ �1þ CF½2� 3s2 � 2	þ 6s2	�aþOða2Þ;

�@W2

ð3Þ ðp; qÞjMS ¼ �@W2

ð8Þ ðp; qÞjMS ¼ �CF

�
12s2 � 16

3
� 12s2	þ 8

3
	

�
aþOða2Þ;

�@W2

ð4Þ ðp; qÞjMS ¼ �@W2

ð7Þ ðp; qÞjMS ¼ �CF½6s2 � 4� 12s2	þ 2	�aþOða2Þ;

�@W2

ð5Þ ðp; qÞjMS ¼ �@W2

ð6Þ ðp; qÞjMS ¼ �CF

�
4

3
	� 8

3
� 12s2	

�
aþOða2Þ;

�@W2

ð9Þ ðp; qÞjMS ¼ �@W2

ð10Þ ðp; qÞjMS ¼ �6CFs2aþOða2Þ (4.1)

where the operator superscript label here corresponds to
the row of the matrix with that operator on the diagonal.
Unlike the previous two cases there is now no symmetry
for the Green’s function itself when the original operator is
inserted. This is because the covariant derivative in the
operator only acts on the quark and not the antiquark. So
swapping the external momenta in the Green’s function is
not a symmetric operation. By contrast for the associated
total derivative operator this symmetry is still valid which
is why there are equivalences between various pairs of
amplitudes. Moreover, the actual expressions for the ten-
sors labeled 3 and 5 are proportional to those, respectively,
labeled 2 and 3 of the vector case. This is not unexpected
because the total derivative operator associated with this
moment is effectively the vector current in disguise at the
higher level. That the expressions are not precisely the
same is due to the fact that one has an extra Lorentz index
present at this level so that the projection coefficient into
the basis will not have a completely parallel value.
Although there is no unique basis for the projection tensors

this agreement at one loop is a check on our calculational
setup particularly since with another choice of tensors
this proportionality could have been hidden. For the renor-
malization constants the relation between the divergences
has already been noted at three loops in the MS scheme
in [36].
Now that we have all the finite parts at the symmetric

subtraction point we can define the RI0/SMOM scheme
renormalization constants. Similar to the vector current
this requires care in the case of @W2. This operator is the
total derivative of the vector current whose renormaliza-
tion constant is already determined in all schemes as it is
a physical operator. However, only when one takes the
contraction of the two free Lorentz indices of @W2 does
the divergence of the vector current emerge. Therefore,
to have a renormalization consistent with ZV we have to

define ZW2

22 to be unity in the RI0/SMOM scheme. In the

MS case, to contrast with (3.8), the appropriate
combination of amplitudes for the piece proportional to
p gives
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�½d�2�
d

�@W2

ð1Þ ðp;qÞjMS��@W2

ð2Þ ðp;qÞjMS

þ½d�4�
4d

�@W2

ð3Þ ðp;qÞjMSþ
½dþ2�
2d

�@W2

ð4Þ ðp;qÞjMS

þ½d�4�
4d

�@W2

ð5Þ ðp;qÞjMS¼
3

2
þ3

2
CF	aþOða2Þ (4.2)

whence it can be recognised that the Slavnov-Taylor
identity is preserved. An alternative choice gives the q
contribution but it has the same result as (4.2). This
combination is deduced by contracting with ðpþ qÞ� �
ðpþ qÞ� to ensure each term in the definition of the
operator involves the divergence of the vector current.
However, for the other operator of level W2 there is no
underlying Slavnov-Taylor identity as the contraction of
the two free Lorentz indices is not the divergence of a
physical current. Therefore, there is no constraint on how
to define the remaining two elements of the W2 renor-
malization constant matrix in RI0/SMOM. Indeed in
some sense there is an infinite choice. However, for

our purposes here we have chosen to define these renor-
malization constants by ensuring that there are no OðaÞ
corrections to channels 1 and 2 which both contain the
divergences in �. The former contains the off-diagonal
counterterm of the mixing matrix while the latter con-
tains both counterterms from the first row of the matrix.
Clearly one fixes the off-diagonal one first. Therefore,
we have the W2 matrix of renormalization constants

ZW2

11 ¼ 1þ CF

�
8

3�
þ 17

3
� 7s2 � 1

3
	þ 6s2	

�
aþOða2Þ;

ZW2

12 ¼ CF

�
� 4

3�
� 11

6
þ 2s2 � 1

3
	

�
aþOða2Þ;

ZW2

22 ¼ 1þOða2Þ; (4.3)

where in defining ZW2

22 the right hand side of the analo-

gous expression to (4.2) we have ensured that there are
no OðaÞ corrections. Consequently, the RI0/SMOM am-
plitudes are

�W2

ð1Þ ðp; qÞ ¼ Oða2Þ; �W2

ð2Þ ðp; qÞ ¼ �1þOða2Þ;

�W2

ð3Þ ðp; qÞ ¼ CF

�
4

3
s2 þ 16

27
� 8

9
	þ 4s2	

�
aþOða2Þ;

�W2

ð4Þ ðp; qÞ ¼ �CF

�
16

3
s2 � 71

27
� 8s2	þ 16

9
	

�
aþOða2Þ;

�W2

ð5Þ ðp; qÞ ¼ �CF

�
20

3
s2 � 100

27
� 16s2	þ 26

9
	

�
aþOða2Þ;

�W2

ð6Þ ðp; qÞ ¼ CF

�
20

3
s2 � 28

27
� 4s2	þ 14

9
	

�
aþOða2Þ;

�W2

ð7Þ ðp; qÞ ¼ �CF

�
2

3
s2 � 37

27
� 4s2	þ 2

9
	

�
aþOða2Þ;

�W2

ð8Þ ðp; qÞ ¼ �CF

�
40

3
s2 � 128

27
� 8s2	þ 16

9
	

�
aþOða2Þ;

�W2

ð9Þ ðp; qÞ ¼ � 1

3
aþOða2Þ;

�W2

ð10Þðp; qÞ ¼ CF

�
1

3
� 6s2

�
aþOða2Þ;

�@W2

ð1Þ ðp; qÞ ¼ �@W2

ð2Þ ðp; qÞ ¼ �1þ CF½2� 3s2 � 	þ 6s2	�aþOða2Þ;

�@W2

ð3Þ ðp; qÞ ¼ �@W2

ð8Þ ðp; qÞ ¼ �CF

�
12s2 � 16

3
� 12s2	þ 8

3
	

�
aþOða2Þ;

�@W2

ð4Þ ðp; qÞ ¼ �@W2

ð7Þ ðp; qÞ ¼ �CF½6s2 � 4� 12s2	þ 2	�aþOða2Þ;

�@W2

ð5Þ ðp; qÞ ¼ �@W2

ð6Þ ðp; qÞ ¼ �CF

�
4

3
	� 8

3
� 12s2	

�
aþOða2Þ;

�@W2

ð9Þ ðp; qÞ ¼ �@W2

ð10Þ ðp; qÞ ¼ �6CFs2aþOða2Þ: (4.4)

At this loop order the finite parts of a substantial number of the amplitudes are the same as theirMS counterparts. However,
we do not expect this to extend necessarily to two loops. Finally, we note that there is a relation between various
amplitudes,
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�@W2

ð3Þ ðp; qÞ � 2�@W2

ð4Þ ðp; qÞ þ �@W2

ð5Þ ðp; qÞ ¼ Oða2Þ; (4.5)

which may still be valid at higher loop order.
For the next moment, n ¼ 3, the situation is of course more substantial since there are 14 different basis tensors and

three operators which mix. First, we record the MS amplitudes to one loop are:
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�
1

9
� 2s2

�
aþOða2Þ;

�
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3
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2
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3
	þ 2s2	
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3
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3
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�
4s2 � 20

9
� 6s2	þ 10
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�
aþ Oða2Þ;

�
@@W3

ð6Þ ðp; qÞjMS ¼ �
@@W3

ð9Þ ðp; qÞjMS ¼ �CF

�
2s2 � 16

9
� 6s2	þ 8
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�
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�@@W3

ð7Þ ðp; qÞjMS ¼ �@@W3

ð8Þ ðp; qÞjMS ¼ �CF

�
2

3
	� 4

3
� 6s2	

�
aþOða2Þ;

�@@W3

ð12Þ ðp; qÞjMS ¼ �@@W3

ð13Þ ðp; qÞjMS ¼ �@@W3

ð14Þ ðp; qÞjMS ¼ �2CFs2aþOða2Þ: (4.6)

While there are more amplitudes, some features are
similar to level W2 such as equivalences between certain
amplitudes for @@W3 and a proportionality with various
amplitudes in V and @W2. As this is a level higher there
is also a proportionality of certain @W3 amplitudes with
W2. For instance, the channels 2, 3 and 4, respectively,
of V, @W2 and @@W3 are proportional as well as the
respective channels 3, 5 and 7. The same is true for W2

and @W3 for the two respective pairs of channel 3 and 4
as well as 5 and 7. This is of course not unexpected

since the operators are successive total derivatives of the
lower level one. However, the renormalization of @@W3

in the RI0/SMOM scheme is already predetermined for
the same reasons as @W2. Though in the case of @@W3

one has to contract with ðpþ qÞ�ðpþ qÞ�ðpþ qÞ� to
produce the relevant divergence of the vector current.
Using ðpþ qÞ���� as an alternative nullifies the opera-
tor as it is constucted to be traceless and gives nothing
nontrivial. With the former contraction this produces the
relation between the amplitudes involving p is
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3½d� 6�
4½dþ 2��

@@W3

ð1Þ ðp; qÞ þ 3

2
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@@W3

ð7Þ ðp; qÞ ¼ � 1

2
þOða2Þ: (4.7)

An analogous relation produces the piece involving q
which also has noOðaÞ piece consistent with the RI0 choice
for the quark wave function renormalization. Clearly this
combination ensures consistency with the Slavnov-Taylor
identities.

Again the choice of how to determine the remaining
renormalization constants within the RI0/SMOM scheme
ethos is relatively free. The point of view we take to do this
is to build on the previous level. Though there is no reason
why one should necessarily make this the definitive choice.
By building on the previous level we parallel the way we
ensured that the hidden vector current renormalization
constant was determined. As @W3 is the total derivative
ofW2 we choose that level of the renormalization constant
mixing matrix to be the same renormalization constants as
the first row of the W2 matrix. This leaves the first row of
W3 and we then define this by ensuring that after renor-
malization there are noOðaÞ corrections in the tensor basis
which originally had a divergence in �. As there is mixing
within the counterterms we have to determine these in

sequence, which was the same as the MS scheme, [36].
Therefore we have
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Once these have been determined the RI0/SMOM scheme
amplitudes are
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As with the lower moment there are similar relations to
one loop. First, there is an obvious parallel with the vector
and total derivative operator for n ¼ 2 with the double
total derivative of the third moment which was noted in
[36]. In addition there are cross connections with the
central row of the mixing matrix. Specifically, the ampli-
tudes labeled 6 and 8 of W2 are proportional to 8 and 11
of @W3 respectively for the same reasons as before.
Further, there is another apparent relation within the level
since

�@@W3

ð5Þ ðp;qÞ�2�@@W3

ð6Þ ðp;qÞþ�@@W3

ð7Þ ðp;qÞ¼Oða2Þ (4.10)

in addition to the reflection of the one already noted for
moment n ¼ 2. As an aside we note that in highlighting
relations between amplitudes, we have concentrated on
those which are true for all values of 	. There appears to
be other relations which are only valid to one loop in the
Landau gauge and since the case for regarding these as
significant is diminished because of the apparent gauge
dependence we do not draw attention to them.

As our computations have been at one loop the conver-

sion functions that are used to convert from theMS scheme
to the RI0/SMOM scheme are in effect the finite parts of the
renormalization constants themselves. See, for example,
[47]. Therefore, in order to appreciate the magnitude of the

one loop contribution it is a straightforward exercise to
evaluate the finite parts numerically. It turns out that the
correction increases in value with the operator moment, in
parallel, for example, with the numerical value of the one
loop anomalous dimension coefficient. If we take the
Landau gauge case and compare the finite parts, the mo-
ments n ¼ 2 and 3 are, respectively, 3.8436 and 6.1839
where we use the (11) element for the latter two or equiv-
alently the diagonal of theW3 matrix. This is with ignoring
the common color factor, CF, and coupling constant, a.
Therefore, for higher moments it would seem that one
would require higher loop corrections in order to have a
more reliable convergence of the perturbative series for the
conversion functions. Comparing with the RI0 scheme
results of [28–30] the respective numbers are 3.444 and
5.9444. Unlike the situation with the mass operator the
RI0/SMOM scheme corrections for W2 and W3 are slightly
larger. Though in some sense this is not a fair comparison
because of the mixing. The RI0 scheme is based on a
specific momentum routing in the Green’s function which
is blind to the off-diagonal matrix element of the renor-
malization constant matrix. Equally the convergence of the
RI0/SMOM series could be improved by choosing a differ-
ent combination of the finite parts to define the actual
renormalization constant since there appears to be a large
degree of freedom in doing this. Only a higher order
computation could give insight into this, [46].

V. DISCUSSION

We have determined the renormalization constants at
one loop for the twist-2 flavor nonsinglet operators with
moments n ¼ 2 and 3 in the RI0/SMOM scheme and
have taken account of operator mixing. In the Landau
gauge the correction increases in value with the operator
moment. So it would appear that the series for the
conversion function will converge slower at high mo-
ment. Of course, a one loop computation is not sufficient
to make a definitive statement since the higher loop
corrections may produce an improvement. This is cur-
rently under investigation, [46]. Equally it would be
useful to see how the lattice measurements in this sym-
metric scheme for the deep inelastic scattering operators
compares with the same analysis in the earlier RI0
scheme. Though it may be the case that not all the
various tensor projections would give a clear accurate
numerical signal. Finally, while the RI0/SMOM scheme
is designed in order to circumvent infrared problems,
one is still restricted to the Landau gauge due to the
fact that the Green’s function of Fig. 1 is a gauge
dependent quantity. While this is not a problem for the
high energy régime, it may be the case that in the
infrared there are additional complications with Gribov
copies and hence the definitive measurement of operator
matrix elements.
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APPENDIX A: PROJECTORS

In this appendix we record in succession the basis of
projection tensors we have used in each of the various
cases. These were denoted earlier by the general notation
P i

ðkÞ�1...�ni

ðp; qÞ. The matrix, Mi
kl, in the second part of

each subsection contains the coefficients associated with
each basis projection tensor, which allows one to project

out the amplitudes �Oi

ðkÞðp; qÞ. It is constructed by first

determining the matrix

N i
kl ¼ P i

ðkÞ�1...�ni

ðp; qÞP i�1...�ni

ðlÞ ðp; qÞjp2¼q2¼��2 (A1)

where there is no summation over the label i, and k and l
index the projection tensors. The matrixN i

kl is symmetric

in k and l. Given that the elements are contractions of
Lorentz tensors in d-dimensions then the elements
of N i

kl are polynomials in d. Finally, Mi
kl is the inverse

of N i
kl and then

�Oi

ðkÞðp; qÞ ¼ Mi
klP

i�1...�ni

ðlÞ ðp; qÞ
� ðhc ðpÞOi

�1...�ni
ð�p� qÞ �c ðqÞiÞjp2¼q2¼��2 (A2)

where again there is no summation over the level label i.

1. Scalar

P S
ð1Þðp; qÞ ¼ �ð0Þ; P S

ð2Þðp; qÞ ¼
1

�2
�pq
ð2Þ (A3)

M S ¼ 1

12

3 0
0 �4

� �
: (A4)

In order to compare with [33], the mapping between the
amplitudes is

�S
ð1Þðp; qÞ ¼ �AS; �S

ð2Þðp; qÞ ¼ �2CS (A5)

where the notation of the right hand side is that of [33].

2. Vector

P V
ð1Þ�ðp;qÞ¼��;P V

ð2Þ�ðp;qÞ¼
p�p

�2
;

P V
ð3Þ�ðp;qÞ¼

p�q

�2
; P V

ð4Þ�ðp;qÞ¼
q�p

�2
;

P V
ð5Þ�ðp;qÞ¼

q�q

�2
; P V

ð6Þ�ðp;qÞ¼
1

�2
�ð3Þ�pq: (A6)

MV ¼ 1

36ðd� 2Þ

9 12 6 6 12 0

12 16ðd� 1Þ 8ðd� 1Þ 8ðd� 1Þ 4ðdþ 2Þ 0

6 8ðd� 1Þ 4ð4d� 7Þ 4ðd� 1Þ 8ðd� 1Þ 0

6 8ðd� 1Þ 4ðd� 1Þ 4ð4d� 7Þ 8ðd� 1Þ 0

12 4ðdþ 2Þ 8ðd� 1Þ 8ðd� 1Þ 16ðd� 1Þ 0

0 0 0 0 0 �12

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (A7)

For comparison with [33] the amplitudes are related by

�V
ð1Þðp; qÞ ¼ �AV þ 2BV þ 1

2
CV þ 1

2
DV; �V

ð2Þðp; qÞ ¼ �V
ð5Þðp; qÞ ¼ 2BV;

�V
ð3Þðp; qÞ ¼ �V

ð4Þðp; qÞ ¼ �CV �DV; �V
ð6Þðp; qÞ ¼ CV �DV: (A8)

3. Tensor

P T
ð1Þ��ðp;qÞ¼�ð2Þ��; P T

ð2Þ��ðp;qÞ¼
1

�2
½p�q��p�q���ð0Þ; P T

ð3Þ��ðp;qÞ¼
1

�2
½�ð2Þ�pp���ð2Þ�pp��;

P T
ð4Þ��ðp;qÞ¼

1

�2
½�ð2Þ�pq���ð2Þ�pq��; P T

ð5Þ��ðp;qÞ¼
1

�2
½�ð2Þ�qp���ð2Þ�qp��; P T

ð6Þ��ðp;qÞ¼
1

�2
½�ð2Þ�qq���ð2Þ�qq��;

P T
ð7Þ��ðp;qÞ¼

1

�4
½�ð2Þpqp�q���ð2Þpqp�q��; P T

ð8Þ��ðp;qÞ¼
1

�2
�ð4Þ��pq: (A9)
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To save space for the projection matrix in this case, we
have partitioned the 8� 8 matrix into four submatrices.
We have

MT ¼ 1

36ðd� 2Þðd� 3Þ
MT

11 MT
12

MT
21 MT

22

 !
; (A10)

MT
11¼

�9 0 �12 �6

0 6ðd�2Þðd�3Þ 0 0

�12 0 �8ðd�1Þ �4ðd�1Þ
�6 0 �4ðd�1Þ �4ð2d�5Þ

0
BBBBB@

1
CCCCCA;

MT
12¼

�6 �12 �12 �6

0 0 0 0

�4ðd�1Þ �2ðdþ5Þ �8ðd�1Þ 0

�2ðd�1Þ �4ðd�1Þ �4ðd�1Þ 0

0
BBBBB@

1
CCCCCA;

MT
21¼

�6 0 �4ðd�1Þ �2ðd�1Þ
�12 0 �2ðdþ5Þ �4ðd�1Þ
�12 0 �8ðd�1Þ �4ðd�1Þ
0 0 0 0

0
BBBBB@

1
CCCCCA;

MT
22¼

�4ð2d�5Þ �4ðd�1Þ �4ðd�1Þ 0

�4ðd�1Þ �8ðd�1Þ �8ðd�1Þ 0

�4ðd�1Þ �8ðd�1Þ �8ðd�1Þðd�2Þ 0

0 0 0 12

0
BBBBB@

1
CCCCCA:

(A11)

In the tensor case the relations with the amplitudes of [33]
are

�T
ð1Þðp; qÞ ¼ �AT þ 1

2
CT; �T

ð2Þðp; qÞ ¼ �2BT þ CT; �T
ð3Þðp; qÞ ¼ �T

ð6Þðp; qÞ ¼ 2CT;

�T
ð4Þðp; qÞ ¼ �T

ð5Þðp; qÞ ¼ �2BT þ CT; �T
ð8Þðp; qÞ ¼ 2BT � CT: (A12)

4. Wilson 2

PW2

ð1Þ��ðp; qÞ ¼ ��p� þ ��p� � 2

d
p���; PW2

ð2Þ��ðp; qÞ ¼ ��q� þ ��q� � 2

d
q���;

PW2

ð3Þ��ðp; qÞ ¼ p

�
1

�2
p�p� þ 1

d
���

�
; PW2

ð4Þ��ðp; qÞ ¼ p

�
1

�2
p�q� þ 1

�2
q�p� � 1

d
���

�
;

PW2

ð5Þ��ðp; qÞ ¼ p

�
1

�2
q�q� þ 1

d
���

�
; PW2

ð6Þ��ðp; qÞ ¼ q

�
1

�2
p�p� þ 1

d
���

�
;

PW2

ð7Þ��ðp; qÞ ¼ q

�
1

�2
p�q� þ 1

�2
q�p� � 1

d
���

�
; PW2

ð8Þ��ðp; qÞ ¼ q

�
1

�2
q�q� þ 1

d
���

�
;

PW2

ð9Þ��ðp; qÞ ¼
1

�2
½�ð3Þ�pqp� þ �ð3Þ�pqp��; PW2

ð10Þ��ðp; qÞ ¼
1

�2
½�ð3Þ�pqq� þ �ð3Þ�pqq��: (A13)

Similar to the previous case we have subdivided the 10� 10 matrix here into four submatrices in order to ease the
presentation. We have

MW2 ¼ � 1

108ðd� 2Þ
MW2

11 MW2

12

MW2

21 MW2

22

0
@

1
A;

MW2

11 ¼

18 9 48 24 12

9 18 24 30 24

48 24 64ðdþ 1Þ 32ðdþ 1Þ 16ðdþ 4Þ
24 30 32ðdþ 1Þ 8ð5d� 1Þ 8ð4dþ 1Þ
12 24 16ðdþ 4Þ 8ð4dþ 1Þ 32ð2d� 1Þ

0
BBBBBBBB@

1
CCCCCCCCA
;

MW2

12 ¼

24 30 24 0 0

12 24 48 0 0

32ðdþ 1Þ 16ðdþ 4Þ 8ðdþ 10Þ 0 0

16ðdþ 1Þ 20ðdþ 1Þ 16ðdþ 4Þ 0 0

8ðdþ 4Þ 16ðdþ 1Þ 32ðdþ 1Þ 0 0

0
BBBBBBBB@

1
CCCCCCCCA
;
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MW2

21 ¼

24 12 32ðdþ1Þ 16ðdþ1Þ 8ðdþ4Þ
30 24 16ðdþ4Þ 20ðdþ1Þ 16ðdþ1Þ
24 48 8ðdþ10Þ 16ðdþ4Þ 32ðdþ1Þ
0 0 0 0 0

0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
;

MW2

22 ¼

32ð2d�1Þ 8ð4dþ1Þ 16ðdþ4Þ 0 0

8ð4dþ1Þ 8ð5d�1Þ 32ðdþ1Þ 0 0

16ðdþ4Þ 32ðdþ1Þ 64ðdþ1Þ 0 0

0 0 0 �24 �12

0 0 0 �12 �24

0
BBBBBBBB@

1
CCCCCCCCA
: (A14)

5. Wilson 3

PW3

ð1Þ���ðp; qÞ ¼
1

�2
½��p�p� þ ��p�p� þ ��p�p�� þ 1

½dþ 2� ½����� þ ����� þ ������

� 2p

½dþ 2��2
½���p� þ ���p� þ ���p��;

PW3

ð2Þ���ðp; qÞ ¼
1

�2
½��p�q� þ ��p�q� þ ��p�q� þ ��q�p� þ ��q�p� þ ��q�p��

� 1

½dþ 2� ½����� þ ����� þ ������ � 2p

½dþ 2��2
½���q� þ ���q� þ ���q��

� 2q

½dþ 2��2
½���p� þ ���p� þ ���p��;

PW3

ð3Þ���ðp; qÞ ¼
1

�2
½��q�q� þ ��q�q� þ ��q�q�� þ 1

½dþ 2� ½����� þ ����� þ ������

� 2q

½dþ 2��2
½���q� þ ���q� þ ���q��;

PW3

ð4Þ���ðp;qÞ¼
p

�4
p�p�p�þ p

½dþ2��2
½���p�þ���p�þ���p��;

PW3

ð5Þ���ðp;qÞ¼
p

�4
½p�p�q�þp�q�p�þq�p�p��� p

½dþ2��2
½���p�����q�þ���p�����q�þ���p�����q��;

PW3

ð6Þ���ðp;qÞ¼
p

�4
½p�q�q�þq�p�q�þq�q�p��þ p

½dþ2��2
½���p�����q�þ���p�����q�þ���p�����q��;

PW3

ð7Þ���ðp;qÞ¼
p

�4
q�q�q�þ p

½dþ2��2
½���q�þ���q�þ���q��;

PW3

ð8Þ���ðp;qÞ¼
q

�4
p�p�p�þ q

½dþ2��2
½���p�þ���p�þ���p��;

PW3

ð9Þ���ðp;qÞ¼
q

�4
½p�p�q�þp�q�p�þq�p�p��� q

½dþ2��2
½���p�����q�þ���p�����q�þ���p�����q��;

PW3

ð10Þ���ðp;qÞ¼
q

�4
½p�q�q�þq�p�q�þq�q�p��þ q

½dþ2��2
½���p�����q�þ���p�����q�þ���p�����q��;
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PW3

ð11Þ���ðp;qÞ ¼
q

�4
q�q�q�þ q

½dþ2��2
½���q�þ���q�þ���q��;

PW3

ð12Þ���ðp;qÞ ¼
1

�4
½�ð3Þ�pqp�p�þ�ð3Þ�pqp�p�þ�ð3Þ�pqp�p��þ 1

½dþ2��2
½�ð3Þ�pq���þ�ð3Þ�pq���þ�ð3Þ�pq����;

PW3

ð13Þ���ðp;qÞ ¼
1

�4
½�ð3Þ�pqp�q�þ�ð3Þ�pqp�q�þ�ð3Þ�pqp�q�þ�ð3Þ�pqq�p�þ�ð3Þ�pqq�p�þ�ð3Þ�pqq�p��

� 1

½dþ2��2
½�ð3Þ�pq���þ�ð3Þ�pq���þ�ð3Þ�pq����;

PW3

ð14Þ���ðp;qÞ ¼
1

�4
½�ð3Þ�pqq�q�þ�ð3Þ�pqq�q�þ�ð3Þ�pqq�q��þ 1

½dþ2��2
½�ð3Þ�pq���þ�ð3Þ�pq���þ�ð3Þ�pq����:

(A15)

Here the partition of the 14� 14 matrix is into ten nonzero submatrices. We have

MW3 ¼ 1

2106dðd� 2Þ

MW3

11 MW3

12 MW3

13 0

MW3

21 MW3

22 MW3

23 0

MW3

31 MW3

32 MW3

33 0

0 0 0 MW3

44

0
BBBBBB@

1
CCCCCCA;

where the �ð3Þ sector corresponds to the lower outer corner submatrix or subspace.

MW3

11 ¼

312ðdþ 1Þ 156ðdþ 1Þ 78ðdþ 4Þ 1248ðdþ 1Þ
156ðdþ 1Þ 39ð5dþ 2Þ 156ðdþ 1Þ 624ðdþ 1Þ
78ðdþ 4Þ 156ðdþ 1Þ 312ðdþ 1Þ 312ðdþ 4Þ
1248ðdþ 1Þ 624ðdþ 1Þ 312ðdþ 4Þ 1664ðdþ 3Þðdþ 1Þ

0
BBBBB@

1
CCCCCA;

MW3

12 ¼

624ðdþ 1Þ 312ðdþ 2Þ 156ðdþ 4Þ 624ðdþ 1Þ
312ð2dþ 1Þ 156ð3dþ 2Þ 312ðdþ 1Þ 312ðdþ 1Þ
156ð3dþ 4Þ 624ðdþ 1Þ 624ðdþ 1Þ 156ðdþ 4Þ

832ðdþ 3Þðdþ 1Þ 416ðdþ 6Þðdþ 1Þ 208ðdþ 12Þðdþ 1Þ 832ðdþ 3Þðdþ 1Þ

0
BBBBB@

1
CCCCCA;

MW3

13 ¼

624ðdþ 1Þ 156ð3dþ 4Þ 312ðdþ 4Þ
156ð3dþ 2Þ 312ð2dþ 1Þ 624ðdþ 1Þ
312ðdþ 2Þ 624ðdþ 1Þ 1248ðdþ 1Þ

416ðdþ 6Þðdþ 1Þ 208ðdþ 12Þðdþ 1Þ 104ðd2 þ 22dþ 48Þ

0
BBBBB@

1
CCCCCA;

MW3

21 ¼

624ðdþ 1Þ 312ð2dþ 1Þ 156ð3dþ 4Þ 832ðdþ 3Þðdþ 1Þ
312ðdþ 2Þ 156ð3dþ 2Þ 624ðdþ 1Þ 416ðdþ 6Þðdþ 1Þ
156ðdþ 4Þ 312ðdþ 1Þ 624ðdþ 1Þ 208ðdþ 12Þðdþ 1Þ
624ðdþ 1Þ 312ðdþ 1Þ 156ðdþ 4Þ 832ðdþ 3Þðdþ 1Þ

0
BBBBB@

1
CCCCCA;

MW3

22 ¼ ðdþ 1Þ

416ð2dþ 3Þ 624ðdþ 2Þ 104 ð4d2þ25dþ12Þ
ðdþ1Þ 416ðdþ 3Þ

624ðdþ 2Þ 208 ð4d2þ7dþ6Þ
ðdþ1Þ 416ð2dþ 3Þ 208ðdþ 6Þ

104 ð4d2þ25dþ12Þ
ðdþ1Þ 416ð2dþ 3Þ 416ð4dþ 3Þ 104ðdþ 12Þ

416ðdþ 3Þ 208ðdþ 6Þ 104ðdþ 12Þ 416ð4dþ 3Þ

0
BBBBBBB@

1
CCCCCCCA;

MW3

23 ¼

416ðdþ 3Þðdþ 1Þ 312ðd2 þ 7dþ 4Þ 208ðdþ 12Þðdþ 1Þ
312ðdþ 2Þ2 416ðdþ 3Þðdþ 1Þ 416ðdþ 6Þðdþ 1Þ

208ðdþ 6Þðdþ 1Þ 416ðdþ 3Þðdþ 1Þ 832ðdþ 3Þðdþ 1Þ
416ð2dþ 3Þðdþ 1Þ 104ð4d2 þ 25dþ 12Þ 208ðdþ 12Þðdþ 1Þ

0
BBBBB@

1
CCCCCA;
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MW3

31 ¼
624ðdþ 1Þ 156ð3dþ 2Þ 312ðdþ 2Þ 416ðdþ 6Þðdþ 1Þ
156ð3dþ 4Þ 312ð2dþ 1Þ 624ðdþ 1Þ 208ðdþ 12Þðdþ 1Þ
312ðdþ 4Þ 624ðdþ 1Þ 1248ðdþ 1Þ 104ðd2 þ 22dþ 48Þ

0
BB@

1
CCA;

MW3

32 ¼
416ðdþ 3Þðdþ 1Þ 312ðdþ 2Þ2 208ðdþ 6Þðdþ 1Þ 416ð2dþ 3Þðdþ 1Þ
312ðd2 þ 7dþ 4Þ 416ðdþ 3Þðdþ 1Þ 416ðdþ 3Þðdþ 1Þ 104ð4d2 þ 25dþ 12Þ
208ðdþ 12Þðdþ 1Þ 416ðdþ 6Þðdþ 1Þ 832ðdþ 3Þðdþ 1Þ 208ðdþ 12Þðdþ 1Þ

0
BB@

1
CCA;

MW3

33 ¼
208ð4d2 þ 7dþ 6Þ 624ðdþ 2Þðdþ 1Þ 416ðdþ 6Þðdþ 1Þ
624ðdþ 2Þðdþ 1Þ 416ð2dþ 3Þðdþ 1Þ 832ðdþ 3Þðdþ 1Þ
416ðdþ 6Þðdþ 1Þ 832ðdþ 3Þðdþ 1Þ 1664ðdþ 3Þðdþ 1Þ

0
BB@

1
CCA;

MW3

44 ¼
�416ðdþ 1Þ �208ðdþ 1Þ �104ðdþ 4Þ
�208ðdþ 1Þ �52ð5dþ 2Þ �208ðdþ 1Þ
�104ðdþ 4Þ �208ðdþ 1Þ �416ðdþ 1Þ

0
BB@

1
CCA: (A16)

[1] D. J. Gross and F. J. Wilczek, Phys. Rev. D 9, 980 (1974).
[2] E. G. Floratos, D.A. Ross, and C. T. Sachrajda, Nucl.

Phys. B129, 66 (1977); B139, 545(E) (1978).
[3] E. G. Floratos, D.A. Ross, and C. T. Sachrajda, Nucl.

Phys. B152, 493 (1979).
[4] S. Moch, J. A.M. Vermaseren, and A. Vogt, Nucl. Phys.

B688, 101 (2004).
[5] S. Moch, J. A.M. Vermaseren, and A. Vogt, Nucl. Phys.

B691, 129 (2004).
[6] S. Moch, J. A.M. Vermaseren, and A. Vogt, Nucl. Phys. B,

Proc. Suppl. 135, 137 (2004).
[7] S. Moch, J. A.M. Vermaseren, and A. Vogt, Phys. Lett. B

606, 123 (2005).
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