
Central charge bounds in 4D conformal field theory

Riccardo Rattazzi,1 Slava Rychkov,2 and Alessandro Vichi1
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We derive model-independent lower bounds on the stress tensor central charge CT in terms of the

operator content of a 4-dimensional conformal field theory. More precisely, CT is bounded from below by

a universal function of the dimensions of the lowest and second-lowest scalars present in the conformal

field theory. The method uses the crossing symmetry constraint of the 4-point function, analyzed by means

of the conformal block decomposition.

DOI: 10.1103/PhysRevD.83.046011 PACS numbers: 11.25.Hf

I. INTRODUCTION

Conformal field theory (CFT) was born to describe fixed
points of renormalization group flows. This still remains its
main vocation, although it has many other applications as
well. In 2D, the constraining power of conformal symme-
try is tremendous and often leads to an exact solution of the
theory. In this paper we are concerned with the much less
constrained 4D case. Presumably, there are lots of interact-
ing 4D CFTs out there, but we do not know much about
them. For instance, ‘‘conformal windows’’ of gauge theo-
ries should provide lots of examples, but even the spectrum
of these theories remains unknown (except for the chiral
ring in the supersymmetric case).

In absence of an exact solution, it is natural to look for
universal constraints, satisfied all over the ‘‘landscape’’ of
CFTs. Two years ago [1,2] we found one such constraint,
related to a gap in the spectrum of operator dimensions.
Namely, we examined the maximal possible dimension of
the lowest-dimension operator appearing in the operator
product expansion (OPE) of two scalar operators. We
found that if one fixes the dimension of external scalars,
the lowest-dimension operator that appears cannot have a
dimension above a certain model-independent bound.

Last year a different constraint was presented in [3]: it
was found that the OPE coefficient of three scalars cannot
exceed a certain universalOð1Þ bound, which depends only
on their dimensions. One can call this bound a universal
limit on the interaction strength.

The above results were obtained by using consistency
between OPE and crossing symmetry (also known as OPE
associativity) as a constraining principle. The principle
itself was first proposed more than 35 years ago by
Polyakov [4], but until our work no general results were
obtained from it.

We would like to mention a parallel line of development
in 2D CFT, where Hellerman [5] and others [6,7] have also
studied constraints on the gap in the spectrum, in terms of
the central charge. Their main constraining principle is
modular invariance, which is limited to 2D, but morally
not so different from OPE associativity (both are related to

the change of foliation when quantizing the theory). Also
interesting is the role played by all these universal con-
straints in an ambitious program of exploring the space of
CFTs initiated by Douglas [8].
Coming back to 4D, in this paper we will explore the

following question: What can we say about the central
charge of the theory, if we know something about the
spectrum of its operator dimensions? More precisely, we
will assume that the theory contains a scalar operator
of a given dimension. Under this assumption, we will
show that the central charge must be bigger than a
certain universal lower bound. This is natural, since the
central charge ‘‘measures’’ the number of degrees of
freedom, and by assumption we know that our theory is
not trivial.
In a certain range of scalar dimensions we will be able to

show that the central charge is necessarily bigger than that
of the free scalar (‘‘an interacting theory has more degrees
of freedom’’).
As we will explain below, the problem of bounding the

central charge from below is equivalent to the problem of
bounding from above the OPE coefficient of the stress
tensor in the scalar times scalar OPE. The similarity with
the problem analyzed in [3] is then clear, and we will be
able to use the method of that paper. To make connection
with the results of [1,2] we will also study how the central
charge bound improves as a function of the assumed gap in
the scalar sector of the OPE.
Everywhere we assume that we are dealing with a

unitary theory. In a nonunitary theory, the central charge
may well be zero (or negative) without the CFT being
trivial, so our question would not even make sense.

II. FORMULATION OF THE PROBLEM

We begin by stating precisely our assumptions and
goals. In an arbitrary unitary CFT in D ¼ 4 spacetime
dimensions, we consider the central charge CT , defined
as the coefficient in the 2-point function of the stress tensor
operator T��:
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[SD ¼ 2�D=2=�ðD=2Þ]. It is assumed that the stress tensor
is normalized canonically, that is consistently with the
Ward identities (written here schematically for scalars):

@�hT��ðxÞ�ðx1Þ . . .�ðxnÞi
¼ �X

i

�ðx� xiÞh�ðx1Þ . . .@��ðxiÞ . . .�ðxnÞi: (2)

The central charge CT is an interesting quantity because it
provides a certain measure of the number of degrees of
freedom in the theory. For example, for a free conformal
theory of N� scalars, Nc Dirac fermions, and NA vectors,

we have [9]

CT ¼ 4
3N� þ 8Nc þ 16NA: (3)

Moreover, by unitarity CT > 0, and CT ¼ 0 corresponds to
a trivial theory. It is well known that CT is an imperfect
measure since, unlike in 2D, it does not in general decrease
along the renormalization group flow [10]. The other cen-
tral charge a, defined in terms of the 4D trace anomaly,
fares better in this respect [11], while still remaining
imperfect [12]. In this paper, we will stick to CT since it
is the one which we are able to constrain.

Now assume that our theory contains a primary
Hermitian1 scalar operator � of a given dimension d.
Our main goal will be to show that under this assumption,
the central charge of the theory cannot become arbitrarily
small. In other words, there exists a certain universal bound

CT � fðdÞ> 0; (4)

where fðdÞ depends on d but is otherwise model-
independent. In this paper we will derive such a bound in
the interval 1 � d � 2.

III. SOLUTION STRATEGY

A. Conformal blocks

We will approach this problem by imposing the con-
straint of OPE associativity in the 4-point function of the
operator �. Consider all primary Hermitian operators
appearing in the OPE ���:

��� � 1þ S� þ . . . ðspin 0Þ
þ T�� þ . . . ðspin 2Þ
þ higher spins: (5)

Here in the first line we included the unit operator and all
scalar primaries, starting from a certain dimension � � 1
and higher. In the second line we have the stress tensor
(spin 2, dimension 4 primary) and possibly higher dimen-
sion spin 2 fields. The third line contains all higher spin
primaries (� � lþ 2 by the unitarity bounds [13]). Note
that by the permutation symmetry of the �� state only
even spins can appear in this OPE.
Now, it has been shown by Dolan and Osborn [14] that

every primary spin l dimension � operator O�;l appearing

in the ��� OPE with a coefficient c�;l gives a contribu-
tion to the 4-point function of � of the following form:

h�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þi � c2�;l
g�;lðu; vÞ
ðx212Þdðx234Þd

;

u ¼ x212x
2
34=ðx213x224Þ; v ¼ x214x

2
23=ðx213x224Þ;

(6)

g�;lðu; vÞ ¼ ð�Þl
2l

k�þlðzÞk��l�2ð�zÞ � ðz $ �zÞ
z� �z

;

k�ðxÞ � x�=2þ1
2F1ð�=2; �=2; �; xÞ;

u ¼ z�z; v ¼ ð1� zÞð1� �zÞ: (7)

The functions of the cross ratios g�;lðu; vÞ are called

conformal blocks. They can be thought of as summing
up the contributions of the primary O�;l and all its de-

scendants to the 4-point function of �, when applying the
OPE in the (12) (34) channel. It is nontrivial that such
summation can be performed in closed form. The clear
advantage of the representation (6) is that it can be used at
finite point separation, unlike the OPE which is only useful
in the coincidence limit xi ! xj.

B. Normalizations

Equation (6) assumes that both � and O are unit nor-
malized:

h�ðxÞ�ð0Þi ¼ ðx2Þ�d; (8)

hO�1...�l
ðxÞO�1...�l

ð0Þi
¼ 1

ðx2Þ�
�
1

l!
ðI�1�1

. . . I�l�l
þ permsÞ � traces

�
; (9)

and the coefficient c�;l is extracted from the 3-point

function

h�ðx1Þ�ðx2ÞO�1...�l
ð0Þi

¼ c�;l

ðx212Þd�ðð��lÞ=2Þðx21Þð��lÞ=2ðx22Þð��lÞ=2

� ðZ�1
. . .Z�l

� tracesÞ; (10)

Z� ¼ x1�=x
2
1 � x2�=x

2
2: (11)

On the other hand, the 3-point function of a canonically
normalized stress tensor [see Eq. (1)] is fixed by the Ward
identity [9]:

1If � is not Hermitian, we can consider its real and imaginary
parts.

RATTAZZI, RYCHKOV, AND VICHI PHYSICAL REVIEW D 83, 046011 (2011)

046011-2
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ðD� 1ÞSD
1

ðx212Þd�1x21x
2
2

�
�
Z�Z� � 1

D
���Z

2

�
: (12)

These relations determine the coefficient c4;2 appearing

in (6) and (10) in terms of the central charge CT and the
dimension of � [14]:

c4;2 ¼ � Dd

D� 1

1ffiffiffiffiffiffi
CT

p : (13)

Via (6), this crucial relation implies that for large CT , the
contribution of the stress tensor to the 4-point function of�
decreases as 1=CT . This is in accord with what happens,
for example, in AdS/CFT [15], where CT � N2 while the
stress tensor contribution corresponds to the graviton ex-
change in the bulk, which is 1=N2 suppressed. Theories
without a stress tensor (i.e. in which c4;2 ¼ 0) should be

viewed as theories with an infinite central charge. One
example of such a theory is the Gaussian scalar field
of dimension d > 1, see [16] for its conformal block
decomposition.

However, in this paper we are interested in constraining
the opposite limit of small CT , in which the stress tensor
contribution increases. As we will see below, such an
increase eventually becomes inconsistent with crossing
symmetry, and this will give us the bound (4).

C. Analytic structure of conformal blocks
and crossing symmetry

Let us now discuss the analytic structure of the confor-
mal blocks. The variable z appearing in (7) may look ad
hoc, but in fact it is the 4D analogue of the usual complex
variable of the 2D CFT, see Fig. 1. In the Euclidean
signature z is complex and �z ¼ z�. In this case the confor-
mal blocks are real functions, smooth everywhere away
from z ¼ 0 and from the ð1;þ1Þ cut along the real axis.
Since the imaginary part of the hypergeometrics is discon-
tinuous across the cut, the conformal blocks have a 1=Im z

singularity there. Everywhere else on the real axis, and
away from it, they are regular.
The asymptotic behavior of conformal blocks as z ! 0

is fixed by the OPE. The singular behavior in the z ! 1
limit, which corresponds to the crossed channel x2 ! x3,
has no simple physical meaning. However, the sum over all
blocks must be crossing symmetric and thus consistent
with the OPE in the crossed channel as well. Because of
the unphysical singularities, it is not immediately clear
how to impose the OPE consistency in the crossed channel.
In fact for this reason Polyakov [4] suggested using a
different type of expansion into objects he called unitary
blocks. However, at the time the explicit and simple ex-
pressions (7) were of course not yet known. Armed with
these expressions, a different strategy becomes possible.
Namely, we will study the crossing symmetry condition

at finite point separation, which can be written as

Gðu; vÞ
ud

¼ Gðv; uÞ
vd

; (14)

where we used the fact that crossing x1 $ x3 corresponds
to the interchange of u and v. Here Gðu; vÞ is the sum over
all contributing conformal blocks:

Gðu; vÞ ¼ 1þX
c2�;lg�;lðu; vÞ; (15)

where c2�;l are the squares of the OPE coefficients, and we

separated the contribution of the unit operator. It will be
important that in a unitary theory all c�;l are real, so that

their squares are positive [1].
Instead of going straight to the crossed OPE limit

x2 ! x3, we will study (14) around the democratic con-
figuration2 when x2 is at equal distances from x1 and x3.
This corresponds to z ¼ 1=2. In fact the same configura-
tion can be mapped conformally to 4 operators inserted
at the vertices of a square (Fig. 2). Both sides of (14) are
regular around z ¼ 1=2. Expanding the crossing condition
into a two-dimensional power series around this point, we
get an infinite number of linear equations, which have to be
satisfied for some positive coefficients c2�;l. Which�, lwill

enter the expansion with nonzero coefficients depends on
the CFT. The problem of unphysical singularities, brought
up by Polyakov [4], is resolved as follows. The left-hand
side of (14) is smooth away from the cut along ð1;þ1Þ,
while the right-hand side is smooth away from ð�1; 0Þ,
since the crossing maps z ! 1� z. Assuming that both
sides can be analytically continued from their region of
convergence, the cuts must cancel when summing over all
� and l. In other words, imposing that there is no cut
should give no additional constraints compared to the

x1

x4

1

x2
z

x3

FIG. 1 (color online). Using conformal freedom, any configu-
ration of 4 points can be mapped into the one shown in this
figure, in which 3 points are fixed and one (x2) is moving in a two
plane passing through x1 and x3. The complex coordinate of x2 in
this plane is precisely the z of (7), while �z ¼ z�. The conformal
blocks are smooth everywhere in the plane except for z ¼ 0 and
the shown ð1;þ1Þ cut along the real axis.

2Similarly, Hellerman [5], in his analysis of the modular
invariance constraint, chose to work at the self-dual inverse
temperature � ¼ 2�.

CENTRAL CHARGE BOUNDS IN 4D CONFORMAL FIELD . . . PHYSICAL REVIEW D 83, 046011 (2011)

046011-3



ones that we are using, although it may be a different and
perhaps a useful way to package the same information.

D. Method of linear functionals

For further discussion let us rewrite Eq. (14) in the
equivalent ‘‘sum rule’’ form:

1 ¼ X
c2�;lFd;�;lðu; vÞ; (16)

Fd;�;lðu; vÞ � vdg�;lðu; vÞ � udg�;lðv; uÞ
ud � vd

: (17)

This equation says that the ‘‘crossing symmetry deficit’’ of
all the fields in the OPE, normalized to the deficit of the
unit operator, has to sum up to 1.

Let us view Eq. (16) as a linear relation in the vector
space of functions of two variables fðu; vÞ. Then it can be
given the following geometric interpretation. As we keep
the CFT spectrum fixed and vary the squared OPE coef-
ficients c2�;l � 0, the vectors in the right-hand side fill in a

convex cone generated by the functions Fd;�;l. The sum

rule says that the function fðu; vÞ � 1 must belong to this
cone (see Fig 3(a)).

If we start imposing restrictions on the CFT spectrum,
for example, by demanding that there should be a gap in
the scalar sector: � � �� for l ¼ 0, this reduces the list of
vectors generating the cone, and a fortiori the cone itself. It
may well happen that the new reduced cone no longer
contains the function f � 1, Fig 3(b). A spectrum leading
to such a cone cannot be realized in any CFT.

If the situation in Fig 3(b) occurs, then, since the cone is
convex, one can always find a hyperplane passing through
the origin and separating f � 1 from the cone, Fig 3(c). In
analytical language, this means that there exists a linear
functional � taking values of the opposite sign on f � 1
and on the functions generating the cone:

�½1	 � 0; �½Fd;�;l	> 0: (18)

In practice, the functional may be build up as a linear
combination of the partial derivatives with respect to z
and �z at the democratic point z ¼ �z ¼ 1=2.

So far we have described the method used in [1,2] to
constrain the maximal allowed gap in the scalar sector. In
order to constrain the size of the OPE coefficient c4;2, we

proceed as follows [3].3 Let us rewrite the sum rule by
transferring a part of the stress tensor contribution into the
left-hand side:

1� tFd;4;2 ¼ ðc24;2 � tÞFd;4;2 þ
X

ð�;lÞ�ð4;2Þ
c2�;lFd;�;l: (19)

The geometric interpretation of this equation is that the
t-dependent vector 1� tFd;4;2ðu; vÞ belongs to the same

cone as before as long as t � c24;2. In other words,

the maximal allowed value of c24;2 can be determined as

the value t ¼ tcr for which the curve 1� tFd;4;2ðu; vÞ
crosses the cone boundary, Fig. 4. Analytically, we can
detect that the crossing happened if there exists a linear
functional such that

�½Fd;�;l	 � 0; (20)

for all functions generating the cone, and

�½1� tFd;4;2	 ¼ 0: (21)

Note that in the present situation the function f � 1 must
of course belong to the cone, otherwise the CFT simply
does not exist and there is no point of discussing an upper
bound on the OPE coefficients. Thus, we are assuming
from the start �½1	 � 0, unlike in (18).
Since the functional is linear, Eq. (21) is satisfied for

t ¼ �½1	=�½Fd;4;2	; (22)

and for larger t the functional will become negative as long
as�½Fd;4;2	> 0. Thus, we obtain the following result: each
functional � satisfying (20) gives a bound on the maximal
allowed value of c24;2:

maxc24;2 � �½1	=�½Fd;4;2	: (23)

This bound can be optimized by choosing the functional
judiciously.
The method just described was first applied in [3] to

constrain the size of the OPE coefficients of scalar opera-
tors, while here we will use it to constrain the size of c4;2,
which via (13) will give us a lower bound on CT . Another
difference from [3] is that we will study how the bound
improves as a function of the assumed gap in the scalar
sector of the OPE.

IV. RESULTS

We will now present our numerical results. First of all,
let us consider the most general case when we are not
making any assumption concerning the gap in the scalar
sector of the OPE. This means that the scalar operators
appearing in the OPE are allowed to have any dimension
� � d. Operators with lower dimensions are a priori ex-
cluded if � is the lowest-dimension scalar. Under this

x1

x2 x3

x4

FIG. 2 (color online). This configuration, with 4 points at the
vertices of a square, is conformally equivalent to the one in Fig. 1
with z ¼ 1=2.

3We choose c4;2 for definiteness; the method in fact works for
any OPE coefficient.
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assumption, we use the method of linear functionals to
bound c24;2 from above. For this study, we choose linear

functionals of the form

�½f	 ¼ X
n;m even;

0�nþm�N

�n;m

n!m!
@na@

m
b fja¼b¼0; (24)

z ¼ 1=2þ aþ b; �z ¼ 1=2þ a� b: (25)

As advertised, we are working around the democratic point
z ¼ �z ¼ 1=2. The fact that we are choosing z and �z as real
and independent can be interpreted as a Wick rotation to
the Minkowski space [1]. The functional only contains
even derivatives because the functions Fd;�;l are even in

both a and b [1].
We will choose �0;0 ¼ 1 to have �½1	 ¼ 1. Then, to

optimize the bound (23), the coefficients of the functional
must be chosen so that

�½Fd;4;2	 ! max; (26)

subject to the constraints (20), which in our case mean

�½Fd;�;0	 � 0 for all �� d;

�½Fd;�;l	 � 0 for all �� lþ 2; l¼ 2;4; . . . :
(27)

We will consider the functionals with the maximal de-
rivative order up to N ¼ 16. Pushing to higher N values is
likely to somewhat improve the bound. In principle N as
large as 18 were demonstrated feasible in this kind of
studies [2].

Equations (26) and (27), define an optimization problem
for the coefficients �m;n. The constraints are given by linear

inequalities, and the cost function is also linear, which

makes it a linear programming problem. Although the
number of constraints in (27) is formally infinite, they
can be reduced to a finite number by discretizing � and
truncating at large � and l, where the constraints approach
a calculable asymptotic form [1]. The reduced problem can
be efficiently solved by well-known numerical methods,
such as the simplex method. A found solution can be then
checked to see if it also solves the full problem. This
procedure was developed and successfully used in [1–3].
Using this procedure, we computed a bound on c24;2 from

above, which via (13) translates into a bound on CT from
below. The latter bound is plotted in Fig. 5 as a function of
the dimension of � in the range 1 � d � 2. We plot our
best bound for N ¼ 16 and, for comparison, a weaker
bound obtained with a smaller value N ¼ 12.
Postponing the discussion to the next section, let us now

consider what happens with the bound in the presence of a
gap in the scalar spectrum. In other words, we now assume
that the first scalar operator in the ��� OPE has dimen-
sion �� strictly bigger than d. Technically, this problem is
analyzed exactly as the previous one, except that the first
set of constraints (27) is replaced by a shorter list:

a b c

FIG. 3 (color online). Geometric interpretation of the sum rule is shown in the figure: (a) the sum rule has a solution , f � 1
belongs to the cone; (b) the assumed spectrum is such that the sum rule does not allow for a solution , f � 1 does not belong to the
cone; (c) in the latter situation, a hyperplane (the zero set of a linear functional) can be found separating f � 1 from the cone.

t 0
t tcr

FIG. 4 (color online). Geometric interpretation of Eq. (19) is
shown in the figure. As t increases, the vector 1� tFd;4;2

eventually leaves the cone.

1.0 1.2 1.4 1.6 1.8 2.0
d

0.5

1.0

1.5

2.0

min CT

CT 4 3

N 16

N 12

FIG. 5 (color online). The figure shows the lower bound on the
central charge CT in terms of the dimension d of the lowest-
dimension scalar primary. The stronger bound (upper blue curve)
is obtained with N ¼ 16. For comparison we give a weaker
bound obtained with N ¼ 12 (lower red curve), which corre-
sponds to the horizontal axis �� ¼ d in the following Fig. 6. The
horizontal dashed line CT ¼ 4=3 shows where our bound stays
above the free scalar central charge.
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�½Fd;�;0	 � 0 for all � � ��: (28)

Because of the considerable computer time involved,
we solved this problem by using linear functionals with
N ¼ 12 only. The bound is given in Fig. 6 as a contour plot
in the d, �� � d plane. On the horizontal axis �� ¼ d the
bound reduces to the N ¼ 12 bound from Fig. 5. Naturally,
when �� increases, the bound on CT gets stronger. The
white region in upper left corresponds to

�� > 2þ 0:7ðd� 1Þ1=2 þ 2:1ðd� 1Þ þ 0:43ðd� 1Þ3=2
(29)

and is excluded, since such a large gap cannot be realized
in any CFT according to the results of [2].

A text file with the coefficients of linear functionals used
to derive the shown bounds can be downloaded [17].

We end this section with a comment concerning the case
of 2D conformal field theories. Recall that in [1,2], the
maximal allowed gap in the scalar spectrum was studied
for the 2D case in parallel with 4D. This was instructive
since it allowed us to compare our bounds with the known
OPEs in the 2D minimal models. The analysis is feasible
because the 2D conformal blocks are known in a form just
as simple as (7) (in odd dimensions similarly simple
expressions are not available). Analogously, in the course
of this project we have looked at the lower bounds on the
Virasoro central charge c in the 2D CFTs, in the same d,��
plane (d � 0 as appropriate in the 2D case). We do not
present them here because, in the range that we considered,
the found lower bounds were smaller than 1. Since all
unitary 2D CFTs with c < 1 are classified (these are

precisely the unitary minimal models [18]), our bounds
do not add any new information in this case.

V. DISCUSSION

Figures 5 and 6 contain our advertised main results:
universal lower bounds on the stress tensor central charge
CT . Figure 5 gives a bound as a function of the dimension d
of the lowest-dimension scalar � present in the CFT.
More precisely, the only requirement on � is that the
OPE ��� not contain any scalar of dimension less
than d; this requirement is trivially satisfied if � is the
lowest-dimension scalar.
The first interesting point about this bound is that in the

limit d ! 1 it approaches the free scalar central charge
value Cfree

T ¼ 4=3, see Eq. (3). In other words, our method
shows that the free theory limit is approached continu-
ously. This is just as in previous work, where we proved
that as d ! 1, the first scalar in the ��� OPE must have
a dimension below 2 [1,2], and the 3-point function h���i
must approach zero [3].
Next, we see that for 1< d & 1:4 our bound stays above

Cfree
T , thus showing that an interacting theory necessarily

has a larger central charge than the free one. This is also
rather interesting. Unfortunately, for larger d our bound
drops below Cfree

T . We do not know if this means that there
are CFTs with CT < Cfree

T . More likely, this indicates that
our bound is not the best possible in this range. One could
speculate that the best-possible bound should stay above
Cfree
T in the whole range 1< d< 2. The fact that it should

necessarily come down to Cfree
T (or lower) for d ¼ 2 can be

inferred by considering the dimension 2 operator ’2 in the
free scalar theory and its OPE with itself.
Note that we could also derive a bound without using the

assumption � � d, which would be applicable to any
scalar, not just the lowest-dimension one. We have in fact
derived also such a general bound, although we do not
show it here. We found that this general bound differs little
from the bound shown in Fig. 5 in the region of small d, say
for d & 1:3. Thus, this general bound could be useful if the
lowest-dimension scalar has dimension very close to 1,
while the second-lowest is somewhat above 1. However,
in the region of larger d, d * 1:7
 1:8, the general bound
drops to zero. This happens for the same technical reason
that the bounds on the scalar OPE coefficients in [3] were
blowing up around this value of the operator dimension.
Because of this, in this paper we focused on the lowest-
dimension scalar, which allowed us to obtain a nontrivial
bound in the full considered range of d.
Now let us discuss Fig. 6, which gives the lower bound

on CT as a function of d and ��. Here �� is the dimension
of the lowest-dimension scalar in the OPE ���, as-
sumed to be above d. Again, this assumption is trivially
satisfied if � is the lowest-dimension scalar present in the
theory. Moreover, by the results of [1,2] �� is limited from
above by the bound given in Eq. (29).
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FIG. 6 (color online). The figure shows the contour plot of the
CT lower bound as a function of d and of the gap �� � d, where
�� is the dimension of the first scalar in the ��� OPE. The
gap is nonnegative, since we assume that � is the lowest-
dimension scalar. On the horizontal axis the bound reduces to
the N ¼ 12 curve in Fig. 5. The lighter green color marks the
region where the bound is above Cfree

T ¼ 4=3, while in the darker
red region the bound is below this value. As the gap increases,
the bound gets stronger, so that a rather weak assumption about
the gap is already enough to have CT > Cfree

T .

RATTAZZI, RYCHKOV, AND VICHI PHYSICAL REVIEW D 83, 046011 (2011)

046011-6



On the horizontal axis �� ¼ d the bound in Fig. 6
reduces to the one shown in Fig. 5, while for larger �� it
naturally gets stronger. In fact we see that ��, somewhat
bigger than d, is already sufficient to raise the bound above
Cfree
T for all d (the lighter green region in the plot). The

points with �� � 2d (i.e. with an approximate factoriza-
tion of operator dimensions) belong to the green region by
a big margin.

In summary, we have shown in this work that if a unitary
4D CFT is nontrivial (in that it contains at least one primary
scalar operator), then its central charge CT cannot be
arbitrarily low. We presented a universal bound on CT as
a function of the dimensions of the lowest and second-
lowest scalar. We hope that these bounds will be helpful in
future efforts to chart the landscape of 4D conformal
theories.

A relation like the one we derived, viewed from the AdS/
CFT perspective (although of course we cannot do it since
we are not at large N), would represent a lower bound on
the Planck mass. One could then speculate that our result

belongs to the same class of constraints on quantum field
theory as the gravity as the weakest force conjecture [19].
Unfortunately our result cannot be directly applied to a
phenomenon as fascinating and unavoidable as gravity, but
it has a non-negligible consolation that it follows from a
rigorous mathematical analysis.
We believe more general constraints of the type dis-

cussed in this paper lie ahead, ready to be uncovered.
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