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I. INTRODUCTION

A future linear eþe� collider offers the cleanest con-
ditions for studying top quark properties, such as the top
quark mass, its vector and axial couplings, and possible
magnetic and electric dipole moments. Apart from these
static properties, also the polarization of the top quark can
be studied with great precision. The top decays sufficiently
fast so that hadronization effects do not spoil the polariza-
tion which it has at its birth. The large number of top
quark pairs expected to be produced at the ILC, e.g., 50
ðt�tÞ=hour at 500 GeV (based on a luminosity of L ¼
2� 1034 cm�2 s�1 [1,2]), will enable one to precisely
determine the top quark polarization from an angular
analysis of its decay products in the dominant decay
t ! Xb þWþ. The expected statistical errors in the angu-
lar analysis are below the 1% level. Therefore very precise
measurements of the angular distributions and correlations
of the decay products of t and �t will shed light on the
polarization of the top quarks and on the spin-spin corre-
lations of the top and antitop quark pairs which are im-
printed on the top and antitop quarks by the ðt�tÞ-production
mechanism. In addition, the measurement of the top po-
larization will make it possible to precisely determine the
electroweak standard model (SM) parameters or to study a
variety of new phenomena beyond the SM.

It is well known that the top quarks from eþe� annihi-
lations are polarized even for unpolarized eþe� beams due
to the presence of parity-violating interactions in the stan-
dard model (SM). One also knows from the work of
Refs. [3,4] that the polarization of the top quark in polar-
ized eþe� annihilations can become quite large when the
beam polarization is adequately tuned. This is illustrated in
Fig. 1 where we display the energy dependence of the

mean longitudinal and transverse polarization of the top
quark in the helicity system for different values of the
effective polarization Peff defined by

Peff ¼ h� � hþ
1� h�hþ

: (1)

In Eq. (1), h� and hþ are the longitudinal polarization of
the electron and positron beams, respectively. Note that,
for unpolarized positron beams hþ ¼ 0, one has Peff ¼
h�. For a given value of h�, even small values of positron
polarization of opposite sign will enhance the effective
beam polarization. We shall return to this point in Sec. II.
As compared to the work of Ref. [3], Fig. 1 now includes
the Oð�sÞ radiative corrections. Large single-spin polar-
ization effects due to beam polarization effects are also
implicit in the work of Parke and Shadmi [5]. Although
Ref. [5] is designed for the analysis of top-antitop quark
spin correlations, it is easily adapted to single-spin polar-
ization effects as also discussed in Ref. [6].
We shall see that the polarization of the top quark is

governed by three parameters: the velocity v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=s

p
, the effective polarization Peff , and the cosine

of the scattering angle cos�. At the respective boundaries
of the three parameters the description of the polarization
phenomena becomes reasonably simple, in particular, at
the Born term level. The limits v ¼ 0 (threshold) and
v ¼ 1 (high-energy limit) are discussed in Sec. IV. In
Sec. V we discuss the limiting cases Peff ¼ �1.
The two respective limiting cases v ¼ 0, 1 and

Peff ¼ �1 contain in a nutshell much of the information
that we want to discuss in the remaining part of the paper
for intermediate values of these parameters. Many of the
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qualitative features of our results can be understood from
extrapolations away from the two respective limits.

We shall also address the question of how to maximize
and minimize the polarization of the top quark by tuning
the beam polarization. Whereas a maximum polarization is
optimal for the experimental determination of polarization
effects, it is often desirable to gauge the quality of a
polarization measurement against the corresponding unpo-
larized decay analysis. For some measurements it may
even be advantageous to eliminate polarization effects
altogether.

Of course, in the tuning process one has to bear in mind
to keep the production rate at an acceptable level. This
problem is not unrelated to the one of the original motiva-
tions of including beam polarization in linear colliders,
namely, the gain in rate through beam polarization effects.
We shall also address this question.

Our paper is structured as follows. In Sec. II we present
the spin formalism of polarized beam production of top-
antitop quark pairs including the polar angle dependence of
the various spin components and longitudinal beam polar-
ization effects. We present Born term and loop formulas
for the relevant structure functions and collect general

expressions necessary for the numerators and the denomi-
nator of the polarization observables. Section III contains
numerical next-to-leading (NLO) results on the angle-
integrated rate and on polar angle distributions of the rate
including beam polarization effects. We also provide nu-
merical results on the left-right polarization asymmetry
ALR. In Sec. IV we discuss the limiting cases v ¼ 0 and
v ¼ 1 at the Born term level. In Sec. V we describe the
simplifications that occur for maximal effective beam po-
larizations Peff ¼ �1 which correspond to the ðe�L=R; eþR=LÞ
beam configurations. In Sec. VI we discuss beam polariza-
tion effects on the three components of the top quark
polarization vector. Section VII contains a discussion of
the magnitude and the orientation of the polarization vector
of the top quark. In Sec. VIII we present numerical NLO
results on beam polarization effects on longitudinal spin-
spin correlations of the top and antitop quark. Finally,
Sec. IX contains a summary of our results and our con-
clusions. In an Appendix we list the electroweak coupling
coefficients used in this paper and relate them to the chiral
electroweak coupling coefficients used e.g. in Ref. [5].
Many of the quantitative arguments presented in this

paper are based on Born term level results for which we
give explicit alpha-numerical expressions for

ffiffiffi
s

p ¼
500 GeV. We emphasize, though, that all numerical results
presented in the plots include the full Oð�sÞ radiative
corrections where we have integrated over the full gluon
phase space. By comparing the graphical NLO results with
the numerical LO results, one can assess the size of the
Oð�sÞ radiative corrections, at least for the representative
energy of

ffiffiffi
s

p ¼ 500 GeV. In general, the Oð�sÞ correc-
tions to polarization observables are small (up to several
percent) but can become much larger in some areas of
phase space. A case in point is the longitudinal polarization
of the bottom quark produced on the Z0 at the backward
point which obtains a 25% Oð�sÞ correction when
Peff ¼ þ1 [4]. As we shall see later on, the Oð�sÞ correc-
tions to ðt�tÞ production can amount up to 12% (see
Sec. VII). In addition, there are polarization observables
that are zero at the Born term level and become populated
only at Oð�sÞ. Among these are the normal component of
the polarization (see Sec. VI) and the longitudinal polar-
ization produced from a longitudinal intermediate vector
boson (see Sec. II).

II. SPIN FORMALISM OF POLARIZED BEAM
PRODUCTION

The production of top quark pairs at a linear eþe�
collider proceeds via � and Z exchange:

e�eþ!�;Zt�t: (2)

At the center of mass energies which are being envisaged at
the ILC (s ¼ ðpe� þ peþÞ2),

ffiffiffi
s

p � 2mt � 1000 GeV, top
quark pairs will be produced with nonrelativistic velocities

(a)

(b)

FIG. 1. Average (a) longitudinal polarization hPðlÞi and
(b) transverse polarization hPðtrÞi as a function of the c.m.
energy

ffiffiffi
s

p
, for the values Peff ¼ �1 (dashed), Peff ¼ �0:5

(dash-dotted), Peff ¼ 0 (solid), Peff ¼ þ0:5 (dash-dotted), and
Peff ¼ þ1 (dashed). Averaging is over cos�.

GROOTE et al. PHYSICAL REVIEW D 83, 054018 (2011)

054018-2



in the threshold region (v ! 0) up to relativistic velocities
of v ¼ 0:937 at the highest energy

ffiffiffi
s

p ¼ 1000 GeV

ðv ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

t =s
p

).1 This enables the study of the com-
plete production phenomena with different polarization
and correlation effects that reach from the nonrelativistic
to the relativistic domain. For unpolarized beams the total
rate is dominated by the diagonal (�� �) and the (Z� Z)
rates which contribute at the same order of magnitude. The
(�� Z) interference contribution to the total rate is sup-
pressed due to the smallness of the vector ðZeþe�Þ cou-
pling vl (vl ¼ �1þ 4sin2�W). The (�� Z) interference
contribution can, however, become quite sizable for polar-
ized beams, for the polar angle dependent rates, and for top
quark polarization effects.

We mention that, at threshold, there will be the oppor-
tunity for very precise measurements of the top quark mass
and width, as well as of the strong coupling �s. In this
region, perturbative QCD is no longer applicable. One
has to solve the Schrödinger equation for the relevant
Green functions in a nonrelativistic approximation for a
Coulombic potential, i.e. the nonrelativistic QCD method,
described first in Ref. [8] and later applied to the calcu-
lation of various different quantities at threshold (see, for
example, the discussion in Refs. [9,10] and references
therein). In this paper we shall discuss top-antitop produc-
tion well above threshold where perturbation theory can be
safely applied. For our purposes we take the perturbative
regime to start approximately 10 GeV above threshold.
Throughout this paper we shall take the top quark mass
to have a nominal value of 175 GeV. Therefore, we shall
consider c.m. beam energies starting from

ffiffiffi
s

p ¼ 360 GeV.
We are going to discuss the most general case of the

polarization of the top quark with arbitrary longitudinal
polarizations of the e� and eþ beams. The rate depends
on the set of four parameters fh� 2 ½�1; 1�; hþ 2
½�1; 1�; v 2 ½0; 1�; cos� 2 ½�1; 1�g or, equivalently,
on the set fKG 2 ½0; 2�; Peff 2 ½�1; 1�; v 2 ½0; 1�;
cos� 2 ½�1; 1�g, where we shall call KG ¼ 1� h�hþ
the gain factor. We have indicated the range of the parame-
ter values in square brackets. In contrast to the rate, the
polarization of the top quark depends only on the set of the
three parameters fPeff ; v; cos�g. When discussing our pre-
dictions we shall attempt to explore the whole four- and
three-dimensional parameter space for the rate and polar-
ization, respectively. We mention that the beam polariza-
tions envisaged at the ILC are h� ¼ �90% for electrons
and hþ ¼ �80% for positrons [11].

We will see that beam polarizations significantly influ-
ence the polarization phenomena of a top quark. In addi-
tion, adequately tuned beam polarization can enhance the

top-antitop quark signal and suppress other background
processes such as W-pair production (see discussion in
Ref. [12]).
In what follows, we concentrate on the polarization of

the top quark, i.e. we sum over the polarization of the
antitop quark. The polarization of the antitop quark can
be obtained from the corresponding polarization compo-
nents of the top quark using CP invariance as will be
discussed in the summary section. Even more structure is
revealed when one considers joint top-antitop polarization.
In order to reveal this structure, one must perform a joint
analysis of the decay products of the top and antitop quark.
ðt�tÞ spin-spin correlations will be briefly discussed in
Sec. VIII at the end of the paper.
The general expression of the cross section for ðt�tÞ

production in eþe� collisions is given by2

d�ðmÞ ¼ 2�
e4

s2
X4
i;j¼1

gijL
i��HjðmÞ

�� dPS: (3)

Li
�� is the lepton tensor,H

j
�� is the hadron tensor encoding

the hadronic production dynamics, dPS is the phase space
factor, and the gij are the elements of the electroweak

coupling matrix which are defined in the Appendix. The
sum runs over the four independent configurations of prod-
ucts of the vector and axial vector currents, i.e. i; j ¼ 1; 2
for ðVV � AAÞ=2, i; j ¼ 3 for iðVA� AVÞ=2, and i; j ¼ 4
for ðVAþ AVÞ=2 for the product of lepton and quark
currents, and m denotes one of the possible polarization
configurations of the top quark: longitudinal (m ¼ ‘),
transverse (m ¼ tr) in the beam scattering plane and nor-
mal (m ¼ n) to the beam scattering plane. Our choice of

the three orthonormal spin directions ð ~eðtrÞ; ~eðnÞ; ~eð‘ÞÞ are
given by

~eðtrÞ ¼ ð ~pe� � ~ptÞ � ~pt

jð ~pe� � ~ptÞ � ~ptj ;

~eðnÞ ¼ ~pe� � ~pt

j ~pe� � ~ptj ;

~eð‘Þ ¼ ~pt

j ~ptj :

(4)

In Fig. 2 we have drawn the directions of ~eðtrÞ and ~eð‘Þ for a
generic top quark direction; the vector ~eðnÞ shows out of the
plane. For the unpolarized top quark case the superscript
ðmÞ is dropped in Eq. (3). The explicit definitions for all the
above quantities together with explicit analytical expres-
sions for the radiative corrections can be found in
Refs. [14,19–21] (see also Ref. [4]).

1In the first stage of the ILC, one will reach energies up to
500 GeV with an optional second stage upgrade to 1000 GeV
[1,2]. For the multi-TeV collider CLIC, one foresees energies up
to 3 TeV [7].

2The spin kinematics of eþe� collisions has been formulated
in a number of papers. These include the unpublished DESY
report [13] of which the portions relevant to this paper have been
summarized in Ref. [14]. Other papers on the subject are
Refs. [4,12,15–18].
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We proceed with the discussion in the helicity basis, i.e.
we take the direction of the top quark to define the z
direction of the hadronic system. For unpolarized beams
the angular decomposition of the differential polarized
cross section can be written as

d�ðmÞ

d cos�
¼ 3

8
ð1þ cos2�Þ�ð‘Þ

U þ 3

4
sin2��ð‘Þ

L þ 3

4
cos��ð‘Þ

F

� 3ffiffiffi
2

p sin� cos��ðtr;nÞ
I � 3ffiffiffi

2
p sin��ðtr;nÞ

A ; (5)

where, at NLO of QCD,

�ðmÞ
a ¼ ��2v

3s2
X4
j¼1

g1jðHjðmÞ
a ðBornÞ þHjðmÞ

a ð�sÞÞ

for a ¼ U;L; I (6)

and

�ðmÞ
a ¼ ��2v

3s2
X4
j¼1

g4jðH4ðmÞ
a ðBornÞ þH4ðmÞ

a ð�sÞÞ

for a ¼ F; A:

(7)

In Eq. (5) we have rewritten the covariant representation

(3) in terms of helicity structure functions �ðmÞ
a . The angle

� is the polar angle between the momentum of the
top quark and the electron momentum (see Fig. 2). For
example, in the purely electromagnetic case eþe� !
�� ! q �q, one obtains the LO formula

d�

cos�
¼ 2�NcQ

2
fv

�2

4s
ð1þ cos2�þ ð1� v2Þsin2�Þ (8)

using the LO born term expressions listed later in Eq. (10).
The distribution (8) agrees with Eq. (41.2) in the Particle
Data Group booklet. We mention that our Oð�sÞ correc-
tions agree with those in Ref. [4] after correcting a sign
mistake in the normal polarization (see Erratum in
Ref. [21]).

Above the top quark threshold, one is sufficiently far
away from the Z-boson pole to neglect the imaginary part
of the Z boson pole propagator. This can be appreciated
from the Breit-Wigner line shape of the Z propagator, viz.

�Z ¼ 1

s�M2
Z þ iMZ�Z

¼ 1

s�M2
Z

�
1� i

MZ�Z

s�M2
Z

���
1þ M2

Z�
2
Z

ðs�M2
ZÞ2

�
: (9)

The factor MZ�Z=ðs�M2
ZÞ determines the ratio of the

imaginary and real parts of the Z propagator
Im�Z=Re�Z. It is already quite small at threshold
(� 0:002) and falls off with s�1. Dropping the imaginary
part contribution of the Z propagator implies that we
neglect contributions proportional to g13 in Eq. (6) and
g43 in Eq. (7). We shall also neglect the width dependence
in the real part of the Z propagator because it is negligibly
small.
The nonvanishing unpolarized Born term contributions

Hj
aðBornÞ read
H1

UðBornÞ ¼ 2Ncsð1þ v2Þ;
H1

LðBornÞ ¼ Ncsð1� v2Þ ¼ H2
LðBornÞ;

H2
UðBornÞ ¼ 2Ncsð1� v2Þ;

H4
FðBornÞ ¼ 4Ncsv:

(10)

One has ð1� v2Þ ¼ 4m2
t =s showing that the longitudinal

rate HL falls off with a s�1 power behavior relative to the
transverse rates HU;F. The longitudinally polarized contri-

butions read

H4ð‘Þ
U ðBornÞ ¼ 4Ncsv;

H1ð‘Þ
F ðBornÞ ¼ 2Ncsð1þ v2Þ;

H4ð‘Þ
L ðBornÞ ¼ 0;

H2ð‘Þ
F ðBornÞ ¼ 2Ncsð1� v2Þ:

(11)

Note that one has the Born term relations

H4ð‘Þ
U ðBornÞ ¼ H4

FðBornÞ;
H1;2ð‘Þ

F ðBornÞ ¼ H1;2
U ðBornÞ;

(12)

which are due to angular momentum conversation in the
back-to-back configuration at the Born term level. It is
quite clear that Eqs. (12) no longer hold true in general
at Oð�sÞ since quark and antiquark are no longer back to
back in general due to additional gluon emission. The
relations (12) will be useful in our subsequent discussion
of the longitudinal polarization at the forward and back-

ward points. Notable also is the relationH4ð‘Þ
L ðBornÞ ¼ 0 in

Eq. (11) which is again related to the LO back-to-back
configuration. The radiative corrections to the correspond-

ing polarization component Pð‘Þ
L have been studied in

eL
−

e+
R

e (tr)

t

t

Θ

t

α

z

x

e (l)

FIG. 2. A generic configuration for top pair production and top
polarization at a polarized eþe� collider with a ðe�L ; eþR Þ polar-
ization. The positive z axis points into the direction of the
electron momentum. The angle � is the polar angle of the top
quark polarization relative to the top quark momentum measured
anticlockwise from the direction of the top quark.
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Ref. [20] and have been found to be small of Oð0:1%Þ
when averaged over gluon phase space. For small top quark

energies Pð‘Þ
L can become as large as 3% at

ffiffiffi
s

p ¼ 500 GeV.
For the transverse polarization components, one has [21]

H4ðtrÞ
I ðBornÞ ¼ 2Ncsv

mtffiffiffiffiffi
2s

p ;

H1ðtrÞ
A ðBornÞ ¼ 2Ncs

mtffiffiffiffiffi
2s

p ¼ H2ðtrÞ
A ðBornÞ:

(13)

The only nonnegligible contribution to the normal polar-

ization component PðnÞ comes from the imaginary part of
the one-loop contribution (CF ¼ 4=3)

H1ðnÞ
I ðloopÞ ¼ 2Ncs

�sCF

4�
�v

mtffiffiffiffiffi
2s

p ¼ H2ðnÞ
I ðloopÞ; (14)

H4ðnÞ
A ðloopÞ ¼ 2Ncs

�sCF

4�
�ð2� v2Þ mtffiffiffiffiffi

2s
p : (15)

As already mentioned in the Introduction, the transverse
and normal polarization components can be seen to fall off
with a power behavior of ð ffiffiffi

s
p Þ�1 relative to the longitudinal

polarization components.
The �s corrections to the polarized structure functions

HjðmÞ
a ¼ Hj

aðþsmÞ �Hj
að�smÞ and the unpolarized struc-

ture function Hj
a ¼ HaðþsmÞ þHað�smÞ (sm is the polar-

ization vector of the top quark) are too lengthy to be listed
here. They can be found in Refs. [14,19–21], or, in a very
compact two-page analytical representation, in Sec. 5 of
Ref. [22].

The longitudinal polarization of the electron and posi-
tron beams enter the above formulas as [14]3

g1j ! ð1� h�hþÞg1j þ ðh� � hþÞg4j
¼ ð1� h�hþÞðg1j þ Peffg4jÞ;

g4j ! ð1� h�hþÞg4j þ ðh� � hþÞg1j
¼ ð1� h�hþÞðg4j þ Peffg1jÞ;

(16)

where Peff is defined in Eq. (1). In Eq. (16) h� denotes the
electron’s and hþ denotes the positron’s longitudinal po-
larization which can take values between �1. An electron
with h� ¼ �1 will be referred to as the totally polarized
left-handed (right-handed) electron (e�L=R). Similarly, a

right-handed positron (eþR ) has hþ ¼ �1 and a left-handed
positron (eþL ) has hþ ¼ þ1. From the definition of Peff

[see Eq. (1)] it is clear that large values of Peff can be
reached even for nonmaximal values of h� and hþ, as
Fig. 3(a) shows. For example, the large value of Peff ¼
�0:95 can be achieved with h� ¼ �0:8; hþ ¼ 0:625,

and correspondingly, Peff ¼ 0:95 can be reached with
h� ¼ 0:8; hþ ¼ �0:625. These two examples have been
marked off in Fig. 3. Both sets correspond to a gain factor
of KG ¼ 1:5.

0.95

0.75

0.5

0.25

0

0.25

0.5

0.75

0.95

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

h

h

(a)

1.75

1.75

1.5

1.5

1.25

1.25
1

11

1
0.75

0.75

0.5

0.5

0.25

0.25

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

h

h

(b)

FIG. 3 (color online). Contour plots in the ðh�; hþÞ
plane (a) for fixed values of the effective polarization Peff ¼
ðh� � hþÞ=ð1� h�hþÞ and (b) for fixed values of the gain
factor KG ¼ ð1� h�hþÞ. The two points marked off in the plots
correspond to ðh�; hþÞ ¼ ð�0:8;þ0:625Þ and ðþ0:8;�0:625Þ,
respectively.

3Transverse beam polarization effects will not be discussed in
this paper because present plans call for longitudinal beam
polarization at the ILC. Transverse beam polarization effects
can be included as described e.g. in Ref. [14].
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The orientation-dependent longitudinal, transverse, and
normal polarization components which we are interested in
are defined by

PðmÞðcos�Þ ¼ d�ðmÞ=d cos�
d�=d cos�

m ¼ ‘; tr; n; (17)

where d�=d cos� is the unpolarized differential cross sec-
tion. Of course, there is an additional dependence of the
above quantities on the c.m. beam energy

ffiffiffi
s

p
, and on the

beam polarizations h� and hþ to be discussed later on.
The unpolarized cross section is given by the first three
terms in Eq. (5) dropping, of course, the label ð‘Þ.

Dropping the common factor ��2v=ð3s2Þ in the ratio
(17), we shall represent the polarization components by the
ratios

PðmÞðcos�Þ ¼ NðmÞðcos�Þ
Dðcos�Þ ; m ¼ ‘; tr; n: (18)

In particular, the gain factor KG has canceled out in the
ratio (18) implying that the polarization only depends
on Peff .

The numerator factors NðmÞ in Eq. (18) are given by

Nð‘Þðcos�Þ ¼ 3
8ð1þ cos2�Þðg14 þ g44PeffÞH4ð‘Þ

U

þ 3
4sin

2�ðg14 þ g44PeffÞH4ð‘Þ
L

þ 3
4 cos�ððg41 þ g11PeffÞH1ð‘Þ

F

þ ðg42 þ g12PeffÞH2ð‘Þ
F Þ; (19)

NðtrÞðcos�Þ ¼ � 3ffiffiffi
2

p sin� cos�ðg14 þ g44PeffÞH4ðtrÞ
I

� 3ffiffiffi
2

p sin�ððg41 þ g11PeffÞH1ðtrÞ
A

þ ðg42 þ g12PeffÞH2ðtrÞ
A Þ; (20)

and by

NðnÞðcos�Þ ¼ � 3ffiffiffi
2

p sin� cos�ððg11 þ g41PeffÞH1ðnÞ
I ðloopÞ

þ ðg12 þ g42PeffÞH2ðnÞ
I ðloopÞÞ

� 3ffiffiffi
2

p sin�ðg44 þ g14PeffÞH4ðnÞ
A ðloopÞ: (21)

For the denominator, one has

Dðcos�Þ¼ 3
8ð1þcos2�Þððg11þg41PeffÞH1

U

þðg12þg42PeffÞH2
UÞþ 3

4sin
2�ððg11þg41PeffÞH1

L

þðg12þg42PeffÞH2
LÞþ 3

4cos�ðg44þg14PeffÞH4
F:

(22)

At the forward (FP) and backward (BP) point the trans-
verse and normal polarization components vanish.
Referring to the relations (12), at Born term level the

longitudinal polarization component Pð‘Þ takes a very sim-
ple form at the forward (FP) and backward (BP) point for
the maximal values of the effective polarization
Peff ¼ �1. One has

FP: Pð‘Þðcos� ¼ þ1Þ ¼ �1;

BP: Pð‘Þðcos� ¼ �1Þ ¼ �1;
(23)

in agreement with angular momentum conservation. It is
clear that these relations no longer hold true in general at
NLO due to hard gluon emission.
It is useful to define the left-right polarization asymme-

try ALR through the relation

d�ðPeffÞ � d�ð�PeffÞ
d�ðPeffÞ þ d�ð�PeffÞ

¼ �ALRPeff ; (24)

where

ALR ¼ �
3
8 ð1þ cos2�Þðg41H1

U þ g42H
2
UÞ þ 3

4 sin
2�ðg41H1

L þ g42H
2
LÞ þ 3

4 cos�g14H
4
F

3
8 ð1þ cos2�Þðg11H1

U þ g12H
2
UÞ þ 3

4 sin
2�ðg11H1

L þ g12H
2
LÞ þ 3

4 cos�g44H
4
F

: (25)

Of interest is the angle � enclosed by the momentum and
the polarization of the top quark projected onto the scat-
tering plane (see Fig. 2).4 The angle � is determined by

tan�ðcos�Þ ¼ NðtrÞðcos�Þ
Nð‘Þðcos�Þ : (26)

Equation (26) assumes a simple form at threshold and in
the high-energy limit as discussed in Sec. IV, and for
Peff ¼ �1 as will be discussed in Sec. V. The correlations
between � and � implied by Eq. (26) will be discussed in
Secs. IV, V, and VII.

III. BEAM POLARIZATION DEPENDENCE OF
THE RATE

We begin our numerical discussion with the rate propor-
tional to the denominator expression in Eq. (18). The effect
of longitudinally polarized beams on the polar averaged
rate (called total rate) can be obtained from the form

4For the present purposes we neglect the Oð�sÞ normal com-
ponent of the polarization vector which is quite small. Note that,
in general, one needs two angles to describe the orientation of
the polarization vector instead of the one angle � defined in
Eq. (26).
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� ¼ �ðPeff ¼ 0Þð1� h�hþÞ
0
B@1þ Peff

g41
g11

1þ g42
g41

H2
UþL

H1
UþL

1þ g12
g11

H2
UþL

H1
UþL

1
CA;
(27)

which, at the Born level and at
ffiffiffi
s

p ¼ 500 GeV, gives

� ¼ �ðPeff ¼ 0Þð1� h�hþÞð1� 0:37PeffÞ: (28)

From Eq. (28) it is evident that the total rate becomes
maximal on two counts: (i) large values of the gain factor
KG ¼ ð1� h�hþÞ, requiring signðh�Þ ¼ �signðhþÞ; and
(ii) large negative values of Peff , which can be achieved
with large negative and positive values of h� and hþ,
respectively. The maximal enhancement of the rate will
be obtained for h� ¼ �1 and hþ ¼ þ1 such that
Peff ¼ �1 and KG ¼ 2. At

ffiffiffi
s

p ¼ 500 GeV, this leads to
a maximal enhancement factor of 2.74 over the unpolarized
case. It is interesting to note that for ðb �bÞ production atffiffiffi
s

p ¼ 500 GeV the effective enhancement through beam
polarization effects is slightly larger than in the ðt�tÞ case.
For ðb �bÞ production the last factor in Eq. (27) is replaced
by the simpler expression ð1þ Peffg41=g11Þ since, at

ffiffiffi
s

p ¼
500 GeV, the ratio H2

UþL=H
1
UþL is practically zero for

bottom quark production. Using the results of the
Appendix applied to the ðb �bÞ case, one finds g41=g11 ¼
�0:62 leading to an overall enhancement factor of 3.24 for
the optimal choice of parameters h� ¼ �1 and hþ ¼ þ1
(Peff ¼ �1) at

ffiffiffi
s

p ¼ 500 GeV.
In Fig. 3(b) we show some contour lines for fixed values

of the gain factor KG ¼ ð1� h�hþÞ in the ðh�; hþÞ plane.
Clearly, quadrants 2 and 4 are favored if one wants to
obtain a gain factor exceeding one, i.e. KG 	 1. As con-
cerns the rate dependence on Peff [rightmost factor in
Eq. (28)], a further rate enhancement is achieved for nega-
tive values of Peff , i.e. one would have to choose points
lying to the left of the line h� ¼ �hþ in Fig. 3(a). The
optimal choice as concerns the rate would thus be quadrant
2 in the ðh�; hþÞ plane. One notes that large negative
values of Peff can readily be achieved for nonmaximal
values of the beam polarization, as illustrated in
Fig. 3(a), where we have plotted some contour lines in
the ðh�; hþÞ plane corresponding to fixed values of Peff .
One notes that the regions of large KG and large negative
Peff have a large overlap. We mention that one may have to
give up the optimal choice in the ðh�; hþÞ plane if one
wants to achieve other goals such as minimizing the
polarization.

The QCD one-loop corrections to the total cross section
are well known (see e.g. Ref. [18]) and add about 13% atffiffiffi
s

p ¼ 500 GeV to the Born total cross section, where the
percentage increase has very little dependence on the beam
polarization. We mention that the electroweak corrections
to the total rate are smaller, and amount to about 50% of the
QCD corrections [23]. For the strong coupling �s we use
two-loop running adjusted to the value �sðmZÞ ¼ 0:1175

and fitted at 2mt ¼ 350 GeV.5 Close to threshold the
Oð�sÞ corrections become larger and amount to about
27% of the total cross section at e.g.

ffiffiffi
s

p ¼ 400 GeV. The
c.m. energy dependence of the total cross section � is
shown in Figs. 4(a) and 4(b). In Fig. 4(a) we take
hþ ¼ 0 and show the energy dependence of the total cross
section varying h� over its whole range ½�1;þ1�. One
notes a strong dependence on h� apart from the standard
falloff of the total cross section with beam energy. Since
for hþ ¼ 0 the gain factor KG is equal to 1 and since
Peff ¼ h�, the rate depends linearly on h� as displayed
in Eqs. (27) and (28). The rate is largest for h� ¼ �1 and
then linearly drops to its lowest value at h� ¼ þ1. In
Fig. 4(b) we show the energy dependence of the rate for
the three pairs of beam polarizations ðh�; hþÞ ¼
ð�0:9; 0Þ; ð�0:9;þ0:4Þ; ð�0:9;þ0:6Þ. If one translates
this into the ðKG; PeffÞ representation, one has ðKG; PeffÞ ¼
ð1;�0:9Þ; ð1:36;�0:96Þ; ð1:54;�0:97Þ. The hierarchy of

400
600

800
1000s GeV

1.0

0.5

0.0

0.5
1.0

h

0.2

0.4

0.6

0.8

pb

(a)

(b)

FIG. 4 (color online). The total cross section � at the one-loop
level as a function of the beam energy

ffiffiffi
s

p
and (a) the electron

polarization h� ðhþ ¼ 0Þ; (b) for three values of the
positron polarization hþ ¼ 0, 0.4, 0.6, and with the fixed elec-
tron beam polarization of h� ¼ �0:9 (solid lines). In Fig. 4(b)
we also show the respective LO rates (dashed lines).

5For � we take the value � ¼ 1=137. If one uses a running �,
for example � ¼ 1=128, the cross sections in Fig. 4 would
increase by 14.6%.
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rates in Fig. 4(b) can be seen to be mostly determined by
the gain factor KG in Eq. (27).

Next we turn to the differential rate distribution with
respect to cos�. In order to illustrate the forward domi-
nance of the differential cos� distribution we plot
��1d�=d cos� against cos�. Note that the dependence
on the gain factor KG ¼ 1� h�hþ drops out in the ratio.
In Fig. 5(a) we plot the differential rate distribution for a
fixed value of

ffiffiffi
s

p ¼ 500 GeV and for Peff ¼ �1; 0;þ1.
One sees a pronounced forward dominance of the differ-
ential distribution which does not depend much on the
value of Peff . In Fig. 5(b) we keep the effective beam
polarization fixed at Peff ¼ 0 and vary

ffiffiffi
s

p
through several

values. At threshold
ffiffiffi
s

p ¼ 350 GeV, one has a flat distri-
bution ��1d�=d cos� ¼ 0:5. When the energy is in-
creased, the forward rate clearly dominates over the
backward rate. The forward dominance becomes even
stronger for increasing energies.

Of related interest is the rate into the forward (F) and
backward (B) hemispheres. Again, the gain factor KG

drops out in the ratio. At
ffiffiffi
s

p ¼ 500 GeV, one numerically
obtains

h�iF
h�iB ¼ h�iF

h�iB
��������Peff¼0

1� 0:34Peff

1� 0:43Peff

¼
8><
>:
þ2:73 Peff ¼ þ1

þ2:36 ¼ 0

þ2:21 ¼ �1

9>=
>;: (29)

The mean forward rate h�iF clearly dominates over the
mean backward rate h�iB. The dependence of the F=B rate
ratio on Peff is not very pronounced.
In Fig. 6 we plot the polar angle dependence of the NLO

left-right polarization asymmetry ALR for different ener-
gies. At

ffiffiffi
s

p ¼ 360 GeV the cos� dependence already starts
to deviate from the flat Born term behavior at threshold
given by ALR ¼ �ðg41 þ g42Þ=ðg11 þ g12Þ ¼ 0:409. The
left-right polarization asymmetry ALR peaks toward the
backward region and reaches
 59% at the backward point
for the highest energy

ffiffiffi
s

p ¼ 3000 GeV in Fig. 6.

IV. BORN TERM SIMPLIFICATIONS AT
THRESHOLD AND IN THE
HIGH-ENERGY LIMIT

Before turning to the numerical analysis of the polariza-
tion of the top quark, in this section we shall first discuss
Born term simplifications of the polarization of the top
quark at threshold and in the high-energy limit. In Sec. V
we discuss Born term simplifications that occur for
Peff ¼ �1.
At threshold v ! 0 and in the high-energy limit v ! 1,

the polarization expressions become quite simple. At
threshold, the polarization of the top quark is parallel to
the beam axis, regardless of the polar orientation of the top
quark (see e.g. Ref. [24]). In fact, a large part of the beam
polarization gets transferred to the polarization of the top
quark at threshold. For the Born term contributions the top
quark polarization at threshold can be calculated from

(a)

(b)

FIG. 5. Polar angle dependence of the differential cross section
for (a)

ffiffiffi
s

p ¼ 500 GeV and Peff ¼ �1; 0;þ1 and (b) Peff ¼ 0 for
beam energies

ffiffiffi
s

p ¼ 360 GeV (dotted line), 500 GeV (dashed
line), 1000 GeV (dash-dotted line), and 3000 GeV (solid line).

FIG. 6. Left-right polarization asymmetry ALR for
ffiffiffi
s

p ¼ 360,
500, 1000, and 3000 GeV (notation as in Fig. 5).
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Eqs. (19), (20), and (22) (see also Refs. [18,25]). It is
nominally given by6

~P ¼ Peff � ALR

1� PeffALR

n̂e� ; (30)

where ALR is the left-right beam polarization asymmetry
ð�LR � �RLÞ=ð�LR þ �RLÞ at threshold [see Eq. (25)] and
n̂e� is a unit vector pointing into the direction of the
electron momentum. In terms of the electroweak coupling
parameters gij (see the Appendix), the nominal polariza-

tion asymmetry at threshold
ffiffiffi
s

p ¼ 2mt is given by ALR ¼
�ðg41 þ g42Þ=ðg11 þ g12Þ ¼ 0:409. The simplification at
threshold arises from the fact that, from the four ðL; SÞV;A
amplitudes ðL; SÞV;A ¼ ð0; 1ÞV; ð2; 1ÞV; ð1; 0ÞA; ð1; 1ÞA de-

scribing the production of a spin-1=2 pair, only the
S-wave amplitude ð0; 1ÞV survives at threshold. The suf-
fixes V and A denote vector current (V) and axial vector
current (A) production. Correspondingly, the combinations
ðg41 þ g42Þ and ðg11 þ g12Þ contain only the vector current
coupling on the quark side.

The magnitude of the threshold polarization is given by

j ~Pj ¼
�������� Peff � ALR

1� PeffALR

��������: (31)

The threshold polarization is independent of cos�, i.e.

hj ~Pji ¼ j ~Pj. The polarization vanishes for Peff ¼ ALR in-
dependent of cos�.7 For Peff >ALR and Peff < ALR, one

has ~P ¼ j ~Pjn̂e� and ~P ¼ �j ~Pjn̂e� , respectively, such that

PðtrÞ ¼ �j ~Pj sin� and Pð‘Þ ¼ �j ~Pj cos�. In particular, one
has a 100% threshold polarization of the top quark for

Peff ¼ �1 with ~P ¼ �n̂e� .
Extrapolations away from Peff ¼ �1 are more stable for

Peff ¼ �1 than for Peff ¼ þ1 as the slope of Eq. (31) at
Peff ¼ �1 shows. One has

dj ~Pj
dPeff

¼ � 1� ALR

1� ALR

: (32)

For Peff ¼ �1 one has a slope of �ð1� ALRÞ=
ð1þ ALRÞ ¼ �0:42 while one has a much larger positive

slope of ð1þ ALRÞ=ð1� ALRÞ ¼ þ2:38 for Peff ¼ þ1.
This substantiates the statement made above and in
Sec. I about the stability of extrapolations away from
Peff ¼ �1. For example, keeping only the linear term in

the Taylor expansion of Eq. (31), one has j ~Pj ¼ 0:98 for

Peff ¼ �0:95, while j ~Pj drops to j ~Pj ¼ 0:88 for
Peff ¼ þ0:95.
For energies above threshold the slope Eq. (32) becomes

energy and angle dependent. We do not show plots of the
slope at higher energies. We have, however, checked nu-
merically that the above statement about the stability of the

j ~Pj result at Peff ¼ �1 against variations of Peff remains
true at higher energies in the whole angular range, where
the slope in the backward region has a tendency to be
smaller than in the forward region.

As mentioned above, minimal polarization j ~Pj ¼ 0 oc-
curs for Peff ¼ ALR ¼ 0:409 for all values of cos�. This
again shows that an extrapolation away from Peff ¼ �1 is
more stable than an extrapolation from Peff ¼ þ1 since
one is much closer to the polarization zero in the latter
case. This observation will carry over to the Peff depen-
dence at higher energies.
In Fig. 7(a) we show the threshold correlation of the

angles � and � for different values of Peff . Starting at
Peff ¼ �1 the two angles are related by � ¼ 180� � �
up to the longitudinal polarization zero at Peff ¼ ALR ¼
0:409 after which the correlation becomes � ¼ ��.
As the beam energy increases, the polarization vector of

the top quark slowly turns into the direction of its momen-
tum (or opposite to it). Finally, in the high-energy limit
s ! 1, when v ! 1, the polarization of the top becomes
purely longitudinal in the helicity system such that

j ~Pj ¼ jPð‘Þj since its transverse and normal components
involve a spin flip amplitude and thus vanish as mt=

ffiffiffi
s

p
.

Note that, although PðtrÞ is asymptotically suppressed, it is
still sizable at

ffiffiffi
s

p ¼ 1000 GeV as Fig. 1 shows.

In fact, in the high-energy limit, one has ~Pðcos�Þ ¼
Pð‘Þðcos�Þ � p̂t with

Pð‘Þðcos�Þ ¼ ðg14 þ g41 þ Peffðg11 þ g44ÞÞð1þ cos�Þ2 þ ðg14 � g41 � Peffðg11 � g44ÞÞð1� cos�Þ2
ðg11 þ g44 þ Peffðg14 þ g41ÞÞð1þ cos�Þ2 þ ðg11 � g44 � Peffðg14 � g41ÞÞð1� cos�Þ2 (33)

for the surviving longitudinal polarization. In the same
limit, the electroweak coupling coefficients take the

numerical values g11 ¼ 0:601, g14 ¼ �0:131,
g41 ¼ �0:201, g44 ¼ 0:483, g12 ¼ 0:352, and g42 ¼
�0:164. When Peff ¼ �1 it is more convenient to switch
to the chiral electroweak coefficients fLL=LR defined in the
Appendix. One has (fLL ¼ �1:190; fLR ¼ �0:434)

Pð‘Þðcos�Þ ¼�1�bLR
1þbLR

with bLR ¼
�
fLR
fLL

�
2 ð1� cos�Þ2
ð1þ cos�Þ2 :

(34)

6As discussed in Sec. II, QCD binding effects significantly
modify the naive threshold results in the threshold region.

7Threshold simplifications for ðq �qÞ production have also been
discussed in Ref. [26]. Similar simplifications for polarization
observables occur for the threshold production of gauge boson
pairs [27].
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Pð‘Þ goes through zero for bLR ¼ 1 which is solved by
cos� ¼ �ðfLL � fLRÞ=ðfLL þ fLRÞ. For Peff ¼ þ1 one
has a similar simplification where the quantities on the
right-hand side of Eq. (34) are replaced by bLR ! bRL
and fLL=LR ! fRR=RL (fRR ¼ �0:867; fRL ¼ �0:217).
In this case Pð‘Þ goes through zero for bRL ¼ 1, or for
cos� ¼ �ðfRR � fRLÞ=ðfRR þ fRLÞ.

At threshold the rate shows no cos� dependence since the
ðt�tÞ pair is produced in a S-wave state. This is different in the
high-energy limit when v ¼ 1, where the forward rate
strongly dominates over the backward rate, as an inspection
of the denominator of Eq. (33) shows. Since an accurate
measurement of the polarization observables requires large
statistics, and thus large event samples, the issue of rates is
an important one. Numerically, one finds �ðcos�¼þ1Þ=
�ðcos�¼�1Þ¼9:23ð1�0:31PeffÞ=ð1�0:60PeffÞ. The de-
pendence on Peff is small. When averaging over the
forward (F) and backward (B) hemispheres, one finds
h�iF=h�iB ¼ 4:04ð1� 0:31PeffÞ=ð1� 0:43PeffÞ, i.e. in
the case of unpolarized beams when Peff ¼ 0 the rate in
the forward hemisphere dominates over the rate in the

backward hemisphere by a factor of 4 with only slight
dependence on beam polarization. Comparing to Eq. (29)
the forward dominance is more pronounced in the high-
energy limit than at

ffiffiffi
s

p ¼ 500 GeV.
Equation (33) also very nicely shows how varying Peff

affects the longitudinal polarization Pð‘Þ. For the unpolar-

ized beam case Peff ¼ 0 the longitudinal polarization Pð‘Þ
is negative (� 31%) at the forward point (FP) cos� ¼ þ1
and positive (þ 60%) at the backward point (BP)
cos� ¼ �1. For maximally polarized beams Peff ¼ �1,
Eq. (33) can be seen to satisfy the angular momentum
conservation conditions, Eq. (23). For Peff ¼ �1 the lon-
gitudinal polarization monotonically increases/decreases
from the backward to the forward point. It can be seen to
go through zero at cos� ¼ ðg11 � g41 � g12 þ g42Þ=
ðg14 � g44Þ ¼ �0:47ð’ 117:8�Þ for Peff ¼ �1 and cos�¼
�ðg11 þ g41 � g12 � g42Þ=ðg14 þ g44Þ ¼ �0:60ð’ 126:9�Þ
for Peff ¼ þ1 [see discussion after Eq. (34)]. Close to
Peff ¼ �1, the longitudinal polarization zeros are only
mildly dependent on Peff . There is a range of Peff values
for which the longitudinal polarization remains positive
over the whole cos� range. This is determined by the zeros
of the coefficients of the angular factors in the numerator of

Eq. (33). The condition for positivity of Pð‘Þ reads

� g14 þ g41
g11 þ g44

< Peff <
g14 � g41
g11 � g44

: (35)

Numerically this translates into 0:31<Peff < 0:60. The
same bounding values determine the vanishing of the
polarization at the forward and backward points.
At the forward point, where the rate is highest, the polar-

ization j ~Pj can be made to vanish by setting Peff ¼
�ðg14 þ g41Þ=ðg11 þ g44Þ ¼ 0:31. At the backward
point, one has zero longitudinal polarization for Peff ¼
ðg14 � g41Þ=ðg11 � g44Þ ¼ 0:60.
All of this is illustrated in Fig. 7(b) showing the corre-

lation between Peff and the angles � and �. The steplike
behavior in Fig. 7(b) is associated with the vanishing of the
polarization at which points the polarization vector
changes its direction by 180�. At Peff ¼ �1 the polariza-

tion vector ~P is antiparallel to ~pt up to where ~P becomes

zero at �� 117:8�. From then on ~P is parallel to ~pt. Zero
polarization and the location of the steplike behavior is
slightly Peff dependent and is shifted to lower values of �.

For 0:31< Peff < 0:60 the polarization ~P is always paral-

lel to ~pt. Finally, for Peff ¼ þ1 the polarization ~P starts off
parallel to ~pt and turns antiparallel to ~pt after the zero at
cos� ’ 126:9�. Again the polarization zero and the asso-
ciated steplike behavior is slightly shifted when one moves
away from Peff ¼ þ1.
Given the fact that the polarization turns from the beam

direction to the momentum direction (or its opposite) going
from threshold to the high-energy limit it would be inter-
esting to know how fast this transition occurs when the
beam energy is ramped up in the envisaged range of beam

1.0

0.5

0.0

0.5

1.0

Peff

0

50

100

150

deg

100

0

100

deg

(a)

1.0

0.5

0.0

0.5

1.0

Peff

0

50

100

150

deg

100

0

100

deg

(b)

FIG. 7 (color online). Correlation of the angles � and � in
dependence on the effective beam polarization Peff (a) for
threshold energies

ffiffiffi
s

p ¼ 2mt and (b) for s ! 1.

GROOTE et al. PHYSICAL REVIEW D 83, 054018 (2011)

054018-10



energies
ffiffiffi
s

p � 2mt � 1000 GeV. In Fig. 8 we investigate
the energy dependence of the angle � for several values of
Peff for a scattering angle of � ¼ 90�. In Fig. 8(a) we
consider three representative negative values of Peff . All
three curves start off with the threshold angle � ¼ 90�.
The growth of � does not depend much on Peff but is still
far away from the asymptotic value � ¼ 180� at

ffiffiffi
s

p ¼
1000 GeV. For positive values of Peff the dependence of �
on Peff is more pronounced [see Fig. 8(b)]. For Peff ¼ þ1
and Peff ¼ þ0:5, one is getting closer to the asymptotic
value of � ¼ 0� at

ffiffiffi
s

p ¼ 1000 GeV than for the negative
values of Peff shown in Fig. 8(a). The behavior of the
Peff ¼ þ0:25 curve differs from the two other curves since
one has crossed a longitudinal polarization zero between
Peff ¼ þ0:5 and Peff ¼ þ0:25.

V. BORN TERM SIMPLIFICATIONS
FOR Peff ¼ �1

As has been emphasized in the notable paper by Parke
and Shadmi [5], the Born term polarization formulas con-
siderably simplify for the case of maximal effective beam
polarization Peff ¼ �1 which corresponds to a ðe�L ; eþR Þ

configuration. Although designed for the case of top-
antitop spin-spin correlations, the results of Ref. [5] are
easily adopted to the case of single-spin polarization as
also noted in Ref. [6]. From a practical point of view the
limiting case Peff ¼ �1 is very interesting since, as was
emphasized in Sec. II, one can get quite close to the
maximal value Peff ¼ �1 even if the beam polarizations
are not close to their maximal values. Similar simplifica-
tions occur for the case Peff ¼ þ1. In order to distinguish
between the two cases we add the suffixes LR and RL for
quantities derived for the case Peff ¼ �1 and Peff ¼ þ1,
respectively.
For the Born term case and in the limit Peff ¼ �1, the

polarized numerators (19) and (20) take a factorized form:

Nð‘Þ
LRðcos�Þ ¼ �3

8ðfLLðcos�þ vÞ
þ fLRðcos�� vÞÞALRðcos�Þ2Ncs; (36)

NðtrÞ
LRðcos�Þ ¼ 3

8 sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
ðfLL þ fLRÞALRðcos�Þ2Ncs;

(37)

where the common factor ALRðcos�Þ is given by

ALRðcos�Þ ¼ fLLð1þ v cos�Þ þ fLRð1� v cos�Þ: (38)

We have made use of the chiral electroweak coupling
coefficients fLL=LR of Ref. [5] which are simply related

to our electroweak coupling factors gij (see the Appendix).

One can check that one can obtain Nð‘Þ
LRðcos�Þ in Eq. (36)

from the generic spin formula Eq. (1) of Ref. [5] when one
specifies to the helicity system with cos	 ¼ þ1. Similarly,

one obtainsNðtrÞ
LRðcos�Þ in Eq. (37) when one specifies to the

transversity system cos	 ¼ 0. In each of the two respective
systems, one has to take the cross section difference
�ðt "Þ � �ðt #Þ.
One can then determine the angle � enclosing the di-

rection of the top quark and its polarization vector by

taking the ratio NðtrÞ=Nð‘Þ. One has

tan�LR ¼ NðtrÞ
LRðcos�Þ

Nð‘Þ
LRðcos�Þ

¼ � sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
ðfLL þ fLRÞ

fLLðcos�þ vÞ þ fLRðcos�� vÞ : (39)

For example, at threshold (v ¼ 0) one has tan�LR ¼
� tan� with the solution �LR ¼ 180� � � in agreement
with the corresponding limit in Sec. IV. As another ex-
ample we take � ¼ 90� and obtain tan�LR ¼
�ðfLL þ fLRÞ=ðfLL � fLRÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
=v. For

ffiffiffi
s

p ¼
500GeV this gives �LR ¼ 124:9�, i.e. the polarization
vector is still close to its threshold value of �LR ¼ 90�
but has started to turn to its asymptotic value of
�LR ¼ 180�.
Equation (39) is nothing but the defining equation for the

off-diagonal basis in Ref. [5] considering the fact that their

(a)

(b)

FIG. 8. The top quark polarization angle � for a scattering
angle of � ¼ 90� as a function of the beam energy for
(a) negative values of Peff ¼ �1;�0:5;�0:25 and (b) positive
values of Peff ¼ þ1;þ0:5;þ0:25.
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angle 	 is related to �LR by 	 ¼ 180� � �LR. In the
coordinate system where the z axis is defined by the angle
�LR given in Eq. (39), the polarization vector of the top
quark is purely longitudinal. In particular, this means that
its transverse component is zero in the off-diagonal basis
implying that the density matrix of the top quark is diago-
nal in this basis. In this sense the ‘‘off-diagonal’’ basis is a
diagonal basis and the wording ‘‘off-diagonal’’ used in
Ref. [5] for this basis can lead to a misunderstanding.

A different but equivalent view on the off-diagonal basis
may be obtained by rotating the nondiagonal helicity sys-
tem density matrix of the top quark (m, n ¼ �1=2)


mn ¼ 1

2

1þ Pð‘Þ PðtrÞ
PðtrÞ 1� Pð‘Þ

 !
¼ 1

2
ð� � 1þ ~	 � ~�Þ

(40)

in the scattering plane by an angle �. One has


0
m0n0 ¼ d1=2

m0mð�Þ
mnd
1=2y
nn0 ð�Þ ¼ 1

2

1þ ðPð‘Þ cos�þ PðtrÞ sin�Þ Pð‘Þ sin�� PðtrÞ cos�
Pð‘Þ sin�� PðtrÞ cos� 1� ðPð‘Þ cos�þ PðtrÞ sin�Þ

 !

! 1

2
1þ j ~Pj 0

0 1� j ~Pj
 !

; (41)

where d1=2
m0mð�Þ is the usual spin-1=2 Wigner rotation ma-

trix and j ~Pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð‘Þ2 þ PðtrÞ2p

. It is evident that a rotation
by the angle � ¼ �LR defined in Eq. (39) diagonalizes the
original density matrix as indicated in the last line of
Eq. (41).

The correlation between the angles � (for general values
of Peff) and � are shown in the contour plots Fig. 9. In
Fig. 9(a) we choose Peff ¼ �1 and show fixed energy
contours in the ð�; �Þ plane for several values of the c.m.
energy

ffiffiffi
s

p
. Up to

ffiffiffi
s

p ¼ 1000 GeV the correlations do not
deviate very much from the threshold correlation � ¼
180� � �. In the limit v ¼ 1, one has a steplike behavior
of the correlation function as discussed before in Sec. IV. In
Fig. 9(b) we show the same plots for Peff ¼ þ1. The
approach of the correlation curves to the steplike behavior
at v ¼ 1 is somewhat faster than in the case Peff ¼ �1. In
Fig. 9(c) we show the same curves for Peff ¼ 0:5 where
one is close to the polarization zero. The

ffiffiffi
s

p ¼ 360 GeV
correlation curve is still close to the corresponding thresh-
old curve � ¼ ��. At higher energies one sees a different
behavior in as much as the correlation curves run into
� ¼ 0� at the backward point as does the flat asymptotic
curve as discussed before in Sec. 4 (Fig. 7).

In order to calculate the normalized polarization com-
ponents, one needs also the denominator factor Dðcos�Þ in
Eq. (22), again for the Born term case and Peff ¼ �1.
One has

DLRðcos�Þ ¼ 3
8ðA2

LR � 2fLLfLRv
2sin2�Þ2Ncs (42)

proportional to the cross section sum �ðt "Þ þ �ðt #Þ in any
of the systems in Ref. [5].

Using Eqs. (36) and (42) the longitudinal polarization

Pð‘Þ
LR ¼ Nð‘Þ

LR=DLR can be seen to become maximally
�1 and þ1 in the forward and backward directions, re-
spectively, in agreement with angular momentum conser-
vation as before. One also reproduces the threshold

formula Eq. (30) and the high-energy formula Eq. (33)
when these are specified to Peff ¼ �1. The longitudinal
polarization goes through zero at

cos�0 ¼ � fLL � fLR
fLL þ fLR

v

¼ g14 � g44
g11 � g41 þ g12 � g42

v ð¼ �0:48vÞ: (43)

At this value of cos� the polarization vector of the top
quark is orthogonal to its momentum. Later on we shall see

that, at this point, PðtrÞ acquires its maximal value and

j ~Pj acquires its minimal value. Since the ratio
ðfLL � fLRÞ=ðfLL þ fLRÞ is only mildly energy depen-
dent, the location of the zero is mainly determined by the
velocity of the top quark, i.e. it moves towards the back-
ward point when the energy is increased. For convenience
we have added the

ffiffiffi
s

p ¼ 500 GeV value of the electro-
weak coupling ratio in brackets in Eq. (43).

The transverse polarization PðtrÞ
LR vanishes in the forward

and backward directions due to angular momentum con-
servation, as is explicit in Eq. (37). It becomes maximal at
the point where the longitudinal polarization goes through
zero. This can be verified by an explicit calculation, viz.

dPðtrÞ
LR

d cos�

��������cos�0

¼ 0; (44)

where cos�0 is given in Eq. (43).
Whereas there are no illuminating expressions for the

longitudinal and transverse polarization components for
general values of the velocity v, the magnitude of the

polarization j ~Pj for Peff ¼ �1 takes the simple form

j ~PLRj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð‘Þ2

LR þ NðtrÞ2
LR

q
DLR

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4aLR

p
1� 2aLR

¼ 1� 2a2LR � 8a3LR � 18a3LR . . . ; (45)
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where the coefficient aLR depends on cos� through

aLRðcos�Þ ¼ fLLfLR
A2
LRðcos�Þ

v2sin2�: (46)

The convergence of the expansion in Eq. (45) is rather slow
except for very small values of aLR. Note that the expan-
sion in Eq. (45) deviates from 1 only at Oða2LRÞ. At the
forward and backward points where aLR ¼ 0, one has

j ~PLRj ¼ 1 as stated before. Between the forward and

backward points the polarization remains reasonably large.
For example, for

ffiffiffi
s

p ¼ 500 GeV the polarization never

drops below j ~PLRj ¼ 0:95. Differentiating of Eq. (45)
with respect to cos�, one can see that the minimum of

j ~PLRj occurs at the point where the longitudinal polariza-

tion Pð‘Þ
LR vanishes [see Eq. (43)], i.e. where the polarization

is purely transverse. The high-energy limit of Eq. (45) is
discussed in Sec. IV.
Similar simplifications occur for the case Peff ¼ þ1

which corresponds to the ðe�R ; eþL Þ configuration. This is
effected by the replacement fLL ! fRR and fLR ! fRL
with a corresponding change in the notation ALR,

aLR ! ARL, aRL. Further, one has Nð‘Þ
RL¼�Nð‘Þ

LRðfLL!
fRR;fLR!fRLÞ and NðtrÞ

RR ¼ �NðtrÞ
LLðfLL ! fRR; fLR !

fRLÞ. The zero of Pð‘Þ is now located at cos�0 ¼ �0:63v
for

ffiffiffi
s

p ¼ 500 GeV, i.e. the zero is closer to the backward
point than in the case Peff ¼ �1. For � ¼ 90� the
angle �RL can be calculated from tan�RL ¼
�ðfRR þ fRLÞ=ðfRR � fRLÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
=v which, at

ffiffiffi
s

p ¼
500 GeV, gives �RL ¼ �48�. At cos� ¼ 0 andffiffiffi
s

p ¼ 500 GeV, one has aLR > aRL leading to

j ~PLRj< j ~PRLj, i.e. the ðe�R ; eþL Þ configuration leads to
larger values of the polarization than the ðe�L ; eþR Þ configu-
ration at this point of parameter space. In Fig. 9(b) we show
a contour plot in the ð�RL; �Þ plane for several values of the
c.m. energy

ffiffiffi
s

p
. As is the case for the ð�LR; �Þ correlations,

the ð�RL; �Þ correlations do not deviate very much from the
threshold correlation � ¼ �� up to

ffiffiffi
s

p ¼ 1000 GeV.
As a last point we discuss how the polarization angle

�LR changes when going from LO to NLO. In Fig. 10 we
show a plot of the cos� dependence of the difference
��LR ¼ �LRðNLOÞ � �LRðLOÞ for different energies.
The maximal values of the difference occur at values of
cos� where the polarization vector is perpendicular to the
top quark’s momentum, i.e. where �LR ¼ 90� [see discus-
sion after Eq. (43)]. The difference can become as big as
10� for

ffiffiffi
s

p ¼ 3000 GeV. The radiative corrections can

FIG. 10. Difference ��LR ¼ �LRðNLOÞ � �LRðLOÞ of NLO
and LO polarization angles for

ffiffiffi
s

p ¼ 360, 500, 1000, and
3000 GeV (notation as in Fig. 5).

(a)

(b)

(c)

FIG. 9. Correlation of angles � and � for (a) Peff ¼
�1 (� ¼ �LR), (b) Peff ¼ þ1 (� ¼ �RL), and (c) Peff ¼ þ0:5
for different values of the c.m. energy

ffiffiffi
s

p ¼ 360, 500, 1000, and
3000 GeV (notation as in Fig. 5).
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thus be seen to rotate the polarization vector away from the
off-diagonal basis by a nonnegligible amount.

VI. THE POLARIZATION COMPONENTS
Pð‘Þ, PðtrÞ, AND PðnÞ

We now turn to the numerical discussion of the three

polarization components Pð‘Þ, PðtrÞ, and PðnÞ keeping in

mind the Born term simplifications for Pð‘Þ and PðtrÞ dis-
cussed in Secs. IV and V. We start our discussion with the

longitudinal component Pð‘Þ. In Fig. 11(a) we show the

dependence of the NLO longitudinal polarization Pð‘Þ on
cos� at

ffiffiffi
s

p ¼ 500 GeV for several values of Peff spanning

the whole parameter range of Peff . The dependence of P
ð‘Þ

on Peff and cos� is quite pronounced. For Peff ¼ �1 the
cos� dependence already deviates considerably from the

(Born term) threshold behavior Pð‘Þ ¼ � cos�. It is quite
interesting to observe that all NLO curves intersect at one
point where cos� ¼ �0:406. This can be verified by set-

ting to zero the derivative of Pð‘Þ with respect to Peff . The
relevant higher order equation admits of a solution at the
above value of cos�. In Fig. 11(b) we show the cos�

dependence of Pð‘Þ for several energies keeping Peff fixed
at Peff ¼ �1. At the resolution of the figure all curves
seemingly go through �1 and þ1 at the forward and
backward point, respectively, showing that hard gluon
emission effects are not very strong at these energies.
The energy dependence is not very pronounced, even if
the

ffiffiffi
s

p ¼ 500 GeV curve already deviates from the thresh-

old behavior Pð‘Þ ¼ � cos�.

The strong dependence of Pð‘Þ on Peff can be nicely
exposed by considering the LO expression for the polar

mean hPð‘Þi which is obtained by integrating the numerator
and the denominator in Eq. (18) separately over cos�. One
obtains

hPð‘Þi ¼ hNð‘Þi
hDi ¼ 4

3
v

g14 þ g44Peff

ðg11 þ g41PeffÞð1þ v2=3Þ þ ðg12 þ g42PeffÞð1� v2Þ : (47)

hPð‘Þi vanishes at threshold. In the high-energy limit, one
has hPð‘Þi ¼ ðg14 þ g44PeffÞ=ðg11 þ g41PeffÞ which, for
Peff ¼ �1, gives hPð‘Þi ¼ 0:882 and hPð‘Þi ¼ �0:766
close to the

ffiffiffi
s

p ¼ 1000 GeV values in Fig. 1. At
ffiffiffi
s

p ¼
500 GeV, one has

hPð‘Þi ¼ hPð‘ÞiðPeff ¼ 0Þ 1� 3:61Peff

1� 0:37Peff

¼
8><
>:
þ0:62 Peff ¼ þ1

�0:15 ¼ 0

�0:50 ¼ �1

9>=
>;: (48)

One observes a strong dependence of the mean longitudi-
nal polarization on Peff . By comparing with the

ffiffiffi
s

p ¼ 500 GeV point in Fig. 1(a), one observes a 2%
change in hPð‘Þi due to the radiative corrections.
The same strong dependence on Peff is found when one

averages over the forward hemisphere where one has
(
ffiffiffi
s

p ¼ 500 GeV)

hPð‘ÞiF ¼ hPð‘ÞiFðPeff ¼ 0Þ 1� 3:09Peff

1� 0:34Peff

¼
8><
>:
þ0:85 Peff ¼ þ1

�0:27 ¼ 0

�0:81 ¼ �1

9>=
>;: (49)

When one averages over the backward hemisphere
the average longitudinal polarization is smaller and the
dependence on Peff is much weaker viz.

(a)

(b)

FIG. 11. NLO longitudinal top polarization as a function
of cos� drawn (a) for effective beam polarizations
Peff ¼ �1;�0:5; 0;þ0:5;þ1 (notation as in Fig. 1) at

ffiffiffi
s

p ¼
500 GeV; (b) at beam energies

ffiffiffi
s

p ¼ 360, 500, 1000, and
3000 GeV (notation as in Fig. 5) and Peff ¼ �1.
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hPð‘ÞiB ¼ hPð‘ÞiBðPeff ¼ 0Þ 1� 1:04Peff

1� 0:43Peff

¼
8><
>:
�0:01 Peff ¼ þ1

þ0:13 ¼ 0

þ0:18 ¼ �1

9>=
>;: (50)

In Fig. 12(a) we show a plot of the energy dependence of
the forward and backward averages of the longitudinal

polarizations for Peff ¼ �1. The forward average hPð‘ÞiF
is large and negative. It starts with a nominal threshold

value of hPð‘ÞiF ¼ �0:5 and slowly drops to a value of

hPð‘ÞiF ¼ �0:90 at
ffiffiffi
s

p ¼ 1000 GeV which is not far from

the asymptotic Born term value hPð‘ÞiF¼�ð7f2LL�f2LRÞ=
ð7f2LLþf2LRÞ¼�0:96. The backward average hPð‘ÞiB is
smaller and positive. It drops from a nominal threshold

value of hPð‘ÞiB ¼ þ0:5 to hPð‘ÞiB ¼ þ0:14 at
ffiffiffi
s

p ¼
1000 GeV as compared to the asymptotic Born term value

hPð‘ÞiB ¼ �ðf2LL � 7f2LRÞ=ðf2LL þ 7f2LRÞ ¼ �0:04.
We now turn to the transverse polarization component

PðtrÞ. Similar to Figs. 11(a) and 11(b) we show the corre-

sponding curves for PðtrÞ in Figs. 13(a) and 13(b). The
transverse polarization vanishes at the end points due to
the overall sin� factor in the angular decay distribution
[Eq. (20)]. The dependence on Peff is again quite
pronounced. One observes a faster change with Peff at

Peff ¼ þ1 than at Peff ¼ �1. PðtrÞ vanishes close to Peff ¼
þ0:5. At

ffiffiffi
s

p ¼ 500 GeV the deviations from the threshold

behavior PðtrÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos�2

p
for Peff ¼ �1 are slight but

clearly visible. The ð ffiffiffi
s

p Þ�1 dependence of the transverse
polarization is easily discernible in Fig. 13(b). A visual
inspection shows that, as is exact in the Born term case for
Peff ¼ �1, the NLO longitudinal and transverse polariza-
tion components are complementary in the sense that the
transverse polarization becomes maximal very close to the
point where the longitudinal polarization becomes mini-
mal, and vice versa. This observation bodes well for the
existence of large values of the total polarization as dis-
cussed in Sec. VII.
For the mean value of the transverse polarization, one

obtains the Born term level expression

(a)

(b)

FIG. 12. Average (a) longitudinal polarization hPðlÞi and
(b) transverse polarization hPðtrÞi in the forward and backward
hemispheres for Peff ¼ �1.

(a)

(b)

FIG. 13. NLO transverse top polarization as a function of the
scattering angle � drawn (a) for effective beam polarizations
Peff ¼ �1;�0:5; 0;þ0:5;þ1 (notation as in Fig. 1) at

ffiffiffi
s

p ¼
500 GeV; (b) at beam energies

ffiffiffi
s

p ¼ 360, 500, 1000, and
3000 GeV (notation as in Fig. 5) and Peff ¼ �1.
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hPðtrÞi ¼ ��

2

mtffiffiffi
s

p g41 þ g42 þ ðg11 þ g12ÞPeff

ðg11 þ g41PeffÞð1þ v2=3Þ þ ðg12 þ g42PeffÞð1� v2Þ : (51)

At nominal threshold one has hPðtrÞi ¼ ��=4 for
Peff ¼ �1 close to what is seen in Fig. 1. In the high-
energy limit hPðtrÞi vanishes as ð ffiffiffi

s
p Þ�1. At

ffiffiffi
s

p ¼ 500 GeV
one has

hPðtrÞi ¼ hPðtrÞiðPeff ¼ 0Þ 1� 2:53Peff

1� 0:37Peff

¼
8><
>:
�0:57 Peff ¼ þ1

þ0:24 ¼ 0

þ0:61 ¼ �1

9>=
>;; (52)

showing again the large effect of beam polarization. By
comparing with the

ffiffiffi
s

p ¼ 500 GeV point in Fig. 1(b), one
observes a 1.5% change in hPðtrÞi due to the radiative
corrections.

For the ratio of the forward and backward mean of the
transverse polarization, one obtains

hPðtrÞiF
hPðtrÞiB

¼hNðtrÞiF
hNðtrÞiB

h�iB
h�iF¼

8><
>:
þ0:54 Peff ¼þ1

þ0:53 ¼0

þ0:61 ¼�1

9>=
>;: (53)

There is a slight dominance of the backward mean as also
evident in Fig. 13. The dependence of the ratio (53) on Peff

is not very pronounced.
A plot of the energy dependence of the forward and

backward averages of the transverse polarization is shown
in Fig. 12(b). Both curves start at the nominal threshold

value hPðtriF ¼ hPðtrÞiB ¼ �=4 and then quite slowly begin
their descent to their asymptotic demise. At

ffiffiffi
s

p ¼
500 GeV and Peff ¼ �1, one can compare the NLO result

for hPðtrÞiF=hPðtrÞiB ¼ 0:68 with the corresponding LO re-

sult hPðtrÞiF=hPðtrÞiB ¼ 0:61 in Eq. (53).

The normal polarization component PðnÞ is a T-odd
observable and thus obtains only contributions from the
imaginary parts of the production amplitudes. Since we are
neglecting the contribution from the imaginary part of the
Z propagator, the only contribution to the normal polariza-

tion component PðnÞ at Oð�sÞ is that of the imaginary part
of the one-loop contributions [Eqs. (14) and (15)]. When

averaging over cos�, the contributions ofH1;2ðnÞ
I ðloopÞ drop

out and one has the Oð�sÞ result

hPðnÞi ¼ ��s

�

6

mtffiffiffi
s

p ð2� v2Þ g44 þ g14Peff

ðg11 þ g41PeffÞð1þ v2=3Þ þ ðg12 þ g42PeffÞð1� v2Þ : (54)

Numerically one has (
ffiffiffi
s

p ¼ 500 GeV; �s ¼ 0:094)

hPðnÞi ¼ hPðnÞiðPeff ¼ 0Þ 1� 0:27Peff

1� 0:37Peff

¼
8><
>:
�0:015 Peff ¼ þ1

�0:013 ¼ 0

�0:012 ¼ �1

9>=
>;: (55)

Clearly the normal polarization component is small being
an Oð�sÞ effect. Also, the dependence of hPðnÞi on the
beam polarization is quite small.

In Fig. 14 we show the cos� dependence of the normal
component of the polarization of the top quark. In Fig. 14
(a) we keep the energy fixed at

ffiffiffi
s

p ¼ 500 GeV and vary
Peff . The differential distribution peaks at around cos� ¼ 0
where the peak moves to the left with increasing values of

Peff . The peak values of PðnÞ are around �2%. The depen-
dence on Peff is weak as also evident in Eq. (55). In Fig. 14
(b) we plot the cos� dependence for different energies
keeping Peff fixed at Peff ¼ �1. As expected, the normal
polarization can be seen to decrease with the typical ð ffiffiffi

s
p Þ�1

behavior. We mention that we are now in agreement with

the results of Ref. [4] when one takes account of the fact
that their normal direction is defined opposite to ours.
Let us close this section by comparing our results to

those of the authors of Ref. [6] who calculated Oð�sÞ
radiative corrections to rates into definite spin states in
generic coordinate systems starting from the initial beam
configurations ðe�L ; eþR Þ and ðe�R ; eþL Þ which correspond to
Peff ¼ �1 and Peff ¼ þ1, respectively. Put in a different
language, they compute radiative corrections to the (un-
normalized) diagonal spin density matrix elements �" and
�#. In the helicity system, where they use the notation

�#=" 
 �L=R, their polarized rates �L=R are related to our

longitudinal polarization component Pð‘Þ via

�L=R ¼ �

2
ð1� Pð‘ÞÞ: (56)

Comparing to the ðe�L ; eþR Þ subdominant spin rate ratio atffiffiffi
s

p ¼ 400 GeV in Table 3 of Ref. [6], we find a �1:34%
reduction relative to the LO rate ratio vs their reduction of
�1:19%. We consider the two results to be consistent with
each other within rounding errors. We mention that our
NLO results have been checked before in Ref. [4].
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VII. TOTAL POLARIZATION AND ORIENTATION
OF THE POLARIZATION VECTOR

The magnitude of the polarization (also called total
polarization) is given by

j ~Pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPð‘ÞÞ2 þ ðPðtrÞÞ2 þ ðPðnÞÞ2

q
: (57)

In Fig. 15 we show the NLO dependence of j ~Pj on cos� at
different values of

ffiffiffi
s

p
for the three different values of

Peff ¼ �1 and 0. As a general feature, one observes that
the magnitude of the polarization decreases with energy.

When Peff ¼ �1, one obtains large values of j ~Pj, in par-
ticular in the forward hemisphere. For example, for

ffiffiffi
s

p ¼
500 GeV j ~Pj remains above 95% over the whole angular
range for Peff ¼ �1. The polarization is slightly larger
for Peff ¼ þ1 than for Peff ¼ �1. At

ffiffiffi
s

p ¼ 360 GeV
and Peff ¼ �1, one is still very close to the flat threshold

behavior j ~Pj ¼ 1, whereas for Peff ¼ 0 one observes
a slight falloff behavior going from the backward to
the forward point. Even for the largest energy

ffiffiffi
s

p ¼ 3000 GeV, one does not have a zero for j ~Pj showing
that one is still away from the asymptotic v ¼ 1 case since
asymptotically one has polarization zeros for the three
cases Peff ¼ �1; 0 as discussed in Sec. IV and exhibited
in Fig. 7. As mentioned before there is also a very small
Oð�sÞ normal component of the polarization vector which

will contribute to j ~Pj at the Oð0:01Þ. It is so small that it is
not discernible in our numerical plots.

(a)

(b)

(c)

FIG. 15. Total NLO top quark polarization as a function of
cos� for beam energies

ffiffiffi
s

p ¼ 360, 500, 1000, and 3000 GeV
(notation as in Fig. 5) and (a) Peff ¼ �1, (b) Peff ¼ þ1, and
(c) Peff ¼ 0.

(a)

(b)

FIG. 14. Oð�sÞ normal polarization PðnÞ of the top quark as
a function of cos� (a) for effective beam polarizations
Peff ¼ �1;�0:5; 0;þ0:5;þ1 (notation as in Fig. 1) at

ffiffiffi
s

p ¼
500 GeV; (b) for Peff ¼ �1 at beam energies

ffiffiffi
s

p ¼ 360, 500,
1000, and

ffiffiffi
s

p ¼ 3000 GeV (notation as in Fig. 5).
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In Fig. 16 we show a plot of the energy dependence of

the polar average hj ~Pji of the total polarization. For both
Peff ¼ �1 the average polarization is large in the whole
energy range with a slight decrease when the energy is
increased. The Peff ¼ þ1 polarization is slightly larger
than the Peff ¼ �1 polarization. The average total polar-
ization becomes smaller when the effective polarization is
reduced from Peff ¼ �1. As has been discussed before the
rate of decrease is much faster for Peff ¼ þ1 than for
Peff ¼ �1 as can be appreciated by comparing the Peff ¼
�0:5 and Peff ¼ þ0:5 curves. The smallest polarization in
Fig. 16 is obtained for Peff ¼ þ0:5. As will be discussed
further on Peff ¼ þ0:5 is close to the effective beam
polarization where one has minimal polarization.

Of interest is the total polarization in the forward and
backward hemispheres. In Fig. 17 we show plots of the

average total polarization hj ~PjiF=B for Peff ¼ �1; 0, where

the averaging is done over the forward and backward

hemispheres. The average total polarization hj ~PjiF in the
forward hemisphere is quite large for both Peff ¼ �1 and
remains larger than 95% even up to

ffiffiffi
s

p ¼ 1000 GeV. This
is quite welcome from the point of view of statistics since
the bulk of the rate is in the forward hemisphere. The
Peff ¼ þ1 polarization is slightly larger than the
Peff ¼ �1 polarization. The average backward polariza-

tion hj ~PjiB is significantly smaller than the forward

polarization hj ~PjiF for both Peff ¼ �1 as can also be
appreciated by looking at Fig. 15. Both forward and back-
ward Peff ¼ 0 polarizations show a slightly decreasing
energy behavior starting at the common threshold value

of hj ~Pji ¼ ARL ¼ 0:409.
Returning to Fig. 15(b) (Peff ¼ þ1), one observes a

conspicuously large 10% radiative correction at the back-
ward point for

ffiffiffi
s

p ¼ 3000 GeV where the Born term pre-

diction is j ~Pj ¼ 1. One can attempt to understand this large
value by substituting the asymptotic values of the radiative
corrections calculated in Ref. [28]. For the surviving lon-

gitudinal component Pð‘Þ, one obtains

Pð‘Þ ¼ �
�
1� �s

3�

�
f2RR
f2RL

þ ½2�
�
þ � � �

�
; (58)

where the bracketed notation ‘‘[2]’’ denotes the anomalous
contribution not present in mt=

ffiffiffi
s

p ¼ 0 production (see
Ref. [28]). Using f2RR=f

2
RL ¼ 16:069 and�sð3000 GeVÞ ¼

0:079 the radiative correction at the backward point
amounts to 15% which is reasonably close to the value in
Fig. 15(b). The anomalous contribution is quite small. The
corresponding formula for Fig. 15(a) (Peff ¼ �1) is ob-
tained from Eq. (58) by the substitution fRR;RL ! fLL;LR.
With f2LL ¼ 1:417 and f2LR ¼ 0:188, one obtains a radia-
tive correction of 8% at the backward point, again in
approximate agreement with Fig. 15(a). One may state
that the large radiative corrections at the backward point
for Peff ¼ �1 at

ffiffiffi
s

p ¼ 3000 GeV result from the fact that
fRR � fRL and fLL � fLR.
Next we investigate the parameter space for which the

polarization of the top quark is minimal. For some mea-
surements it may be advantageous to eliminate or mini-
mize polarization effects. For once, one can thereby gauge
the efficiency of a polarization measurement against an
unpolarized control sample. The parameters to be varied
are the effective beam polarization Peff , the polar angle �,
and the energy

ffiffiffi
s

p
. The minimization is done at NLO

including the normal polarization component according
to Eq. (57).
In Fig. 18(a) we show a plot of the NLO values of Peff

which minimize j ~Pj for any given scattering angle. The
minimizing values Pmin

eff depend in addition on the energy.

An important feature of the minimizing effective beam
polarization is that, in the forward region, where the rate
is largest, the dependence of Pmin

eff on cos� is reasonably flat

for all shown energies. This means that it is possible to tune
the effective beam polarization in the forward region for
each energy such that one obtains approximate minimal
polarization. Just above threshold at

ffiffiffi
s

p ¼ 360 GeV, Pmin
eff

is close to the flat behavior at threshold Pmin
eff ¼ ARL ¼

0:409. Apart from the near-threshold curve Pmin
eff shows a

FIG. 16. Average NLO top quark polarization hj ~Pji for a
scattering angle of � ¼ 90� as a function of the beam energyffiffiffi
s

p
for Peff ¼ �1;�0:5; 0;þ0:5;þ1 (notation as in Fig. 1).

FIG. 17. Total NLO top quark polarization averaged over the
forward and backward hemispheres for Peff ¼ �1; 0;þ1 as a
function of

ffiffiffi
s

p
.
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strong dependence on cos� in the backward region. The

corresponding minimal values of j ~Pj are shown in Fig. 18
(b). At the forward and backward point the minimal polar-
ization is zero by construction. In the forward region the
polarization remains quite small starting from zero at the
forward point. This is different in the backward region
where the minimal polarization can become as large as
18% for the highest shown energy of

ffiffiffi
s

p ¼ 3000 GeV.
We now turn to the orientation of the polarization vector.

We have already discussed some aspects of the orientation
of the polarization vector of the top quark in Secs. IVand V.
We now combine the information on the orientation and
the magnitude of the polarization vector in one single
(radius, angle) plot where we trace the end point (apex)

of the polarization vector ~P within the unit circle while
increasing the energy from threshold to infinity. The apex

stays within the unit circle since j ~Pj � 1. In Fig. 19(a) we
consider the case Peff ¼ �1 for the polar angles � ¼ 60�,
90�, 120�, and 150�. All trajectories start off at threshold
where j ~Pj ¼ 1 and � ¼ 180� � � and, depending on cos�,
end up at � ¼ 0� or � ¼ 180� with a length close to the
asymptotic Born term result [Eq. (34)]. Which of the two

asymptotic solutions � ¼ 0� and � ¼ 180� are attained
can be traced to the corresponding LO result [Eq. (34)] or
from Fig. 7(b). For Peff ¼ þ1 [Fig. 19(b)] the trajectories
start off at threshold with � ¼ �� and end up at � ¼ 0� or
� ¼ 180�. The appropriate solution can again be read off
from the Born term formula [Eq. (34)] with the appropriate
replacements as described after Eq. (34), or from Fig. 7(b).
The length of the asymptotic polarization vector is close to
what is obtained from Eq. (34) after the appropriate re-
placements. Since f2LR=f

2
LL > f2RL=f

2
RR the asymptotic val-

ues of j ~Pj and thereby the intermediate values of j ~Pj are
larger for Peff ¼ þ1 than for Peff ¼ �1. We remind the
reader, though, that extrapolations away from Peff ¼ �1
are more stable than extrapolations away from Peff ¼ þ1.
This is illustrated in Figs. 19(a) and 19(b) by adding the

(a)

(b)

FIG. 19. NLO Parametric plot of the orientation and the length
of the polarization vector in dependence on the c.m. energy

ffiffiffi
s

p
for values � ¼ 60�, 90�, 120�, and 150� for (a) Peff ¼ �1 (solid
lines) and Peff ¼ �0:95 (dashed lines), and (b) Peff ¼ þ1 (solid
lines) and Peff ¼ þ0:95 (dashed lines). The dots on the trajec-
tories from the border to the central line stand for

ffiffiffi
s

p ¼ 500,
1000, and 3000 GeV.

(a)

(b)

FIG. 18. (a) Peff values required for minimal top quark polar-
ization j ~Pj and (b) minimal values for j ~Pj, plotted against cos�,
for

ffiffiffi
s

p ¼ 360, 500, 1000, and 3000 GeV notation as in Fig. 5).
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corresponding trajectories (dashed lines) for Peff ¼ �0:95
and Peff ¼ þ0:95, respectively. One observes only a minor
change in Fig. 19(a) going from Peff ¼ �1 to Peff ¼
�0:95. For example, the total polarization j ~Pj remains
close to maximal at

ffiffiffi
s

p ¼ 500 GeV for the technically
feasible effective beam polarization of Peff ¼ �0:95.
The corresponding changes in Fig. 19(b) are much larger.

In particular, the total polarization j ~Pj at Peff ¼ þ0:95 is
considerably reduced from its values at Peff ¼ þ1.

In Figs. 19(a) and 19(b) we have marked the energy
dependence of the polarization vector by dots (or ticks) on
the trajectory of the apex of the polarization vector. One
notes that there is very little change in the length of the
polarization vector going from threshold to

ffiffiffi
s

p ¼
500 GeV. The ticks are approximately equally spaced on
the trajectories indicating an approximate inverse power
law dependence of the spacing on the energy. For the three
trajectories � ¼ 60�, 90� and 120�, the angle � is mono-
tonically increasing with energy. In contrast to this the
� ¼ 150� trajectory shows a kink at around

ffiffiffi
s

p ¼
500 GeV. Both Figs. 19(a) and 19(b) show that at

ffiffiffi
s

p ¼
3000 GeV one has not yet reached the asymptotic regime.

VIII. LONGITUDINAL SPIN-SPIN
CORRELATIONS

Up to this point we have only discussed the single-spin
polarization of the top quark. The polarizations of pair
produced top and antitop quarks are correlated and could
be observed in the energy spectra of decay products, espe-
cially in the energy spectra of leptons and antileptons.
There are altogether nine double-density matrix elements
describing the spin-spin correlations of the top and antitop
quarks. Here we concentrate on the longitudinal spin-spin
correlation which is the double-density matrix element that
survives in the high-energy limit (for analytical NLO re-
sults see Refs. [28–30]). We mention that the full set of
NLO double-density matrix elements has been numerically
evaluated in Refs. [31,32].

The longitudinal spin-spin correlation cross section is
defined by

�ð‘1‘2Þ
� ¼ ��ð""Þ � ��ð"#Þ � ��ð#"Þ þ ��ð##Þ; (59)

where e.g. ð""Þ denotes a top quark with helicity 1=2 and an
antitop quark with helicity 1=2, etc. Similar to Eq. (5), the
differential cos� distribution is given by

d�ð‘1‘2Þ

d cos�
¼ 3

8
ð1þ cos2�Þ�ð‘1‘2Þ

U þ 3

4
sin2��ð‘1‘2Þ

L

þ 3

4
cos��ð‘1‘2Þ

F ; (60)

where

�ð‘1‘2Þ
U;L ¼ ð1� h�hþÞ��

2v

3q4
ððg11 þ Peffg41ÞH1ð‘1‘2Þ

U;L

þ ðg12 þ Peffg42ÞH2ð‘1‘2Þ
U;L Þ;

�ð‘1‘2Þ
F ¼ ð1� h�hþÞ��

2v

3q4
ðg44 þ Peffg14ÞH4ð‘1‘2Þ

F : (61)

The Born term contributions read [28]

H1ð‘1‘2Þ
U ðBornÞ ¼ �2Ncq

2ð1þ v2Þ;
H1ð‘1‘2Þ

L ðBornÞ ¼ Ncq
2ð1� v2Þ ¼ H2ð‘1‘2Þ

L ðBornÞ;
H2ð‘1‘2Þ

U ðBornÞ ¼ �2Ncq
2ð1� v2Þ;

H4ð‘1‘2Þ
F ðBornÞ ¼ �4Ncq

2v:

(62)

Note that one has the Born term relations

H1;2
U ðBornÞ ¼ �H1;2ð‘1‘2Þ

U ðBornÞ;
H4

FðBornÞ ¼ �H4ð‘1‘2Þ
F ðBornÞ;

H1;2
L ðBornÞ ¼ H1;2ð‘1‘2Þ

L ðBornÞ;
(63)

which are due to angular momentum conservation in the
back-to-back configuration of the Born term production
[28]. These relations no longer hold true in the case of
additional gluon emission. The relations (63) imply that

Pð‘1‘2Þ ¼ �1 at cos� ¼ �1 independent of Peff . Since the
transverse contributions HU;F dominate over the longitu-

dinal contributions HL, one anticipates from the relations
(63) that the longitudinal spin-spin correlations are nega-
tive and only weakly beam polarization dependent.
Similar to Eq. (18), the cos� dependent longitudinal

spin-spin correlation is defined by the ratio

Pð‘1‘2Þðcos�Þ ¼ Nð‘1‘2Þðcos�Þ
Dðcos�Þ ; (64)

with the denominator function given in Eq. (22). The
numerator function is given by

Nð‘1‘2Þðcos�Þ ¼ 3
8ð1þ cos2�Þððg11 þ g41PeffÞH1ð‘1‘2Þ

U

þ ðg12 þ g42PeffÞH2ð‘1‘2Þ
U Þ

þ 3
4sin

2�ððg11 þ g41PeffÞH1ð‘1‘2Þ
L

þ ðg12 þ g42PeffÞH2ð‘1‘2Þ
L Þ

þ 3
4 cos�ðg44 þ g14PeffÞH4ð‘1‘2Þ

F : (65)

Let us first consider the polar angle average of the
longitudinal spin-spin correlation. For the Born term con-
tribution, one obtains
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hPð‘1‘2Þi ¼ � 1

3

ðg11 þ Peffg41Þð1þ 3v2Þ þ ðg12 þ Peffg42Þð1� v2Þ
ðg11 þ Peffg41Þð1þ v2=3Þ þ ðg12 þ Peffg42Þð1� v2Þ : (66)

Note that hPð‘1‘2Þi ¼ �1=3 at threshold (v ¼ 0) and
hPð‘1‘2Þi ¼ �1 in the high-energy limit (v ¼ 1) indepen-
dent of the beam polarization parameter Peff . In fact, the
dependence on Peff is very weak also for energies inter-
mediate between these two limits. For example, for

ffiffiffi
s

p ¼
500 GeV one finds

hPð‘1‘2Þi ¼ hPð‘1‘2ÞiðPeff ¼ 0Þ 1� 0:36Peff

1� 0:37Peff

¼
8><
>:
�0:67 Peff ¼ þ1

�0:65 ¼ 0

�0:65 ¼ �1

9>=
>;: (67)

Equation (67) shows that the dependence on the beam
polarization parameter Peff practically drops out in the
ratio (67).

In Fig. 20 we plot the average longitudinal spin-spin

correlation function hPð‘1‘2Þi up to Oð�sÞ as a function offfiffiffi
s

p
for different effective beam polarizations. The depen-

dence of hPð‘1‘2Þi on Peff is barely visible.
As shown in Ref. [5] the off-diagonal basis defined by

Eq. (39) diagonalizes both the single-spin and the spin-spin
double-density matrix at the Born term level for
Peff ¼ �1. In the NLO calculation described in this sec-
tion, the top and antitop quark are no longer back to back
due to hard gluon emission, i.e. in the two helicity basis
(top and antitop quark) the two respective z axis are not in
general back to back. In the high-energy limit, where only
the longitudinal spin-spin density matrix elements survive,
the NLO spin-spin density matrix elements are therefore
not simply related to the off-diagonal basis introduced in
Ref. [5]. A discussion of the rigidity of back-to-back ðt�tÞ
pairs with respect to gluon emission in eþe� collisions can
be found in Ref. [33].

IX. SUMMARYAND CONCLUSIONS

We have discussed in detail top quark polarization in
above-threshold ðt�tÞ production at a polarized linear eþe�
collider within the SM. While journeying through the
three-dimensional ðPeff ; cos�;

ffiffiffi
s

p Þ-parameter space a
rich landscape of SM polarization phenomena unfolds
which awaits experimental confirmation or falsification.
Generally speaking, one needs large values of the effective
beam polarization if the aim is to produce highly polarized
top quarks. Very small or zero polarization of the top
quark can be obtained by fine-tuning the parameters
ðPeff ; v; cos�Þ.
The ðt�tÞ-production rate at a polarized linear eþe� col-

lider is governed by the gain factor KG ¼ 1� h�hþ and
the effective beam polarization Peff . The optimal choice as
concerns the rate is h� negative and hþ positive such that
one hasKG > 1 and Peff < 0, i.e. the optimal choice for the
rate would lie in the second quadrant of the ðh�; hþÞ plane
in Fig. 3. The largest gain in the rate is obtained for
h� ¼ �hþ ¼ �1, i.e. for KG ¼ 2 and Peff ¼ �1.
At (Born term) threshold, one has a flat cos� distribu-

tion. As the energy increases there is a quick turn into
forward dominance, with little dependence on Peff . This is
a welcome feature for polarization measurements, which
require large statistics and rates, since forward production
is advantageous for stable and large top quark spin effects.
More explicitly, the polarization of the top quark is gen-
erally large and more stable against variations of the pa-
rameters Peff ; cos� and the energy in the forward region
than in the backward region.
Contrary to the rate, the polarization observables depend

only on Peff , and not separately on h� and hþ. We find that
the single-spin polarization of the top quark is, in general,
strongly dependent on the effective beam polarization
parameter Peff . This is quite different for longitudinal
spin-spin correlations which depend only weakly on
beam polarization effects.
In order to attain small or large values of the polarization

would in general require an extreme fine-tuning of Peff

depending on cos� and the energy. The good news is that
the polarization properties at

ffiffiffi
s

p ¼ 500 GeV are still quite
close to the polarization properties at threshold where
they are quite simple. If the aim is to achieve zero or
small polarization at

ffiffiffi
s

p ¼ 500 GeV a choice of Peff ¼
0:36� 0:40 leads to very small values of j ~Pj in the forward
hemisphere where the rate is largest. At

ffiffiffi
s

p ¼ 500 GeV,

close to maximal values of the polarization j ~Pj ’ 1 can be
achieved over the whole cos� range for effective beam
polarizations close to Peff ¼ �1 or Peff ¼ þ1, where the
polarization is slightly larger for Peff ¼ þ1. However, a

FIG. 20. NLO beam energy dependence of the polar average of
the longitudinal spin-spin correlation function hPð‘1‘2Þi.
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choice close to Peff ¼ �1 is preferred because of two
reasons. First, this choice leads to larger rates and, second,
the polarization observables are more stable against varia-
tions of Peff close to Peff ¼ �1 than close to Peff ¼ þ1.

For
ffiffiffi
s

p ¼ 1000 GeV a total polarization of j ~Pj> 85% and

j ~Pj> 90% can be achieved in the forward hemisphere for
Peff ¼ �1 and Peff ¼ þ1, respectively. The highest en-
ergy considered in this paper is

ffiffiffi
s

p ¼ 3000 GeV. We have
found that the polarization results at

ffiffiffi
s

p ¼ 3000 GeV are,
in many aspects, not very close to their respective asymp-
totic values.

For the analysis of polarization effects, one also needs to
know the orientation of the polarization vector. We have
given explicit results on its orientation where we have
found that, at

ffiffiffi
s

p ¼ 500 GeV, the polarization vector is
still approximately aligned or counteraligned with the
electron momentum as is the case at threshold.

Our results can be viewed as a generalization of
the Peff ¼ �1 results of Ref. [5] to general values of
�1 � Peff � þ1. We have checked that all our Born
term formulas agree with those of Ref. [5] when we set
Peff ¼ �1 in our Born term expressions. In addition, we
have derived simple Born term rate and polarization for-
mulas for the case Peff ¼ þ1 not treated explicitly in
Ref. [5]. We also provide Oð�sÞ corrections to the Born
term results which we have checked against the corre-
sponding Oð�sÞ corrections in the helicity system given
in Ref. [6]. In addition, we provide radiative corrections to
the orientation angle � of the polarization vector which
were not discussed in Ref. [6].

All the results in this paper refer to the polarization of
the top quark. In order to obtain the SM coupling predic-
tions for the polarization of the antitop quark, let us first set
up an orthonormal spin basis for the antitop quark by
replacing the momenta in Eq. (4) by their charge conjugate
partners, i.e. ~pt ! ~p�t and ~pe� ! ~peþ . The three orthonor-

mal basis vectors ð ~eðtrÞ; ~eðnÞ; ~eð‘ÞÞ are now given by

~eðtrÞ ¼ ð ~peþ � ~p�tÞ � ~p�t

jð ~peþ � ~p�tÞ � ~p�tj ;

~eðnÞ ¼ ~peþ � ~p�t

j ~peþ � ~p�tj ;

~eð‘Þ ¼ ~p�t

j ~p�tj :

(68)

In the polar angle distribution (5) the polar angle now
refers to ��te� and not to � ¼ �te� , as in the top quark
case discussed in the main part of this paper. Since the
lepton pair is back to back in the lab frame, one has ��te� ¼
180� � ��teþ , i.e. the two terms in Eq. (5) proportional to
cos� change sign if written in terms of cos��teþ . In the SM
the rate and the polarization components of the antitop
quark are related to those of the top quark via

��tðcos��teþÞ ¼ �tðcos�te�Þ;
Pð‘;nÞ
�t ðcos��teþÞ ¼ �Pð‘;nÞ

t ðcos�te�Þ;
PðtrÞ
�t ðcos��teþÞ ¼ PðtrÞ

t ðcos�te�Þ:
(69)

As an example, and as expected, the antitop quark is
predominantly produced in the backward hemisphere rela-
tive to the e� direction.
In polarized top decay the compositions of helicity

fractions of the final state W� bosons change relative to
the helicity fractions of unpolarized top quark decay
depending on the magnitude and orientation of the polar-
ization vector. This polarization effect has been investi-
gated in a number of papers where a variety of spin
observables have been defined which involve the dominant
decay mode of the top quark tð"Þ ! bþWþð! ‘þ þ �lÞ.
The analysis can be done in the ðeþe�Þ c.m. frame as
in Ref. [34], in the top quark rest frame as e.g. in
Refs. [35–37], or in the W rest frame as e.g. in
Refs. [3,38,39]. References [3,35,37,38] concentrate on
SM predictions and discuss radiative QCD [3,35,38] cor-
rections to the respective spin observables, while Ref. [34]
analyzes the effect of non-SM interactions in the produc-
tion and decay of the top quark. The authors of Ref. [39]
discuss some novel spin observables and proceed to ana-
lyze the effect of non-SM decay vertices on these observ-
ables. QCD corrections to non-SM interactions in the
decay of an unpolarized top quark have been recently
calculated in Ref. [40]. This calculation can be easily
extended to polarized top quark decay.
The discussion of this paper has focused on SM physics

with longitudinal beam polarization. Non-SM electroweak
couplings on the production side, involving leptons and
quarks, and transverse beam polarization effects can be
easily included using the formalism of this paper.
Transverse beam polarization effects will be discussed in
a sequel to this paper.
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APPENDIX: SMVALUESOF THE ELECTROWEAK
COUPLING COEFFICIENTS

The electroweak coupling matrix elements gijðsÞ needed
in this paper are given by
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g11=12 ¼Q2
f � 2QfvevfRe�Z

þðv2
e þ a2eÞðv2

f �a2fÞj�Zj2ð¼ 0:61=0:34Þ;
g14 ¼ 2QfveafRe�Z � 2ðv2

e þa2eÞvfafj�Zj2ð¼�0:14Þ;
g41=42 ¼ 2QfaevfRe�Z

� 2veaeðv2
f � a2fÞj�Zj2ð¼�0:21=� 0:17Þ;

g44 ¼�2QfaeafRe�Z þ 4veaevfafj�Zj2ð¼ 0:50Þ;
where

�ZðsÞ ¼ gM2
Zs

ðs�M2
Z þ iMZ�ZÞ

; (A1)

with MZ and �Z the mass and width of the Z0

and g¼ ð16sin2�Wcos2�WM2
ZÞ�1 ¼ 4:229� 10�5 GeV�2,

where we have used sin2�W ¼ 0:23116.Qf are the charges

of the final state quarks to which the electroweak currents
directly couple; ve and ae, vf, and af are the electroweak

vector and axial vector coupling constants. For example, in
the Weinberg-Salam model, one has ve ¼ �1þ 4sin2�W ,
ae ¼ �1 for leptons, vf ¼ 1� 8

3 sin
2�W , af ¼ þ1 for up-

type quarks (Qf ¼ þ 2
3 ), and vf ¼ �1þ 4

3 sin
2�W ,

af ¼ �1 for down-type quarks (Qf ¼ � 1
3 ). The electro-

weak coupling coefficients gij are not independent. They

satisfy the constraints

ððg11 � g41Þ2 � ðg14 � g44Þ2Þ1=2 ¼ g12 � g42: (A2)

In Eq. (A1) we have also listed the numerical values
of the electroweak coefficients for ðt�tÞ production at

ffiffiffi
s

p ¼ 500 GeV. As already mentioned in the main text,
it is safe to work in the zero width approximation for the Z
boson above ðt�tÞ threshold, i.e. we set �Z ¼ 0. Note that the
numerical values of the electroweak coefficients are only
weakly energy dependent above the ðt�tÞ threshold. The
energy dependence comes from the energy-dependent fac-
tor �ZðsÞwhich takes the values 0.377, 0.364, and 0.352 forffiffiffi
s

p ¼ 350 GeV (threshold), 500 GeV, and infinite energy,
respectively.
For some applications it is convenient to switch to chiral

representations of the initial and final electromagnetic and
weak currents as was done in Ref. [5]. Accordingly, one
defines coefficients

fLL=LR ¼ �Qf þ ðve þ aeÞðvf � afÞ�ZðsÞ: (A3)

The chiral electroweak coefficients fLL=LR can be seen to

be related to the above gij via

fLL=LR¼�ðg11�g14�g41�g44Þ1=2 ð¼�1:21=�0:43Þ;
fLLfLR¼g12�g42 ð¼ 0:51Þ: (A4)

For the case Peff ¼ þ1, one also needs the corresponding
relations for the coefficients

fRR=RL ¼ �Qf þ ðve � aeÞðvf � afÞ�ZðsÞ: (A5)

One has

fRR=RL¼�ðg11�g14þg41�g44Þ1=2 ð¼�0:87=�0:20Þ;
fRRfRL¼g12þg42 ð¼0:18Þ: (A6)

[1] J. E. Brau et al. (ILC Collaboration), arXiv:0712.1950.
[2] N. Phinney, N. Toge, and N. Walker, arXiv:0712.2361.
[3] M. Fischer, S. Groote, J. G. Körner, M. C. Mauser, and B.

Lampe, Phys. Lett. B 451, 406 (1999).
[4] V. Ravindran and W. L. van Neerven, Nucl. Phys. B589,

507 (2000).
[5] S. Parke and Y. Shadmi, Phys. Lett. B 387, 199 (1996).
[6] J. Kodaira, T. Nasuno, and S. J. Parke, Phys. Rev. D 59,

014023 (1998).
[7] R.W. Assmann et al., Reports No. CERN-2000-008 and

No. SLAC-REPRINT-2000-096.
[8] V. S. Fadin and V.A. Khoze, Yad. Fiz. 48, 487 (1988)

[JETP Lett. 46, 525 (1987)].
[9] R. Harlander, M. Jeżabek, J. H. Kühn, and M. Peter, Z.

Phys. C 73, 477 (1997).
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[35] A. Czarnecki, M. Jeżabek, J. G. Körner, and J. H. Kühn,
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