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We study bound orbits of a free particle around a singly rotating black ring. We find there exists chaotic

motion of a particle which is gravitationally bound to the black ring by using the Poincaré map.
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I. INTRODUCTION

Chaos is one of the characteristic behaviors of nonlinear
dynamical systems. In the context of general relativity,
there are two main issues concerning chaos. One is chaotic
oscillations which generally occur in the early stage of the
universe near the initial singularity [1,2]. The other is
chaotic motion of particles around black holes. There
appears chaotic behavior of charged particles around a
magnetized black hole [3], particles around a gravitation-
ally perturbed black hole [4], a spinning particle around a
black hole in vacuum [5], and particles around multiple
black holes [6].

Recently, general relativity in higher dimensions has
gathered much attention in relation to modern unified
theories of interactions. Properties of the gravitational field
depend on the spacetime dimensions critically. As for the
cosmological models, the chaotic oscillations of the early
universe disappear in higher dimensions [7]. As for the
black holes, in five dimensions, exact solutions of a black
ring with the horizon topology of S2 � S1 are discovered
by Emparan and Reall [8] in addition to rotating black
holes with the spherical horizon topology obtained by
Myers and Perry [9].

The geodesic motion of a test particle is one of the most
important probes for spacetime geometry because it re-
veals the geometrical difference of the black ring and the
black hole. It is known that Myers-Perry black holes in any
dimensions allow separation of variables in the Hamilton-
Jacobi equation for geodesics [10] as well as the Kerr black
hole in four dimensions. This occurs because of the exis-
tence of a rank-2 Killing tensor in addition to Killing
vectors generating isometries. However, the separation of
variables in the black ring geometry does not occur by the
ring coordinates [11,12]. As another interesting difference,
the black rings have stable bound orbits of a particle [13],
while the black holes in five dimensions do not. This comes
from the difference of shapes of black objects.

If the particle motion bounded in a finite region is not
integrable, the following natural question arises. Is the
particle motion chaotic? The nonseparability of variables

in the black ring geometry suggests that there is no addi-
tional constant of motion except constants associated with
the Killing vectors. However, we cannot conclude the
absence of an additional constant of motion immediately
because the Hamilton-Jacobi method depends on the
choice of variables. In this report, we show the black ring
geometry has chaotic bound orbits by using the Poincaré
map. Appearance of the chaos implies the absence of an
additional constant of motion in the black ring metric.

II. GEOMETRY OF THE BLACK RING

In terms of ring coordinates ðt; x; y; �; c Þ, the black ring
metric is given by

ds2 ¼ �FðyÞ
FðxÞ

�
dt� CR

1þ y

FðyÞ dc
�
2 þ R2

ðx� yÞ2 FðxÞ

�
�
�GðyÞ

FðyÞ dc
2 � dy2

GðyÞ þ
dx2

GðxÞ þ
GðxÞ
FðxÞ d�

2

�
; (1)

where

Fð�Þ ¼ 1þ ��; Gð�Þ ¼ ð1� �2Þð1þ ��Þ; (2)

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�� �Þ 1þ �

1� �

s
; (3)

where the parameter R denotes the radius of the black ring,
and � and � characterize the rotation velocity and the
thickness of the ring, respectively. The ranges of the pa-
rameters are

0< R; 0< � � � < 1; (4)

and the ranges of the ring coordinates are given by

�1 � y � �1; �1 � x � 1: (5)

In the black ring metric (1), y ¼ �1=� is the position of
the event horizon which has the topology of S2 � S1. The
metric admits three Killing vectors, @t, @c , and @�. The
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ring axis, fixed points of the rotation generated by @c , is

y ¼ �1, and the equatorial plane, fixed points of the
rotation generated by @�, is x ¼ �1. The ergosurface

exists at y ¼ �1=�, i.e., the Killing vector @t, which is
timelike at the spatial infinity, becomes null there. In terms
of regularity condition at the ring axis and the equatorial
plane, � has to be chosen as

� ¼ 2�

1þ �2
; (6)

then the regular black ring solutions have two free parame-
ters R and �.

III. PARTICLE MOTION AROUND
THE BLACK RING

The Hamiltonian of a free particle with mass m is
generally given by

H ¼ N

2
ðg��p�p� þm2Þ; (7)

where N is the Lagrange multiplier and p� is the canonical

momentum. In the case of particle motion around the black
ring metric (1), since t, c , and � are cyclic coordinates,
then the conjugate momenta pt, pc , and p� are constants

of motion. Then, the geodesic Hamiltonian is reduced in
the form

H ¼ N

2

�
gxxp2

x þ gyyp2
y þ E2

�
Ueff þm2

E2

��
; (8)

where

Ueff ¼ gtt þ g��l2� þ gc c l2c � 2gtc lc (9)

with

gtt ¼ �FðxÞ
FðyÞ �

C2ðx� yÞ2ðyþ 1Þ2
GðyÞFðxÞFðyÞ ;

gxx ¼ ðx� yÞ2
R2

GðxÞ
FðxÞ ;

gyy ¼ �ðx� yÞ2
R2

GðyÞ
FðxÞ ;

g�� ¼ ðx� yÞ2
R2GðxÞ ;

gc c ¼ �FðyÞðx� yÞ2
R2GðyÞFðxÞ ;

gtc ¼ �Cðx� yÞ2ðyþ 1Þ
RGðyÞFðxÞ ;

(10)

and E ¼ �pt, l� ¼ p�=E, and lc ¼ pc =E are constants.

By variation of the geodesic action withN, we obtain the
Hamiltonian constraint condition

gxxp2
x þ gyyp2

y þ E2

�
Ueff þm2

E2

�
¼ 0: (11)

In what follows, to give more intuitive pictures of par-
ticle motion, we use �-� coordinates which are defined as

� ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p
x� y

; � ¼ R
1� x2

x� y
: (12)

In these coordinates, the flat metric takes the form

ds2 ¼ �dt2 þ d�2 þ �2dc 2 þ d�2 þ �2d�2: (13)

The ring axis and the equatorial plane correspond to � ¼ 0
and � ¼ 0, respectively, and the horizon of the black ring
y ¼ �1=� is represented by a circle on the equatorial
plane. The effective potential Ueff is a function of � and
� with the parameters �, lc , and l�.

As is shown in the previous work [13], if l� and lc are

chosen in a suitable range, the effective potentialUeff has a
local minimum at a point, say ð�s; �sÞ, i.e., there exist
stable bound orbits around the black ring. The projection
of each orbit on a time slice is a toroidal spiral curve on the
two-dimensional torus, direct product of S1 with radius �s
and S1 with radius �s. In the case that lc ¼ 0, a potential

minimum appears on the ring axis � ¼ 0. A minimum
point on the ring axis ð�s ¼ 0; �sÞ implies a stable circular
orbit of the radius �s on the ring axis. There also exist
potential minima off the ring axis for some l�. It means

that the orbits with lc ¼ 0 can take toroidal spiral shapes

because of dragging by the rotation of black rings.

IV. CHAOTIC MOTION

Now, we observe the appearance of chaotic behavior of
bound orbits around the black ring. We consider dynamical
geodesic motion bounded in a finite region. Such orbits
exist near the stable bound orbits. In Fig. 1, we show
typical orbits in the �-� plane with contours of Ueff by
solving the equations of motion numerically. We find a
saddle point of Ueff between the local minimum and the
horizon (see Fig. 1). The particle motion with the energy E
in the range

Es � E< Eu (14)

is bounded in a finite region around the local minimum,
where Es and Eu are energy levels of the local minimum
(stable point) at ð�s; �sÞ and the saddle point (unstable
point) of Ueff , respectively. If the energy of the particle is
a little bit larger than Es such that the particle orbit is
confined in a vicinity of the local minimum, the orbit
makes a Lissajous figure. As the energy E increases, the
Lissajous figure is deformed, and in the case that the
energy becomes as large as Eu such that particle can
approach the saddle point of Ueff , the orbits become com-
plicated and irregular.
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To inspect the trajectories in the phase space
ð�; �; p� ; p�Þ, we use the Poincaré map. We plot intersec-

tions of a trajectory by the surface of section � ¼ �s with
p� > 0 on the two-dimensional �-p� plane (see Fig. 2). In

the low energy case, we see the plotted points lie on a
closed curve in the �-p� plane. As the energy E increases,

the closed curve in the Poincaré map is modulated and
broken. In the high energy case, sections of a single tra-
jectory fill a finite region. The behavior of the Poincaré
map which depends on the energy of the particle is the

same as the Hénon-Heiles system [14]. The scattered
points of the Poincaré map imply the particle motion is
chaotic. Therefore, we can conclude that there is no addi-
tional constant of motion except the energy and the angular
momenta which are related to the isometries of the metric.
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FIG. 2 (color online). The Poincaré maps with the surface of section � ¼ �s ¼ 0:3 are shown in the �-p� plane. The horizontal axis
is � and the vertical axis is p�. The parameters are the same as in Fig. 1. Thirty orbits with different initial conditions are superposed in

each panel.
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FIG. 1 (color online). Orbits of a particle are plotted on the �-� plane with contours of the effective potential Ueff . The horizontal
axis denotes � and the vertical axis denotes �. The parameters are set as � ¼ 0:4 and R ¼ 1 for the black ring geometry, and l� ¼ 1:52

and lc ¼ 0:02 for constants of motion. Energies are (a) E ¼ 0:941, (b) E ¼ 0:947, and (c) E ¼ 0:952. The energy levels of the orbits

are shown by broken closed curves.
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