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We have analytically solved the LO perturbative QCD singlet DGLAP equations [V.N. Gribov and

L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)][G. Altarelli and G. Parisi, Nucl. Phys. B126, 298

(1977)][Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)] using Laplace transform techniques. Newly

developed, highly accurate, numerical inverse Laplace transform algorithms [M.M. Block, Eur. Phys. J. C

65, 1 (2010)][M.M. Block, Eur. Phys. J. C 68, 683 (2010)] allow us to write fully decoupled solutions

for the singlet structure function Fsðx; Q2Þ and Gðx;Q2Þ as Fsðx; Q2Þ ¼ F sðFs0ðx0Þ; G0ðx0ÞÞ and

Gðx;Q2Þ ¼ GðFs0ðx0Þ; G0ðx0ÞÞ, where the x0 are the Bjorken x values at Q2
0. Here F s and G are known

functions—found using LO DGLAP splitting functions—of the initial boundary conditions Fs0ðxÞ �
Fsðx; Q2

0Þ and G0ðxÞ � Gðx;Q2
0Þ, i.e., the chosen starting functions at the virtuality Q2

0. For both GðxÞ and
FsðxÞ, we are able to either devolve or evolve each separately and rapidly, with very high numerical

accuracy—a computational fractional precision of Oð10�9Þ. Armed with this powerful new tool in the

perturbative QCD arsenal, we compare our numerical results from the above equations with the published

MSTW2008 and CTEQ6L LO gluon and singlet Fs distributions [A.D. Martin, W. J. Stirling, R. S.

Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009)], starting from their initial values atQ2
0 ¼ 1 GeV2 and

1:69 GeV2, respectively, using their choice of �sðQ2Þ. This allows an important independent check on the

accuracies of their evolution codes and, therefore, the computational accuracies of their published parton

distributions. Our method completely decouples the two LO distributions, at the same time guaranteeing

that both G and Fs satisfy the singlet coupled DGLAP equations. It also allows one to easily obtain the

effects of the starting functions on the evolved gluon and singlet structure functions, as functions of both

Q2 and Q2
0, being equally accurate in devolution (Q

2 <Q2
0) as in evolution (Q

2 >Q2
0). Further, it can also

be used for nonsinglet distributions, thus giving LO analytic solutions for individual quark and gluon

distributions at a given x and Q2, rather than the numerical solutions of the coupled integral-differential

equations on a large, but fixed, two-dimensional grid that are currently available.

DOI: 10.1103/PhysRevD.83.054009 PACS numbers: 12.38.�t, 12.38.Bx

I. INTRODUCTION

The search for new physics at the LHC demands an
accurate knowledge of gluon distribution functions at
small Bjorken x and large virtualityQ2, both for estimating
QCD backgrounds and for calculating gluon-initiated pro-
cesses. The traditional method has simultaneously deter-
mined gluon and quark distribution functions by fitting
experimental data on neutral- and charged-current deep
inelastic scattering processes and some jet data over a large
domain of values of x and Q2. The distributions at small x
and largeQ2 are determined mainly by the proton structure
function F�p

2 ðx;Q2Þmeasured in deep inelastic ep (or ��p)
scattering. The fitting process starts with an initial Q2

0,

typically less than or equal to the square of the c quark

mass, m2
c � 2 GeV2, and individual quark and gluon trial

distributions parametrized with predetermined shapes,

given as functions of x for the chosenQ2
0. The distributions

are then evolved numerically on a finite, albeit large, two-

dimensional grid in x andQ2 to largerQ2 using the coupled

integral-differential DGLAP equations [1–3], typically in

LO and next-to-leading order (NLO), and the results used

to predict measured quantities. The final distributions are

then determined by adjusting the input parameters to ob-

tain a best fit to experimental data, fitting both HERA and

Tevatron data over a large range of x and Q2, along with

selected hard scattering data from fixed target experiments.

This procedure is very indirect in the case of the gluon:

the gluon distribution Gðx;Q2Þ ¼ xgðx;Q2Þ does not
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contribute directly to the accurately determined structure
function F�p

2 ðx;Q2Þ, and it is determined only through the
quark distributions in conjunction with the evolution equa-
tions, or at large x, from jet data. For recent determinations
of the gluon and quark distributions, see [4–9].

In the following, we will summarize our method for
analytically determining Gðx;Q2Þ and the singlet structure
function Fsðx;Q2Þ directly and individually, using as input
G0ðxÞ � Gðx;Q2

0Þ and Fs0ðxÞ � Fsðx;Q2
0Þ, where Q2

0 is

arbitrary, with the guarantee that each distribution indi-
vidually satisfies the coupled DGLAP equations. The
method is readily extended to embrace nonsinglet func-
tions, so that it can be used also to find individual quark
distributions. However, we will not pursue that goal in this
communication. Instead, we give a numerical demonstra-
tion which takes advantage of the fact that our analytic
solutions achieve numerical accuracies of Oð10�9Þ, giving
us a new diagnostic tool to verify published LO singlet
structure functions [Fsðx;Q2Þ] and gluon [Gðx; Q2Þ ¼
xgðx;Q2Þ] distributions. In order to test the numerical
accuracy of their evolution codes, we consider two
cases, using the published LO starting distributions for
G0 and Fs0:

(1) MSTW2008 [4]: forQ2
0 ¼ 1 GeV2, we generate LO

singlet structure functions and gluon distributions
[4], using the strong coupling constant �sðQ2Þ that
they used for their LO evolution, and compare them
with their published values MSTW2008 [4] for the
domain 10�6 � x � 1 and 1 � Q2 � 100 000. We
find that their evolution code has serious problems at
small x, producing significant numerical inaccura-
cies. It should be noted that the MSTW group does
not do devolution.

(2) CTEQ6L [5]: forQ2
0 ¼ 1:69 GeV2, we generate LO

singlet structure functions and gluon distributions,
using the strong coupling constant �sðQ2Þ [6] they
used for both LO evolution and devolution. With our
high numerical precision at all x andQ2, we are able
to verify all of their published evolution results—to
larger Q2—but show that their published devolution
results, i.e., Q2 <Q2

0, have significant numerical

inaccuracies at small x.

Finally, using our accurate CTEQ devolution results,
we compare LO starting distributions for both groups at
Q2 ¼ 1 GeV2, noting that the CTEQ6L LO gluon distri-
bution turns over and becomes negative at small x, i.e.,
x & 5� 10�5, whereas the MSTW2008 LO gluon starting
distribution continues to rise sharply at small x.

II. DECOUPLING THE COUPLED LO SINGLET
DGLAP EQUATIONS

Our approach uses a somewhat unusual application of
Laplace transforms [10,11], in which we first introduce the
variable v � lnð1=xÞ into the coupled DGLAP equations,

then Laplace transform these coupled integral-differential
equations in v space to obtain coupled homogeneous first-
order differential equations in the Laplace-space variable s.
We solve these equations analytically. Finally, using fast
and accurate numerical inverse Laplace transform algo-
rithms [12,13], we transform the solutions back into v
space, and, finally, into Bjorken x space, so that we can
write

Fsðx;Q2Þ ¼ F sðFs0ðx0Þ; G0ðx0ÞÞ and

Gðx;Q2Þ ¼ GðFs0ðx0Þ; G0ðx0ÞÞ; (1)

where the functions F and G are determined by the split-
ting functions in the DGLAP equations, with x0 being the
Bjorken x at the starting virtualityQ2

0; Fs0ðxÞ andG0ðxÞ are
the known starting distributions at Q2 ¼ Q2

0, where evolu-

tion (devolution) begins.
Our method can be generalized to NLO (see Ref. [14]),

but for brevity, we will limit ourselves to LO in this paper.
We write the coupled LO DGLAP equations [10,11] as

4�

�sðQ2Þ
@Fs

@ lnQ2
ðx;Q2Þ

¼ 4Fsðx;Q2Þ þ 16

3
Fsðx; Q2Þ ln1� x

x

þ 16

3
x
Z 1

x

�
Fsðz;Q2Þ

z
� Fsðx;Q2Þ

x

�
dz

z� x

� 8

3
x
Z 1

x
Fsðz; Q2Þ

�
1þ x

z

�
dz

z2

þ 2nfx
Z 1

x
Gðz; Q2Þ

�
1� 2

x

z
þ 2

x2

z2

�
dz

z2
; (2)

4�

�sðQ2Þ
@G

@ lnQ2
ðx;Q2Þ

¼ 33� 2nf
3

Gðx;Q2Þ þ 12Gðx;Q2Þ ln1� x

x

þ 12x
Z 1

x

�
Gðz; Q2Þ

z
�Gðx;Q2Þ

x

�
dz

z� x

þ 12x
Z 1

x
Gðz;Q2Þ

�
z

x
� 2þ x

z
� x2

z2

�
dz

z2

þ 8

3

Z 1

x
Fsðz; Q2Þ

�
1þ

�
1� x

z

�
2
�
dz

z
: (3)

Here �sðQ2Þ is the running strong coupling constant, and
for LO MSTW2008 [4] is given by the LO form

�sðQ2Þ ¼ 4�

ð11� 2
3 nfÞ lnðQ2=�2

nf Þ
; (4)

with nf the number of quark flavors. The QCD parameter

�5 is fixed so that the known �sðM2
ZÞ is reproduced, and

then�4 and�3 are adjusted so that �s is continuous across
the boundaries Q2 ¼ M2

b and M2
c , respectively, where Mb

andMc are the masses of the b and c quarks. Later, we will
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also introduce the NLO form of �s used [with �sðM2
ZÞ ¼

0:118] in their LO CTEQ6L [5] evolution, when we discuss
CTEQ6L parton distributions functions.

We now examine the last term of line 2 and the term in
line 3 in Eq. (2) (the two terms that begin with the factor
16/3), and rewrite them, introducing the variable changes

v ¼ lnð1=xÞ, w ¼ lnð1=zÞ, and the notation F̂sðv;Q2Þ �
Fsðe�v; Q2Þ, Ĝðv;Q2Þ � Gðe�v; Q2Þ, as

16

3
F̂sðv;Q2Þ lnðev � 1Þ þ 16

3

Z v

0
ðF̂sðw;Q2Þ

� F̂sðv;Q2Þev�wÞ 1

ev�w � 1
dw

¼ 16

3

Z v

0

@F̂s

@w
ðw;Q2Þ lnð1� e�ðv�wÞÞdw; (5)

where the final result—the last line in Eq. (5)—is found by
replacing the upper limit v in the integral of line 1 of
Eq. (5) by v� �, carrying out the integrals, doing a partial
integration and, finally, taking the limit as � ! 0.
Similarly, we find for the last two terms of line 1 in
Eq. (3) that

12Ĝðv;Q2Þ lnðev � 1Þ þ 12
Z v

0
ðĜðw;Q2Þ

� Ĝðv;Q2Þev�wÞ 1

ev�w � 1
dw

¼ 12
Z v

0

@Ĝ

@w
ðw;Q2Þ lnð1� e�ðv�wÞÞdw: (6)

We now rewrite Eqs. (2) and (3) in terms of the new
variable v as

4�

�sðQ2Þ
@F̂s

@ lnQ2
ðv;Q2Þ

¼ 4F̂sðv;Q2Þ þ 16

3

Z v

0

@F̂s

@w
ðw;Q2Þ lnð1� ew�vÞdw

� 8

3

Z v

0
F̂sðw;Q2Þðe�ðv�wÞ þ e�2ðv�wÞÞdw

þ 2nfx
Z v

0
Ĝðw;Q2Þðe�ðv�wÞ � 2e�2ðv�wÞ

þ 2e�3ðv�wÞÞdw; (7)

4�

�sðQ2Þ
@Ĝ

@lnQ2
ðv;Q2Þ

¼33�2nf
3

Ĝðv;Q2Þþ12
Z v

0

@Ĝ

@w
ðw;Q2Þlnð1�e�ðv�wÞÞdw

þ12
Z v

0
Ĝðw;Q2Þð1�2e�ðv�wÞ

þe�2ðv�wÞ�e�3ðv�wÞÞdw
þ8

3

Z v

0
F̂sðw;Q2Þð1þð1�e�ðv�wÞÞ2Þdw: (8)

The DGLAP equations have now been written in a
form such that all of the integrals in Eqs. (7) and (8) are

manifestly seen to be convolution integrals. Thus, intro-
ducing Laplace transforms allows us to factor these
convolution integrals, since the Laplace transform of a
convolution is the product of the Laplace transforms of
the factors, i.e.,

L
�Z v

0
F½w�H½v�w�dw;s

�
¼L

�Z v

0
F½v�w�H½w�dw;s

�

¼L½F½v�;s��L½H½v�;s�:
(9)

Defining the Laplace transforms of F̂sðv;Q2Þ and Ĝðv;Q2Þ
in s space as

fðs;Q2Þ �L½F̂sðv;Q2Þ;s� ¼
Z 1

0
F̂sðv;Q2Þe�svdv;

gðs;Q2Þ �L½Ĝðv;Q2Þ;s� ¼
Z 1

0
Ĝðv;Q2Þe�svdv

(10)

and noting that

L
�
@F̂s

@w
ðw;Q2Þ; s

�
¼ sfðs;Q2Þ;

L
�
@Ĝ

@w
ðw;Q2Þ; s

�
¼ sgðs;Q2Þ;

(11)

since Fsðv ¼ 0; Q2Þ ¼ Gðv ¼ 0; Q2Þ ¼ 0, we now factor
the Laplace transforms of Eqs. (7) and (8) into two coupled
first-order differential equations in Laplace space s having
Q2-dependent coefficients. These can be written as

@f

@ lnQ2
ðs;Q2Þ ¼ �sðQ2Þ

4�
�fðsÞfðs;Q2Þ

þ �sðQ2Þ
4�

�fðsÞgðs; Q2Þ; (12)

@g

@ lnQ2
ðs;Q2Þ ¼ �sðQ2Þ

4�
�gðsÞgðs;Q2Þ

þ �sðQ2Þ
4�

�gðsÞfðs; Q2Þ: (13)

The coefficient functions � and � are given by

�fðsÞ ¼ 4� 8

3

�
1

sþ 1
þ 1

sþ 2
þ 2ðc ðsþ 1Þþ�EÞ

�
; (14)

�fðsÞ ¼ 2nf

�
1

sþ 1
� 2

sþ 2
þ 2

sþ 3

�
; (15)

�gðsÞ ¼
33� 2nf

3
þ 12

�
1

s
� 2

sþ 1
þ 1

sþ 2
� 1

sþ 3

� c ðsþ 1Þ � �E

�
; (16)

�gðsÞ ¼ 8

3

�
2

s
� 2

sþ 1
þ 1

sþ 2

�
; (17)
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where c ðxÞ is the digamma function and �E ¼
0:577 215 6 . . . is Euler’s constant.

The solution of the coupled equations in Eqs. (12) and
(13) in terms of initial values of the functions f and g,
specified as functions of s at virtuality Q2

0, is straightfor-

ward. The Q2 dependence of the solutions is expressed
entirely through the function

�ðQ2; Q2
0Þ ¼

1

4�

Z Q2

Q2
0

�sðQ02Þd lnQ02: (18)

With the initial conditions f0ðsÞ � fðs; Q2
0Þ and g0ðsÞ �

gðs;Q2
0Þ, the solutions are

fðs; �Þ ¼ kffðs; �Þf0ðsÞ þ kfgðs; �Þg0ðsÞ; (19)

gðs; �Þ ¼ kggðs; �Þg0ðsÞ þ kgfðs; �Þf0ðsÞ; (20)

where the coefficient functions in the solution are

kffðs; �Þ � eð�=2Þð�fðsÞþ�gðsÞÞ
�
cosh

�
�

2
RðsÞ

�

þ sinhð�2RðsÞÞ
RðsÞ ð�fðsÞ ��gðsÞÞ

�
; (21)

kfgðs; �Þ � eð�=2Þð�fðsÞþ�gðsÞÞ 2 sinhð�2RðsÞÞ
RðsÞ �fðsÞ; (22)

kggðs; �Þ � eð�=2Þð�fðsÞþ�gðsÞÞ
�
cosh

�
�

2
RðsÞ

�

� sinhð�2RðsÞÞ
RðsÞ ð�fðsÞ ��gðsÞÞ

�
; (23)

kgfðs; �Þ � eð�=2Þð�fðsÞþ�gðsÞÞ 2 sinhð�2RðsÞÞ
RðsÞ �gðsÞ; (24)

with RðsÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�fðsÞ ��gðsÞÞ2 þ 4�fðsÞ�gðsÞ

q
. Clearly,

the fundamental solutions in Laplace space s, Eqs. (19) and
(20), are symmetric under the interchange f $ g.

Let us now define four kernelsKFF,KFG,KGF, andKGG,
the inverse Laplace transforms of the k’s, i.e.,

KFFðv; �Þ � L�1½kffðs; �Þ;v�;
KFGðv; �Þ � L�1½kfgðs; �Þ;v�;

(25)

KGGðv; �Þ � L�1½kggðs; �Þ;v�;
KGFðv; �Þ � L�1½kgfðs; �Þ;v�:

(26)

It is evident from Eqs. (18), (22), and (24) that KFG and
KGF vanish forQ2 ¼ Q2

0, where �ðQ2; Q2
0Þ ¼ 0. It can also

be shown without difficulty that for � ¼ 0, KFFðv; 0Þ ¼
KGGðv; 0Þ ¼ �ðvÞ and KFGðv; 0Þ ¼ KGFðv; 0Þ ¼ 0.

The initial boundary conditions at Q2
0 are given by

Fs0ðxÞ ¼ Fsðx;Q2
0Þ and G0ðxÞ ¼ Gðx;Q2

0Þ. In v space,

F̂s0ðvÞ � Fs0ðe�vÞ and Ĝ0ðvÞ � G0ðe�vÞ are the inverse
Laplace transforms of f0ðsÞ and g0ðsÞ, respectively, i.e.,
F̂ s0ðvÞ � L�1½f0ðsÞ;v� and Ĝ0ðvÞ � L�1½g0ðsÞ;v�:

(27)

Finally, we can write our decoupled singlet structure

function F̂s and Ĝ solutions in v space in terms of the
convolution integrals as

F̂sðv;Q2Þ ¼
Z v

0
KFFðv� w; �ðQ2; Q2

0ÞÞF̂s0ðwÞdw

þ
Z v

0
KFGðv� w; �ðQ2; Q2

0ÞÞĜ0ðwÞdw; (28)

Ĝðv;Q2Þ ¼
Z v

0
KGGðv� w; �ðQ2; Q2

0ÞÞĜ0ðwÞdw

þ
Z v

0
KGFðv� w; �ðQ2; Q2

0ÞÞF̂s0ðwÞdw: (29)

We now derive an alternate form of the solution to the
decoupled equation, very useful for computational pur-
poses, that does not use the convolution theorem. Using a
suitable fast and accurate numerical inverse Laplace trans-
form [12], we can directly invert Eqs. (19) and (20), since
f0ðsÞ and g0ðsÞ—the Laplace transforms of the known

starting functions F̂s0ðv;Q2Þ and Ĝ0ðv;Q2Þ—are readily
obtainable; the coefficient functions, the k’s given in
Eqs. (21)–(24), are known functions of s and �, and hence,
ofQ2 andQ2

0. Thus we finally write our decoupled analytic

solution in v space as

F̂ sðv;Q2Þ ¼ L�1½ðkffðs; �Þf0ðsÞ þ kfgðs; �Þg0ðsÞÞ;v�;
(30)

Ĝðv;Q2Þ ¼ L�1½ðkggðs; �Þg0ðsÞ þ kgfðs; �Þf0ðsÞÞ;v�:
(31)

In order to use our solution in the integral representation
of Eqs. (28) and (29), we must first numerically invert
Laplace transforms of the types kff and kgg that for small

� look similar to Dirac � functions—a formidable numeri-
cal task that is inherently inaccurate, and is thus computa-
tionally intensive and significantly slower (but possible)
using the numerical inverse transforms of Ref. [13]. On the
other hand, if we use Eqs. (30) and (31), we only have to
invert a function whose inverse Laplace transform

[F̂sðv;Q2Þ or Ĝðv;Q2Þ] is very smooth and thus can be
well approximated by a high order polynomial in v. As
shown in Ref. [13], it can then, in principle, be evaluated to
arbitrary accuracy very rapidly. It will be shown in the
Appendix that we actually achieve a fractional accuracy of
Oð10�11Þ in our numerical Laplace inversion. In Sec. VI
we will do a detailed evaluation of the inherent overall
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numerical accuracy for actual physical problems, showing
that we can do both devolution and evolution rapidly to
fractional accuracies ofOð10�9Þ using the numerical meth-
ods outlined in the Appendix.

The final desired decoupled Fsðx;Q2Þ and Gðx;Q2Þ in
Bjorken x space are readily found by substituting v ¼
lnð1=xÞ into the v-space solutions for F̂sðv;Q2Þ and

Ĝðv;Q2Þ from Eqs. (30) and (31).

III. ANALYTIC LONONSINGLETDISTRIBUTIONS

For nonsinglet distributions Fnsðx;Q2Þ, such as the
difference between the u and d quark distributions,
x½uðx;Q2Þ � dðx;Q2Þ�, we can schematically write the
logarithmic derivative of Fns as the convolution of
Fnsðx;Q2Þ with the nonsinglet splitting function KnsðxÞ
(using the convolution symbol �), i.e.,

4�

�sðQ2Þ
@Fns

@ lnðQ2Þ ðx;Q
2Þ ¼ Fns �Kns: (32)

After again changing to the variable v ¼ lnð1=xÞ and going
to Laplace space s, we find the simple solution

fnsðs; �Þ ¼ e��nsðsÞfns0ðsÞ; where

�nsðsÞ ¼ L½e�vK̂nsðvÞ; s� and

K̂nsðvÞ ¼ Knsðe�vÞ:
(33)

Thus we can find any nonsinglet solution in v space, using

the nonsinglet kernel KnsðvÞ � L�1½e��nsðsÞ;v�, by em-
ploying either the Laplace convolution relation

Fnsðv;Q2Þ ¼
Z v

0
Knsðv� w; �ðQ2; Q2

0ÞÞF̂ns0ðwÞdw (34)

or the nonintegral form

Fnsðv;Q2Þ ¼ L�1½e��nsðsÞfns0ðsÞ;v�: (35)

In this case, either method works equally well numerically,
since the nonsinglet functions KnsðvÞ can also be approxi-
mated by a polynomial in v.

For brevity, we will not pursue the case of the nonsinglet
solution any further here except to note that in LO the
�nsðsÞ in Eq. (33) is identical to�fðsÞ defined in Eq. (14).
Instead, we will concentrate on the more difficult case of
Fs and G.

IV. LO MSTW2008 SINGLET
AND GLUON DISTRIBUTIONS

As an example of the application of our analytic de-
coupled solutions, we will use the published MSTW2008
initial starting functions Fs0ðxÞ and G0ðxÞ at Q2

0 ¼ 1 GeV2

[4] and will compare our LO x-space gluon distribution
Gðx;Q2Þ ¼ xgðx;Q2Þ using Eq. (31) and our LO singlet

structure function Fsðx;Q2Þ using Eq. (30)—both numeri-
cally evaluated using a powerful new inverse Laplace
transformation algorithm [12]—with the corresponding
LO distributions published by the MSTW Collaboration
[4]. In order to insure continuity across the boundaries
Q2 ¼ M2

c and M2
b, we will first evolve from Q2

0 ¼
1 GeV2 (the MSTW Q2

0 value) to M2
c and use our evolved

values of Gðx;M2
cÞ and Fsðx;M2

cÞ for new starting values
G0ðxÞ and Fs0ðxÞ. We will then evolve to M2

b, repeating

the process, thus insuring continuity of G and Fs at the
boundaries where nf changes. We use the MSTW values

Mc ¼ 1:40 GeV,Mb ¼ 4:75 GeV, �sð1 GeV2Þ ¼ 0:6818,
and �sðM2

ZÞ ¼ 0:139 39 in their definition of �sðQ2Þ
in Eq. (4).

A. Gðx;Q2Þ and Fsðx;Q2Þ for LO MSTW2008

In Fig. 1 we show the LO x-space results for Gðx;Q2Þ ¼
xgðx;Q2Þ (upper figure) and Fsðx;Q2Þ (lower figure) vs x,
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FIG. 1 (color online). Plots for LO MSTW2008 [4] gluon
distributions Gðx;Q2Þ ¼ xgðx; Q2Þ (upper plot) and Fsðx;Q2Þ
distributions (lower plot) vs Bjorken x. The MSTW2008 curves
are for Q2 ¼ 5, 20, 100, and M2

Z GeV2, bottom to top. The (red)

dots are our evolution results for LO Gðx;Q2Þ from Eq. (31) and
Fs from Eq. (30), after converting to x space, using the LO
MSTW2008 [4] values for Fs0ðxÞ and G0ðxÞ, with their choice of
Q2

0 ¼ 1 GeV2. The x range covers all of the published LO

MSTW2008 x data.
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for four representative values ofQ2. The x domain, 10�6 �
x � 1, is the complete region covered by the MSTW group
[4]. The curves are the published LO MSTW2008
distributions [4]: from bottom to top, the (red) curve
is for Q2 ¼ 5 GeV2, the (brown) dashed curve is
for Q2 ¼ 20 GeV2, the (blue) dot-dashed curve is for
Q2 ¼ 100 GeV2, and the (black) dotted curve is for
Q2 ¼ M2

Z. The (red) dots are our analytic results for LO
Gðx;Q2Þ from Eq. (31) and Fsðx;Q2Þ from Eq. (30), con-
verted to x space, using the LO MSTW2008 values for
Fs0ðxÞ and G0ðxÞ; the numerical values were evaluated
using MATHEMATICA [15]. An outline of the numerical
procedure is given in the Appendix.

For large x, the agreement is excellent for all Q2.
However, as seen in a close inspection of Fig. 1, the
disagreement for both G and Fs becomes significantly
large as we go to small x. We will explore this in detail
in Sec. IVB.

B. Accuracy of evolved LO MSTW2008 distributions

We now investigate quantitatively the accuracy of the
evolved LO MSTW2008 distributions (Q2 >Q2

0), intro-

ducing the fractional accuracy variable

fractional accuracy � 1� fi;BDHM=fi;MSTW; i¼ 1;2;

(36)

where f1 ¼ Fs, f2 ¼ G, with BDHM denoting our LO
analytic evaluations and MSTW denoting the published
LO MSTW2008 values [4]. We show in Fig. 2 the frac-
tional accuracy for the LO MSTW published distributions
[4] Gðx;Q2Þ (upper figure) and Fsðx;Q2Þ (lower figure)
using the same four Q2 values and legends used in Sec. IV
and Fig. 1; i.e., the (red) curves are Q2 ¼ 5 GeV2, the
(brown) dashed curves are Q2 ¼ 20 GeV2, the (blue)
dot-dashed curves are Q2 ¼ 100 GeV2, and the (black)
dotted curves are M2

Z. Both the MSTW2008 G and Fs

are in excellent agreement with our (much more numeri-
cally precise) calculations in the domain x * 10�4, with a
fractional accuracy of 	0:1–0:5%. However, as is clearly
seen in Fig. 1 for both G and Fs and for all Q

2, there is the
same inaccuracy pattern in x, an increase of the fractional
accuracy to	2% down to x � 8� 10�6, followed by a dip
at x � 4� 10�6, with a final rise to another maximum at
x � 2� 10�6 whose fractional accuracy is 	12%. These
final inaccuracies at small x are quite significant. Since the
x patterns are essentially independent of whether we are
evaluating either G or Fs, as well as being independent of
Q2, they suggest that the MSTW numerical program
undergoes a significant structural change at some unique
value of x, independent ofQ2, that seriously degrades their
numerical output, leading to large errors at small x. The
largest errors occur at the smallest Q2; at Q2

0 (not shown)

the error is 	12%–13%, and decreases monotonically to
	4%–5% at the highest Q2. As we will later see in Sec. V,
there is no such pattern in the LO CTEQ6L data [5].

V. LO CTEQ6L SINGLET
AND GLUON DISTRIBUTIONS

As a second example of the application of our analytic
decoupled solutions, we will compare our LO x-space
gluon distribution Gðx;Q2Þ ¼ xgðx;Q2Þ from Eq. (31)
and our LO singlet distribution function Fsðx;Q2Þ from
Eq. (30)—using the published LO CTEQ6L [5] initial
conditions at Q2

0 ¼ 1:69 GeV2—with the corresponding

LO CTEQ6L distributions [5]. In order to insure continuity
across the boundary M2

b, we will first evolve from Q2
0 ¼

1:69 GeV2 (the CTEQ6L Q2
0 value) to M2

b and use our

evolved values of Gðx;M2
cÞ and Fsðx;M2

cÞ for new starting
values G0ðxÞ and Fs0ðxÞ, thus insuring continuity of G and
Fs at the boundary where nf changes. We use the CTEQ6L

values Mc ¼ 1:3 GeV and Mb ¼ 4:5 GeV. Here we use a
NLO version of �sðQ2Þ, with �sðM2

ZÞ ¼ 0:118, made con-

tinuous at Mb and Mc, that was utilized in CTEQ6L (for
details see Ref. [5]).
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FIG. 2 (color online). Fractional accuracy plots for LO MSTW
[4] gluon distributions Gðx;Q2Þ ¼ xgðx;Q2Þ (upper plot) and
Fsðx;Q2Þ distributions (lower plot), for Q2 ¼ 5, 20, 100, and
M2

Z GeV2, where the fractional accuracy is given by Eq. (36).
The (red) curves are Q2 ¼ 5 GeV2, the (brown) dashed
curves are Q2 ¼ 20 GeV2, the (blue) dot-dashed curves are
Q2 ¼ 100 GeV2, and the (black) dotted curves are M2

Z. The x
range covers all of the published LO MSTW x data.
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A. Gðx;Q2Þ and Fsðx;Q2Þ for LO CTEQ6L

In Fig. 3 we show the Bjorken x-space results for LO
Gðx;Q2Þ ¼ xgðx;Q2Þ (upper figure) and LO Fsðx;Q2Þ
(lower figure) vs x, for five representative values of Q2.
The x domain, 10�6 � x � 1, is the complete region cov-
ered by the CTEQ group [5]. The curves are the published
CTEQ6L [5] LO distributions. From bottom to top, the
(red) curve is for Q2 ¼ 10 GeV2, the (brown) dashed
curve is for Q2 ¼ 22 GeV2, the (blue) dot-dashed curve
is for Q2 ¼ 90 GeV2, the (black) dotted curve is for
Q2 ¼ 1200 GeV2, and the (orange) curve is for
Q2 ¼ M2

Z. Since CTEQ6L [5] started evolution at
Q2

0 ¼ 1:69 GeV2, we used Fs0 and G0 constructed from

their values at Q2
0 ¼ 1:69 GeV2 in Eqs. (30) and (31). The

(red) dots are our results for LOGðx; Q2Þ from Eq. (31) and
Fsðx;Q2Þ from Eq. (30) converted to x space, using LO
CTEQ6L values for Fs0ðxÞ and G0ðxÞ, evaluated using
MATHEMATICA [15].

For all Q2 the agreement is excellent over the entire x
region, with a fractional accuracy of about 
5� 10�4

(completely consistent with the four significant figures
that are published)—for all Fs and G at the five virtualities
that we evaluated—with a minor and numerically unim-
portant exception of the lowest x region of Fsðx;Q2 ¼ 22Þ,
where there was an offset of � 2� 10�3.

B. Accuracy of CTEQ6L devolved distributions

In Fig. 3, all of the distributions were for evolutions ofG
and Fs from the CTEQ6L Q2

0 ¼ 1:69 GeV2 to larger Q2.

For another physics investigation, not relevant to this pa-
per, we decided to compare LO starting distributions for
MRSTW2008 and CTEQ6L at the MSTW2008 starting
value of Q2

0 ¼ 1 GeV2. Using nf ¼ 3, we devolved G and

Fs from the CTEQ6L starting values at Q2
0 ¼ 1:69 GeV2

down to Q2 ¼ 1 GeV2, the MSTW2008 starting value
for Q2

0.

The results of this devolution are compared to the pub-
lished CTEQ6L values [5] in Fig. 4 for G (upper figure)
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FIG. 3 (color online). Plots for LO CTEQ6L [5] gluon distri-
butions Gðx;Q2Þ ¼ xgðx;Q2Þ (upper plot) and Fsðx; Q2Þ distri-
butions (lower plot) vs Bjorken x. The curves are for Q2 ¼ 10,
22, 90, 1200, and M2

Z GeV2, bottom to top. The (red) dots are
our evolution results for LO Gðx;Q2Þ from Eq. (31) and Fs from
Eq. (30) (converted to x space) using the LO CTEQ6L values for
Fs0ðxÞ and G0ðxÞ, where Q2

0 ¼ 1:69 GeV2. The x range in this

figure covers all of the published LO CTEQ6L x data.
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FIG. 4 (color online). Plots of gluon distributions Gðx;Q2Þ ¼
xgðx;Q2Þ (upper plot) and Fsðx;Q2Þ distributions (lower plot) vs
Bjorken x, at the devolved value ofQ2 ¼ 1 GeV2. The (red) dots
are our devolution results, the (black) solid curves are the
published CTEQ6L results [5], and the (blue) dashed curves
are the starting Fs0ðxÞ and G0ðxÞ for MSTW2008 [4].
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and Fs (lower figure). In all cases, when we refer to
‘‘published CTEQ6L values,’’ we mean the results found
on the Durham parton distributions function generator
website; see [16]. The solid (black) curves are for
CTEQ6L and the (red) dots are from Eqs. (30) and (31).
In marked contrast to their evolution results, the CTEQ6L
devolution results are numerically unstable, with Fs being
wrong by � 12% at x ¼ 10�6. We also note that there are
large disagreements with their devolved GðxÞ for small x.
Clearly, they have chosen to chop off theirG distribution at
small x, i.e., to write GðxÞ ¼ 0 for small x, rather than
allow it to become negative. The errors for both G and Fs

become insignificant as x approaches 1. It is clear that
CTEQ encounters major problems with the numerical
stability of its published results for Q2 <Q2

0, whereas

they are completely accurate for Q2 >Q2
0.

For comparison, we also show in Fig. 4 the published
MSTW2008 starting distributions [4] G0ðxÞ and Fs0ðxÞ at
Q2

0 ¼ 1 GeV2, the dashed (blue) curves. We note that the

LO gluon distributions of the two different collaborations,
when evaluated at the same virtuality, Q2 ¼ 1 GeV2, bear
little or no resemblance to each other, with the CTEQ6L
gluon distribution going negative for x & 3� 10�5.
Although both singlet structure functions Fsðx;Q2 ¼ 1Þ
stay positive—as they must—Fig. 4 shows that there are
also large differences between the two singlet structure
functions at low x.

VI. OVERALL NUMERICAL ACCURACY OF
ANALYTICAL DEVOLUTION AND EVOLUTION

As mentioned in Sec. VB, we had devolved from Q2
0 ¼

1:69 GeV2 to Q2 ¼ 1 GeV2, using the known CTEQ6L
G0ðxÞ and Fs0ðxÞ starting values. To estimate the overall
accuracy of our entire numerical procedure, we took our
devolved distributions Gðx;Q2 ¼ 1Þ and Fsðx;Q2 ¼ 1Þ
and used them as starting values so that we could again
evolve back toQ2 ¼ 1:69 GeV2. Finally, we compared the
evolved numerical results with the original Fs0ðxÞ and
G0ðxÞ, the distributions that we started with at Q2 ¼
1:69 GeV2. An outline of our entire numerical procedure
is given in the Appendix.

In Fig. 5, we show the fractional accuracy of this
‘‘round-trip’’ comparison. The upper figure is for G and
the lower figure is for Fs. The (red) dots are the round-trip
fractional accuracies at discrete x values chosen to start and
end this numerical exercise (corresponding to the trans-
formed zeros of the Chebyshev polynomials that we dis-
cuss in the Appendix). For the visual convenience of the
reader, we have connected the dots.

Where either G or Fs is significantly large (x & 0:3), we
see that the round-trip error is & 4� 10�9, thus yielding
an overall error estimate of & 
2� 10�9 for either
evolution or devolution. Detailed causes for this error are
discussed in the Appendix.

It is gratifying that the overall numerical uncertainty in
our LO analytically decoupled solutions is small, thus
furnishing us not only with a new, accurate and fast calcu-
lation tool for exploring the effects of the shapes of differ-
ent starting value distributions, but also with a diagnostic
tool for easily determining the numerical calculational
reliability of the already published parton distribution
functions that are currently in major use by the high energy
physics community.

VII. CONCLUSIONS

In conclusion, we have constructed decoupled analytical
solutions for Fsðx;Q2Þ and Gðx;Q2Þ from the coupled LO
DGLAP equations, yielding accurate numerical results for
both evolution and devolution of Oð10�9Þ—a fast tool to
study the dependence on the shape of the starting distribu-
tions Fs0ðxÞ and G0ðxÞ, the boundary conditions at the
starting value Q2

0. Similar procedures can be used for

nonsinglet distributions, allowing one to obtain analytic
LO solutions for individual quark distributions, as well
as for the gluon distribution; thus avoiding the necessity
for purely numerical solutions of the coupled DGLAP
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FIG. 5 (color online). Fractional accuracy plots for our LO
gluon distributions Gðx;Q2Þ ¼ xgðx;Q2Þ (upper figure) from
Eq. (31) and Fsðx; Q2Þ distributions (lower figure) from
Eq. (30). These accuracy estimates resulted from devolution
from Q2

0 ¼ 1:69 GeV2 to Q2 ¼ 1 GeV2 then, using these results

for evolution, back to Q2 ¼ 1:69 GeV2. The fractional value
error estimates result from comparing the original values with
the devolved-evolved ones.
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equations on a giant two-dimensional grid in ðx;Q2Þ space.
In essence, using a program such as MATHEMATICA [15],
we can now define a parton distribution function for
each quark and gluon and—after inputting the desired x
and Q2—evaluate it accurately and rapidly [for a fast
MATHEMATICA program calculating LO Fsðx;Q2Þ and

Gðx;Q2Þ, see the Appendix].
We have also used our analytic solutions coupled with

the MSTW2008 initial starting functions [4] as a new and
powerful diagnostic tool to study the numerical accuracy
(the computational accuracy of their evolution code) of the
LO MSTW2008 published distributions [4]. For the small
x region, x & 10�4, we discovered a pattern of significant
numerical (computational) errors for both Fs and G, rang-
ing up to � 12% at the smallest x values in the published
MSTW2008 results [4], true for all Q2.

Applying the same new tools to CTEQ6L, we found
no errors (to their accuracy of four significant figures) in
either Fs or G values when they did evolution from
Q2

0 ¼ 1:69 GeV2 to higher Q2 values, but significant

errors—increasing with decreasing x—when they did dev-
olution to smaller Q2.

In the future, we intend to evaluate Fs0ðxÞ and G0ðxÞ in
both LO and NLO, from a fit to small x experimental data
for the structure function F�p

2 ðx;Q2Þ, in order to obtain

(analytically) accurate values of Gðx;Q2Þ directly tied to
experiment, which are needed for the interpretation of
experiments at the LHC.
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APPENDIX

We outline here the actual calculation procedures
necessary for fast and accurate numerical evaluations of
Eqs. (30) and (31). These calculations, although robust,
require delicate choices as to the numerical techniques
used in evaluating Eqs. (30) and (31).

As shown in Ref. [12], if the function gðsÞ goes to 0 at1
more rapidly than 1=s, then we can accurately approximate
its inverse Laplace transform GðvÞ by

GðvÞ � � 2

v

XN
i¼1

Re½!igð�i=vÞ�; (A1)

where 2N is the order of the approximation, and!i and �i,
i ¼ 1; 2; . . . ; 2N, are known complex numbers for a given
2N, occurring in complex conjugate pairs. The actual
numerical evaluation of Eq. (A1) can be quite unstable
if one does not utilize arbitrary accuracy arithmetic as
discussed in Ref. [12], since the weight functions !i

become exceedingly large, even for modest 2N, and
oscillate in sign [12]. The use of MATHEMATICA (or
similar programs, which also carry out arithmetical opera-
tions to arbitrary accuracy) makes this requirement easy to
satisfy.
As shown in Ref. [12], the inverse Laplace transform

approximation to GðvÞ is exact if GðvÞ is a polynomial
in v of order 4N � 1 or less. For our purposes here,GðvÞ in
Eq. (A1) is either the F̂sðv;Q2Þ or the Ĝðv;Q2Þ on the left-
hand side of Eq. (30) or Eq. (31), whereas gðsÞ in Eq. (A1)
is the surrogate for either kffðs; �Þf0ðsÞ þ kfgðs; �Þg0ðsÞ
found in the right-hand side of Eq. (30) or kggðs; �Þg0ðsÞ þ
kgfðs; �Þf0ðsÞ found in the right-hand side of Eq. (31).

Since we must evaluate gðsÞ at complex values of s, this
necessarily implies that we must evaluate f0ðsÞ and g0ðsÞ—
the Laplace transforms of F̂s0ðvÞ and Ĝ0ðvÞ, respec-
tively—at complex values of s. As shown in Ref. [12], to
insure numerical accuracy we must be able to evaluate gðsÞ
in Eq. (A1) to arbitrary accuracy. Thus we must know the
Laplace transforms f0ðsÞ and g0ðsÞ analytically and not just
as numerical integrations of the form

R1
0 F̂s0ðvÞe�vsdv.

The k’s, the coefficient functions needed, are known ana-
lytically; the potential problem is with f0ðsÞ and g0ðsÞ, the
starting functions in Laplace space s.
The starting distribution functions normally used are not

of the type that have analytic Laplace transforms. To get a
sufficiently accurate numerical approximation to functions
that do have analytic Laplace transforms is again a delicate
numerical exercise. We found that we could do it suffi-
ciently accurately by using an interpolating polynomial of
order n ¼ 49. Its 50 coefficients were determined by eval-
uating the original function at 50 points, distributed as the
zeros of a 50th order Chebyshev polynomial, found in the
interval ð�1;þ1Þ and then linearly transformed to v space
to lie in the interval 0 � v < 14 (1 � x > 0:83� 10�6).
These points were chosen to try to minimize the maxi-
mum interpolation error. We note that even when using
MATHEMATICA, caution was needed in order to obtain

sufficient numerical accuracy with such a high order poly-
nomial; it had to be evaluated using Horner’s method (see
Sec. 10.14 of Ref. [17]), since a straightforward evaluation
of such a high order polynomial will yield numerical
nonsense.
Using 2N ¼ 38 in Eq. (A1), we would have an exact

result if either F̂sðv;Q2Þ in Eq. (30) or Ĝðv;Q2Þ in Eq. (31)
were a polynomial in v of degree 75 or less; see Ref. [12]
for details. In actual practice, by comparing the results for
the value of 2N ¼ 38—the value we used for our numeri-
cal evaluations—with very much larger values of 2N that
we used for estimates of the exact solutions, we found that

the fractional accuracy of inversion for both F̂sðv;Q2Þ and
Ĝðv;Q2Þ was� 
1� 10�11 for v * 0:3. Thus, numerical
inversion of the Laplace transform in either Eq. (30) or
Eq. (31) contributes essentially nothing to our overall error
of about
2� 10�9, since it is some 2 orders of magnitude
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smaller. We comment that the overall error is essentially
completely due to our numerical approximation of the
starting functions and not the subsequent Laplace trans-
forms of them. Therefore, we could readily reduce this
error by using more than 50 points in our numerical
approximations of the starting distributions, but this would
be at the expense of more computational time and was felt
to be unnecessary.

A typical time for computing the full x distribution of
either FsðxÞ or GðxÞ at an arbitrary Q2—given the starting
functions Fs0ðxÞ and G0ðxÞ at Q2

0—was about 15 s, basi-

cally proportional to the number of points in x used in the
numerical approximations of the starting functions and to
the number 2N used in the Laplace inversion routine. Thus,

for most applications, we could easily reduce this time to
several seconds, at the expense of some (perhaps un-
needed) accuracy. The computations in this paper were
made on a home PC, a Dell Model Studio XPS435MT,
using an Intel 2.67 GHz 4 core i7 CPU, running 64 bit
Windows Vista, and using MATHEMATICA7 [15] in parallel
mode.
For a very fast MATHEMATICA7 (.nb) program that accu-

rately calculates all LO MSTW2008 parton distribution
functions, as well as F�p

2 ðxÞ and FsðxÞ for any Q2—using
the LO MSTW starting values [4] for FsðxÞ, GðxÞ at
Q2

0 ¼ 1 GeV2—send an email request to mblock@

northwestern.edu for MSTW.zip.
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