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According to heavy-meson chiral perturbation theory, the vector form factor fþðq2Þ of exclusive

semileptonic decay B ! �‘� is closely related, at least in the soft-pion region (i.e., q2 � ðmB �m�Þ2), to
the strong coupling gB�B� or the normalized coupling ĝ. Combining the precisely measured q2 spectrum

of B ! �‘� decay by the BABAR and Belle collaborations with several parametrizations of the form

factor fþðq2Þ, we can extract these couplings from the residue of the form factor at the B� pole, which

relies on an extrapolation of the form factor from the semileptonic region to the unphysical point

q2 ¼ m2
B� . Comparing the extracted values with the other experimental and theoretical estimates, we can

test these various form-factor parametrizations, which differ from each other by the amount of physical

information embedded in. It is found that the extracted values based on the Bećirević-Kaidalov, Ball-

Zwicky and Bourrely-Caprini-Lellouch parametrizations are consistent with each other and roughly in

agreement with the other theoretical and lattice estimates, while the Boyd-Grinstein-Lebed ansatz,

featured by a spurious, unwanted pole at the threshold of the cut, gives a neatly larger value.

DOI: 10.1103/PhysRevD.83.054019 PACS numbers: 13.20.He, 12.39.Fe, 12.40.Vv

I. INTRODUCTION

The most promising decay mode for a precise determi-
nation of the Cabibbo-Kobayashi-Maskawa (CKM) [1]
matrix element jVubj, both experimentally and theoreti-
cally, is the exclusive semileptonic B ! �‘� decay [2],
for which a number of measurements by various collabo-
rations (CLEO [3], BABAR [4–6] and Belle [7,8]) have
been made. A fit to the measured q2 spectrum, on the other
hand, allows for a precise extraction of the q2 dependence
of the vector form factor fþðq2Þ and thus provides a
stringent check on our understanding of the dynamics of
hadrons governed by QCD.

The heavy-to-light form factors are complicated non-
perturbative objects, which have attracted extensive inves-
tigations in the literature. Besides various quark models
(see, e.g., [9,10]), which in many aspects help our phe-
nomenological understanding of the heavy-to-light transi-
tions, there exist two more quantitative predictions based
on first principles of QCD, the lattice QCD (LQCD) simu-
lation (see, e.g., [11–13]) and the QCD sum rules on the
light-cone (LCSR) (see, e.g., [14–17]). These two methods
are complementary to each other with respect to the mo-
mentum transfer q2: while the LQCD calculations are
restricted to the high q2 region, reliable predictions of the
LCSR method can only be made at the low q2 region.

Because of our limited theoretical knowledge of the q2

dependence of the transition form factors, a variety of
parametrizations have been proposed in the literature, try-
ing to capture as much information as possible on the
dynamics of the corresponding mesons. These include
the two-parameter Bećirević-Kaidalov (BK) ansatz [18],

the three-parameter Ball-Zwicky (BZ) ansatz [14,19], the
so-called series expansion (SE) ansatz [20–23], as well as
the representation from the Omnes solution to the disper-
sive bounds [24]. It turns out that most of them could fit the
data equally well in the semileptonic region [4,7,19]. A
good review of these different parametrizations could be
found, for example, in Refs. [4,19].
Most of the above parametrizations include the essential

feature that the vector form factor fþðq2Þ has a pole
at q2 ¼ m2

B� , where B�ð1�Þ is a narrow resonance with

mB� ¼ 5:325 GeV<mB þm�. As the high-precision ex-
perimental data on B ! �‘� decay is available only in the
semileptonic region, 0 � q2 � ðmB �m�Þ2, in order to
extract the pole residue we have to extrapolate the form
factor from this region to the unphysical point q2 ¼ m2

B� .

Although lying outside the physical region, the pole residue
is of great phenomenological interest. It is related to the
strong coupling gB�B�, describing the low-energy interac-
tion among the two heavy B mesons and a soft pion, or the
normalized coupling ĝ, a fundamental parameter in heavy-
meson chiral perturbation theory (HMChPT) [25,26]. Since
the process B� ! B� is kinematically forbidden, the cou-
pling gB�B� cannot be measured directly but should be fixed
phenomenologically. In this paper, exploiting the experi-
mental knowledge on the form factor fþðq2Þ extracted from
the semileptonic B ! �‘� decay, we determine the strong
couplinggB�B� and ĝ from the pole residue by extrapolating
the form factor from the physical region to the unphysical
point q2 ¼ m2

B� . By comparing the extracted values with

other theoretical and experimental estimates, we can then
test the various form-factor parametrizations.
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Our paper is organized as follows. In Sec. II, we provide
the definition of heavy-to-light form factors, their different
parametrizations, and the pole residue at q2 ¼ m2

B� . In

Sec. III, after collecting the up-to-date measured B ! �
form-factor shape parameters, we give our determinations
of the strong coupling gB�B� and the corresponding nor-
malized coupling ĝ; some interesting phenomenological
discussions are also presented in this section. Our conclu-
sions are made in Sec. IV.

II. HEAVY-TO-LIGHT FORM FACTOR

A. Definition of the heavy-to-light form factor

In exclusive semileptonic B ! �‘� decay, the hadronic
matrix element is usually parameterized in terms of two
form factors fþðq2Þ and f0ðq2Þ [27],

h�ðp�Þj �u��bj �BðpBÞi

¼ fþðq2Þ
�
ðpB þ p�Þ� �m2

B �m2
�

q2
q�
�

þ f0ðq2Þm
2
B �m2

�

q2
q�; (1)

where q � pB � p� is the momentum transferred to the
lepton pair, with pB and p� the four-momenta of the parent
B meson and the final-state pion, and mB and m� their
masses. For massless leptons, which are a good approxi-
mation for electrons and muons, the form factor f0ðq2Þ is
absent and we are left with only a single form factor
fþðq2Þ.

Precise knowledge of the heavy-to-light form factors is
of primary importance for flavor physics. It is needed for
the determination of the CKM matrix element jVubj from
exclusive semileptonic B ! �‘� decay. They are also
needed as ingredients in the analysis of hadronic B meson
decays, such as B ! �� and B ! �K, in the framework
of QCD factorization [28], again with the objective to
provide precision determinations of the quark flavor mix-
ing parameters.

The two QCD methods, LQCD and LCSR, result in
predictions for different q2 regions. The LCSR combines
the idea of QCD sum rules with twist expansions per-
formed up to Oð�sÞ and provides estimates of various
form factors at low intermediate q2 regions, 0< q2 <
14 GeV2. The overall normalization is predicted at the
zero momentum transfer with typical uncertainties of
10–13% [14,15]. The LQCD simulation can, on the other
hand, potentially provide the heavy-to-light form factors in
the high-q2 region from first principles of QCD. The un-
quenched lattice calculations, in which quark-loop effects
in the QCD vacuum and three dynamical quark flavors (the
mass-degenerate u and d quarks and a heavier s quark) are
incorporated, are now available for B ! � form factors
[11–13]. Unfortunately, neither the LQCD nor the LCSR
can predict the form factors over the full q2 range.

B. Form-factor parametrizations

While predictions of the exact form-factor shape are
challenged for any theoretical calculations, it is well estab-
lished that the general properties of analyticity, crossing
symmetry and unitarity largely constrain the q2 behavior of
the form factor [21–23]. Specifically, it is expected to be an
analytic function everywhere in the complex q2 plane
outside of a cut that extends along the positive q2 axis
from the mass of the lowest-lying b �d vector meson. This
assumption leads to an unsubtracted dispersion relation
[21],

fþðq2Þ ¼ fþð0Þ=ð1� �Þ
1� q2=m2

B�
þ 1

�

Z 1

ðmBþm�Þ2
dt

ImfþðtÞ
t� q2 � i�

;

(2)

which means that we have a pole residue at q2 ¼ m2
B� and a

cut from the B� continuum, and the parameter � gives the
relative size of contribution to fþð0Þ from the B� pole.
The various parametrizations proposed in the literature

make explicitly or implicitly different simplifications in the
treatment of the cut, and the following four ones are widely
used, with their respective salient features sketched below:
(1) Bećirević-Kaidalov (BK) ansatz [18]:

fþðq2Þ ¼ fþð0Þ
ð1� q2=m2

B� Þð1� �BKq
2=m2

B� Þ ; (3)

where fþð0Þ sets the normalization and �BK defines
the shape of the form-factor. It is mainly motivated
by the scaling laws of the form factors in the heavy
quark limit, and provides an approximate represen-
tation of the second term in Eq. (2) by an additional
effective pole m2

B�=�BK, with �BK < 1 to be consis-
tent with the location of the cut.

(2) Ball-Zwicky (BZ) ansatz [14,19]:

fþðq2Þ ¼ fþð0Þ
�

1

1� q2=m2
B�

þ rBZq
2=m2

B�

ð1� q2=m2
B� Þð1� �BZq

2=m2
B� Þ
�
; (4)

where fþð0Þ is the normalization, and �BZ and rBZ
determine the shape of the form factor. This is an
extension of the BK ansatz, related to each other by
the simplification �BK ¼ �BZ ¼ rBZ. The BK and
BZ parametrizations are featured by both being
intuitive and having fewer free parameters.

(3) Boyd-Grinstein-Lebed (BGL) ansatz [21,22]:

fþðq2Þ ¼ 1

Pðq2Þ�ðq2; q20Þ
Xkmax

k¼0

akðq20Þ½zðq2; q20Þ�k;

(5)

with the conformal mapping variable defined by
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zðq2; q20Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q20

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q20

q ; (6)

where t� ¼ ðmB �m�Þ2 and q20 is a free parameter.

The so-called Blaschke factor Pðq2Þ ¼ zðq2; m2
B� Þ

accounts for the pole at q2 ¼ m2
B� , and the outer

function �ðq2; q20Þ is an arbitrary analytic function,

the choice of which affects only the particular values
of the series coefficients ak. The form-factor shape
is determined by the values of ak, with truncation at
kmax ¼ 2 or 3. The expansion parameters ak are
bounded by unitarity,

P
ka

2
k � 1. Becher and Hill

[21] have pointed out that due to the large b-quark
mass, this bound is far from being saturated. For
more details we refer to Refs. [21,22].

(4) Bourrely-Caprini-Lellouch (BCL) ansatz [23]:

fþðq2Þ ¼ 1

1� q2=m2
B�

Xkmax

k¼0

bk

�
½zðq2; q20Þ�k

� ð�1Þk�kmax�1 k

kmax þ 1

�½zðq2; q20Þ�kmaxþ1

�
; (7)

where the variable zðq2; q20Þ is defined by Eq. (6),

and the free parameter q20 can be chosen to make the

maximum value of jzj as small as possible in the
semileptonic region [23]. In this ansatz, the form-
factor shape is determined by the values of bk, with
truncation at kmax ¼ 2 or 3.

Although the BK and the BZ parametrization are intui-
tive and have few free parameters, the presence of poles
near the semileptonic region creates doubt on whether
truncating all but the first one or two terms leaves an
accurate estimate of the true form-factor shape. The BGL
and the BCL parametrization are based on some funda-
mental theoretical concepts like analyticity and unitarity
and avoid ad hoc assumptions about the number of poles
and the pole masses. Fits to the measured q2 spectrum of
B ! �‘� decay have, on the other hand, shown that these
different form-factor parametrizations could describe the
data equally well [4].

C. Pole residue at q2 ¼ m2
B� and the strong

coupling gB�B�

All the above four parametrizations have the essential
feature that the vector form factor fþðq2Þ has a pole at
q2 ¼ m2

B� . Although lying outside the semileptonic region,

the pole residue at q2 ¼ m2
B� is phenomenologically very

interesting. With the following standard definitions [18],

h0j �d��bj �B�0ðp; �Þi ¼ fB�mB���;

hB�ðpÞ�þðqÞj �B�0ðpþ q; �Þi ¼ gB�B�ðq 	 �Þ;
(8)

it is given by the product of the strong coupling gB�B� and
the vector decay constant fB� [14,18],

r1 ¼ lim
q2¼m2

B�
ð1� q2=m2

B� Þfþðq2Þ ¼ fB�gB�B�

2mB�
: (9)

In fact, at the upper end of the physical region (i.e., at the
zero recoil point q2 ¼ ðmB �m�Þ2), the vector-meson
dominance (VMD) of fþðq2Þ is expected to be very effec-
tive [29,30]. It has been argued that, in the combined heavy
quark and chiral limit, the VMD becomes even exact [31].
Thus, the strong coupling gB�B� determines the normaliza-
tion of the vector form factor fþðq2Þ near the zero recoil of
pion. The strong coupling gB�B� also provides access to the
normalized coupling ĝ, which is, in the limit of exact
chiral, heavy flavor and spin symmetries, the single pa-
rameter for (HMChPT) [25,26]. They are related to each
other through [32]

ĝ ¼ gB�B�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmB�

p f�; (10)

where the convention f� ’ 131 MeV is used. Unlike the
D�D� coupling gD�D�, which could be extracted from the
available experimental data on the decay D� ! D� [33],
there cannot be a direct experimental indication on the
coupling gB�B� because there is no phase space for the
decay B� ! B�. They could however be related through
the heavy quark symmetry [26].
As a result, a precise determination of the couplings

gB�B� and ĝ is of particular importance. During recent
years a large number of theoretical studies have been
devoted to the calculation of these couplings in various
versions of quark models [29,34] and QCD sum rules
[35,36]. However, the variation of the obtained values,
even within a single class of models, turns out to be quite
large [16,26], for an overview see [16,26].1 In addition,
there have been several LQCD simulations of these cou-
plings in both quenched [37,38] and unquenched [39,40]
approximations. These strong couplings have also been
calculated using a framework based on QCD Dyson-
Schwinger equations [41,42].
Motivated by the precise experimental knowledge on the

vector form factor fþðq2Þ, one can extract indirectly the
values of gB�B� via Eq. (9) and ĝ via Eq. (10), by an
extrapolation of the form factor from the physical region
to the pole m2

B� , which will be detailed in the next section.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. The relevant input parameters

Before presenting the results for the strong coupling
gB�B�, we would like to first fix the relevant input

1Values for the couplings obtained prior to 1995 with different
approaches could be found, for example, in [36] and references
therein.
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parameters, such as the decay constants, the CKM matrix
element jVubj, as well as the free parameter q20 in the BGL

and BCL parametrizations.
The vector decay constant defined by Eq. (8) is not

relevant from a phenomenological point of view, since
the meson B� will decay predominantly through the elec-
tromagnetic interaction. It is, however, needed in our case
to extract the strong coupling gB�B� from the pole residue
Eq. (9). To take into account the uncertainties induced by
this quantity, we shall use the following two inputs: one is
taken from the UKQCD Collaboration [43],

~f B� ¼ 28ð1Þþ3
�4; (11)

which is related to the vector decay constant by ~fB� ¼
mB�=fB� , with the first error quoted statistical and
the second systematic, and hence we get fB� ¼
ð190� 7þ32

stat�18systÞ MeV; the other one is taken from the

quenched LQCD calculation [44],

fB� ¼ ð177� 6stat � 17systÞ MeV: (12)

To extract the normalized form factor fþð0Þ from the
fitted results of the product jVubjfþð0Þ, one needs to know
the value of the CKM matrix element jVubj. The two
avenues for jVubj determination through inclusive and
exclusive b ! u‘� decays have been reviewed in
[45,46]. How to reconcile the difference between the val-
ues for jVubj obtained from these two methods remains an
intriguing puzzle. At the same time, jVubj can also be most
precisely determined by a global fit of the unitarity triangle
(UT) that uses all available measurements [47,48]. Since
the presence of New Physics (NP) might, in principle,
affect the result of the UT analysis, here we shall use the
tree-level fit result performed by the UTfit Collaboration
[48],

jVubj ¼ ð3:76� 0:20Þ � 10�3; (13)

which is almost unchanged by the presence of NP.
In the BGL and BCL parametrizations, both the free

parameter q20 and the outer function �ðq2; q20Þ have to be

specified. Following the BABAR Collaboration [4] and
references therein, we choose the values q20 ¼ 0:65t� for

the BGL, and q20 ¼ ðmB þm�Þð ffiffiffiffiffiffiffi
mB

p � ffiffiffiffiffiffiffi
m�

p Þ2 for the

BCL parametrization. The outer function �ðq2; q20Þ in the

BGL parametrization is given explicitly as [20],

�þðq2; q20Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

32��ð0Þ
J

vuut  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q20

q !

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ � q2
q

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � t�

p �
3=2

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ � q2
q

þ ffiffiffiffiffi
tþ

p ��5 ðtþ � q2Þ
ðtþ � q20Þ1=4

; (14)

where �ð0Þ
J is a numerical factor that can be calculated via

operator product expansion [49]. At two loops in terms of
the pole mass and condensates and taking � ¼ mb, it is
given as [20]

�ð0Þ
J ¼ 3½1þ 1:140�sðmbÞ�

32�2m2
b

� �mbh �uui
m6

b

� h�sG
2i

12�m6
b

; (15)

with mb ¼ 4:88 GeV, �mbh �uui ’ �0:076 GeV4, h�sG
2i ’

0:063 GeV4 [20]. Explicitly, the BABAR Collaboration

uses �ð0Þ
J ¼ 6:889� 10�4 [4].

For all the other input parameters, we list them in
Table I. Throughout the paper, we use the isospin-averaged
meson masses, for example, m� ¼ ðm�þ þm�0Þ=2.

B. The fitted B ! � form-factor shape parameters

In order to extrapolate the vector form factor fþðq2Þ to
the B� pole based on the various form-factor parametriza-
tions, we first need to determine their shape parameters
from the current experimental data on B ! �‘� decay
reported by the BABAR [4–6] and Belle [7,8] collabora-
tions. Although these measurements employ different ex-
perimental techniques in treating the second B meson in
the B �B event, the measured total and partial branching
fractions agree well among each other. For more details,
we refer to these original references [4–8].
These experiments have also measured the q2 spectrum

of B ! �‘� decay, a fit to which allows for an extraction
of the q2 dependence of the vector form factor fþðq2Þ. It is
generally observed that all the four form-factor parametri-
zations introduced in Sec. II B could describe the measured
spectrum equally well [4,7,19]. A summary of the fitted
form-factor shape parameters (para.) based on various
parametrizations is given in Table II, where both a linear
(2 para., with kmax ¼ 2) and a quadratic (3 para., with
kmax ¼ 3) ansatz for the BGL and BCL parametrizations
are considered in [4], while a third-order polynomial fit
(4 para., with kmax ¼ 4) is performed in [7]. uct jVubjfþð0Þ
obtained from the fit extrapolated to q2 ¼ 0, if available, is
listed in the last column.

TABLE I. The relevant input parameters used in our calculation. All meson masses are taken
directly from the Particle Data Group [46].

m�þ ¼ 139:6 MeV m�0 ¼ 135:0 MeV f� ¼ 130:41� 0:20 MeV [46]

mBþ ¼ 5279:2 MeV mB0 ¼ 5279:5 MeV mB� ¼ 5325:1 MeV
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As concluded in Refs. [4,19], all these form-factor pa-
rametrizations could describe the experimental data
equally well, and the central values of the product
jVubjfþð0Þ agree with each other. In particular, from
Table II we can see that, using the BABAR data [4], the
qualities of these different fits are quite similar, with �2

probabilities ranging from 10% to 18%. Thus, all the four
form-factor parametrizations are valid choices to describe
the q2 dependence of the vector form factor fþðq2Þ, at least
in the physical region. To further test these different form-
factor parametrizations, more precise and additional infor-
mation is needed.

C. Numerical results for the couplings gB�B� and ĝ

In this subsection, assuming a definite behavior of the q2

dependence of the vector form factor fþðq2Þ and using
the fitted shape parameters listed in Table II, we shall

extrapolate the form factor to the B� pole and extract the
strong couplings gB�B� and ĝ through Eqs. (9) and (10).

1. The coupling gB�B�

As mentioned already, the B�B� is only poorly known
phenomenologically and the literature exhibits a wide
spread of values [16,26,37–40]. In this subsection, we first
present in Table III the extracted values of gB�B� from the
pole residue.
Since the vector decay constant fB� could not be mea-

sured directly and the lattice calculation still has a large
uncertainty [43,44], we also give the values of the product
fB�gB�B� in Table III, which is free of the uncertainty
induced by fB� . Comparing the values listed in the two
columns Eq. (11) and (12), we can see that the extracted
values of gB�B� and ĝ are not so sensitive to the vector
decay constant and are consistent with each other within

TABLE II. Summary of the form-factor shape parameters obtained by fitting to the BABAR [4] (top) and Belle [7] (bottom)
measurements for the isospin-combined B ! �‘� decays, based on various parametrizations of the vector form factor fþðq2Þ.
Parametrization Fit parameters jVubjfþð0Þ½10�3� �2=dof Probabilityð�2=dofÞ
BK �BK ¼ þ0:310� 0:085 1:052� 0:042 6:8=4 0.148 [4]

BZ rBZ ¼ þ0:170� 0:124 1:079� 0:046 6:0=3 0.112 [4]

�BZ ¼ þ0:761� 0:337
BCL (2 para.) b1=b0 ¼ �0:67� 0:18 1:065� 0:042 6:3=4 0.179 [4]

BCL (3 para.) b1=b0 ¼ �0:90� 0:46 1:086� 0:055 6:0=3 0.112 [4]

b2=b0 ¼ þ0:47� 1:49
BGL (2 para.) a1=a0 ¼ �0:94� 0:20 1:103� 0:042 6:6=4 0.156 [4]

BGL (3 para.) a1=a0 ¼ �0:82� 0:29 1:080� 0:056 6:3=3 0.100 [4]

a2=a0 ¼ �1:14� 1:81

BK �BK ¼ þ0:60� 0:04 0:924� 0:028 2:6=4 0.62 [7]

BGL (4 para.) a0 ¼ þ0:022� 0:002 — 12=20 0.916 [7]

a1 ¼ �0:032� 0:004
a2 ¼ �0:080� 0:020
a3 ¼ þ0:081� 0:066

TABLE III. The extracted values of the strong couplings gB�B� and ĝ using different form-factor parametrizations with the shape
parameters given in Table II. The columns Eq. (11) and (12) denote the results obtained with the corresponding input for fB� given by
these two equations.

gB�B� ĝ
Parametrization fB�gB�B�½GeV� Equation (11) Equation (12) Equation (11) Equation (12)

BK 4:32þ0:68
�0:55 22:71þ4:38

�4:42 24:40þ4:72�3:84 0:28þ0:05
�0:05 0:30þ0:06

�0:05 [4]

BZ 5:23þ1:63
�1:62 27:50þ9:11

�9:45 29:55þ9:79
�9:57 0:34þ0:11

�0:12 0:36þ0:12
�0:12 [4]

BCL (2 para.) 4:82þ0:74
�0:65 25:34þ4:85

�5:07 27:23þ5:21
�4:46 0:31þ0:06

�0:06 0:33þ0:06
�0:05 [4]

BCL (3 para.) 5:78þ2:11
�1:56 30:38þ11:61

�9:32 32:64þ12:48
�9:29 0:37þ0:14

�0:11 0:40þ0:15
�0:11 [4]

BGL (2 para.) 10:57þ1:60
�1:44 55:58þ10:48

�11:16 59:72þ11:28
�9:85 0:68þ0:13

�0:14 0:73þ0:14
�0:12 [4]

BGL (3 para.) 7:76þ3:44
�3:89 40:81þ18:67

�21:30 43:85þ20:06
�22:33 0:50þ0:23

�0:26 0:54þ0:25
�0:27 [4]

BK 6:54þ0:77
�0:66 34:40þ5:61

�6:15 36:97þ6:04
�5:07 0:42þ0:07

�0:08 0:45þ0:07
�0:06 [7]

BGL (4 para.) 0:34þ4:59
�4:59 1:78þ24:12�24:12 1:92þ25:91

�25:91 0:02þ0:30
�0:30 0:02þ0:32

�0:32 [7]
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their respective error bars. Further reduction of the uncer-
tainty on the vector decay constant fB� is welcome from the
LQCD simulation.

As can be seen from the upper part in Table III, the
extracted results of the parameters based on all the four
parametrizations are roughly consistent with each other
with their respective uncertainties taken into account; the
central values obtained with the BGL parametrization, on
the other hand, are neatly larger than the ones with the
other three parametrizations. As noted in Refs. [23,50], this
is due to the spurious zero at q2 ¼ tþ in definition of the
outer function�ðq2; q0Þ in Eq. (14), implying that the BGL
parametrization includes a spurious, unwanted pole at the
threshold of the cut. Although being also a series-expan-
sion-based ansatz, the BCL parametrization could yield a
value in good agreement with the BK and BZ ones, which
confirms the reason for generating such a larger value in
the BGL ansatz caused by the spurious zero in�ðq2; q0Þ. In
addition, comparing the linear and the quadratic fits in the
BGL and BCL parametrizations, we can see that the errors
increase with more expansion parameters added, leading to
a loss of predictive power. This means that the BGL and
BCL parametrizations with more fitting parameters could
not be well constrained by the current data in the semi-
leptonic region.

From the lower part in Table III, on the other hand, we
can see that, while the results of the BK parametrization
are roughly consistent with the ones using the other ansatz
based on the BABAR data [4], the BGL parametrization
performed by the Belle Collaboration [7] gives much
smaller results, but with larger uncertainties. This might
be due to the fact that the Belle Collaboration [7] uses a
different fitting strategy: rather than treating the model-
independent quantity jVubjfþð0Þ as a free parameter (as
does the BABAR Collaboration [4]), they perform a simul-
taneous fit of the experimental [7] and the FNAL/MILC
[11] LQCD results, where the free parameters are the CKM
matrix element jVubj and the series-expansion parameters
ai. In order to compare directly with the BABAR results, a

similar fit from the Belle Collaboration is necessarily
needed.
To check the validity of the form-factor extrapolation,

we would like to compare the values of fB�gB�B� given in
Table III with the ones existing in the literature,

fB�gB�B�

¼
( ð4:44� 0:97Þ GeV ½36�;
ð7:77; 7:88; 8:20; 10:01Þ GeV for sets 1 to 4 ½14�;

(16)

from which we can see that our results are generally
consistent with them. On the other hand, it is observed
that the result obtained in the LCSR method [36] is smaller
than the fits given in Ref. [14]; this might be due to the
failure of the simple quark-hadron duality used for the
contribution of higher resonances and the continuum to
the sum rules [51]; the inclusion of a radial excitation with
negative residue in the hadronic parametrization of the
correlation function does increase the value [51]. With
this fact taken into account, our central values are a bit
smaller than that given in Eq. (16).

2. The normalized coupling ĝ

The normalized coupling ĝ is the single constant in the
limit of exact chiral, heavy flavor and spin symmetries
[25,26]. However, being the parameter of the effective
theory, its value cannot be predicted but should be fixed
phenomenologically. Our results are given in last two
columns in Table III. As is the case for gB�B�, the central
values based on the BK, BZ, and BCL parametrizations are
consistent with each other, while the ones in the BGL
ansatz are larger.
As an improved determination of the B�B� coupling can

reduce the systematic uncertainty in most lattice calcula-
tions of B meson quantities, it has aroused a lot of precise
determinations of the B�B� coupling in the literature
[37–40]. The most recent lattice results are

ĝ ¼

8>>>>>><
>>>>>>:

0:42� 0:04stat � 0:08syst for Nf ¼ 0 ½37�;
0:58� 0:06stat � 0:10syst for Nf ¼ 0 ½38�;
0:44� 0:03stat�0:00syst

þ0:07 for Nf ¼ 2 ½39�;
0:516� 0:005stat � 0:033chiral � 0:028pert � 0:028dics for Nf ¼ 2 ½40�;

(17)

which have about 5% and 15% statistical errors for the
quenched and unquenched cases, respectively. With their
respective uncertainties taken into account, our extracted
values are generally consistent with the above lattice data.

Other estimates of the coupling ĝ are derived using
various versions of quark models and QCD sum rules
[16,26]. The best estimate based on the analyses of both

QCD sum rules and relativistic quark model, quoted in the
review [26], is

ĝ ’ 0:38; (18)

with an uncertainty around 20%, which is also in agree-
ment with our results given in Table III.
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Both the strong couplings gB�B� and ĝ have also been
calculated using a framework based on QCD’s Dyson-
Schwinger equations [41,42]. By implementing a more
realistic representation of heavy-light mesons, the updated
analysis based on this framework gives gB�B� ¼ 30:0þ3:2

�1:4

and ĝ ¼ 0:37þ0:04
�0:02 [41], both of which are also consistent

with our extracted values from the semileptonic B ! �‘�
decays.

The coupling ĝ is also related to the measured decay
width �ðD� ! D�Þ [33]. From the width of the charged
D� meson measured by CLEO, �expðD�þÞ ¼
ð96� 22Þ KeV [33], and by using the experimentally es-
tablished branching fraction BðD�þ ! Dþ�Þ ¼
ð1:6� 0:4Þ% [46], we can get

�expðD�þÞ½1�BðD�þ ! Dþ�Þ�
¼ �ðD�þ ! D0�þÞ þ �ðD�þ ! Dþ�0Þ

¼ 2mD0 j ~k�þj3 þmDþj ~k�0 j3
12�mD�þf2�

ĝ2; (19)

where j ~k�þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

D��ðmDþm�Þ2�½m2
D��ðmD�m�Þ2�

p
2mD� is the three-

momentum of pion in the rest frame of D� meson. Using
the inputs listed in Table I, we get numerically

ĝ ¼ 0:61� 0:07; (20)

which is a bit larger than both the LQCD simulation and
our results. This discrepancy might be due to the fact that
the charm quark is not very heavy and there are potentially
large Oð1=mn

cÞ corrections to the relation Eq. (10) with B
replaced by D.

IV. CONCLUSIONS

In this paper, motivated by the precisely measured q2

spectrum of semileptonic B ! �‘� decays by the BABAR
[4–6] and Belle [7,8] collaborations, we have performed a
phenomenological study of the strong coupling gB�B� and
the normalized coupling ĝ appearing in the HMChPT,
which is related to the pole residue of the vector form
factor fþðq2Þ at the unphysical point q2 ¼ m2

B� .

Through a detailed analysis, we found that the extracted
values based on the BK, BZ, and BCL parametrizations are
consistent with each other and also roughly in agreement
with other theoretical and lattice estimates, while the BGL
ansatz gives much larger values, which is due to the
spurious zero at q2 ¼ tþ in definition of the outer function
�ðq2; q0Þ. It is also found that the errors increase with more
expansion parameters added in the BGL and BCL parame-
trizations, leading to a loss of predictive power; the BGL
and BCL parametrizations with more fitting parameters
could not be well constrained by the current data in the
physical region.
In order to gain further information about the q2 behav-

ior of heavy-to-light transition form factors, much more
precise experimental data on exclusive semileptonic B
meson decays, as well as additional information on the
behavior of the vector form factor fþðq2Þ outside the
physical region are urgently needed.
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