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The �� has an extremely long lifetime, and is the most stable of the baryons with spin 3=2. Therefore

the �� magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was

never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations

provide at present the most appropriate way to estimate the �� form factors, as function of the square of

the transferred four-momentum, Q2, since it describes baryon systems at the physical mass for the

strange quark. However, lattice QCD form factors, and in particular GE2, are determined at finite Q2 only,

and the extraction of the electric quadrupole moment, Q�� ¼ GE2ð0Þ e
2M�

, involves an extrapolation of

the numerical lattice results. In this work, we reproduce the lattice QCD data with a covariant spectator

quark model for �� which includes a mixture of S and two D states for the relative quark-diquark

motion. Once the model is calibrated, it is used to determine Q�� . Our prediction is Q�� ¼ ð0:96�
0:02Þ � 10�2 efm2 [GE2ð0Þ ¼ 0:680� 0:012].

DOI: 10.1103/PhysRevD.83.054011 PACS numbers: 12.39.Ki, 12.38.Gc, 13.40.Em, 14.20.Jn

I. INTRODUCTION

The prediction of the electromagnetic structure of bary-
ons and mesons is an important challenge for quark models
and, when compared to the available experimental results,
it provides a test on the relevant hadronic degrees of free-
dom. For baryons with spin 1=2 (as in the baryon octet) the
charge and the magnetic moment are the only multipole
moments to be defined, while for baryons with spin 3=2 (as
in the baryon decuplet) also the electric quadrupole mo-
ment exists. However, at present, there is no experimental
measurement of the electric quadrupole moment for any of
the baryons, although there are several model predictions
for the � and the ��, and other decuplet particles. For a
summary of the � results see Refs. [1,2]. As for the ��
there are predictions based in quark models [3–9], chiral
perturbation theory [10,11], large-Nc limit [12–14], and
other formalisms [15–18].

Within all members of the baryon decuplet, the �� is
especially interesting. As it is composed solely by strange
quarks in the valence sector, it can decay only by weak
interaction and therefore its lifetime is extremely longer
than the one of the other baryons. For this reason, experi-
mentally, the �� properties are easier to be determined
than the ones of any other member of the decuplet. A good
illustration of this is the accuracy of the �� magnetic
moment ��� ¼ �ð2:019� 0:053Þ�N [19–22], where
�N is the nuclear magneton. It is also expected that the
Q�� quadrupole moment will be measured in a near future
[23–26].

Additionally, the valence quark content of the �� is
restricted to strange quarks, with a mass considerably
larger than the light u and d quark masses. As now it is
already possible to perform lattice QCD at the physical
strange quark mass, the �� magnetic moment [27–29],

and more recently also its electric charge GE0, magnetic
dipole GM1, electric quadrupole GE2 and magnetic octu-
pole GM3 [30,31] were calculated within lattice QCD.
Another important issue is that in sea quark effects for
the�� only at most one single light quark participates, and
therefore the pion has no role in this case. As in chiral
perturbation theory loops involving mesons heavier than
the pion are suppressed, the �� becomes then a special
case where meson cloud corrections to the valence quark
core are expected to be small. A consequence of the small-
ness of the meson cloud effects is that lattice QCD simu-
lations, quenched or unquenched, should be a good
approximation to �� form factors at the physical point.
Therefore, in this work we take the lattice QCD simula-
tions as good representations of the physical results,
without any extrapolation of the lattice data to the physical
pion mass.
The main limitation in obtaining the �� electromag-

netic form factors in lattice QCD simulations comes from
these ones being restricted, for practical reasons, to finite
nonzero values of Q2, while the determination of the
quadrupole moment, for instance, is proportional to
GE2ð0Þ. An extrapolation in the momentum transfer
squared Q2, down to Q2 ¼ 0 is then required, and one
has inevitably to resort to an analytical form to do it. It is
at this point that it is reasonable to expect that a quark
model is useful, in particular, for systems as the ��,
without light valence quarks and where meson loop cor-
rections are expected to be small. Since the covariant
spectator quark model was tested already for spin 1=2
baryons [32–35], spin 3=2 baryons [1,2,20,36,37], includ-
ing strange quarks, and electromagnetic transitions be-
tween different baryon states [35,37–42], it is a good
candidate to be used not only to interpolate between lattice

PHYSICAL REVIEW D 83, 054011 (2011)

1550-7998=2011=83(5)=054011(8) 054011-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.054011


QCD data in Q2, but also to extrapolate the form factor
data to Q2 ¼ 0.

The covariant spectator quark model was applied in the
past to estimate successfully the leading order form factors
of the �� (GE0 and GM1) neglecting D-state admixtures
[20]. Here, we extend the formalism to the case where the
D-state admixture coefficients are nonzero. Because these
states are included, we have now contributions for the GE2

andGM3 form factors, and thereforewe can use themodel to
extract the �� electric quadrupole moment from lattice
QCD data. By adjusting some parameters associated with
the�� wave function to the lattice data, our procedure has
the advantage of incorporating into the phenomenological
model the fundamental theory of the strong interaction, in
its discrete version (lattice QCD). The information on the
wave function parameters allows us then to calculate all the
electromagnetic form factors GE0, GM1, GE2 and GM3 as
functions of Q2. In particular, the model can be used to
determine the electric quadrupole form factor at theQ2 ¼ 0
point. To constrain the model, we use the unquenched
lattice QCD data from Ref. [30] for �� at the physical
�� mass. Although the existing lattice data is unquenched,
the valence quarks are expected to play the main role and
meson dressing to be small, as mentioned before. This is
why the adjustment of the quark model to the lattice QCD
data is meaningful. To better constrain the parameters of the
quark model, we use also the single data point forGM3 from
Ref. [31], in addition to the lattice data from Ref. [30].

We start by using the spectator formalism to represent
the �� wave function, in a similar way to the one used
before for the � [39]. Although both the � and the ��
have the same spin structure, they differ in their flavor
content. Therefore, we begin with the SU(3) generalization
of the spectator quark model for the overall study of the
baryon decuplet [20]. Also, the quark momentum distribu-
tions for the two baryons are different, and our calculation
at the end quantifies this difference. As for the electromag-
netic current associated with the interaction of the photon
with the strange quark, which is another aspect where the
calculation differs from the calculation for the � baryon,
we use the current based on vector meson dominance from
Ref. [20].

Under the assumption that the D-state components are
small, then we take only the electromagnetic current ma-
trix elements which are in first order in the admixture
coefficients as done in Ref. [2] for the �. Finally, in the
process of adjusting the �� electromagnetic form factor
results to the lattice data, we determine the percentage of
eachD state present in the orbital quark-diquark part of the
wave function of the �� baryon. Our calculation enables
us at the end to narrow the uncertainty in the extraction of
the value of the quadrupole magnetic moment of the ��
from the lattice QCD data.

This work is organized as follows: In Sec. II, we give the
formulas for the �� electromagnetic form factors in first

order of the admixture coefficients. In Sec. III, we parame-
trize the�� wave function and its momentum dependence.
The results are presented in Sec. IV, and the conclusions
and final remarks in Sec. V.

II. �� FORM FACTORS

We use here the covariant spectator quark model, where
relativity is implemented consistently. Within this frame-
work a baryon is described as an off-shell quark and two
noninteracting on-shell spectator quarks. Integrating over
the on-mass-shell quarks degrees of freedom, one repre-
sents those quark states as a single on-shell particle (or
diquark) with an average mass mD [20,32]. With this re-
duction, thewave function associatedwith the baryon states
including the spin, angular momentum, coordinate space
and flavor structure, can then bewritten as the direct product
of the diquark and quark states properly symmetrized.
The electromagnetic interaction with the �� is, in rela-

tivistic impulse approximation, written as the sum over the
terms in which the photon couples to each (off-shell) quark
in turn with the other two (on-shell) quarks that compose
the diquark. The electromagnetic structure of the quarks is
parametrized in terms of form factors. One can rearrange
the contributions to the electromagnetic current from the
conveniently symmetrized wave functions in terms of the
on-shell diquark states—quark pair (12), and the off-shell
quark—quark 3 states. The final result for the current
becomes then three times the current associated to the
interaction with quark 3. See Ref. [20] for a detailed
discussion. We write then the �� wave function as
��ðP; kÞ for total momentum P, as the combination of
the diquark (on-shell) states, with momentum k, and the
quark 3 (off-shell) states. In our notation, the indices for the
diquark polarization � ¼ 0, � and the �� spin projection
are omitted for simplicity, and the matrix element of the
electromagnetic current between the initial and final states
of momentum Pþ and P�, respectively, is written as

J� ¼ 3
X
�

Z
k

���ðPþ; kÞj�q��ðP�; kÞ; (1)

where j�q is the current operator for quark 3 and
R
k is the

covariant integral is defined as
R
k ¼

R
d3k

ð2�Þ22ED
, where ED

is the diquark on-shell energy. In Eq. (1) the interactions
with all quarks are counted, without including the coupling
with the diquark [20,32].
In this work, the �� wave function is represented as a

combination of an S state and two D states for the quark-
diquark relative motion [39]:

��ðP;kÞ¼N½�SðP;kÞþa�D3ðP;kÞþb�D1ðP;kÞ�: (2)

In the previous equation, a and b are the mixture coeffi-
cients of the states: D3 (core spin 3=2) and D1 (core spin

1=2), respectively, and N ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 þ b2

p
a normaliza-

tion constant. Each of the three wave function terms
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includes a scalar wave function, respectively c S, c D3, and
c D1, which is a function of the baryon momentum P and
diquark momentum k, with a form and normalization given
in the next section.

The quark current j�q can be in general decomposed as

j�q ðQ2Þ ¼ j1ðQ2Þ�� þ j2ðQ2Þ i�
��q�

2MN

; (3)

where MN is the nucleon mass, and

ji ¼ 1

6
fiþ�0 þ 1

2
fi��3 þ 1

6
fi0�s; (4)

with �0 ¼ diagð1; 1; 0Þ: �3 ¼ diagð1;�1; 0Þ and �s ¼
diagð0; 0;�2Þ are SU(3) flavor operators acting in the
particular quark flavor state q ¼ ðudsÞT [20,34].

The quark form factors are normalized as f1�ð0Þ ¼ 1,
f10ð0Þ ¼ 1, f2�ð0Þ ¼ ��, and f20ð0Þ ¼ �s. We model the
electromagnetic structure of the quarks by means of a
parametrization that is based on vector meson dominance.
In particular, the strange quark form factors are represented
[20] by

f10 ¼ �þ ð1� �Þ m2
	

m2
	 þQ2

þ c0
M2

hQ
2

ðM2
h þQ2Þ2 ; (5)

f20 ¼ �s

�
d0

m2
	

m2
	 þQ2

þ ð1� d0Þ M2
h

M2
h þQ2

�
; (6)

where m	 is a mass of the 	 meson (system �ss), Mh ¼
2MN is an effective vector meson that simulates the short
range structure and � is fixed by deep inelastic scattering,
and corresponds to the quark number density [32]. The
coefficients defining the current were fixed as c0 ¼ 4:427
and d0 ¼ �1:860 in the study of the dominant form factors
of the baryon decuplet [20]. As for the strange quark
anomalous magnetic moment, one uses �s ¼ 1:462 to
reproduce the experimental value of��� [20]. The explicit
expression for the remaining quark form factors are
presented in Refs. [20,39,40].

Following Refs. [39,40], the current can be written in
terms of charge ~e� and anomalous magnetic moment ~��

functions

~e� ¼ �f10ðQ2Þ (7)

~�� ¼ �f20ðQ2ÞM�

MN

: (8)

In the previous equation, for convenience we use a nor-
malization that differs from the one presented in [20], by a

factor M�

MN
. This redefinition does not change the results. We

define also

~g� ¼ ~e� � 
~�� (9)

~f� ¼ ~e� þ ~��; (10)

where 
 ¼ Q2=ð4M2
�Þ.

Working the algebra for the current as in Refs. [1,2],

replacing ~e� and ~k� by ~e� and ~k�, one obtains in first order
in the admixture coefficients a and b:

GE0ðQ2Þ ¼ N2~g�IS (11)

GM1ðQ2Þ ¼ N2 ~f�

�
IS þ 4

5
aID3 � 2

5
bID1

�
(12)

GE2ðQ2Þ ¼ N2~g�ð3aÞ ID3



(13)

GM3ðQ2Þ ¼ ~f�N
2

�
a
ID3



þ 2b

ID1




�
; (14)

where the overlap between the S states is

IS ¼
Z
k
c SðPþ; kÞc SðP�; kÞ; (15)

and the overlap between the S and each one of the D states
is

ID1 ¼
Z
k
bð~kþ; ~qþÞc D1ðPþ; kÞc SðP�; kÞ (16)

ID3 ¼
Z
k
bð~kþ; ~qþÞc D3ðPþ; kÞc SðP�; kÞ: (17)

The function bð~kþ; ~qþÞ is defined in Ref. [39] and includes
the specific angular dependence of a D state, with ~kþ
defined as the three-momentum in the frame where Pþ ¼
ðM�; 0; 0; 0Þ: ~kþ ¼ k� Pþ�k

M2
�

Pþ.
From Eq. (11), one obtains that the result for the charge

form factor at Q2 ¼ 0 is GE0ð0Þ ¼ �N2, [note that N2 ¼
1=ð1þ a2 þ b2Þ], which differs from the exact result ð�1Þ,
if a, b � 0. This deviation, although small if a and b are
small, is a consequence of taking in the calculation of the
current matrix elements only the terms in first order in these
D state admixture coefficients a and b. Also, the magnetic
dipole form factor GM1, from Eq. (12), at Q2 ¼ 0 deviates
slightly from the experimental value (which gives the ��
magnetic moment). Once the terms for the current matrix
elements for the D- to D-state transitions are included, the
exact results of both the charge and magnetic moment are
recovered exactly. Wewill use this fact to estimate the error
of our model, as explained in Sec. IV.

III. MODEL FORTHE SCALARWAVE FUNCTIONS

To describe the momentum dependence of the scalar
wave functions, one assumes a certain form (as done
already for the � in Refs. [39,40])
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c SðP; kÞ ¼ NS

mDð�S þ ��Þ3
(18)

c D3ðP; kÞ ¼ ND3

m3
Dð�D3 þ ��Þ4

(19)

c D1ðP; kÞ ¼ ND1

m3
Dð�D1 þ ��Þ4

; (20)

where

�� ¼ ðM� �mDÞ2 � ðP� kÞ2
M�mD

: (21)

In this way, we introduce momentum scale parameters (�S,
�D3, �D1) for each angular momentum or orbital state. In
contrast to the � case, one does not have to impose the
orthogonality of the spin core S ¼ 1=2 D state with an S
state with the same spin, as a spin 1=2 S state with three
strange quarks is forbidden. Therefore, the expression for
the state D1 differs from the one used for the � baryon
[39,40], and one may consider a simpler parameterization
for the �� D1 state.

The normalization conditions are given by

Z
k
jc Sð �P; kÞj2 ¼ 1 (22)

Z
k
j~k2c D3ð �P; kÞj2 ¼ 1 (23)

Z
k
j~k2c D1ð �P; kÞj2 ¼ 1; (24)

where �P ¼ ðM�; 0; 0; 0Þ is the momentum of the�� in the
rest frame. The parameters �S, �D3, �D1, and the admix-
ture coefficients a, b are the five adjustable parameters of
the model.

IV. RESULTS

In this section, we present the results for the �� elec-
tromagnetic form factor data obtained from the quark
model described in the previous sections, calibrated by a
fit to the available lattice data. The available �� form
factor data as function of Q2, is restricted to the un-
quenched lattice simulations of the GE0, GM1 and GE2

form factors [30]. Under these conditions, and given that
the term from the S state dominates in GE0 and GM1, the
most important constraint for the D states comes from GE2

(to which only the interference term between S and D3

state contributes), and a decisive constraint on the D1 state
(throughGM3) is not available yet, except for the quenched
calculation of Ref. [31] for Q2 ¼ 0:23 GeV2. That point is
also considered in our fit.
In principle, one could assume that theD1 statewould not

be important for the �� structure—we evoke that it was
checked earlier that the lattice data for the � baryon can be
described with very small ( � 1%)D state admixtures [40].
Still, this needs to be investigated, and therefore we check
here whether theD1 state can be important toGE0 andGM1

data and helps to improve the overall description of the form
factor data. This is why in this work we leave the D1 state
mixture free and use the lattice data (mainlyGM1) to fix that
contribution. Future lattice QCD simulations for GM3 may
then confirm or contradict our model.
The only limitation of our calculation is that the amount

of D-states admixture is assumed to be small, since the
calculation of the form factor proceeds by taking only into
account the first order terms in a and b (neglecting tran-
sitions betweenD states). That limitation will be quantified
at the end, comparing the result of GE0ð0Þ with the ��
charge (� 1), obtained when all states are include in the
electromagnetic transition current.

A. Lattice data

We use the lattice QCD data from Alexandrou et al. [30]
and the GM3 data point from Ref. [31]. All the lattice QCD
simulations from Ref. [30] are unquenched but two differ-
ent methods are used: hybrid action and domain wall
fermions (DWF). The single data point from Ref. [31] is
quenched. The data from Ref. [30] goes almost to 4 GeV2

[43], but only the data for Q2 < 1:6 GeV2 is relatively
precise. The simulations were performed for one pion
mass using the hybrid method (m� ¼ 0:353 GeV) and
three pion masses with the DWF method (m� ¼ 0:297,
0.330 and 0.355 GeV).
The results of GE0 and GM1 in the DWF case show a

weak dependence in the pion mass, suggesting that meson
cloud effects (K and 
) may be negligible at least for those
form factors as expected from a three strange valence quark
system. The hybrid simulation for GE0 and GM1 shows a
systematic deviation from the results from DWF (slower
falloff) for large Q2 with similar pion mass (m� ¼
0:355 GeV).
For the hybrid simulation, one has results for GE0, GM1

and GE2 for pion mass value of m� ¼ 0:353 GeV. As for
the DWF simulations, one has data for GM1, with m� ¼
0:355 GeV; for GE0 and GM1 with m� ¼ 0:330 GeV; and

TABLE I. Results of the �2 in the fit to the lattice data. The results correspond to the values:
a ¼ 0:0341, b ¼ 0:2666, �S ¼ 0:1793, �D3 ¼ 0:5394 and �D1 ¼ 0:4674.

�2ðGE0Þ �2ðGM1Þ �2ðGE2Þ �2ðGM3Þ �2ðtotÞ GE2ð0Þ
5.28 2.66 0.203 2.49 2.58 0.674
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finally for data for GE0, GM1 and also for GE2 with m� ¼
0:297 GeV. The difference between the two methods,
particularly to high Q2, can be a lattice artifact (cutoff
effect) [30]. More lattice QCD simulations with smaller
lattice spacing and larger volumes are necessary to clarify
the differences between the two methods [30].

The �� form factors can also be obtained from a
simulation of the �� in the SU(3) symmetry limit. This
was done by Boinepalli et al. [31] for pion mass m� ¼
0:697 GeV, leading to a slightly heavier mass for the ��
(1.732 GeV to be compared with 1.672 GeVof the physical
case [19]). This simulation is quenched and the results are
given only for one value of Q2 [Q2 ¼ 0:23 GeV2].
Importantly, that work provides the only existing clue for
the behavior of the octupole magnetic moment form factor:
GM3ð0:23 GeV2Þ ¼ 1:25� 7:50.

B. Calibrating the model (fit to lattice data)

Ideally, to extrapolate the �� form factors from lattice
QCD, one should take the set of lattice QCD simulations
performed as close as possible to the physical limit—the
lowest pion mass (m� ¼ 0:297 GeV) considered in the
DWF case. Unfortunately, the available DWF data for
GE2 is restricted to 7 data points, for that mass, below
2 GeV2, and there is no data forQ2 < 0:4 GeV2, which is a
severe limitation to extrapolate the results down toQ2 ¼ 0.

To obtain a more accurate extrapolation, we took also the
hybrid data (with 13 data points forGE2 below 2 GeV2). To
consider simultaneously the hybrid and DWF data in-
creases the statistics, which in principle leads to more
accurate constraint of the model. However, the differences
between the two methods, in particular, the high accuracy
of the GE0 data, make a good fit difficult, particularly for
the GE0 and GM1 form factors. Since the difference be-
tween the two methods is amplified as Q2 increases (par-
ticularly for Q2 > 1 GeV2), to improve the quality of our
fit we took only the GE0 and GM1 data below Q2 �
1 GeV2. This is justified since the lattice simulations
have larger numerical error for higher Q2 and also because
we are focused in the extrapolation for the Q2 ¼ 0 point,
which leads us to reduce the weight of high Q2 data. This
procedure is frequently used in lattice QCD studies at low
Q2 [44]. The inclusion of the regionQ2 > 1 GeV2 in the fit
will be possible once a more homogeneous set of data with
sufficient statistics is provided. As forGE2 we took the data
for Q2 < 2 GeV2, since the error bars are more significant
and we want to keep the statistics as large as possible.
The results for the �2 of the fit are presented in the

Table I. The large �2 for the GE0 data is a consequence of
the great precision of the data and also of the different
behavior of the hybrid and DWF data. The parameters of
the fit are indicated in the caption of Table I. The mixture of
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FIG. 1 (color online). Best fit with aD1 andD3mixture. Lattice QCD data from Alexandrou et al. [30]. ForGM1, we include also the
experimental result GM1ð0Þ ¼ �3:604� 0:096 from PDG [19] (*). The open circles represent the result for Q2 ¼ 0:23 GeV2 from
Boinepalli et al. [31].
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D states that we obtain is 0.11% (for D3) and 6.6%
(for D1). There is therefore a significant mixture of the
D1 state.

In detail, the value for the momentum-range parameter
�S (0.1793) obtained in this fit (with S and D states)
suggests that D states improve in fact the description of
GE0 and GM1, when compared with the predictions from
Ref. [20], prior to the simulations of Ref. [30] and where
�S was smaller (0.1630).

The results of our fit to the lattice form factors are
presented in Fig. 1. The upper (lower) results for GE0

and GM1 (GE2 and GM3) are given by Eqs. (11)–(14),
with the factor N2 ¼ 1=ð1þ a2 þ b2Þ defined by the nor-
malization of the �� wave function,1 given by Eq. (2). As
mentioned in Sec. II, those equations are derived in first
order in the D-state admixture parameters a and b, and
differ from the final result because the transitions between
D states are neglected. We can calculate the effect of this
approximation by evaluating the correction to GE0ðQ2Þ
needed to reproduce exactly the �� charge at Q2 ¼ 0.
From Eq. (11) the exact result for GE0ð0Þ is obtained by
setting N2 ¼ 1, which then defines our lowest estimation
of GE0. The band between the upper and the lower result
measures the effect in the final result of the neglected D to
D-state transitions. The width of the band is small because
a and b turn out to be small from the fit to the lattice data.
As for the uncertainty in the calculation of the form factors,
GM1, GE2 and GM3 we use the same procedure, for
consistency.

Our results presented in Fig. 1, for the four form factors,
are consistent with the overall lattice data within 1 standard
deviation, to the exception of the form factor GM3. In that
case, although we overestimate the lattice data point [31],
our result is still inside an uncertainty interval of 1.5
standard deviations. Note that in our formalism, the mag-
nitude of GM3 is a consequence of the relatively large D1
state admixture (6.6%), a prediction to be tested by future
and more precise lattice QCD simulations. The extracted
value of the electric quadrupole form factor at Q2 ¼ 0 is
GE2ð0Þ ¼ 0:680� 0:012.

V. CONCLUSIONS

The�� is themost stable baryonwith spin 3=2. Yet, only
some of its properties are known. As a spin 3=2 particlewith
a long lifetime, it is the first candidate for the experimental
determination of the electric quadrupole moment, since the
nucleon (spin 1=2) has no quadrupole moment, and the
lifetime of the � is much shorter. Several experimental

methods have been proposed to measure the still unknown
quadrupole momentQ�� , which is a signature of distortion
and is likely to be measured in a very near future. This
makes its a priori prediction so challenging.
As the �� is essentially a three strange valence quark

system, it is possible nowadays to simulate the electromag-
netic coupling with the�� in a discrete lattice for physical
strange quark masses with light sea quarks (m� ’
300 MeV) and to determine the �� electromagnetic
form factors. In the absence of experimental information,
lattice QCD provides then the more reliable method to
unveil the �� electromagnetic structure.
However, to determine the electric quadrupole moment,

an extrapolation of the GE2 form factor down to Q2 ¼ 0
must be done, and some analytical form near the origin
must be assumed. In this work, we provide then a method
to extract information from the lattice QCD data, without
assuming any special analytical form, as a dipole, tripole,
or exponential function. We start by requiring an overall
consistency between the prediction of our model for the
four form factors and the lattice QCD data for the physical
�� mass. Then, the model extends naturally down to the
Q2 ¼ 0 limit, inferring the behavior of the �� system in
the region not covered by the lattice data. As a bonus
relatively to an ad hoc parameterization, we obtain even
information about the microscopic structure such as the
admixture percentage of each D state and the momentum
distribution of the wave function.
The procedure assumes that meson cloud dressing is not

significant in the �� system. Although the present lattice
QCD results cannot rule out that sea quark dressing (meson
cloud) may be important, they suggest that dependence in
the light quark (pion mass) is small at least for the charge
and magnetic dipole form factors. This topic will be inves-
tigated in the future.
Our final results imply an unexpected large D1state

mixture (6.6%). The confirmation or disproof of this result
will be possible once lattice data for GM3 becomes avail-
able. More precise data for GM1 (GE0 is already very
precise), particularly at high Q2, where the weight of the
D states is larger, will also be useful for an even better
estimate of the both D-state admixtures.
Our final result for the electric quadrupole moment of

the �� is Q�� ¼ ð0:96� 0:02Þ � 10�2 efm2. In the lit-
erature, the existing results for Q�� correspond to the
interval ð0:4� 4:0Þ � 10�2 efm2 [3–8,10–12,14,15,18],
and our result has a magnitude consistent with this range.
The value extracted directly from lattice QCD data, assum-
ing an exponential dependence [30], corresponds to
ð1:18� 0:12Þ � 10�2 efm2. Note that our result satisfies
simultaneously the constraints of the three form factors
(GE0, GM1 and GE2), and therefore can be given with a
smaller band of uncertainty.
The numerical value of Q��=e�� (e�� ¼ �1),

because it is a positive number, can be interpreted in a

1Note that in thepresentwork, by takingN2 ¼ 1=ð1þ a2 þ b2Þ,
we are not modifying the normalization of the�� wave function
relative to Ref. [20]. In previous calculations, we had N2 ¼ 1
because only the S state (normalized to 1) was considered. Once
the D states are added, N2 is redefined accordingly to the D-state
admixture coefficients to N2 ¼ 1=ð1þ a2 þ b2Þ.
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nonrelativistic formalism as the charge distribution being
extended and flattened along the equatorial region, as it
was also predicted for the �þ baryon [1]. Note however
that this interpretation has been questioned, and some
authors suggest a different concept of deformation, based
on the transverse electric quadrupole moment in the infi-
nite momentum frame [45–47].

Comparing the�� with the �þ baryon, in the covariant
spectator quark model it is interesting to notice that the
difference in theD3 admixture, 0.72% for the� and 0.11%
for the�� does not correspond to a reduction of GE2ð0Þ in
the same proportion. This shows that the momentum dis-
tribution in the overlap integral between S and D3 states is
very different in both systems and it has to be taken into
consideration.

An intrinsic limitation of our calculation is the determi-
nation of the form factors only in first order of the admix-
ture coefficients. The exact calculation of the form factors
including the contributions from transitions between D
states is in progress [48]. Nevertheless, the effect of these
transitions can be estimated approximately by the correc-
tion implied by the deviation of the normalization constant
N from 1. In the present case, this correction is about 3.4%.

Finally, in the future, a precise calculation of the
magnetic octupole form factor of the �� using lattice
QCD will be very useful for a better understanding of the
�� electromagnetic structure. The magnetic octupole

moment O�� ¼ GM3ð0Þ e
2M3

�

, was estimated already in

Refs. [11,17,49]. Our result corresponds to ð1:27�
0:04Þ � 10�2 efm3. Although the experimental determi-
nation of O�� may not be possible in practice, an
evaluation based on lattice QCD in a regime where
meson excitations are expected to be small, may help
to select models. In particular for our model, it can allow
a more accurate determination of the wave function
structure, which carry information on the shape of the
electromagnetic distributions inside that baryon, and also
the relative contribution of the D-wave components in
the wave function of the ��.
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