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Twist-4 contributions to the azimuthal asymmetry in semi-inclusive deeply inelastic scattering

Yu-kun Song,' Jian-hua Gao,? Zuo-tang Liang,' and Xin-Nian Wang™>*
'School of Physics, Shandong University, Jinan, Shandong 250100, China
’Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
*Institute of Particle Physics, Huazhong Normal University, Wuhan 430079, China

“Nuclear Science Division, MS 70R0319, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Received 19 December 2010; published 8 March 2011)

We calculate the differential cross section for the unpolarized semi-inclusive deeply inelastic scattering
process e~ + N— ¢~ + g + X in leading order of perturbative QCD and up to twist-4 in power
corrections and study, in particular, the azimuthal asymmetry (cos2¢). The final results are expressed
in terms of transverse momentum dependent parton matrix elements of the target nucleon up to twist-4.
We also apply it to e + A— e~ + g + X and illustrate numerically the nuclear dependence of the
azimuthal asymmetry {(cos2¢) by using a Gaussian ansatz for the transverse momentum dependent parton

matrix elements.
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I. INTRODUCTION

Inclusive and semi-inclusive deep-inelastic scatterings
(SIDIS) are important tools to understand the structures
of nucleon and nucleus governed by the Quantum
Chromodynamics (QCD) for the strong interaction. The
azimuthal asymmetries and their spin and/or nuclear de-
pendences of the SIDIS cross sections are directly related
to the parton distribution and polarization inside nucleon or
nuclei and therefore are the subjects of intense studies both
theoretically [1-13] and experimentally [14-25]. They
provide us with a glimpse into the dynamics of strong
interaction within nucleons or nuclei and a baseline for
the study of parton dynamics in other extreme conditions at
high temperature and baryon density.

In the unpolarized SIDIS experiments, the azimuthal
angle ¢ of the final hadrons is defined with respect to the
leptonic plane and is directly related to the transverse
momentum of the hadron from either parton fragmentation
or the initial and final state interaction of the parton before
hadronization. In this paper we will restrict our study to
SIDIS ¢~ + N(A) — e~ + g + X of quark jet production
so that we do not need to deal with the azimuthal asym-
metry resulting from parton fragmentation and have no
need to consider the Boer-Mulders effect [26]. We instead
focus primarily on the effect of initial and final state
interaction. In the large transverse momentum region, the
azimuthal asymmetries arise predominately from hard
gluon bremsstrahlung that can be calculated using pertur-
bative QCD (pQCD) [1], and are clearly observed in ex-
periments [14-18]. On the other hand, in the small
transverse momentum region p,; ~k; =1 GeV/c, the
asymmetry was shown [2] to arise mainly from the intrin-
sic transverse momentum of quarks in nucleon and is a
higher twist effect proportional to k| /Q for (cos¢) and to
k% /Q? for (cos2¢). (Here, p,, denotes the transverse
momentum of the hadron produced, k, is the intrinsic
transverse momentum of the quark in the nucleon,
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0? = —¢? and q is the four-momentum transfer from the
lIepton). The calculations in [2] are based on a general-
ization of the naive parton model to include intrinsic
transverse momentum. To go beyond the naive parton
model, one has to consider multiple soft gluon interaction
between the struck quark and the remanent of the target
nucleon or nucleus. Inclusion of such soft gluon interaction
ensures the gauge invariance of the final results and relates
the azimuthal asymmetry to the transverse momentum
dependent (TMD) parton matrix elements of the nucleon
or nucleus.

Within the framework of TMD parton distributions and
correlations, the intrinsic transverse momentum of partons
arises naturally from multiple soft gluon interaction inside
the nucleon or nucleus. The TMD parton distributions and
correlations can be in fact expressed in terms of the expec-
tation values of matrix elements related to the accumulated
total transverse momentum as a result of the color Lorentz
force enforced upon the parton through soft gluon exchange
[27]. These soft gluon interactions are responsible for the
single-spin asymmetries observed in SIDIS, pp and pp
collisions. They also lead to the transverse momentum
broadening [27] of hadron production in deep-inelastic
lepton-nucleus scattering [28—30] as well as the jet quench-
ing observed at the Relativistic Heavy Ion Collider [31-36].
Such transverse momentum broadening inside the nucleus
is directly related to the gluon saturation scale [27,37] and
can be studied directly through the nuclear dependence of
the azimuthal asymmetry in SIDIS.

Higher twist contributions in inclusive DIS have been
studied systematically using the collinear expansion tech-
nique [38—40] which not only provides a useful tool to
study the higher twist contributions but also is a necessary
procedure to ensure gauge invariance of the parton distri-
bution and/or correlation functions. In Ref. [11], such
collinear expansion is extended to the SIDIS process
e +N—e + g+ X and calculation of the TMD
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differential cross section and the azimuthal asymmetries up
to twist-3. Taking multiple gluon scattering into account,
the study found the azimuthal asymmetry {cos¢) propor-
tional to a twist-3 TMD parton correlation function
fq1(x, k) defined as,

tdy~ d> e . -
f;\’l(x, kj)= [%ew yT—iky }l<N|l//(())
kL

X
212

LO0:y) ¢ (y)IN), (1)

where L£(0;y) is the gauge link,
L(0;y) = L](00,01;0,0) L (0,0, ;00,1)
X Ly(e0, ¥ 1357, 1)
L0, 515y7,51) = Pe [raeate s

—ig f;i dé A (0,E))

L (00,0,;00,5,) = Pe )

from the resummation of multiple soft gluon interaction
that ensures the gauge invariance of the twist-3 parton
correlation function in Eq. (1) under any gauge transfor-
mation. The asymmetry obtained within this generalized
collinear expansion method reduces to that in the naive
parton model [2] if and only if one neglects the soft gluon
interaction as contained in the gauge link or equivalently
by setting the strong coupling constant g = 0 in the final
result. Measurements of (cos¢p)ine™ + N — e~ + g+ X
and its k| -dependence therefore provide a unique deter-
mination of this new parton correlation function in Eq. (1).
Furthermore, the nuclear dependence of the asymmetry
[27] from multiple soft gluon interaction within the target
nucleus can probe the transverse momentum broadening or
the jet quenching parameter in cold nuclear matter [13]
which also determines the gluon saturation scale in cold
nuclei.

In this paper, we present a complete calculation
of the hadronic tensor and the differential cross section
for e© + N— e + g+ X up to twist-4. We study, in
particular, the azimuthal asymmetry (cos2¢) in terms of
the corresponding TMD quark correlation functions
and its nuclear dependence. Our calculations in this paper
are limited to the process ¢~ + N—e¢ + g+ X or
e +A— e +qg+ X, where no fragmentation is
taken into account. This corresponds to the semi-inclusive
(current) jet production process in experiments. Since
the results depend only on the structure functions,
they provide a nice place to study the correlation func-
tions. However, such current jets with moderate trans-
verse momenta are difficult to measure in experiments.
Complete calculations up to twist-4 taking fragmentation
into account are important to practical experimental
studies.

The rest of the paper is arranged as follows. For
completeness, in Sec. II, we present the formulae for
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calculating the hadronic tensor and differential cross
sections within the framework of generalized collinear
expansion. In Sec. III, we present the cross section and
discuss azimuthal asymmetry (cos2¢) including its nu-
clear dependence with a Gaussian ansatz for the TMD
correlation functions. A summary is given in Sec. I'V.

II. HADRONIC TENSOR W, INe™ + N — e + ¢ +
X UP TO TWIST-4

We consider the SIDIS process e + N — e~ + g+ X
with unpolarized beam and target. The differential cross
section is given by,

2,2

@B} )y gy W PP,
sQ ’

&K' 2Ey

do = . 3

a1

where [ and [’ are, respectively, the four-momenta of the
incoming and outgoing leptons, p is the four-momentum of
the incoming nucleon N, k' is the four-momentum of the
outgoing quark. We neglect the masses and use the light-
cone coordinates. The unit vectors are taken as, n* =
(1,0,0,0), n*=1(0,1,00), n}, =(0010), n},=
(0,0,0, 1). We chose the coordinate system in this way so
that, p=p*a, gq=—xzp+nQ*/(Qxzp"),
[[1lnyy, and ki = (0,0, ky); where x5 = Q*/2p - q is
the Bjorken-x and y = p - g/p - 1I. The leptonic tensor
L*7” is defined as usual,

lJ_=

LPv(L 1) = 4[1#17 + 171 — (- 1) gH7], 4)
and the differential hadronic tensor is,

aw,, dk' .
dzk;L - (277)3;Ek wa)(q, P k). ©)
J_ !

; 1
Wil(q. p.K) = 5— 3 (NI, O)IK, X)XK' X1, (0)IN)
X
X (2m)*6*(p + q — k' — px), (6)

where the superscript (si) denotes SIDIS. It has been shown
[11] that, after collinear expansion, the hadronic tensor can
be expressed in an expansion series characterized by the
number of covariant derivatives in the parton matrix
elements in each term,

PW,, W,
d*k, & dPky

)

_dWE?)” ! 2 7(0) ()G ON Y
i~ [ PR k1o Ry Ry

®)
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1 . /A > >
W - 27 ,/dxld kyydx,d®ks | Z TT[H(I )p(xl’xz)wpp (DL]’)N(xl, ki1, xa, kzi)]5(2)(kcl - kIJ_); )

c=L,R

dw'?, 1
dzk’f =3 f dx,d?ky | dxyd?ks | dxd?k |
1 aa

c=LRM

where, for different cuts ¢ = L, R or M, EC | denotes 12L i
projection operator. The matrix elements are defined as,

3 (0)N _
b (x,/q)—/ o

q)i;lw(xp kyy, x5, kay)

_ /‘p+dy_d2yi prdz"d*
@2m)’ Q2m)?
(Z)N(xly

=fp

ki, x, kyy, x, kJ_)
Ydz=d?z) pTdy d*y, ptdy'~d*y
@2m)? @2m)? Q2m)?

X AN (0) L(0;2)D,(2) L(z:2)D () L' y) ¢ (»)IN),

where £(0;y) is the gauge link as defined in Eq. (1), and
also in the remainder of this paper, for brevity, unless
explicitly specified, the coordinate y in the field operator
denotes (0, y~, ¥).
The hard parts after the collinear expansion are given as
[11],
A ()

2
=y, G+ Py, S~ xp), (1)
q-p

27 V(G + x2p)vP (G + x1p)y,
(2q - P)2 Xy — X — i€
X 5()Cl - XB), (15)

(1L L
Hiw )p(xl, X;) =

~y(2,L)po
Hiw)p (x1, x5, X)

_ 27 v G+ np)y g+ xp)y(g + xip)y,
(2q - P)3 (x — xp — ig)(x, — xp — ig)
X &(x; — xp). (16)

These equations form the basis for calculating the hadronic
tensorine” + N — ¢~ + ¢ + X. Because of the existence

of the projection operators w ,” and w,“, the hard parts
can be simplified to,

AY)(x) = wh0),8(x — xp), (17)

p

ﬂfL}‘VL)p(xl’ Xz)wpp/ = ﬁ(l)pwpp/5(x1 —xp), (18)

T
2q-p "

prdy &y

T A (0, %0, X) 0,7 0,7 DN (xy, ey 1 x0, k1,6, k1) 18P (ke — KL,

(10)
= Ki1o kry = kyys and Ky = kys 0,7 = g,# — A isa
Y RUSLN| 5 (0) £(0; y) 6 (9)IN), (11)

“L g’ s ik ting 07 =) —iku G20V (0) L0; DD, () L) P IN),  (12)

Y1 eix2P+27*”;21_'21_+5XP+(Z/7*Zf)*ilzj_'(fl*Zl)+ix1P+(}’7*Z/i)*”;u_'()ﬂd_*zl)

(13)
[
Iflﬁf;,L)p”(xl,xz,x)wpp/a)a"
I e o e
(19)
[_jgﬁw)prr(xl, X2, x)wpp/wa'a

2
%hgfpgwﬂp ®,7 8(x — xp),  (20)
(2g - p)
where ]fi(O) = ’ylu/yyy/p , h(l)/’ =Y, ﬁ)”)ﬂ%,, h(Z)po‘ _

P y,ﬁv”ﬁy"ﬁwﬂ and N(z)’”’ =q Yuy'hy7y,. We
insert them into Egs. (8)—(10) and obtain,

PWE 1 pcio g
= ST k) @)
1
2vi7(1,L) 1
ddvzvkw a 4(] - p Tr[h(l)pw ’ A(l/'L)N(XB, ki)l (22
L
2WEY 1
2, g e e, oG (g k)]

+ TN @, 0,7 §50 (ep, k)T (23)
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Pwi 1

EoH = S TR 0, 0,7 50 (xp, k1))
&k, 2q-p)?

(24)

The correlation matrices are defined as,
@ YN (xy, kyy) = deQJZkZLq),(UI)N(xl)kIL’x2; kyy),

(25

dx,d’k
P (1, ey 1) = f dxdPh =
) — X — i€

X (I)(ng'N('xll kyp,xp kyy,x ky),  (26)

GEMIN (x k) = fdxldzklldxzd ko

X OOV (xy, ky g, X, kyp, % k), (27)
PN (x, ky ) = f dxd*k | dx,d?k, | ii”
X (AI)(ple'N(xl’ li_) x2> kQJ_: X, kJ_) (28)

They are given by,
-7
7p+dy d’y, eip Ty —iky ¥ L

s = [1
XAN|$(0)D,(0) L(O; )y (VIN),  (29)

dx, ptdy d’y,
@2m)?

@g&L)N(X, k)= f

X

Xy —Xx—ie
+ -

prdz
27

X(NI(0)L(0;z7,y1)D,(z",y1)
XDy, y ) L) OIN),  (30)

eiapT i +ixpt(y” —z7)—iky ¥y

k) = [ e
XANIP0)D,(0) L(0; ) D (y) ¢ (DIN),
(3D
B k) = LG g
X AN (0)D™(0)D,(0) L(0; y) ¢y (y)IN).
(32)

We note that, W0 = W', WM™ = WM ikl —
WALL @R) _ (2 L)%
vi,and W = W5.”". Hence, if we divide W , into

a u < v symmetric pan and an antisymmetric part and

denote W, = Wy ,, + iW, ,,, we obtain,
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0 7 (LL
dZWS,,uV _ ZW.(S‘,)uV +2Re d Wg,ul)/
&k, &k, Pk,
42 Wgz L) 42 W(ZM)
nv S, uv
F2Re— B (33)
1 1
0 (1,
d2WA,,LLV _ 2W.(A)/.LV + 2Im d WFS',LLZ
7k, ik, ik,
dZWgQ L) EW (2,M)
+21 wr Wi 5y
2k, £k, 34

The antisymmetric part contributes only in reactions
with a polarized lepton. In this paper, we concentrate on
the unpolarized reactions and calculate the symmetric part
in the following.

Now, we continue with a complete calculation of the
hadronic tensor d*W,,/d*k; in the unpolarized e~ +
N— e + g+ X up to twist-4 level. For this purpose,
we need to calculate d*W,,/d*k; up to W2,/ d*k |
and we now present the calculations of each term in the
following.

The contribution from d> W'}, /d2k | is the easiest one to
calculate. Because H fl(x) contams 3 y-matrices, only the
y¢ term of d© (x, k;) contributes in the unpolarized
case so we need only to consider POV (x, k)=
Y@ (x k1)/2,

+ v 2 >
POV (x, ky)= [%emﬁy”klﬁ@’w(o)
X%L(O;y)alf(y)lN)

2

M
- pafN + kJ.aqu_ +— p afq( ) (35)

and obtain the result for d2W§?L /d%k | as,

770
W)
&k

= _d,u.vfgl(xB; kJ_)
1
+ q- pkl{/.l,(q + pr)V}fy_L(xB, kJ.)

M \2
+ 2(q—p) (¢ + x5P)(q + ), F_ (g, kL),
(36)
where d*” = gh” — n#n” — a’n* and A(, B,y = A, B, +

A,B,, AuB,y=A,B, —A,B,. The TMD quark distri-
bution/correlation functlons are given by,
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I ky) = <I><°W(x kp)

2
dy dyy eip Ty —ikyF L
CQw)}

><<N|l_ﬂ(0)7£(0;y)l/f(y)|N>, (37)

KGN (g, ky) = dPDPY (x, k)

[ +dy d2

@2m)?

X MO ZE Lo I, 39)

YL jixp*y =ik 51

(I( )(xBr kJ_)

O (s, k)
-2
7p+dy dyy eixP+)’77i1;L'ii

M

o P

M2 / Qm)?
><<N|Jf(0)77£(o;y)¢(y)lzv>. (39)

Our notation for the leading twist parton distribution
f%(x, k1) is the same as that usually used in the literature
(see e.g. [1-13,41]); the twist-3 parton correlation function
fﬁ{vl (x, k1 )isdenoted the same as those usedine.g. [11,13]
but slightly different from that used in e.g. [12,41] where L
is used as a superscript; the twist-4 term is new here.
Because ﬁ(l)p contains S+y-matrices, we have con-
tributions from 7y, and ys7y, in terms of go(l DN , 1.e., we
need to consider @ L)N(x ki) =1[v“ go(l)N(x, k) —

YsY QB%N(X, ki)]/2 and obtain,
d2qu%'pL) _ [h(l)poz
dsz 2p
_ ﬁ;}szawpp/@(plle(xB’ kl)], (40)

)N
QDLr)a (xB’ kJ_)

where hj,)" = Tr[)’“ﬁgsz]M, R = Tr[?’s)’aﬁngj]/“
and,

prdyd*y,
€0511«1N(x, k)= ./-T

lxlﬁy*—ih'/a

><<NI¢(0) = L(0:9)D,(n) ¢ (IN), (41)

YAy dPy, o

B k) = [P ety ity
X0V 2% L0:3)D, (0w (3)IN). (42)

After evaluating the two traces in A4)Y" and AUY", we
obtain the symmetric parts as,

h(l)ﬂa J——

S, uv ga,udpu - gavdpy, + g,u,r/dpa’ (43)
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}"l‘(l)ﬂa — i, P

s a P pa
S, v ig*, e, tig vE L, T I8uvEl 44)

where € ,, = i*nf. Up to twist-4, the contributing

aﬁpv
terms of go(l) (x, k) and go(l) (x, k1) are, respectively,

oo (0 ky) = paki, 0N (x ky)

K2
+ (klaklp - zldpa)gpj_)QN(x kJ_)

2

+ 5 (any) = dp) @15 (0 k1), (45)

0 (I)N(x kJ_) lpaslpykjl_@T)N(-xr kJ_)
i _
+ Ekl{aslp}yk]/_ QD(J{)zN(x’ kJ_)
i N
+ ket k] ¢ W (x, ky).  (46)

The result for d*W (1 L) ) [d*k] s,

dQng L])/ 1
d2k# _2qp{(p,uklv+pvkl,u,)

X [N (xg, k1) — @ (xp, k)]
+ 2k uky, = K d e N (g k) — @10 (g, k)]
+ 2 (g, — d e N g k) — 0N (e kDT (47)

Up to twist-4 level, we need only to consider p and the
vsp-term in the calculations of dW(z) /d?k | . For the first
term in Eq. (23), because of wpp and nphﬁjzf’ = 0, we need
only to consider the k) , terms and we found out that they
contribute only at twist-5 or higher level. For the second
term, because nplvﬁf?,p” = Nﬁp” =0 and & A(Z DN —
qﬁﬁ,sz)N we need to consider only k, ,k, , and depa for
the tensor term and k,(,e J_U}yk]/_ for the pseudotensor
term. Furthermore,

BNG7d,, = 2Nk kyy = =203y, hy,,  (48)

2)po G(2)po
A2 NPTk o1 k)

= ki Y#ﬁhllﬁLZYV’ (49)

we need only to consider,

Y —
kJ_pSJ_o'ykJ_ =

1
&GN ky) = é(—518 dpg>g0(fL)N(x, k) + ...

(50)
and obtain the results for c12W(2 D@2k L upto 1/Q? as,

2yi7(2.L) 1
ddI;VkW _ ; kz dw(p(fL)N
1 q-

(g ky)+ ... (51)
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Similarly, to calculate de(z M @2k | up to 1/0? level,
we need to consider

1
A(2M)N(x k )_é( 5kz dp”)(P(fM)N(x,kL)

— yshhie Lok 8 kL), (52
and the results for 22W'% /d?k | are given by,
Wi _ K @MV
—— = Pl (xp, k1)
Th, (g pplrPrtr el
— @7 (g, k)] (53)

The QCD equation of motion relates matrix elements
with a different number of D, and gives

xf o ky) = o0 k) = N k)] (54
20eMPPFN (e ky) = KLV (k) — PPN (x kL))
(55)

o3 (e k) = @13 (k)]
LT k) = @MV k)] (56)

where, as well as in the rest of this paper, all the correlation
functions in the results of the hadronic tensors and/or cross

do 27Taem e
dxgdyd®k, Q%
Ik, |2

QZ
2x2M?
Q2

X

+

From Eq. (58), we can calculate the azimuthal asymme-
tries {(cos¢) and (cos2¢). The result for (cos¢) and its
nuclear dependence are discussed in [13]. We now discuss
the result for (cos2¢). At fixed k|, it is given by,

20—y kP
2 = —
<COS ¢>eN 1+ (1 _ y)z QZ
o 2ol op k) = B0 o k)] g
fq (xB) kJ_) ‘
Integrating over the magnitude of k 1, we obtain,
2(1 —y)
(cos2¢p))ey = — m
f|k¢|2d2kaB[€D(l)N(xB, ki) — GDM N (xg, kJ_)]
szfgv(xB)

Py k) = 201+ (=571
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section stand for their real parts. The final results for
*W,,/d*k up to twist-4 level are given by,

aw,, 1
e (CROU G (Y

2M?
+ ﬁ(‘l +2x5p) (g +2x5p), f - (X k1)

- (q + szp){,u,kJ_v}f;vJ_ (.X'B, kL)
+(2ky ki, =K d, @) (xp k1)

— SN gk )]+ Ry 02PN (x kL)}. (57)

We emphasize that this is the result of the hadronic tensor
up to twist-4 for the semi-inclusive deeply inelastic scat-
tering process ¢~ + N — e~ + g + X with an unpolarized
beam and an unpolarized target. In the polarized cases, the
calculations are much more involved and the results are
also much more complicated. Such results are interesting
and the corresponding calculations are underway.

II1. DIFFERENTIAL CROSS SECTION
AND (cos2¢) UP TO THE 1/0Q?

Making the Lorentz contraction of the result for
d*W,,/d’k, with the leptonic tensor L,, given in
Eq. (3), we obtain the differential cross section as,

{[1 + (1= y21fN (g ky) — 42 — YT — Q xpfi1Y (e, ky) cosp — 4(1 — y)

I, |?
x5l 2N (e, k) — @2 (g, k1 )] cos2¢p + 8(1 — y)( =gl (g, k) — @0 (e, k1)1

Q2

|2
x50 TN (x, /q)}. (58)

|

where f3(x) = [d?k) f%(x, k) is the usual quark distri-
bution in the nucleon. The new quark correlation functions
involved are given by,

kL 2o (x, k) = QRSRE + do)eldN (x, ky),  (60)

kP (o ky) = =ik ey @0 (x k), (61)

where k; = k, /|k,| denotes the unit vector. If we con-

sider only ““free parton with intrinsic transverse momen-

tum”, i.e., the same case as considered in [2], we need to

just set g = 0 in the results mentioned above. In this case,
N ~ (N

L =1and X[GD( W(x ky) — ¢(l)2 (x, k)] = £ (x ky), so

that,
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21 —y) [kl
<C052¢>6N|g=0 = 1+ (1 _ y)z 52 ’

which is just the result obtained in [2].

In general, we need to take QCD multiple parton scat-
tering into account, thus {cos2¢),y is given by Eq. (59)
where new quark correlation functions are involved.
Measurements of {(cos2¢),y, in particular, whether the
results deviate from Eq. (62), can provide useful informa-
tion on the new parton correlation functions and on
multiple parton scattering as well.

If we consider e~ + A — ¢~ + g + X, i.e. instead of a
nucleon but a nucleus target, all the calculations given
above apply and we obtain similar results with only a
replacement of the state |N) by |A) in the definitions of
the matrix elements and/or parton distribution/correlation
functions. The multiple gluon scattering now can be con-
nected to different nucleons in the nucleus A thus givng rise
to nuclear dependence. It has been shown that, under the
“maximal two-gluon approximation”, a TMD quark dis-
tribution ®4(x, k) in the nucleus that is defined in the
form,

DA, ky) = [ % by il

XA T O, LO0; )W () | A),  (63)

(62)

is given by a convolution of the corresponding distribution
®Y(x, k) in the nucleon and a Gaussian broadening,

DPA(x k)~ [d2€le’(EL’EL)2/A2FCI)§(x,€J_), (64)

TR

where I', is any gamma matrix, W(y) is a field operator;
A, r is the broadening width given by,

Ay = /dfﬁCAIF(fN)

27Ta

[ dEv P EN Y W]ise (65

where p4 (& N) is the spatial nucleon number density inside
the nucleus and f% (x) is the gluon distribution function in
the nucleon.

We note that both ¢,,(x, k;) and &,,(x, k;) have the
form of ®4(x, k). Hence,

A N -
§D(plc)zA(x; ky) = WT ’[dzelei(kj-ih)z/A” go(pl()lN(x, €)),
2F

(66)

B0 (x, k) =

[ deie Gt g ),

(67)

Making the Lorentz contraction of both sides of these two

AzF

equations with 2&% k¢ + d#* and lg{f s’j_}” respectively, we
obtain,
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ELP o ky) = [@esefaforron

X[2(€, - k1)2+€i]€0(1)N(X €1), (68)

A .
|kl|2§0(l)A(x kJ_) ~ _ '/'d2€J_e*(kJ.*(J.)2/A2F

2
X[2(€, - kJ_)z"'fﬁ_]éD(l)N(x €1). (69)

Adopting a Gaussian ansatz, i.e.,

Fe kD) = — el Rl (70)

1
gD(J{)QN(x’ kJ.) =5

(DN (R
B f L2 (x)el=ki/B), (71)

- | o
N k) = — 3N e "B, (72)
73
we obtain, for those functions in the nucleus,
A A N (k% Jay)
fq(x: kJ_) :\V’—fq (x)e L a/A’ (73)
7TC¥A

A (B2 )
(HA — (HN (=k1/Ba)
(k)= ( )so (x)el=KL/B) - (74)
12 + 7TBs\Ba 12

PN k) =~ (£ o e BB, as)
7T:8A Ba
where ay, =a+ Ay, By=B+Ay and B, =

B + A,r. The azimuthal asymmetry is given by,

(cos2)es _
(cos2d)ey  n

e—/a/am“/?l/a

& B 0N (xp)eKL/BA) — %@T)ZN(XB)(;(*E/BA)
A

2 - 25 ’
[B SD(I)N(XB)e( ki/B) _éﬁﬂ(ﬁ)zN(xB)e( kLB

which reduces to

(cos2¢h ) :( B )2
(cos2¢).n B+ Ay)’

in the case that &« = 8 = 3. We see that, in this case, for
given xz, 0% and |k |, (cos2¢),, in deep-inelastic eA
scattering is suppressed compared to that in eN scattering
with a suppression factor 82/(8 + A,r)>. Comparing with
the result of [13], we can see that {(cos2¢),, is more sup-
pressed than {cos¢),,. In general, B, B can be different
from «, and the ratio can also be different at different k|
and A,r. As an example, we show the results for a few
cases in Figs. 1(a) and 1(b) with 8 = B.

(76)
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Ayla
FIG. 1 (color online). Ratio {cos2¢),,/{cos2¢),y as a func-
tion of A,z /a for different k| and, in the upper panel, denoted

as (a), for B/a = 2.0, and in the lower panel, denoted as (b), for
B/a =0.5.

We see that the asymmetry can be suppressed or en-
hanced depending on the values of k; and A,;, and the
magnitude is smaller than {cos¢) case.

If we integrate over the magnitude of k 1, we obtain,
(cosDor B Bae' ) (ep) = (42 B48'12" (xp)
((cos))eny B¢$)2N(XB) - B(DT)ZN(XB)

which reduces to 3/(8 + A,) for the special case 8 = S3.

» (77)

IV. SUMMARY AND DISCUSSIONS

We calculated the hadronic tensor and differential
cross section for the unpolarized SIDIS process

PHYSICAL REVIEW D 83, 054010 (2011)

e~ + N— e + g+ X in leading order pQCD and up to
twist-4 contributions The results depend on a number of
new TMD parton correlation functions. We showed that
measurements of the azimuthal asymmetry (cos2¢) and its
k | -dependence provide information on these TMD
correlation functions which in turn can shed light on the
properties of multiple gluon interaction in hadronic pro-
cesses. Under two-gluon correlation approximation, we
also show the relationship between these TMD correlation
functions inside large nuclei and that of a nucleon. One can
therefore study the nuclear dependence of the azimuthal
asymmetry (cos2¢) which is determined by the jet trans-
port parameter ¢ inside nuclei. With a Gaussian ansatz
for the TMD parton correlation functions inside the nu-
cleon, we also illustrate numerically that the asymmetry
(cos2¢) is suppressed in the corresponding SIDIS with a
nuclear target.

There exist experimental measurements of the azimuthal
asymmetries in both unpolarized and polarized DIS
[14-25]. More results are expected from CLAS at JLab
and COMPASS at CERN. The available data seem to be
consistent with the Gaussian ansatz for the transverse
momentum dependence of the TMD matrix elements
[42]. However, these data are still not adequate enough to
provide any precise constraints on the form of the higher
twist matrix elements. Our calculations of the azimuthal
asymmetries are most valid in the small transverse
momentum region where next to the leading order
pQCD corrections are not dominant. The high twist effects
are also most accessible in the intermediate region
of Q% One expects that future experiments such as
those at the proposed Electron-lon-Collider [43]
will be better equipped to study these high twist effects
in detail.
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