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By determining the quark momentum fractions of the octet baryons from Nf ¼ 2þ 1 lattice simula-

tions, we are able to predict the degree of charge symmetry violation in the parton distribution functions of

the nucleon. This is of importance, not only as a probe of our understanding of the nonperturbative

structure of the proton, but also because such a violation constrains the accuracy of global fits to parton

distribution functions and hence the accuracy with which, for example, cross sections at the LHC can be

predicted. A violation of charge symmetry may also be critical in cases where symmetries are used to

guide the search for physics beyond the standard model.
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Charge symmetry is related to the invariance of the QCD
Hamiltonian under rotations about the 2-axis in isospace,
turning u quarks to d and protons to neutrons. Extensive
studies in nuclear systems have shown that it is an excellent
symmetry [1], typically accurate to a fraction of a percent
(e.g. mn �mp � 0:1%). At the quark level, it is of course

very badly broken, but this is hidden by dynamical chiral
symmetry breaking. There has been extensive theoretical
work on the effect of the u� d mass difference on parton
distribution functions (PDFs), where charge symmetry
implies [2,3]

upðx;Q2Þ ¼ dnðx;Q2Þ; dpðx;Q2Þ ¼ unðx;Q2Þ: (1)

Within the MIT bag model, Sather [4] and Rodionov et al.
[5] found that charge symmetry violation (CSV) in the
singly-represented valence sector, �dðxÞ � dpðxÞ �
unðxÞ, could be as large as 5% in the intermediate to large
range of Bjorken x. Furthermore, these authors also found
that �uðxÞ � upðxÞ � dnðxÞ was similar in magnitude but
of opposite sign.

Only recently has a global analysis of PDFs allowed for
CSV, with Martin et al. [6] finding a best fit that is remark-
ably close to the predictions of Ref. [5] for both the
magnitude and shape of �dðxÞ and �uðxÞ. Unfortunately,
the errors on their result are currently too large to be of
phenomenological use, but at the larger end CSV could
lead to considerable uncertainties in the predictions for
some processes of interest at the LHC. The need for
urgency in obtaining better constraints on CSV in PDFs

has recently become apparent in connection with the
search for physics beyond the standard model using neu-
trino deep-inelastic scattering. Indeed, the level of CSV
predicted in Refs. [4,5] would reduce the 3� discrepancy
with the standard model reported by the NuTeV collabo-
ration [7] by at least one standard deviation [8,9]. It was
argued by Londergan and Thomas that for the second
moments, which are relevant to the NuTeV measurement,
namely hx�d�ðxÞi and hx�u�ðxÞi (where the superscript
minus indicates a C-odd or valence distribution function),
the results had very little model dependence [10]. Further,
future planned new-physics searches will benefit from
improved constraints on CSV, such as the parity-violating
deep inelastic scattering program at Jefferson Lab [11].
In this paper, we report the first lattice QCD determina-

tion of the CSVarising from the u� dmass difference. Our
results are deduced by studying the second moments of the
parton distribution functions as we vary the light (degen-
erate u, d) and strange quark masses in a Nf ¼ 2þ 1

lattice simulation. The sign and magnitude of the effect
which we find are consistent both with the estimates based
on the MIT bag model [10] and with the best-fit global
determination of Ref. [6]. However, the uncertainties in this
work are considerably smaller than those derived from the
global analysis.
Because of valence quark normalization, the first mo-

ments of �u�ðxÞ and �d�ðxÞ must vanish. Hence, the
second moment (which we label �q�) is the first place
whereCSV can be visible in the valence quark distributions,
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�u� ¼
Z 1

0
dxxðup�ðxÞ � dn�ðxÞÞ ¼ hxipu� � hxind� ; (2)

�d� ¼
Z 1

0
dxxðdp�ðxÞ � un�ðxÞÞ ¼ hxipd� � hxinu� : (3)

As detailed below, these CSV momentum fractions are
related to the hyperon moments by

�u� � hxi�u� � hxi�s� (4)

�d� � hxi�s� � hxi�u� ; (5)

in the limit where the strange and light quarks have almost
equal mass.

In the numerical calculation of these moments, our
gauge field configurations have been generated with Nf ¼
2þ 1 flavors of dynamical fermions, using the Symanzik
improved gluon action and nonperturbatively OðaÞ im-
provedWilson fermions [12]. The quark masses are chosen
by first finding the SUð3Þflavor-symmetric point where
flavor singlet quantities take on their physical values and
then varying the individual quark masses while keeping
the singlet quark mass �mq ¼ ðmu þmd þmsÞ=3 ¼
ð2ml þmsÞ=3 constant [13]. Simulations are performed
on lattice volumes of 243 � 48 with lattice spacing,
a ¼ 0:083ð3Þ fm. A summary of our dynamical configura-
tions is given in Table I. More details regarding the tuning
of our simulation parameters can be found in Ref. [13].

On the lattice, we compute moments of the quark
distribution functions, qðxÞ

hxn�1iBq ¼
Z 1

0
dxxn�1ðqBðxÞ þ ð�1Þn �qBðxÞÞ; (6)

where x is the fraction of the momentum of baryon B
carried by the quarks, by calculating the matrix elements
of local twist-2 operators

hBð ~pÞj½Of�1...�ng
q �Tr�jBð ~pÞi¼2hxn�1iBq ½p�1 ���p�n �Tr�;

(7)

where O�1...�n
q ¼ in�1 �q��1D

$�2 � � �D$�nq.
In this paper, we consider only the quark-line connected

contributions to the second (n ¼ 2) moment, hxiq, which
means we only include the part of �qB coming from

quark-line connected backward moving quarks, the so-
called Z-graphs. While the contributions from discon-
nected insertions are expected to be small, in the following
analysis we will focus on differences of baryons and so
these contributions will cancel in the SUð3Þflavor limit and
should be negligible for small expansions around this limit,
as considered here.

We use the standard local operator Ohxi
q ¼ O44

q �
1=3ðO11

q þO22
q þO33

q Þ. The matrix element in Eq. (7) is

obtained on the lattice by considering the ratio

Rðt; �; ~pÞ ¼ C3ptðt; �; ~pÞ
C2ptðt; ~pÞ ¼ �E2

~p þ 1
3
~p2

E ~p

hxi; (8)

where C2pt and C3pt are lattice two- and three-point func-

tions, respectively, with total momentum, ~p, (in our simu-

lation we consider only ~p ¼ 0). The operator Ohxi
q is

inserted into the three-point function, C3ptðt; �; ~pÞ at time,

�, between the baryon source located at time, t ¼ 0, and
sink at time, t.
The operators used for determining the quark momen-

tum fractions need to be renormalized, preferably using a
nonperturbative method such as RI0-MOM [14–16]. Here,
however, we will only present results for ratios of quark
momentum fractions so that the renormalization constants
cancel and hence our results are scale and scheme inde-
pendent. In Fig. 1, we present results for the ratio of the
uðsÞ-quark momentum fraction of the �ð�Þ baryon to the
momentum fraction of the u in the proton. They are also
given in Table I, as a function of m2

�, normalized with the

center-of-mass of the pseudoscalar meson octet, X� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2

K þm2
�Þ=3

q
¼ 411 MeV. Here, we see the strong

effect of the decrease (increase) in the light (strange) quark
momentum fractions as we approach the physical point. In
particular, we see that the heavier strange quark in the �0

carries a larger momentum fraction than the up quark in the
proton. We also notice that the up quark in the �þ has a
smaller momentum fraction than the up quark in the pro-
ton. This is a purely environmental effect since the only
difference between these two measurements is the mass of
the spectator quark (s in �þ, d in p). This implies that the
momentum fraction of the strange quark in the� should be

TABLE I. Pion and kaon masses on 243 � 48 lattices with lattice spacing, a ¼ 0:083ð3Þ fm [13], where the error on the lattice
spacing has been included in the errors for m� and mK. The last four columns contain our results for ratios of the hyperon quark
momentum fractions.

�l �s m� [MeV] mK [MeV] hxi�u =hxipu hxi�s =hxipd hxi�s =hxipu hxi�u =hxipd
0.120 83 0.121 04 460(17) 401(15) 1.0263(51) 0.960(12) 0.993(23) 1.044(28)

0.120 90 0.120 90 423(15) 423(15) 1.0 1.0 1.0 1.0

0.120 95 0.120 80 395(14) 438(16) 0.9888(44) 1.0344(70) 1.010(25) 0.985(24)

0.121 00 0.120 70 360(13) 451(16) 0.9670(83) 1.059(14) 1.019(26) 0.953(29)

0.121 04 0.120 62 334(12) 463(17) 0.9631(94) 1.082(18) 1.037(29) 0.940(30)
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larger than that of the down quark in the proton, which is
exactly what we see in Fig. 2.

To infer the level of CSV relevant to the nucleon, we
only need to consider a small expansion about the
SUð3Þflavor symmetric point, for which linear flavor expan-
sions prove to work extremely well [13]. For instance, we
can write

�u ¼ m�

�
�@hxipu

@mu

þ @hxipu
@md

�
þOðm2

�Þ; (9)

where m� � ðmd �muÞ and we have already made use of
charge symmetry by equating @hxind=@md ¼ @hxipu=@mu

and @hxind=@mu ¼ @hxipu=@md. A similar expression holds

for �d.

Near the SUð3Þflavor symmetric point, we note that the up
quark in the proton is equivalent to an up quark in a�þ or a
strange quark in a �0, which we describe collectively as
the ‘‘doubly-represented’’ quark [17].
The local derivatives required for �u can be obtained by

varying the masses of the up and down quarks indepen-
dently. Within the present calculation, we note that the

difference hxi�s � hxipu measures precisely the variation of
the doubly-represented quark matrix element with respect
to the doubly-represented quark mass (while holding the
singly-represented quark mass fixed). Similar variations
allow us to evaluate the other required derivatives, where
we write

@hxipu
@mu

’ hxi�0

s � hxipu
ms �ml

;
@hxipu
@md

’ hxi�þ
u � hxipu
ms �ml

; (10)

@hxipd
@mu

’ hxi�0

u � hxipd
ms �ml

;
@hxipd
@md

’ hxi�þ
s � hxipd
ms �ml

: (11)

With these expressions and Eq. (9), we obtain the relevant
combinations for our determination of CSV in the nucleon

�u¼m�

hxi�þ
u �hxi�0

s

ms�ml

; �d¼m�

hxi�þ
s �hxi�0

u

ms�ml

: (12)

By invoking the Gell-Mann–Oakes–Renner relation and
normalizing to the total nucleon isovector quark momen-
tum fraction, we write

�u

hxipu�d

¼ m�

�mq

ðhxi�þ
u � hxi�0

s Þ=hxipu�d

ðm2
K �m2

�Þ=X2
�

; (13)

�d

hxipu�d

¼ m�

�mq

ðhxi�þ
s � hxi�0

u Þ=hxipu�d

ðm2
K �m2

�Þ=X2
�

: (14)

Written in this way, the fractional CSV terms are just the
slopes of the curves shown in Fig. 3 (evaluated at the
symmetry point) multiplied by the ratio m�= �mq. By fitting

the slopes, we obtain

�u

hxipu�d

¼ m�

�mq

ð�0:221� 0:054Þ; (15)

�d

hxipu�d

¼ m�

�mq

ð0:195� 0:025Þ: (16)

Chiral perturbation theory yields the quark mass ratio
m�= �mq ¼ 0:066ð7Þ [18] and the isovector momentum frac-

tion is experimentally determined to be hxipu�d ’ 0:158 at

4 GeV2. Substituting these values into Eqs. (15) and (16)
yields the first lattice QCD estimates of the CSV momen-
tum fractions

�u ¼ �0:0023ð6Þ; �d ¼ 0:0020ð3Þ: (17)

The first observation we make is that these results are
roughly equal in magnitude and have opposite sign.

FIG. 2 (color online). Ratio of singly-represented quark mo-
mentum fractions, hxi�s =hxipd and hxi�u =hxipd as a function of

m2
�=X

2
�, where we have determined X� from the masses in

Table I.

FIG. 1 (color online). Ratio of doubly-represented quark mo-
mentum fractions, hxi�u =hxipu and hxi�s =hxipu as a function of
m2

�=X
2
�, where we have determined X� from the masses in

Table I.
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These values are slightly larger than, but within errors in
agreement with, the phenomenological predictions of
[5,8], where within the MIT bag model (at a scale Q2 ’
4 GeV2) they found �u� ¼ �0:0014 and �d� ¼ 0:0015.
They are also consistent with the best-fit values of the
phenomenological analysis of MRST [6], �u� ¼
��d� ¼ �0:002þ0:009

�0:006 (90% CL).

While our work provides the first nonperturbative QCD
result to give a clear indication of the sign and magnitude
of the CSV in these moments, we point out that it is based
on lattice simulations using a single volume and lattice
spacing. To achieve a precise quantitative determination
will require a detailed study of the finite-volume and dis-
cretization effects which we plan to address by extending
these calculations to larger volumes and a second lattice
spacing. Additionally, it is well known that lattice results
for the second moment of the isovector nucleon PDFs,
hxiu�d, do not agree well with experiment (see e.g., [19]).
Based on chiral perturbation theory, it is expected that
finite size effects and chiral corrections are potentially
large [20–23], but this has so far not been confirmed by

lattice calculations. This discrepancy may also be due to a
mismatch of lattice nucleon matrix elements and perturba-
tive Wilson coefficients. However, what concerns us here
are ratios of moments of PDFs, in which such effects
cancel out. For example, we find hxipu=hxipd � 2:3 in good

agreement with hxipu�=hxipd� ¼ 2:40ð6Þ found in [24]. We

are also encouraged that lattice results for the ratio
hxiðu�dÞ=hxið�u��dÞ agree well with experiment [25].

Lastly, we have estimated the CSV associated only with
the u� d mass difference. It is important to also find a
method to investigate the CSV induced by electromagnetic
effects which is expected [6,26] to be of a similar size. The
determination of this effect is, however, a separate calcu-
lation which will have no impact on our result.
In summary, we have performed the first lattice deter-

minations of the quark momentum fractions of the hyper-
ons, � and � in Nf ¼ 2þ 1 lattice QCD. By examining

the SUð3Þflavor-breaking effects in these momentum frac-
tions, we are able to extract the first QCD determination of
the size and sign of charge symmetry violations in the
parton distribution functions in the nucleon, �u and �d.
Although our lattice calculations are restricted to the sec-
ond (n ¼ 2) moment of the C-even quark distributions, our
results for �u ¼ �0:0023ð6Þ, �d ¼ 0:0020ð3Þ are in
excellent agreement with earlier phenomenological calcu-
lations [5,8].

The numerical calculations have been performed on the
apeNEXT at NIC/DESY (Zeuthen, Germany), the IBM
BlueGeneL at EPCC (Edinburgh, UK), the BlueGeneP
(JuGene) and the Nehalem Cluster (JuRoPa) at NIC
(Jülich, Germany), and the SGI ICE 8200 at HLRN
(Berlin-Hannover, Germany). We have made use of the
Chroma software suite [27]. This work has been supported
in part by the DFG (SFB/TR 55, Hadron Physics from
Lattice QCD) and the EU under Grant Nos. 238353 (ITN
STRONGnet) and 227431 (HadronPhysics2). J. Z. is sup-
ported by STFC under Contract No. ST/F009658/1. This
work was also supported by the University of Adelaide and
the Australian Research Council through Grant
No. FL0992247.
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