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This paper reports the tenth-order contributions to the g — 2 of the electron a, and those of the muon a,,
from the gauge-invariant Set II(c), which consists of 36 Feynman diagrams, and Set II(d), which consists
of 180 Feynman diagrams. Both sets are obtained by insertion of sixth-order vacuum-polarization
diagrams in the fourth-order anomalous magnetic moment. The mass-independent contributions from
Set II(c) and Set 1I(d) are —0.116489 (32)(a/7)> and —0.243 00 (29)(a/7)°, respectively. The leading
contributions to a,,, which involve electron loops only, are —3.88827 (90)(a/ 7)° and 0.4972 (65)(a/ )’
for Set II(c) and Set II(d), respectively. The total contributions of the electron, muon, and tau-lepton loops
to a, are —0.116 874 (32)(a/ )’ for the Set II(c), and —0.243 10 (29)(«/ )’ for the Set II(d), respec-
tively. The contributions of the electron, muon, and tau-lepton loop to a,, are —5.5594 (11)(at/ ar)° for the

Set II(c) and 0.2465 (65)(a/m)’ for the Set 1I(d), respectively.
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I. INTRODUCTION

The anomalous magnetic moment g — 2 of the electron
has played the central role in testing the validity of quan-
tum electrodynamics (QED) as well as the standard model.
The latest measurement of a, = (g — 2)/2 by the Harvard
group has reached the precision of 0.24 X 107° [1,2]:

a,(HV08) =1159652180.73(0.28) X 10”12 [0.24 ppb].

(D

At present the best prediction of theory consists of QED
corrections of up to the eighth order [3-5], and hadronic
corrections [6—12] and electroweak corrections [13—15]
scaled down from their contributions to the muon g — 2.
To compare the theoretical prediction with the experiment
(1), we also need the value of the fine structure constant «
determined by a method independent of g — 2. The best
value of such an « has been obtained recently from the
measurement of 4/mygy, the ratio of the Planck constant
and the mass of the Rb atom, combined with the very
precisely known Rydberg constant and mg;,/m, [16]:

a '(Rb10) = 137.035999 037 (91) [0.66 ppb]. (2)

With this « the theoretical prediction of a, becomes

a,(theory) = 1159652181.13(0.11)(0.37)(0.77) X 10~ 12,
(3)
where the first, second, and third uncertainties come from

the calculated eighth-order QED term, the tenth-order
estimate, and the fine structure constant (2), respectively.
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The theory (3) is thus in good agreement with the experi-
ment (1),

a,(HV08) — a,(theory) = —0.40 (0.88) X 10712, (4)

proving that QED (standard model) is in good shape even
at this very high precision.

An alternative test of QED is to compare the a of (2)
with the value of a determined from the experiment and
theory of g — 2:

@ '(a,08)=137.035999085(12)(37)(33) [0.37 ppb],
&)

where the first, second, and third uncertainties come from
the eighth-order QED term, the tenth-order estimate, and
the measurement of a,(HV08), respectively. Although the
uncertainty of a~!(a,08) in (5) is a factor 2 smaller than
a~'(Rb10), it is not a firm factor since it depends on the
estimate of the tenth-order term, which is only a crude
guess [17]. In anticipation of this challenge we launched a
systematic program several years ago to evaluate the com-
plete tenth-order term [18-20].

The tenth-order QED contribution to the anomalous
magnetic moment of an electron can be written as

a 5
10 (;) (A0 + A0 m, /m,,) + ASO(n, /m,)

+ A, /m,, m,/m.,)] (6)

where the electron-muon mass ratio m,/m, is
4.83633171(12) X 1073 and the electron-tau mass ratio
m,/m, is 2.87564 (47) X 10~* [17]. The contribution to
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FIG. 1.
Set II(d).

Typical diagrams of the tenth-order Set Il(c) and

the mass-independent term A(llo) coming from 12672
Feynman diagrams may be classified into six gauge-
invariant sets, further divided into 32 gauge-invariant
subsets depending on the nature of closed lepton loop
subdiagrams. Thus far, results of numerical evaluation of
24 gauge-invariant subsets, which consist of 2785 vertex
diagrams, have been published [5,21-24]. The result of 105
vertex diagrams of Set I(i) has been recently submitted for
publication [25]. Five of the subsets had also been calcu-
lated analytically [26,27]. Our calculation is in good agree-
ment with these analytic results.

In this article we report the evaluation of contributions of
two gauge-invariant subsets, Set II(c) and Set II(d), which
consist of fourth-order vertex diagrams containing
vacuum-polarization subdiagrams of sixth order. The ef-
fect of insertion of a gauge-invariant set of closed lepton
loops in an internal photon line of momentum ¢ is ex-
pressed by the renormalized vacuum-polarization tensor of
the form

1#7(q) = (¢*q” — q*g*")1L(g%), (7

where the scalar vacuum-polarization function I1(g?) van-
ishes at g> = 0 on carrying out the charge renormalization.

The Set II(c) consists of 36 Feynman diagrams. A typi-
cal diagram of this set is shown on the left-hand side of
Fig. 1. It is obtained by insertion of proper sixth-order
vacuum-polarization diagrams containing two closed lep-
ton loops (see Fig. 2) in the fourth-order anomalous mag-
netic moment M,, or My, represented by Fig. 3. These
diagrams can be represented by 4 independent integrals
taking account of various symmetry properties.

Pyaip2) Papp2)

FIG. 2. Sixth-order vacuum-polarization diagrams consisting
of two fermion loops.
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FIG. 3. Self-energy-like diagrams of fourth order.

The Set II(d) consists of 180 Feynman diagrams.
A typical diagram of this set is shown on the right-hand
side of Fig. 1. It is obtained by insertion of proper sixth-
order vacuum-polarization diagrams consisting of one
closed lepton loop in the fourth-order anomalous magnetic
moment. These diagrams can be represented by 16 inde-
pendent integrals taking account of various symmetry
properties.

Evaluation of the contribution of the Set II(c) to the
mass-independent term A(llo) is straightforward since an
exact spectral function I1*? for the diagrams of Fig. 2 is
known for the diagrams whose two lepton loops have
the same mass [28]. However, evaluation of the mass-

dependent term A{'® requires II*? as a function of
m,/m, or m,/m., which is not available at present. In
order to cover both cases, we follow an alternative ap-
proach [29] in which we construct a Feynman-parametric
integral of the sixth-order vacuum-polarization function
I1#? and insert it in the virtual photon lines of the
Feynman-parametric integral of the fourth-order anoma-
lous magnetic moment Mj,.

For the Set II(d) an exact vacuum-polarization function
I1© (see Fig. 4) is not known, although the Padé approx-
imant is known to provide a good approximation [30-32].
We follow here primarily the approach [29] which utilizes
the vacuum-polarization function In® itself, instead of its
spectral function. The calculation utilizing the Padé ap-
proximant of the spectral function is also carried out to
provide an independent check.

Parametric  representations of several vacuum-
polarization functions are presented in Sec. II, where ex-
plicit definitions of functions are given. As an illustration of
our approach, insertion of the vacuum-polarization func-
tion in M, is presented in Sec. III. Insertion of 1, TT®,
142 and I1© in M, is described in Sec. IV. Although
most results of Secs. IT and III are concerned with quantities
of low orders, they are needed in carrying out the renor-
malization of the tenth-order terms. In cases where the
spectral function is available, we present alternative ways
which provide a consistency check of the numerical work.
Application of these methods to Set II(c) and Set II(d) is
described in Secs. V and VI. Summary and concluding
remarks are presented in Sec. VII. For simplicity the factor
(a/7r)? is omitted in Secs. I, 111, TV, V, and V1.
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FIG. 4. Sixth-order vacuum-polarization diagrams consisting of a single fermion loop.

II. PARAMETRIC REPRESENTATION OF
VACUUM-POLARIZATION FUNCTION

As is shown in Ref. [29] the second-order vacuum-
polarization function can be written in the form

2 (x) = / (d2)— 1n<v0> 8)
\%
with
(dz) = dz1dz;6(1 —z1p),  U=1zp, Vo =2zipmj,
V=V, xG, x=q> G =74y,
AL =12/U, Dy =2A,(1 — A)), 9)

where z; and z, are Feynman parameters of leptons form-
ing the loop, z;, = z; + z5, and m is the rest mass of the
lepton.

As a preparation for constructing IT1*? let us first con-
struct the parametric integral of the fourth-order vacuum-
polarization function I1®. It has contributions from one
diagram P,, and two diagrams Py, of Fig. 5.

The contribution of Py, renormalized at ¢ = 0 but with
subvertex divergences not yet removed, can be written
as [29]

4 = [(aaf o5 - Vi) an()] a0

2

2
)

3
Py, Py,

FIG. 5. Fourth-order vacuum-polarization diagrams consisting
of one lepton loop.

where z, 25, 23, 74 are Feynman parameters for the elec-
tron lines and z,, is that of the photon line and

(dz) = dzydzpdz3dz4dz,6(1 — Z12344), z; =0,

By = 2234 By = 2, By = 2144
U= z14B11 + 223B1, Ay = (z3B;p + 4B1))/U,
Ay = (z3Byp + u4B)/U, A3 =A; — 1,
Ay =A— 1, Vo = zipaami + Az,
G=2zA T4, V=V,-xG  x=dg,
Dy = ((Ay + A)(Ay + A3) — AjAy — AyAz)ms,
D, = (AjAy + A3A4)Byy, — AjA4By — AyA3Byy. (11)

Here 253, = 2o + 23 + 2, etc., and A is the (infinitesimal)
photon mass.

This integral contains ultraviolet (UV) divergences aris-
ing from the vertex diagrams {2, 3, a} and {1, 4, a}, which
can be removed by the K,; operation and K;, operation
[29], respectively. The renormalized function Hﬁgff ) can be
written as

M3 = ATT¢0 — 2LR[1@), (12)

where

AH(‘M) - (1 - K23 - K14)H(4a). (13)

I1?® is the second-order vacuum-polarization function
given by Eq. (8), and LY = L, — LYV, where LYV is the
UV-divergent part of the second-order vertex-
renormalization constant L, defined by the Koperation
and LY is the remainder including an infrared divergent
part of L,.

The renormalized vacuum-polarization term coming
from P4, of Fig. 5 may be handled similarly by the K
operation [29]. It leads to

&) = ATI®) — 2BRIT®), (14)
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where BY = B, — BYY [29] and

ATI#) (x) — [(dz)(l - KZ)I:UZ(I 1 ) + G

vV V U*v
D, Vo)]
+—In : 15

with
By = 204 By, =z, By = 21340

U = z2134B11 + 2B, A, = z4B1,/U,

Ay, = 4B, /U, Ay = Ay, A=A — 1,

G = 7134, + 224, V=V, —xG, x=q°%
Dy = (4A; — Ay)Aym, Cy = —AlA)A,,
Dy = A(A; +3A4)B),. (16)

V, and (dz) have the same form as in (11).

The function I1*? is obtained readily from I1® by
insertion of the spectral representation of the vacuum-
polarization loop

(g») _ /1 it p(7)
0

q° —q* +4m3/(1 - 1?)’

A7

in the virtual photon line of II® carrying momentum g¢.
This equation can be regarded as a superposition of vector
particles of mass 4m3 /(1 — %), where m, is the mass of the
inserted loop particle. The net effect is expressed as the
replacement

1 ! p(1)
q° jo dtqz —4m3/(1 — %) (1%)

For the second-order electron loop the spectral function
is given by [29]
t (1 -1/ 3)
)

PP (1) = (19)

From (10) and (18) we obtain

ATT4a2)(y) = j;)l dtp@(1) j(dz)(l — Ky — Kyy)

D))

where x = ¢?, and D, and D, are given in Eq. (11). V, and
V have the form

V=V, — xG, x=q2,
4m%
1 -7

21
Vo = zip3ami + 2,

Similarly, from (15) and (18), we obtain

PHYSICAL REVIEW D 83, 053002 (2011)

ATI#2(x) = /dtp(z)(t)[(dl)(l_KZ)[Uz(V 1}0)

xC
4 *Co

U*v %1 (v)] 2)

where D, C, and D, are given in Eq. (16), and V and V,,
are given by (21).

In the same manner as in (10) and (15) the sixth-order
vacuum-polarization function I1©(g?) can be written in

the general form [29]
) x(By + xC)

o= [ (dz>[ (52 - oy

11 B v,
+ 2L ( )+—x31 —41 ( 0)] (23)
v\v v,) v Ut v

Vo = 21234561, (24)

where

and D, is m} times Dy, and B, and D, are m} times B, and
D, given in Ref. [33]. For simplicity the K operation is not
shown explicitly. For the sixth-order vacuum-polarization
diagrams P¢c and Pgp of Fig. 4, which contain fourth-
order lepton self-energy subdiagrams, the K operation
subtracts only UV-divergent parts §m} and dm},, which
are different from the full mass-renormalization terms
O0my, and dmy,,. This causes no problem for the renormal-
ization of the vacuum-polarization function which has no
infrared divergence. However, the fully renormalized for-
mula is simpler if the residual mass-renormalization terms
dmk (= 8my, — mYY) and 8m4b(— Smy, — dmYy) are
also subtracted. This subtraction is performed by the R
subtraction method introduced in Ref. [19]. We shall there-
fore include the R subtraction operation in Eq. (23) when-
ever it is needed.

III. INSERTION OF VACUUM-POLARIZATION
FUNCTION INTO THE SECOND-ORDER
ANOMALY

Before discussing insertion of the vacuum-polarization
(VP) diagram in My, let us consider insertion in M,. The
Feynman-parametric representation of the second-order
magnetic moment can be written in the form [29]

dy) F,
= [0, (5)
Uy v,
where y; and y, are Feynman parameters of the electron
line and the photon line, respectively,

(dy) = dydy,6(1 = y1a),  Yia = V1 + Ya
Uy = ylaBlll Bll = 1’ (26)
Alzya/U’ Vy:yl_ylAl’

Fo = yA(1 — A)),
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and the rest mass of the open electron line (or, open lepton
line) is chosen to be 1. The insertion of the vacuum-
polarization function II into the photon line a can be
written as

(dy Fy
M“’_[ d (t)[ U2 Vy+dmiy,(1 — )~ 7)

following Eq. (18). Comparing (27) with (17), we can write

(dy) Fy /1 gt p(1)

M, = | —L 2
2P U2 v, Vy/ya +4mi(1 — )7

(dy) Fo T1(g?)

U yo ¢

*==Vy/ya

- f (dy) Fo V5. (28)
v,

This gives us a simple and transparent recipe for insertion
of the vacuum-polarization function in the photon line a
of M2:

1
Iy _vyn(_vy/ya) (29)

y

This is identical to Eq. (5.8) on p. 285 of Ref. [29] noting
that

v
V-V,
(30)

_ 2 —v. —
Vo=zipmi,  V=Vy=xGl——y,

Note that this derivation requires only the analytic property
expressed by the spectral representation. No actual knowl-
edge of the spectral function is required.

Making use of Eq. (29) and the form of I1??)(x) given by
Eq. (8), M, p, can be readily written in the form

Mo, == [asi ) f (d2) °1n( )
)

X = = — ,
ya l—y

(3D

where y =y, y, =1 —y;,and V =V, — xG.
In the case P = P,, we obtain from Eq. (15)

~[Masa -y [ (5 - vo>

C, D
+ranr ain()] @
UtV Ut \V/h=—y/a-y

where V = zj534m? and V = V;; — xG. K operation (and
R subtraction) is not shown explicitly for simplicity. This
corresponds to Eq. (5.20) on p. 288 of Ref. [29] noting that

My p, =

PHYSICAL REVIEW D 83, 053002 (2011)

Vv
_xG|x=*V_v/yzr’ W= V- VO‘

(33)

— 2 —
VO_Zle, V—VO

Similarly, for insertion of P = Pg4, we have the general
structure

s, = [avt = [ 3555 o)

XBO + )C2C0 Dl (1 1 ) )CBI
S - )+
U2V? ;\v v, v

D, [V,
+ 7‘2‘ In ( V“)] , (34)
v=—y2/(1-y)

where V) is given in Eq. (24). This equation, with m} = 1,
corresponds to Eq. (5.32) on p. 293 of Ref. [29] except that
it includes R subtractions besides K operations for some
diagrams.

IV. INSERTION OF VACUUM-POLARIZATION
FUNCTION INTO A FOURTH-ORDER
MAGNETIC MOMENT

The fourth-order magnetic moment M,, which consists
of two parts M,, and M, has the form [29]

Ey+ C,
M, — [ (dy)[ +
Uy,

Ny + Z,
vv:

N, + Z,
uiv,

], (35)

where (dy) = dy,dy,dysdy,dy,8(1 = Yixap), Y15 Y2, V3
are Feynman parameters of lepton lines, y,, y, are
Feynman parameters of photon lines, and

Vy =yt /\Zyab -G, (36)
G = J’IAl + y2A2 + y3A3, etc.

Ey, Co, Ny, Zy, Ny, Z, are functions of Feynman parame-
ters defined for My, and My, respectively. Their explicit
definitions are given on pp. 266 and 267 of Ref. [29]. The
tilde on Cj is introduced here to avoid confusion with C,
introduced in the definition of II. When a VP function
is inserted into the photon line a by using its spectral
function representation, the denominator V, is replaced
by V, + y,R(z). In the case of the second-order VP func-
tion P,, where z;, z, are Feynman parameters of two
fermions forming the vacuum-polarization loop, we have
R(z) = m}z12/(2120).

For terms of Eq. (35) proportional to 1/V,, we can apply
the substitution rule (29) directly. For the term proportional
to 1/V} we may rewrite the denominator using the formula
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pl@)

p(z) B
[(d)(v +y.RE@)Z 0V, v+ V, + y,R(z)
_iH(_Vy/ya)
av. V.

y y

1
== V_)%H(_Vy/ya)

+ l aH(_Vy/ya)‘

(37
vy av,
This leads to the structure of the form
E0+C0 N0+ZO N, + Z,
f(d)’)[ 212 3 )
y v U; Vs U3V,
Ny + Zy 01L(=V,/y,) ]
X (=1I(=V,/y,) +
(CIV, /) + = =
(38)
For P = P, we have
Ny + Z,

M4,P2 =

Ey+ C
dy) | (dz -
f( y)f( e [( Uzv:
N+ 7 v, 1 Ny+2y G
+ 1>ln<—0>+ 02 0 ] (39)
UV, V) y, UV, V

which follows from Eq. (8) and

AP (=Vy/yl) _
- f() T @0

where V|, and V are given by Eq. (33), and Y, means
the sum of insertions of P, in photon lines a and b. Note
that the structure of M, is largely kept intact by the
insertion of II.

For P = P,, where P, represents P,, or Py,
(15 (=V,/y,) is given by Eq. (15) and its derivative can
be written in the form

AW(—v,
W=V, /y,) _ [(d )[Dg G2 cg(1 +€)
av, u-v= U=\V V
U3 V]’ )
where, for Py, V =V,—xG, Vy=z3ml, G=
Z13A1 + Z2A2, X = _Vy/ya. Slmllarly fOI' P = P4a.

Substituting Egs. (15) and (41) in Eq. (38), we obtain
Myyp,,), etc. To avoid overcrowding the K operation is
not shown explicitly.

A formula for P = P,(P,), where P, represents P,, or
P4, can be readily obtained combining Egs. (20), (22),
(38), and (41):

PHYSICAL REVIEW D 83, 053002 (2011)

E, + C Ny + Z
Margey = [ o fan] (g + Ve
yry

N, + Z,
U;v,
N Ny + Z, (aH<4)( Vy/Ya ))]

U3V, v,

)(—H<4><—vy/ya>>

(42)

where V and V|, are defined by Eq. (21).
In the case P = P4, where Pg represents one of

Pgyu, ..., Pgy, we obtain a formula of the form
E0+C0 N0+ZO N, +Z,
Mo, =3 [(@)]( )
’ a,b U2V U)2 V)2 U; V)’
Ny +Zo (0ITO(=V, /y,)
X (—TO(=V,/y,) +— 0( 374 )]
e T

(43)

where II®(—V, /y,) is given by Eq. (23) and its derivative
can be written in the form

A (=V,/y,) _ [( )[ZDOG 30(1 +2Gx>
av vz veopr\v? s
CO 2X 2Gx Dl G
vP\v2 v3 ) 32
B/l Gx\ D,G
+—§(—+—§)+—i—] . (44
U\V V2] UMV ey,

As usual the K operation and R subtraction are assumed
implicitly. The K operation removes UV-divergent parts of
divergent subdiagrams from M, Por & = A B, ..., H, etc.
Diagrams Pg,. and Py, contain a fourth-order self-energy
subdiagram so that they require R subtraction in addition to
K operation. The resulting finite quantities are denoted as
AM,p, , etc. In order to obtain the standard result renor-
malized on the mass shell, further subtraction of the
UV-finite remainder must be carried out by the residual
renormalization.

V. SET II(C)

For the Set II(c) it is convenient to treat the renormal-
ization of UV divergences arising from two photons
forming M,, and M,, and the renormalization of the
vacuum-polarization function separately. The first step
can be written as

A = 3 AU — AR
i=a,b
(Libs13)
— AB By by Mo, (45)

where [, [, and /5 denote the open lepton line, outer lepton
loop, and inner lepton loop, respectively. The superscript /
is suppressed in M, and A B, since they are independent of
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TABLE I.
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Contributions of diagrams of Set II(c) to a, for (I;1,13) = (eee). The superscript (eee) is omitted for simplicity. The

multiplicity ny is the number of vertex diagrams represented by the integral and is incorporated in the numerical value. The top four
lines are obtained by constructing the sixth-order vacuum-polarization function in terms of Feynman parameters. The bottom two lines
are obtained by using the exact spectral function of the sixth order. All integrals are evaluated in double precision.

Integral ny Value (Error) including ny Sampling per iteration Number of iterations
AMugp,,, 6 0.028 927 (21) 1X107, 1 X 108 50, 50
AM4a,sz) 12 0.004 521 (11) 1X107,1x 108 50, 50

AMyp p,,i0, 6 —0.110617(16) 1 X107, 1 X 10* 50, 50
AMyyp,, s, 12 —0.020212(9) 1107, 1 X 108 50, 50
AMy,p,, 18 0.028 425 (28) 1 X107, 1% 108 50, 100
AM4b‘P4(P;) 18 —0.112236(20) 1 X107, 1 x 108 50, 100

TABLE II. Finite renormalization terms of Set II(c) for the case (eee). All integrals are

evaluated in double precision. The quantities in the fourth line are obtained by using the exact
spectral function of the sixth order. The multiplicity of the integral is incorporated in the

numerical value.

Integral Value (Error) Integral Value (Error)
AB;p, 0.063 399266 - - - M, p, 0.015687421 - - -
AB2,P4M2> 0.047 836 (1) MQ,PMPZ) 0.011 403 (1)
ABZ,P4b<p2> 0.008 783 (1) M2‘p4b(}72) 0.001 717 (1)
2Pupy 0.048 577 (5) 2Pupy 0.011 131 (1)
AMy, p, 0.039 642 (42) AMy, p, —0.146 343 (35)

the lepton mass. AB, is the finite part of the second-order
renormalization constant defined by AB, = BY + LX.
[See Egs. (12) and (14).] The vacuum-polarization function
Py(p,) 1s fully renormalized whose divergence structure can
be readily found by the K operation. This leads to the
second step:

(Lily13)
AM4ivP4(P2)

. (Li15) (L13) (11 1,)
= 3 MR, MBS MM,

fori = a,b, (46)

(hhl) Z
MZ,P4(P2) bM

=q,

(Lil13)

(la13) g g (L 1)
2Pagiry 2ABZ,2P2 M; Y, 47

AB(111213)

— (I h13) (Iy13) (1)
2 = BZbABz,'pj;Pz) —20BYVABYY. (48)
&

A. Numerical results: (eee) case

The contribution of Set II(c) to the electron g — 2 for the
case (I;1,13) = (eee), where e denotes electron, has been
evaluated from Eq. (42) by three different methods:

(a) A straightforward extension of the method devel-

oped in [29],

(b) A method based on the automatic code generating

algorithm GENCODEVP N [25], and

(c) Use of an exact spectral function of I1*? given in

Ref. [28].

All calculations are carried out by the integration routine
VEGAS [34]. Preliminary evaluations of the integral (42)
by the methods (a) and (b) gave results consistent with
each other within the numerical uncertainty estimated by
VEGAS, proving that both programs are bug-free. [Actually,
both methods (a) and (b) use only K operation since R
subtraction is not needed in this case.] We therefore list
only the results of method (b) in the first four data lines of
Table 1. The values of auxiliary functions AB, Py, and

M, Py, 1€ listed in Table II.

Substituting the numerical results of the integrals listed
in Tables I and II in (45), we obtain

AVSetT1(c) @] = —0.116 489 (32). (49)

We also calculated the contribution of Set II(c) using the
exact spectral function of IT*? [28]. In this case

(eee) (eee) (eee) (eee)
AM40,P4<;»2>’ AM‘“?,P«PZV 2 Pupy’ and ABZ,ng) on the

right-hand side of Eq. (45) can be directly evaluated using
the exact spectral function. The results are listed in the last
two lines of Table I and in the fourth line of Table II. The
value obtained using the numbers in Tables I and II is

AU9[SetII(c)“e): spectral function] = —0.116 447 (34),
(50)

which is in good agreement with (49). This shows that
GENCODEVP N works correctly for N = 4.
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TABLE III.

PHYSICAL REVIEW D 83, 053002 (2011)

Contributions of diagrams of Set II(c) containing one electron loop and one muon loop to a,. The superscript (eme)

denotes a diagram in which the outer loop is a muon loop. The superscript (eem) denotes a diagram in which the inner loop is a muon
loop. The multiplicity of the diagram nj is included in the numerical results. All integrals are evaluated in double precision.

Integral ng Value (Error) including ny Sampling per iteration Number of iterations
Amgr) 6 0.000 017 57 (22) 1 % 107 50
AMgf,’,”,fsz) 12 0.000 013 37 (31) 1% 107 50
AMy) 6 —0.000 17292 (13) 1 X 107 50
AMffb',";f,,(pz) 12 —0.000 13462 (18) 1% 107 50
AMg;f;";M 6 0.000 014 66 (11) 1 X 107 50
AMYR) 12 0.000 001 73 (3) 1% 107 50
Amgy 6 —0.000 094 42 (8) 1% 107 50
AMYR 12 —0.000001 11 (2) 1% 107 50

TABLE IV. Finite renormalization constants needed for the mass-dependent terms (e, m, ¢)
and (e, e, m) of Set II(c). The finite renormalization constants needed for this term but not listed
here can be found in Table II. All integrals are evaluated in double precision. The multiplicity of
the integral is incorporated in the numerical value.

Integral Value (Error) Integral Value (Error)
ABSS 0.773326(53) X 10~ My 0.044986 (3) X 1074
ABYY 0.603 167 (106) X 10~* Mgy 0.033465 (6) X 1074
ABSY 0.414245 (42) X 10~ My 0.050072(5) X 10~
ABEY 0.005000 (9) X 107* Mg 0.000552 (1) X 1074
AMET, 0.02090 (21) X 10~ AMST, —0.20984 (12) X 10~
ABS}) 0.094 050 (3) X 107 My 0.005 19762 (21) X 10~
ABYY) 1.885 69 (24)

B. Numerical results: (eme), (eee), etc. and

Diagrams of Set II(c) contain two closed lepton loops,
one within the other. We obtain mass-dependent contribu-
tions to the electron g — 2 when one or both loops consist
of a muon or tau-lepton. The largest mass-dependent con-
tributions come from the integral (45) with superscripts
(eme) and then with (eem). Results of numerical integra-
tion are listed in Table III. The values obtained using the
numbers in Tables III and IV are

AVOTSetTI(c) (9] = —0.26086 (45) X 1073, (51)

AVV[SetII(c)™] = —0.10263 (14) X 1073, (52)

Other mass-dependent terms of Set II(c) are listed in
Table V.

C. Muon g — 2: (mee)

The leading contribution to the muon g — 2 comes from
the case where both loops consist of electrons, namely, the
(mee) case, where m stands for the muon. The value
obtained using the numbers in Tables VI and VII is

TABLE V. Mass-dependent contributions of diagrams of Set II(c) to the electron g — 2. All

integrals are evaluated in double precision.

(e, 1, 13) Aél())(elzls) (e, 1, I3) Aglo)(e1213)

(e, m, m) —0.16765 (28) X 10~* (e, m, 1) —0.41001 (81) X 107°
(e,1,¢) —0.28797 (58) X 1073 (e, 1, m) —0.7844 (14) X 107°
(e, e 1) —0.9889 (20) X 1076

(e, 1,1) —0.9884 (21) X 1077
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TABLE VI

PHYSICAL REVIEW D 83, 053002 (2011)

Contributions to the muon g —2 from Set II(c) diagrams involving closed

electron and/or muon loops. The multiplicity of the diagram ny is included in the numerical
results. All integrals are evaluated in double precision.

Integral ny  Value (Error) including ny  Sampling per iteration Number of iterations

AMS 6 0.684 47 (37) 1% 108, 1 X 10° 50, 40

AMGS) 12 2.071 36 (55) 1% 108, 1 X 10° 50, 50
’ o\

Amgs) 6 0.025 50 (33) 1 X 108, 1 X 10° 50, 40

AMGS) 12 —4.32077(51) 1% 108, 1 X 10° 50, 50
’ o

AMER) 6 0.302 14 (11) 1% 108, 1 X 10° 50, 10
Paair,

AMg) 12 0.251 36 (19) 1 X 108, 1 X 10° 50, 10

AMy,:";?(P) 6 —0.95739(9) 1 X 108, 1 X 10° 50, 10

AMGR) 12 ~0.93156(15) 1% 108, 1 X 10° 50, 10

AMPS 6 0.049 57 (10) 1 X 108 50
»1da(Py

AM&’Z,‘;”:LPz) 12 0.001 64 (5) 1% 108 50

AMGS) 6 —0.14138(8) 1% 108 50

AMS;;,’;’;;PZ) 12 —0.01038 (4) 1 % 108 50

TABLE VII.
multiplicity of the integral is incorporated in the numerical value.

Finite renormalization terms of Set II(c) for the muon anomaly a,,. All integrals are evaluated in double precision. The

Integral Value (Error) Integral Value (Error)
ABYS 0.655 71 (11) e, 0.597 441 (48)

o, 2.279 41 (17) e 0.982 066 (70)

e 2.695 12 (64) e 1.440 46 (28)
By 0.417 691 (10) e 0.121908 (3)
ABY 0404 336 (22) s 0.099 237 (5)
ABYE™ 0.065 066 (6) T 0.021 016 (2)

S 0.004 533 (3) T 0.000 586 (1)
AMPS), 1.725 62 (49) AMG, —2.35433 (45)

ABYY) 1.885 732 (16) My 1.094 258 282 7 (98)

AVV[Set II(c)me0)] = —3.88827 (90). (53)

We checked this result using the exact spectral function:

A(Zm)[Set II(c)™ee): spectral function] = —3.887 65 (92).
(54)

D. Muon g — 2: (mme), (mem), and others

The next-to-leading order contribution arises when the
inner and outer loops consist of an electron and muon,
respectively. We found

AVV[SetI1(c)mm)] = —1.34598 (36).  (55)

When the inner and outer loops consist of a muon and
electron, respectively, the contribution is found to be
smaller:

TABLE VIII. Contributions to the muon g — 2 from Set II(c)
diagrams involving tau-lepton loops. All integrals are evaluated
in double precision.

(m’ 12’ 13) A(zl())(m12]3) (m’ 12’ lg) AglO)(mlzh)

(m, m, t) —0.004 3250 (49) (m, e, 1) —0.004 7341 (55)
(m, t, m) —0.010519(13) (m, 1, e) —0.036 066 (51)
(m, 1, 1) —0.0015041(19)
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TABLE IX. Contributions of diagrams of Set II(d), (ee) case. ny is the number of Feynman diagrams represented by the integral. The
fourth-order mass renormalization is completed by R subtraction within the numerical programs of AM,, p ., AMy, p . AMy, p, ., and
AMy, p,,- All integrals are evaluated in double precision.

Integral ny Value (Error) including n, Sampling per iteration Number of iterations
AMyqp,, 12 0.112 990 (116) 1 x 108, 1 x 10° 50, 100
AMy,p,, 6 0.072 919 (72) 1 X108, 1x10° 50, 100
AMy,py, 12 0.044 224 (87) 1X 108, 1 X 10° 50, 100
AMy, p,, 12 —0.088 822 (78) 1 X108, 1x10° 50, 100
AM,qp,, 24 0.444 033 (113) 1 X108, 1x 10° 50, 100
AMy,p,, 12 —0.156407 (67) 1 X108, 1% 10° 50, 100
AMy,p,, 6 0.094 162 (54) 1108, 1x10° 50, 100
AMy,p,, 6 0.060 989 (35) 1108, 1 X 10° 50, 100
AMyy,p,, 12 —0.398 926 (66) 1% 108, 1 X 10° 50, 100
AMy;, p,, 6 —0.253369 (42) 1 X108, 1x10° 50, 100
AMy, p,. 12 —0.141941 (51) 1108, 1 X 10° 50, 100
AMyp p,, 12 0.292 773 (44) 1 X108, 1 x 10° 50, 100
AMyyp, 24 —1.395971 (66) 1% 108, 1 X 10° 50, 100
AMy, p,, 12 0.570 363 (40) 1 X 108, 1 X 10° 50, 100
AMyy, p,. 6 —0.232467 (32) 1% 108, 1 X 10° 50, 100
AM4b‘P6H 6 —0.223983(22) 1x108, 1x10° 50, 100

TABLE X. Finite renormalization terms necessary for the cases (ee) and (em) of Set II(d). For simplicity the superscript (ee) is
omitted. The values M, p . and M, p  are different from those in Table I of Ref. [35]. The former is constructed with the K operation
and R subtraction, while the latter is with the K operation only. All integrals are evaluated in double precision.

Integral Value (Error) Integral Value (Error)
AMyap, 0.131 298 (8) AMyyp, —0.420295 (8)

AMyqp, 0.039 642 (42) AMy, p, —0.146 343 (35)

M, p,, 0.044 446 7 (22) AB,p,, 0.173 609 1 (96)
Ma,p,, 0.028 593 9 (14) AB,p,, 0.110 466 1 (56)

Mo, py. 0.017 717 3 (19) AByp,. 0.062 134 7 (74)
Map,, ~0.0351670(16) AB,p,, ~0.127 6576 (63)

M; p,, 0.179 333 2 (21) ABy p,, 0.610 385 8 (84)
Myp, —0.0620032(12) AB,p, —0.247 658 3 (54)

My p,, 0.038 879 0 (10) AB; p,, 0.104 070 2 (44)

My p,, 0.023 674 9 (8) ABy pg, 0.097 056 7 (29)

M p, 0.052870652 - - - AB,p, 0.183 666 8 (18)
Mayp, 0.015687421 - - - AByp, 0.063 399266 - - -
ALB, 0.027 930 (27) AB, 0.75

M, 0.5

AMET, 0.07596 (78) X 104 AM, —0.75735(41) X 1074
AMY, 0.02090(21) X 10~* AMT). ~0.209 84 (12) X 10~
M) 0.159949 (32) X 1073 ABSp) 0.281371(61) X 1074
My 0.102323 (21) X 1073 ABS}) 0.180003 (40) X 10~*
M) 0.071033 (29) X 1073 ABYY) 0.119848 (52) X 10~*
Mgy —0.131368 (26) X 1073 ABYY) —0.226651 (46) X 107*
My 0.682404 (32) X 1075 ABS}) 1.162709 (59) X 10~
My —0.211985(19) X 1073 ABS}) —0.379345(35) x 107
My 0.174650 (16) X 107 ABSp) 0.279935 (31) X 10~
My 0.082748 (12) X 1073 ABSY) 0.147672(22) X 10~
M) 0.197298 (5) X 107 ABSy) 0.338738 (12) X 104
M) 0.051974 (1) X 1073 ABS) 0.094050 (3) X 10~
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TABLE XI.

PHYSICAL REVIEW D 83, 053002 (2011)

Contributions to a, from diagrams of Set II(d) containing a muon loop. The superscript (em) signifies that the diagrams

contain a muon loop in the electron g — 2. ny is the number of Feynman diagrams represented by the integral. All integrals are
evaluated in double precision. The fourth-order mass renormalization is completed within the numerical programs of AMy, p, .,

AM4¢1,P505 AM4I),P6L~9 and AMM),P(,D'

Integral ng Value (Error) including ny Sampling per iteration Number of iterations
AMET 12 0.000 006 24 (13) 1 X107, 1% 108 50, 50
AMET) 6 0.000 004 94 (9) 1 X107, 1 X108 50, 50
AMET 12 0.000 003 79 (11) 1 X107, 1 X 10° 50, 50
AME 12 0.000 005 23 (10) 1 X107, 1 X 10* 50, 50
AMET 24 0.000 026 34 (15) 1 X107, 1 X 108 50, 50
AMET 12 0.000 008 38 (8) 1X 107, 1 X 10 50, 50
AMT 0.000 007 54 (6) 1107, 1 X108 50, 50
AMET 6 0.000 003 34 (5) X107, 1 X 10° 50, 50
AMST 12 0.000 063 78 (4) 1 X107, 1 X 10 50, 50
AMST 6 0.000 040 16 (2) X107, 1 X 108 50, 50
AMST 12 0.000 027 79 (3) 1 X107, 1 X 10 50, 50
AMET 12 0.000 051 62 (3) 1107, 1% 108 50, 50
AMGT 24 0.000 260 81 (4) 1X 107, 1 X 10 50, 50
AMST 12 0.000 085 61 (2) 1107, 1% 108 50, 50
AMET 6 0.000 063 72 (2) 1 X107, 1 X 10 50, 50
M) 6 0.000 033 95 (1) 1107, 1 X108 50, 50

ANO[SetTI(c)mem] = —0.15150(15).  (56)

The contributions involving tau-lepton loops are sum-
marized in Table VIIL.

VI. SET II(D)

Following the same consideration leading to Eq. (45) of
Sec. V we obtain

b
ALO[SetT@) ] = 3 AMYE — AB,MLY)

i=a

— ABY My, (57)

where [, designates the loop lepton. The vacuum-
polarization function Pg is fully renormalized whose
divergence structure can be readily found by the K opera-
tion. The renormalization formula for Py takes different
forms depending on whether one follows the original K
operation prescription[29] or the K operation plus R sub-
traction method [19]. In the first approach the UV-finite
part of the fourth-order mass-renormalization term is not
subtracted when Pg- and Pgp are constructed. In the
second approach we subtract the mass-renormalization

term completely, including the finite part Aé&my, which
leads to

H
L1, 1 L1
AME = > AMGE — 4ABAMYE
B=A

— 3(AB,2AME) — 2ALB,AME),
fori=a,b,
(111) E (1115) (111) (L)
MY = 3 My — 4AB M, Y — 3(ABy)* M, !
B=A
L1
— 2ALB,MYYY,

H
(L) _ (L) (I 1) (I11)
AB)Y = BZ_A ABy ) — 4ABAB, Y — 3(AB,)?ABY:
_ (L)
2ALB4AB; Y. (58)

The quantities on the right-hand-side of (58), AMy; p, "
AB; p, " and M, p, ;> are defined by the K operation and R
subtraction. ALB, is the sum of the finite parts of the
fourth-order vertex-renormalization constant AL, and
wave-function renormalization constant AB,. See
Refs. [3,4,29] for the exact definition. Note that terms
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like AMy; p, . include the multiplicity n of Feynman dia-
grams that contribute to them.

A. Numerical results: (ee) case

Preliminary calculations of the (ee) case based on meth-
ods (a) and (b) described in Sec. VA are consistent with
each other within the uncertainty estimated by VEGAS.
Therefore we list only the results of method (b) in
Table IX. From this table and Table X we obtain

AUO[Set T1(d)] = —0.243 00 (29). (59)

The Padé-approximated vacuum-polarization function
of the sixth order with a single fermion loop has been
obtained in Refs. [30,31]. This method gives both imagi-
nary and real parts of the vacuum-polarization function.
We use here only its imaginary part to calculate its effect
on the anomaly. Numerical results of integration are

TABLE XII.

PHYSICAL REVIEW D 83, 053002 (2011)

summarized in Table XII.
Eq. (57), we obtained

AO[SetT1(d)): Padé] = —0.243 06 (45), (60)

Substituting them into

which is in good agreement with (59). This provides an-
other support for the validity of GENCODEVP N.

B. Numerical results: Mass-dependent
terms (em) and (et)

The value of the mass-dependent term (em) obtained
using the numbers listed in Table XI is

AVV[Set II(d) ] = —0.9817 (42) X 1074, (61)

As a check we evaluated the same quantity using the
Padé-approximated vacuum-polarization function of sixth-
order. The results are listed in Table XII. From these values
we obtain

Contributions of diagrams of Set II(d) whose VP function is Pg. Quantities on the

right-hand-side of Eq. (58) are calculated from Tables IX, X, XI, XIII, XIV, and XV. The same
quantities are also calculated by the Padé approximant method and listed with the subscript Padé
below the corresponding integrals. M;{},lé) are actually the anomaly contributions of the eighth-

order diagrams of Group I(d). Their values for the (ee) and (me) cases are consistent with
Eq. (29) of Ref. [35] and Eq. (34) of Ref. [5], respectively. The (em), (et), and (mt) cases are
newly evaluated in this paper. All integrals using the Padé approximant are evaluated in

quadruple precision.

Integral Value (Error) Integral Value (Error)
AMS), 0.119 08 (25) AMSS, —0.26451 (41)

MM p pue 0.118 95 (35) AME ) pus ~0.26443 (27)

ABS) 0.120 879 (20) M) 0.049 514 (5)

ABYT b 0.120 862 (39) MES b 0.049 520 (4)
AMET, 0.0915(39) X 107* AMST, —0.8620 (16) X 107
AM s 0.09196(53) X 1074 AMY") 5 ~0.87225(31) X 1074
ABYT) 0.38536/(13) X 107* My 0.024725(7) X 10~
ABSY e 0.385367(72) X 1074 M e 0.024727 (4) X 1074
AMLD ), o 0.03989(154) X 1070 AM, o4 —0.47090 (74) X 106
ABYD e 0.210278(39) X 10°¢ M) b 0.008 744 (1) X 1076
AMS, —0.4694 (50) AMY), 0.5969 (42)
AME(Z,ilGPadé —0.4591(55) AMz(t’Z;zﬁPadé 0.5935 (51)

ABY) ~0.39472(82) My 022982 (36)

ABY ~0.39525(78) MY s ~0.23023 (32)
AML, 0.001 066 (15) AM, —~0.006953 (10)

MM puie 0.001 065 (12) AMY, e ~0.006953 (8)

ABY}) 0.003 020 9 (10) M) 0.000 367 7 (2)
ABY e 0.003 021 4 (6) M e 0.000 367 7 (1)
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TABLE XIII. Leading contributions of diagrams of Set II(d) of Fig. 1 to the muon g — 2. ny is
the number of Feynman diagrams represented by the integral. All integrals are evaluated in
double precision. The fourth-order mass renormalization is completed within the numerical
programs of AMy,p ., AMy,p,, . AMypyp,., and AMy;, p . The last two columns list initial
sampling and its iteration, followed by increased sampling and its iteration.

Integral ~ ny Value (Error) including n Sampling per iteration Number of iterations
AMQ’;’f,lM 12 10.6935 (20) 1 X108, 1 X 10%, 1 X 10" 50, 100, 135
AMJS 6 5.6421 (12) 1% 108, 1% 10°, 1 X 10! 50, 100, 120
AMS(;"‘;EM 12 4.3050 (12) 1 X108, 1x10% 1% 10" 50, 100, 120
AMES 12 —6.0977 (12) 1X 108, 1% 10°, 1 X 10! 50, 100, 120
AMS) 24 —4.3659 (18) 1% 108, 1% 10°, 1 X 1010 50, 100, 120
AMES 12 —6.14599 (94) 1X 108, 1% 10°, 1 X 10 50, 100, 120
AMJS 6 —0.3977 (14) 1% 108, 1% 10°, 1 X 10! 50, 100, 120
AM‘({;’,‘}EW 6 5.048 76 (52) 1 X108, 1x10° 1x10'° 50, 100, 50
AMGS 12 —18.9591(16) 1% 108, 1% 10°, 1 X 10! 50, 100, 120
AMGS 6 —9.81533(96) 1% 108, 1% 10°, 1 X 10'° 50, 100, 100
AMGS. 12 —7.998 86 (93) 1X 108, 1% 10°, 1 X 10! 50, 100, 100
AMGS 12 11.248 41 (81) 1% 108, 1 X 10°, 1 X 10'° 50, 100, 100
AMZ’Z%E 24 15.9050 (12) 1 X108, 1 X 10°, 1 X 10" 50, 100, 120
AMGS 12 7.177 72 (74) 1% 108, 1% 10°, 1 X 10! 50, 100, 100
AMGS 6 —0.50122(94) 1% 108, 1 10°, 1 X 100 50, 100, 110
AMGS 6 —8.025 32 (40) 1X 108, 1% 10° 1 X 10! 50, 100, 50

TABLE XIV. Contribution from diagrams of Set II(d) (m, ) of Fig. 1 to the muon g — 2. ny is
the number of Feynman diagrams represented by the integral. All integrals are evaluated in
double precision. The last two columns list initial sampling and its iteration, followed by
increased sampling and its iteration.

Integral ny  Value (Error) including ny ~ Sampling per iteration ~ Number of iterations

AMGY 12 0.001 746 1 (22) 1 X108, 1% 10° 50, 100
AMED 6 0.000 476 4 (14) 1 X 10% 1 X 10° 50, 100
AME, 12 0.000 323 9 (18) 1 108, 1 X 10° 50, 100
AMEY 12 —0.0016053(17) 1X 108, 1 X 10° 50, 100
AMGY 24 0.003 112 4 (24) 1 X 108, 1 X 10° 50, 100
AMGY, 12 —0.0020000(13) 1 X 108, 1 X 10° 50, 100
AME 6 0.001 766 5 (12) 1% 108, 1 X 10° 50, 100
AMGY 6 0.000 390 55 (72) 1 X108, 1 X 10° 50, 100
AMGH 12 —0.006 54950 (87) 1X 108, 1 X 10° 50, 100
AMGD 6 —0.00455021(57) 1 X 108, 1 X 10° 50, 100
AMGY 12 —0.002299 84 (74) 1% 10%, 1% 10° 50, 100
AMGY 12 0.004 413 20 (67) 1 X 108, 1% 10° 50, 100
AMGY 24 —0.02243750(93) 1X 108, 1 X 10° 50, 100
AMGY 12 0.008 566 26 (53) 1 X 108, 1 X 10° 50, 100
AMGY 6 —0.00516407 (46) 1% 108, 1% 10° 50, 100
AMGS 6 —0.00394006 (31) 1 X108, 1% 10° 50, 100
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PHYSICAL REVIEW D 83, 053002 (2011)

TABLE XV. Finite renormalization terms needed for Set II(d) of the muon g — 2. Both (me)
and (mt) cases are listed. M;’)’}f?ﬁ with B8 = A, B, E, F, G, H are consistent with those in Ref. [5].

My p,, with 8 = C, D in this table incorporated the R subtraction [19] and differ from those in

Ref. [5].
Integral Value (Error) Integral Value (Error)
AMJ, 2.047 84 (23) AMGS, —2.48660 (12)
AMY, 1.725 62 (49) AMG, —2.35433 (46)
My 5.676 49 (22) ABYY) 11.500 82 (47)
My 3.058 13 (13) ABYY) 6.101 83 (27)
My 2.194 66 (12) ABYY). 4,616 02 (24)
My —3.22425(10) ABYY) —6.701 64 (22)
My —-0.07376(17) ABYY) —4.07672 (36)
My —4.064 09 (9) ABYY) —6.53549 (20)
My —0.24697 (12) ABYY) —0.039 85 (28)
My 2.838 67 (4) ABYY) 534515 (8)
My 1.493 671 581 (8) ABYY) 2.439 109 (53)
My 1.094 258 282 7 (98) ABYY) 1.885 733 (16)
AMY, 0.000 903 9 (47) AMG, —0.0065716(31)
AMY, 0.000 247 8 (15) AMG, ~0.001 8888 (10)
My 0.000 239 71 (1) ABY) 0.002 436 62 (13)
My 0.000 153 39 (1) ABYY) 0.001 558 94 (8)
My 0.000 106 19 (1) ABYY. 0.001 006 23 (11)
My ~0.00019675 (1) ABYY) —0.00193479(9)
My 0.001 021 35 (1) ABYY. 0.009 826 56 (12)
My —0.00031806 (1) ABYY. —0.00332619(7)
My 0.000 260 44 (1) ABYY 0.002 250 09 (6)
My 0.000 124 05 (1) ABYY 0.001 292 36 (4)
M) 0.000 295 508 (21) ABYY) 0.002 880 01 (31)
myy) 0.000 078 067 4 (31) ABYY) 0.000 831 107 (75)

AVO[SetII(d)@™: Padé]= —0.99153(61) X 1074,  (62)

We also evaluated the mass-dependent term (ef) in Padé
approximation:

AVV[SetII(d)®): Padé] = —0.5427(18) X 1076, (63)

We have not evaluated this term directly. But it will be of
the same order as Eq. (63) and thus negligible numerically.

C. Muon g — 2: (me)

The leading contribution to the muon g — 2 comes from
the case (me). The value obtained using the numbers in
Tables X, XIII, and XV is

AVO[Set 11(d) )] = 0.4972 (65). (64)

This is in fair agreement with the value obtained using the
Padé approximant

ANO[Set II(d)™): Padé] = 0.5048 (75).  (65)

A crude evaluation of the contribution of the tau-lepton
loop gives

AVTSet 11(d)™)] = —0.007 673 (18), (66)

while the same contribution obtained using the Padé ap-
proximant is

AVY[Set II(d)™): Padé] = —0.007 674 (15).  (67)
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VII. SUMMARY AND DISCUSSION

The total contribution to a, from the Set II(c) is the sum
of Egs. (49), (51), and (52), and other terms listed in
Table V:

(10) = — ay?
a. [SetIl(c): all] = —0.116874 (43)(—) . (68)
T
Contributions of the tau-lepton loop listed in Table VIII are
less than the uncertainty of Eq. (68).

The total contribution to a, from the Set II(d) is the sum
of Egs. (59) and (61):

(10) = — ay’
ae [SetIl(d): all] = —0.243 10(29)(;) . (69)
The contribution of the tau-lepton loop is within the error
bars of Eq. (69) and is completely negligible at present.
The total contribution of Set II(c) to the muon g — 2
involving electron, muon, and tau-lepton loops is the sum
of Eq. (49), Egs. (53), (55), and (56), and values listed in
Table V:

5
al'O[Set I1(c): all] = —5.5594(11)(3) . (70
T
The total contribution of Set II(d) to the muon g — 2

involving electron, muon, and tau-lepton loops is the sum
of Egs. (59), (64), and (66):

a\\V[Set11(d): all] = 0.2465 (65)(%)5. (71)
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The sum of the electron-loop contribution to the muon
g — 2 from the diagrams Set II(c) and Set 1I(d) is the sum
of Egs. (53), (55), (56), and (64). We find

ALV (m,, /m,)[SetH(c + )] = —4.8886 (65), (72)

which is less than 1% of the leading contribution from the
diagrams of Set VI(a) that contain light-by-light-scattering
subdiagrams and vacuum-polarization subdiagrams [5,36].
Hence, the new contribution does not alter the previous
estimates:

A(Z‘O)(mﬂ/me)[estimate: Ref.[5]] = 663 (20),  (73)
A(zlo)(mﬂ/ m,)[estimate: Ref.[36]] = 643 (20).  (74)
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