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Toward the gravity dual of heterotic small instantons
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The question of what happens when the heterotic SO(32) instanton becomes small was answered
sometime back by Witten. The heterotic theory develops an enhanced Sp(2k) gauge symmetry for k small
instantons, besides the allowed SO(32) gauge symmetry. An interesting question now is to ask what
happens when we take the large k limit. In this paper we argue that in some special cases, where Gauss’
law allows the large k limit, the dynamics of the large k small instantons can be captured by a dual
gravitational description. For the cases that we elaborate in this paper, the gravity duals are non-Kéhler
manifolds although in general they could be nongeometric. These small instantons are heterotic five-
branes and the duality allows us to study the strongly coupled field theories on these five-branes. We
review and elaborate on some of the recent observations pointing towards this duality and argue that in
certain cases the gauge-gravity duality may be understood as small instanton transitions under which the
instantons smoothen out and consequently lose the Sp(2k) gauge symmetry. This may explain how branes
disappear on the dual side and are replaced by fluxes. We analyze the torsion classes before and after the
transitions and discuss briefly how the Atiyah-Drinfeld-Hitchin-Manin sigma model and related vector

bundles could be studied for these scenarios.
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I. INTRODUCTION

In the full moduli space of string theory, the heterotic
theory [1] has always been an important corner where
phenomenologically useful models are most easily acces-
sible. Part of its appeal lies in the existence of an anomaly
cancelling SO(32) or the Eg X Eg vector bundle that is
crucial for embedding the standard model in string theory.
The existence of a minimal supersymmetric multiplet is
also an additional benefit.

On the other hand, the type IIB theory has its own share
of advantages. The non-Abelian multiplet in this theory
come from nonperturbative branes such that exactly simi-
lar physics, as from the heterotic theory, can be studied
here using these branes. Additionally, the type IIB theory
has a full nonperturbative completion: the so-called F
theory [2] where local and nonlocal branes participate to
realize the quantum corrections. In fact the F-theory com-
pletion of the type IIB theory is directly related to the
heterotic theories. Thus various vacua of heterotic theories
should be thought of as duals to the various seven-brane
configurations in the F' theory compactified on Calabi-Yau
spaces.
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In recent times gauge-gravity dualities have been
studied exclusively in type II theories and especially in
the type IIB theory. The duality that we are most interested
in for IIB is the geometric transition [3], where the strongly
coupled far IR dynamics of an JN" = 1 pure super Yang-
Mills theory is studied in terms of a weakly coupled
type 1IB supergravity on a deformed conifold with three-
form fluxes. The far IR theory, on the other hand, is
realized as type IIB D5-branes wrapped on the two-cycle
of a resolved conifold. Thus this duality is a geometric
transition where, under a conifold transition, the wrapped
D5-branes disappear and are replaced by three-form fluxes
on a deformed conifold. The type ITA dual of this in terms
of D4- and NS5-branes was understood in [4].

Unfortunately similar dualities have not been addressed
in details in the heterotic side. To our knowledge the
first attempt to address this issue was done in [5] (see
also [6] for a more recent analysis). The difficulty in
the heterotic side lies in two things: understanding the
vector bundles and solving the Bianchi identity. For ex-
ample, one would be tempted to realize the geometric
transition in the heterotic theory by taking the S dual of
the original IIB transition, i.e. replacing the IIB D5-branes
with the NS5-branes and interpreting the NS5-branes as
heterotic five-branes. However, it is not a priori clear
whether the dual deformed conifold geometry would in-
deed solve the Bianchi identity. Additionally, it is not clear
how the vector bundles could be pulled across a conifold
transition.
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In our earlier papers [5,7] we gave a local description of
this duality." Our local analysis reproduced a global con-
figuration that was more general than a deformed conifold
with fluxes. In this paper we will show why this is true: The
type IIB story cannot be directly dualized to the heterotic
side. The Bianchi identity will in fact change the IIB
solutions, and so the heterotic duals will not quite be the
same as the IIB ones.

In fact the precise duality in the heterotic side can be
presented succinctly in the language of small instantons
[13]. The large N limit of these small instantons can be cap-
tured by a dual gravitational background which is generically
nongeometric. The interesting thing about our analysis is the
observation that the geometric transition is a small instanton
transition where the small instantons become ‘““smooth” on
the dual side and therefore lose the S p(2N) gauge symmetry.
This gives a possible explanation of the disappearance of the
branes in the dual side. In this paper we will only work with
the SO(32) heterotic theory and leave the Eg X Eg case for
what follows. The Eg X Eg case presumably follows a simi-
lar path as illustrated in [14]. For earlier studies on small
instanton transition, the reader may refer to [15].

The work in this paper is a direct follow-up of our last
paper [9] where various supersymmetric duals in the type II
and M theories were presented in the geometric transition
setup. However, in [9] formal proofs for supersymmetry of
the solutions, using, say, torsion classes, were not pre-
sented. In this paper we will rectify these shortcomings
and start with giving a detailed torsion class analysis of all
the type II solutions of [9]. This will help us to state the
heterotic duality in a more precise way.

A. Supersymmetric configurations in
geometric transitions

The issue of supersymmetry for the intermediate con-
figurations is of course crucial in the geometric transition

"By local we mean that the supergravity background is studied
around a specific chosen point in the internal six-dimensional space.
For example, we choose a point (rq, {0;), {¢;), (i)) in[5,7] which s
away from the » = 0 conifold point. This is because the full global
picture was hard to construct, and any naive procedure always tends
to lead to nonsupersymmetric solutions. In deriving the local metric,
we took a simpler model where all the spheres were replaced by tori
with periodic coordinates (x, ;) and (y, 6,). The coordinate z
formed a nontrivial U(1) fibration over the 72 base. Here
(r,x,v,z 0,0, is the coordinate of a point away from
(ro, (1), {Da), i), (01),(05)). The replacement of spheres by
two tori was directly motivated from the corresponding brane
constructions of [8], where noncompact NS5 branes required the
existence of tori instead of spheres in the 7-dual picture. On the
other hand, the term global means roughly adding back the curva-
ture, warping, etc., replacing tori by spheres, so that at the end of the
day, we have a supersymmetric solution to the equations of motion.
In [9] we managed to provide the full global picture of geometric
transition. Note also that the only known global solution, i.e. [10],
before our work was unfortunately not supersymmetric (see [11,12]
for details) although it satisfied the type IIB equations of motion.
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setup. We have discussed this in some detail in [9]. Here we
will elaborate the story a bit more, and new details will be
presented in Sec. III.

Our first configuration is in the type IIB theory for
wrapped D5-branes on a resolved conifold. The original
construction of [10], with a conformally Calabi-Yau met-
ric, is not supersymmetric The supersymmetric configura-
tion is given in [9], where we put a non-Kdhler metric on
the resolved conifold. Our starting point in [9] is the
choice of functions F; = Fi(r), i=1,...,4, and F, =
Fy(r, 6,, 6,), which are used to write the metric for the
internal space. Therefore for different choices of F;, and F;
we get different dual gauge theories. The complete back-
ground in type IIB then is (see also [9])

Fy = hcoshBe?? = d(e 2%]J),
H; = —hF}sinhBe*?d(e ??)),
Prow = — b,
Fs = =11+ %)dAg A dx® Adx" Adx® A d®,
ds? = Fods(z)123 + ds%,
ds2 = Fidr* + Fy(d{ + cos6,d¢, + cosf,dp,)?

(1.1)

2
+ ) Fy.i(d6? + sin20,d¢?),

i=1

where we have defined ¢, h, and A, using F, and a
constant “‘boosting” parameter $ in the following way:

F(3)/2 coshf

y/1 + Fisinh®B
Ag=(F}—1)tanhB

1-F} 1 —F2\2
X [1 + ( = O)sechz,B + (TO) sech4,8:|.

0 0

Fycosh’ 3

= V7 P — —
1 + F3sinh?’

(1.2)

All the coefficients, etc., are also described in more detail
in [9]. In Sec. III we will compute all the torsion classes for
this background and discuss explicitly how supersymmetry
is preserved.

The above background is of course the first step in the
chain of dualities associated with IR geometric transitions.
To go to the type IIA mirror description using the
Strominger, Yau, and Zaslow (SYZ) method [16] we
need to make the base very large compared to the fiber.
We achieve the final IIA mirror by making the following
steps”:

(i) Shift of the coordinates (i, ¢;) using variables
fi(6;). This shifting of the coordinates mixes non-
trivially all three isometry directions as described in
Eq. (4.24) of [9].

These rules have been derived in the local limit in [5,7]. In [9]
we have shown how in the global picture these rules could work.
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(i1) Shift the metric along ¢ direction by the variable €,
as given in the second line of Eq. (4.29) of [9]. This
variable does not have to be very small in the global
limit. The only constraint on € is € < 1 to preserve
the signature of the metric.

(iii)) Make SYZ transformations along the new shifted

directions. Thus the three T dualities are not made

along the three original isometry directions.
|

aF

ds%1 = Fods(z)123 + Fldr2 + AR,
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(iv) In the new metric of ITA make a further rotation
along the (6, ¢,) directions using a 2 X 2 matrix
given as Eq. (4.50) of [9]. The matrix is described
using a constant angular variable .

(v) Finally in the transformed metric convert i to ¢ as
in Eq. (4.53) of [9].

The final metric after we perform all the above trans-

formations takes the following form:

2 [dp — by, dr — bye,d6, + A cosd(dp) — by, d0 — by ,dr)

+ Az COSHZ COSl,bo(d¢2 - b¢292d02 - b¢2,dr)]2 + a1¢2¢2[d0% + (dd)l - b¢]0]d91 - b¢1,dr)2]
+ a]¢]¢l[d0% + (dd)z - bd,zgzdaz - bd)zrdr)Z] + 2a]¢]¢2 COSl/lo[deldaz - (dd)] - bd,lgldel
- b¢]rdr)(d¢2 - bt/)zﬁzdaz - bd’zrdr)] + 2aj¢1¢2 Sinl/lo[(d¢1 - b¢191d61 - b¢]rdr)d02

+ (dpy — by p,d0y — by, ,dr)do;].

The above metric, which we called the symmetric metric in
[9], looks very close to the deformed conifold metric.
However, due to steps 2, 4, and 5 above, it is not guaranteed
that the metric will preserve supersymmetry. Furthermore
one might also question whether the SYZ operation itself
could preserve supersymmetry.’ Therefore to verify this we
will evaluate all the torsion classes for this background in
Sec. III B. Note that in [9] we did not explicitly derive the
fluxes in the mirror. In Sec. IIIB we will be able to
determine at least the Neveu-Schwarz (NS) three-form
|

(1.3)

|
flux that will make the IIA mirror background supersym-
metric. This will also help us to fix (f}, f5, €).

Once we have the type IIA metric we can lift* this to M
theory using the one-forms (o}, 3;) as given in Eqgs. (4.47)
and (4.48) of [9], respectively. The precise flop transfor-
mation of the M-theory manifold is described using a class
of transformations specified by (a, b) as in Eq. (4.59) of [9].
The final metric after we reduce the flopped metric to
type IIA is

dsty = Fodsj ,; + Frdr* + e*[diy — by, dx* + A cos6(dy — by g,d0; — by dr)
+ Ry c0sOy(deby — bys,p,dby — by, dD)P + ¢Pa2(CG, + kGy + G))[d6? + (ddp?

- b¢19]d01 - bqgl,dr)z] + €2¢/3b2(M2G2 + ,LLG3 + Gl)[dag + (d(ﬁ% - b¢292d02 - b¢2rdr)2]

along with the following one-form charge, but no D6-brane
sources:

A= Al Cosﬁl(dq’)l - bd,]()ldal - bd,lrdr)

— A, cos0,(dpy — by,p,dfy — by ,dr).  (1.5)

A torsion class analysis in Sec. III B will help us to fix a
particular flop transformation, i.e. fix (a, b) so that the
above background remains supersymmetric. Observe again
that we have not determined all the flux components in ITA.
As before, we expect the torsion class analysis to fix at least

3This is because it is not a priori clear whether the fermionic
boundary conditions are periodic or antiperiodic along the
T-duality circles. Sometime when the cycles degenerate we
may need to put in an additional (—1)F term to preserve
supersymmetry (SUSY). An example of this is given in the third
reference of [17].

(1.4)

[
the NS three-form. The three-form can then be fixed by
equation-of-motion or supersymmetry constraints.

In all the above steps we tried to make duality trans-
formations so that we could get geometric manifolds.
However, this is not generic. For a more generic choice
of the B fields in the original type IIB setup, we could get
nongeometric manifolds both before and after flop in ITA.
This nongeometric aspect is also reflected in the final
type IIB mirror configuration. In fact this tells us that the
generic solution spaces we get in type IIB are nongeomet-
ric manifolds. For certain choices of parameters (B fields
and metric components) we can get geometric manifolds
like Klebanov-Strassler [18] or Maldacena-Nunez [19].
This is almost like the parameter space of [20] but
now much bigger and allowing both geometric and

“In [9] we lifted the nonsymmetric type ITA metric to M
theory. This is more generic than the symmetric one.

046006-3



CHEN et al.

nongeometric manifolds that cover various branches of
the dual gauge theories.

To make this a little more precise, note that we have

analyzed the following two scenarios in [9]:

(1) There are various ways to embed wrapped five-
branes on a two-cycle in the internal space that
preserve supersymmetry. For a given choice of
(F;, Fy, €) we can find the geometry and the fluxes
that preserve supersymmetry (see the analysis in
Sec. 4 of [9]). In the decoupling limit, this is the
gauge theory side of the story. We called this the
scenario before geometric transition.

(i1) For that particular choice of the background, we
followed our duality arguments to give a back-
ground after geometric transition. We showed
that for generic choices of the fluxes, the dual
gravitational background becomes nongeometric.
Therefore the fluxes and the geometry in the brane
side of the picture induce nontrivial operators in
N =1 gauge theory that make the dual gravita-
tional background nongeometric.

In this paper we will do an explicit computation to study

a geometrical dual for the large N small instantons because
this case will not be too hard to construct. A similar story
was also pointed out in [9]. For example, if we deliberately
restrict ourselves to the special case Eq. (4.71) of [9], i.e.
make the NS B fields along (¢, ¢,) and (¢, ¢;) directions
zero, then the geometric manifold we get has the following
metric:

ds> =F3ds} | 55+ 8,dr* + gy (D + A, D,
+A,D¢p,)? + 0,0,(d07 + bﬁb%)
+ 8g,0,(d0} + fbd’%

+ 86,0,(d0,d0, + A3 Dp D), (1.6)
which looks surprisingly close to the resolved warped-
deformed conifold metric. A torsion class analysis can
again be performed for this case (but we will not do so
here) that will allow us to put constraints on the parameters
from supersymmetry. This way all the intermediate con-
figurations in the cycle of geometric transition will be
supersymmetric. In our opinion this is probably the first
time where explicit supersymmetric configurations for
IR geometric transition in IIB, IIA, and M theories are
studied. However, our analysis also revealed the existence
of a much bigger picture in the type IIB side where various
gauge theory deformations lead to nongeometric duals.
Our aim in this paper is to extend this further to the
heterotic and type I cases.

B. Organization of the paper

The paper is organized as follows. In Sec. II we will give
three pieces of evidence related to the heterotic gauge-
gravity duality. Some of these have already appeared in
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[5], but here we will elaborate them in the global picture.
The first evidence, discussed in Sec. II A, will come from
taking the orientifold limits of the type IIB duality. The
issue of vector bundles, before and after the transition, as
well as the Bianchi identity will be discussed therein. This
will be elaborated further in Sec. II B, where we will briefly
study the Atiyah-Drinfeld-Hitchin-Manin (ADHM) sigma
model that captures the physics before the transition. A
more direct analysis, using properties of the underlying
non-Kihler manifolds, will be discussed in Sec. IIC. In
Sec. IIT we will study the supersymmetry of these solu-
tions. We will discuss how torsion classes and supersym-
metry put constraints on the warp factors of the
background manifolds. In Sec. IV we will give a brief
discussion of the interconnections between the torsion
classes and the vector bundles both before and after the
transition. Details about the heterotic torsions and the
torsion-classes are discussed further in the appendixes.
We end with a conclusion and some discussions about
future directions.

II. THREE ROADS TO HETEROTIC
TRANSITIONS

The existence of geometric transition in the heterotic
theory was first proposed in [5] using various arguments
stemming from U dualities, orientifold actions, and gauge-
gravity identifications. However, all these analysis were
studied using the so-called local geometry. Recently in [9]
we have managed to study the complete global picture for
type II theories.” It is therefore time now to extend the local
analysis of [5] for the heterotic case to the full global
picture. See Figs. 1 and 2 for more details. In this section
we will try to give three pieces of evidence related to
geometric transition in the heterotic side. Some of these
details have appeared in [5,7,22] for the local case.
However, here we will give a somewhat different interpre-
tation for the transition. The configuration before geomet-
ric transition will be identified with the heterotic large N
small instantons, where N is the number of small instan-
tons or heterotic five-branes. The configuration after geo-
metric transition will be identified to the case where the
instantons have all dissolved in the heterotic SO(32) gauge
group [in fact the SO(32) group will be broken by Wilson
lines; we will discuss this later]. This interpretation is not
new, as the small instantons have already been identified to
heterotic five-branes by various authors (see [13] and
citations therein). What is new is probably the whole
interpretation of heterotic duality as small instanton tran-
sitions for some cases.

3 Assuming of course that the UV completions should follow a
somewhat similar line exemplified in [21] albeit now with more
nontrivial UV caps. These UV caps should capture the six-
dimensional UV completions of the N = 1 IR gauge theories.

046006-4



TOWARD THE GRAVITY DUAL OF HETEROTIC SMALL ...

global heterotic global IIB

T
=0

local IIB

Ty

local heterotic

FIG. 1 (color online). A precise flow diagram to illustrate how
a global type IIB background can go to a global heterotic
background using transformations 7', and 7. The transformation
T, could be an orientifolding operation or something more
complicated, as discussed in the text, and similarly 7, could
be 7 dualities or something more involved. Thus only local
geometric are related by 7, transformations. Many different
global completions with various choices of the vector bundles
V; lead to the same local background in the heterotic theory.

Following is the list of steps that could make this duality
a bit more precise:

(i) Consider IIB on a resolved conifold with N wrapped
five-branes. This is basically the configuration of [9].
We can go to the orientifold limit that keeps the five-
branes but generate seven-branes and orientifold
seven-planes. Because of this orientifold action the
gauge theory on five-branes become Sp(2N). This is
basically an embedding in the F-theory setup. We
will discuss this a bit more below.

(i) We T-dualize twice to go to type I where the five-
branes remain five-branes but the seven-branes be-
come type I nine-branes. To cancel the nine-brane
charges we need orientifold nine-planes. These of
course appear from the orientifold seven-planes.
These five-branes are small instantons on the nine-
branes. So the number of these five-branes is very
large.

(i11) We have to avoid the Gauss’ law constraint as not

all configurations can lead to a large number of
five-branes in the type I picture. It is crucial that

Type IIB

Deboosting to Two T—dualities Two T—dualities

allow F,=0 at an orientifold to dissolve H3
and sigma-model point to get completely in the

identifications Type I theory metric, but F3 4 0

) S—duality and
S—duality sigma—model identifications

SO(32) or Egx Eg SO(32) heterotic SO(32) or Egx Eg
heterotic theory heterotic theory

FIG. 2 (color online). Three possible ways to get local heter-
otic backgrounds from a given type IIB local background. These
transformations are basically the transformations depicted as T}
and 7, in the previous figure. Note that the three paths are not
generic and in many cases may not exist at all.
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various charge conservation laws are not violated.
For a compact scenario one can easily show that the
number of five-branes is fixed, and in many other
cases Gauss’ law will not allow too many five-
branes. Only in the case with a sufficient number
of noncompact directions can the number of five-
branes be made large. Our study will therefore be
based on these allowed configurations.

(iv) We S-dualize to heterotic theory where they are
the Witten’s small instantons and the total gauge
symmetry is G X Sp(2N) where G is a subgroup of
SO(32). The original SO(32) group will be broken
by Wilson lines. These Wilson lines come from
the separation of the seven-branes in the type 1B
picture.

(v) In IIB we know that there is a geometric transition
that takes the wrapped five-branes on the two-cycle
of a resolved conifold to fluxes on the three-cycles
of a deformed conifold, i.e. the gauge-gravity dual-
ity. Embedding this duality in F theory will allow us
to introduce fundamental matter via seven-branes.
Then the geometric transition will allow us to study
the dual geometry in F-theory framework. At the
orientifold corner of F theory the seven-brane sys-
tem can be studied using D7-branes and perturbative
orientifold planes along with the wrapped five-
branes. In the dual side there would also be an
equivalent orientifold corner where we will have
fluxes with seven-branes and orientifold seven-
planes but no five-branes.

(vi) So in heterotic theory we expect the dual side to
have only torsion and no heterotic five-branes, i.e.
no small instantons or vector bundles. Therefore
these small instantons have smoothed out and have
become geometry. The vector bundle before tran-
sition will come from the dual of the seven-branes,
and the separations between these seven-branes
will appear as Wilson lines breaking the SO(32)
gauge group to a subgroup. After transition the
gauge group is completely broken. The torsion,
on the other hand, will appear from the remnants
of the F-theory three-form Ramond-Ramond (RR)
flux.

The above arguments show us that there is a possibility
to understand gauge-gravity duality in the heterotic theory
as small instanton transitions where after transition the
large N small instantons become torsion. In the following
we will try to put together this evidence to form a coherent
global picture.

A. Evidence from an orientifold action

For the first step to work we need to go to the orientifold
limit. The simplest orientifold action in the type IIB sce-
nario is given by Eq. (4.3) of [9], i.e. (x,y) — (—x, —y),
where (x, y) are the local coordinates defined in Footnote 1.
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This is also the orientifold action discussed in [5]. The proposed local metric before geometric transition in the heterotic

theory is given by®

ds® = d\(dy = by, d0') + dy(dx — by dO)) + dsdr® — 2d,(dx — by d0))(dy — b,y d6) + dsdz® + dgldy, 2, (2.1)

where d; are the coefficients. In the above metric one can put nontrivial complex structure on the y, torus also. For the
present case we see that the local metric is given by the following nonzero components:

Gxx ny ze Gxo?l Gxﬂz d2
Gy Gy Gy Gy Gy, —dy
G= ze Gyz Gzz Gz91 Gz92 = 0

Gxel G}'(}l GZH] G(}lﬁl GHIHZ
Gxez G)’f'fz Gzﬁz G0102 Gf)z(?z

with the various terms s; and A ; defined in terms of the
coefficients d; in the following way:

S1 = d4by01! Sy = —dszezy 3 = _dlbyﬁl’
Sq4 = d4bx92 ‘;le = dlbiol + dzb)zﬂgl - 2d4by0]bx0]’
ﬂz = d1b§01 + dzbiez - 2d4b}‘92bx02’ (23)

and s;5; = 5154 — 5554 — 5153. Recall that the b, and b,
are not the heterotic B fields. The heterotic B fields come
from the type IIB Fj field, which will henceforth be called
H . In the presence of a background dilaton ¢ we expect
[23,24]

dH = d[e*? = d(e *?]J)] = sources (2.4)
with J being the usual fundamental form derived from the
above metric and the sources are the heterotic five-branes
or small instantons. Defining

Dx = dx — bxgdej,
Dz, = Dx + 7Dy,

Dy = dy — by db',

(2.5)
Dz, = dx»,
we see that the local background for the wrapped heterotic
five-branes is given by the following metric:

ds®> = dydr?* + ds(dz + acot(8,)dx + b cot(6,)dy)?

+ dy| Dzi|? + dg| Dz, |2, (2.6)
where we have shifted dz in a suggestive way with (a, b)
constants, so that the fibration represents a U(1) fibration
over the two two-tori Dz; and Dz,. We therefore expect
the global extension should be

°In terms of local geometry the D5-branes wrap the (x, 6,)
direction and are spread along the spacetime x°!'?* directions.
The seven-branes are points on the xy torus. This configuration is
supersymmetric and survives the orientifold action and under T
and S dualities leads to the required heterotic configuration.

_d4 O

Sl_dszel 83 +d4bx01 0
S2+d4by92 S4_dlb

S _d2bx0] Sz+d4b

y0,
0 S3+d4bx91 S4_d1by92
ds 0 0
dé“‘ﬂl _d4bx01byt92_dilsisj
6, 0 _d4bx0]by02 _dZ]SiSj d6+ﬂ2
(2.2)
(T?>xT?)xS! — 82 X §3 2.7)

with x representing nontrivial fibration topologically, so
that we have heterotic five-branes wrapped on the resolved
conifold. Note also that we have used coordinates ¥ and y
to denote the U(1) fibration as we expect dX and d5y to be
nontrivially related to Dx, Dy, and df;. Therefore glob-
ally

dy| Dz |? + dg| Dz,1* — a,dS? + a,dS3,
a, — a, = resolution parameter,
dz + acot(f,)dx + b cot(f,)dy

— dify + acosf,dp, + bcosbrdp,.

(2.8)

S; = S;(6;, ¢,) represent squashed spheres with nontrivial
complex structures, and a; are functions of the internal
coordinates (including r). Thus the complete global
metric is

ds?

_ 2 2
alobal — aszdr® + ds

2t = 8apdRARY,

(2.9)
where R = (ry, 13, s, by, 13, 1,) are the coordinates and
84, are a slight variant of the metric components consid-
ered in Appendix 1 of [9]. In the following we give a brief
description to implicitly describe the coordinate change
necessary to compare with the metric written in terms of
the usual resolved conifold coordinates (r, 6, ¢;, ).
Noting that the C* action on the homogeneous coordinates
of the resolved conifold identifies (zy, 2o, 23, z4) Wwith
(1,z2/71, 7123, 2124), Wwe start with the coordinates
(U, Y, A) of [10],” which we see are related to our coor-
dinates by

22
Y = 7124 A= —2
<]

U= 2133 (2.10)

"With 6; — 6, therein.
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due to a sign convention in [10]. Using Eq. (2.5) of [9]
together with (2.10), we can express (U, Y, A) in terms of
(22, z3,z4) and hence in terms of the real coordinates
(7, 13, ¥4, 1y, 13, 14). The desired change of variables comes
from using (2.13) of [10], which expresses (U, Y, A) instead
in terms of the desired six real variables (r, i, ¢;, ;).
An interesting variation of the global scenario is to
change the local metric such that the mapping becomes
(T2 X T?)xS' — §? X §3 (2.11)
instead of (2.7). One simple way to decouple the two two-

tori is to change the background three-form and the dilaton
such that the local metric becomes

d : :
452 = (53, (dy — by 4O + 5, 05— by d07F)
X017 Y0y

+ dydr® = 2d,(dx — b,y d67)(dy — by, d6")

+ dsdz? + dg|d x,|? (2.12)
with an additional constraint that the matrix
( bx01 bx02 ) (2.13)
byg, by,

has a vanishing determinant. This immediately tells us that
z; torus is decoupled from z, torus, with

Dz, — dzy = dx + 7,dy,
b e (2.14)
1- l\/3 d4bx01
T &= — .
2 b)’91
The global extension of the above local metric is
ds? = h'2e?ds ), + h™'/2e?ds?,
H = e d(e2¢)),
d55153 = Fodsgyas, (2.15)

dst = Fidr* + Fy(dy + cost,d¢p, + cosO,dp,)?

2
+ Y Fy.i(d6? + sin?6,d¢?),
i=1

which is of course very close to the configuration that we
studied in [9] with (h, ¢, F,, F;) defined as before. Note
that we have denoted the global three-form and the dilaton
by the earlier notation to avoid clutter. Thus the back-
ground (2.15) with (g,,. 3, #) plus a vector bundle V
represents the background for the wrapped heterotic five-
branes. We will discuss the vector bundle a little later.

After geometric transition, the local metric takes the
following suggestive form (see also [7]):

PHYSICAL REVIEW D 83, 046006 (2011)

ds®> = A, (dz + a, cot{f,)dx + b, cot{h,)dy)*
1

+ ﬂlz[(dy2 + do3) + W(dx2 + d&%)]
T

— 2 A, by [sin(yh)(dydl, + dxdb,)

+ cos(y)(d6,dh, — dxdy)] + Asdr?, (2.16)

where “A; are constants locally, but will become non-
constant when we extend the metric globally, and iT is
the complex structure of dy, torus (the same one that we
discussed above before geometric transition). The B field
that allows for this metric is

B = b),gl(lrlzdx AdO, + dy A dB,), (2.17)
and the torsional equation is satisfied with an appropriate
dilaton. Note that now we do not expect any five-branes
but H will not be closed. More on this soon.

The global extension of the above local metric is typi-
cally of the following form:

dst, =dsk s+ A(dy +a,cos0, D + by cost, De,)?
+ A3(d6? +sin0, Dp?) + A, (d63 + sin?0, Dp3)
—2A,byp [cosiy(dO,dO, —sinbsind, D D)
+siny (sinf, D, dO, + sinf, Dep,d6,)]+ Asdr?,
(2.18)

where A; are no longer constants and D¢, =
d¢; + f;;dx’ with dx/ being the internal coordinates and
fij related to antisymmetric two-form B fields. In this
paper we will assume that f;; = 0; and for a very special
choices of these coefficients

As N
A=Ay =—2=—,
1 3 4 2
A, - N(e28 + az)’
4 (2.19)
() = 2r
a - = >
sinh2r
4 2
eX8 = 4rcoth2r — ——— r2 -
sinh-2r

with N being the number of wrapped five-branes, and with
the following dilaton [25]:

81200

26 — 2
e ’
sinh2r

(2.20)

the torsion FH ypy can be easily computed, and it takes the
following form [7]:
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j_[MN = €2¢ * d(€_2¢.])
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Na' Na'
— —Ta cosydr A (d, A d6, — sind, sind,dp, A dep,) — Ta singrdr A (sinf,d0, A dpy — sind,d0> A deb,)

N N
+ Ta singgdf, Adb, A(dyy + coshdd, + cosbrdp,) — Z(sinﬁl cosf, — acosiy cosh; sinb,)d0; Adp, Adp,

N N N
- Z(Sinﬁz cosf, — acosiy cosf,sinb,)dO, Add, Adp, — 7 sinf,d0; Adop Adi + 7 sinf,dO, Add, Adi

N N
- Ta cos i (sin,d0, A dy Adip — sind,dfy A dey Adip) — T" siny sind, sinfydp; A dpy A dip

with J being the fundamental form. Interestingly, for this
dH iy = 0, and we do not expect any five-brane sources.
This is a bit subtle now because in the heterotic theory we
expect

dH = o'[trR, AR, — TrF A F], (2.22)

and since tr Ry A R, is independent of N, the N depen-
dence of the dissolved small instantons can come either
from the torsion H{ or/and from the bundle TrF A F.
(Here R, is the curvature tensor with modified connection
that will be discussed in Sec. IV.) However, the gauge
group is completely broken when the small instantons
dissolve, and therefore

Tr FAF =0, (2.23)

so with dH = 0 the Bianchi identity will be difficult to
satisfy. Thus the only way would be to modify the torsion
(2.21) by a small amount so that both (2.22) and (2.23) are
satisfied with the torsion  defined as®

H = Hyn + H g, (2.24)

where we presented an explicit form for H in
Appendix A. Here H ,,, is a small N-independent shift
of the torsion. For the choice (2.19), the small » limit is the
Maldacena-Nunez background [19]. The large r, i.e. the
UV limit of the theory, is given in [20]. Comparing (2.21)
with (2.17) we see that the coefficient of d6; A d¢, has the
following terms:

Nd' N
— Ta sinys sinf,dr + Ta sinys cosf;d0,

N
+ Ta cosi sinfd

N
by (sinf, cosf; — a cosis cosh, sinf,)dp, (2.25)
and similarly for the coefficient of d6, A d¢,. This would
have been the natural extension of (2.17), but we see that
(2.21) has extra terms that are not there in the local limit.
For example, there are no such terms like

8We thank Juan Maldacena and Edward Witten for discussions
on the above issues.

2.21)

%(dx AdO, —dy NdB, — agdx Ady) Adz  (2.26)

with ay = a(rg) in (2.17). Therefore, using all the above
arguments, the full global background is a deformation of
the background (2.19), (2.20), and (2.21) that satisfies the
Bianchi identity (2.22) with the condition (2.23).

B. Evidence from sigma model identification

The second evidence comes from the sigma model
identification. For the situation after the transition, one
expects a (0,2) world-sheet sigma model for N =1
spacetime supersymmetry. The general idea is simple and
can be stated as follows.

To develop (0,2) models in the context of complex
structures we start by considering the following world-
sheet action for type IIB theory in the presence of Hyg:

1 4 o1
S = 8o fd2a-|:(gij + Bij)a+Xla—X] + Zsfermionic]’
(2.27)
where S§. . . contains the standard kinetic term plus the

following interaction part:

i _ L
s b PO b HO
S /((ppwi oL’ Yrelol, 7

int — 7a

R ot 40, (2.28)
where R;j; is the background Riemann tensor. In this
action we have the freedom to add noninteracting fields.
This ruins the carefully balanced (2, 2) supersymmetry of
this model. We can use this to our advantage by adding
noninteracting fields only in the left-moving sector. This
breaks the left-moving supersymmetry, and one might
therefore hope to obtain an action for (0, 2) models from
(2.27), at least classically. On the other hand, a possible
(0, 2) action is also restricted because this will be the action
for the heterotic string. Therefore let us start with the
following naive steps to find the classical (0,2) action
from a given (2, 2) action (see [7] for more details):
(i) Keep the right-moving sector unchanged; i.e. ¢”
remain as before.
(ii) In the left-moving sector, replace ¢ by eight fer-
mions W4, a=1,...8. Also add 24 additional
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noninteracting fermions Wb b =9, ...32. In other
words,
lpﬂ'

\I/9

A = (2.29)

P2
(iii)) Replace w, by gauge fields A, i.e. embed the for-
sional spin connection into the gauge connection.

The above set of transformations will convert the clas-
sical (2,2) action given in (2.27) to a classical (0, 2) one.
One might, however, wonder about the Bianchi identity in
the heterotic theory in light of the discussions that we had
in the previous subsection. The type IIB three-form fields
are closed, whereas heterotic three-form fields satisfy the
Bianchi identity. One immediate reconciliation would be
that because of the embedding w, = A, the heterotic
three-form should be closed. This may seem like an ad-
missible solution to the problem, but because of subtleties
mentioned earlier’ this cannot be the story here. Therefore
an embedding of the form

ab 0
AAB — [ @it )
’ ( 0 O)
(where for simplicity we have left the off-diagonal part

vanishing) cannot quite be the solution for our case as we
require

dg-[small = al[der A dw+ + @(wi)]

(2.30)

(2.31)

Thus one possibility will be to make the gauge field
vanishing and replace all connections by the torsional
connection w,. Using this the new action with (0,2)
supersymmetry becomes

1 ; P
Swal fd20[(gij + Bij)a+Xla—Xj + P (AL )P

+ iPAA_D)A + O(a)],

S =

where due to the Bianchi identity (2.31) and our choice,
there is no Fj; Yang-Mills field strength. The fermion
indices are A = 1, ..., 32, which means there are 32 fer-
mions, and 7 form tensors of rank 16. The Laplacians are
given as follows:

A_PA = g A,
A+¢p = a+¢p+%(w+)ab0'52¢qujk

= %(Bij,k + Bjk,i + Bkj,i)(MN) + @(al) (232)
As expected, this set of actions determines the (0, 1) super-
symmetric heterotic sigma model. This is similar to the

(1, 1) action for the type II case. The full (0, 2) SUSY will

See also [26-28] for additional subtleties that come from the
above embedding. In fact even in the usual case this embedding
will not allow any compact non-Kéhler manifolds to appear in
the heterotic theory.
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be determined by additional actions on the fields [exactly
as for the (1, 1) case before].

The above discussion is a simple way to see how certain
IIB backgrounds can be dragged directly to the heterotic
side by making small modifications to the field contents.
The above discussion was solely for the heterotic back-
ground after the transition where the heterotic gauge group
is completely broken. The situation then is completely
different for the case before the transition.

To study the heterotic background before geometric
transition using our sigma model identification we take
the type IIB background given as Eq. (4.13) in [9] and
“deboost” the system so that we can have

Fy=Fs5=0. (2.33)

The deboosting procedure follows the reverse chain of
dualities depicted in Fig. 1 of [9]. Once we have this,
then it is obvious that the background before GT is pre-
cisely (2.15). In the type I language, which is the S dual of
(2.15), the type I D5-branes are the small instantons of the
nine-branes gauge theory. For N D5-branes, or N small
instantons in the heterotic theory, the gauge symmetry
before the transition can be written succinctly as

Sp(2N) X G, (2.34)

where G is a subgroup of the full SO(32) group in the
heterotic theory. The SO(32) is broken by the Wilson lines.
These Wilson lines are related to the distances between the
type IIB seven-branes in the full F-theory picture.

This means that the sigma model before the transition is
exactly given by an ADHM sigma model [29] (much like
the one discussed in [30]). One may then understand the
geometric transition to be related to an Affleck-Dine-
Seiberg (ADS) [31] type of superpotential being added to
the usual ADHM sigma model superpotential. This is
much like the discussion in Klebanov-Strassler [18], where
the addition of an equivalent ADS superpotential to the
usual N = 1 quartic superpotential shows how one could
go from a conifold to a deformed conifold. More details of
this will appear elsewhere.

C. A more direct analysis

The third evidence comes from dissolving the NS three-
form completely in the metric in the IIB picture. We can do
it in the presence of an orientifold action also. First, how-
ever, let us try without involving any orientifold action, i.e.
keeping only the wrapped D5-branes. The local geometry
is well known to have the following form:

/
ds®> = dr* + (dz + \/;ro cot(6, )dx
Y
/! 2 h
+ ‘/ﬁro cot(02>dy) + [%_ 46} + dx2]

N [(7 + a?)Vh
4

d6? + dyz] T (2.35)
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where all the coefficients are described in [7,9]. There is
also a B field given by

BNS = bx.gldx A d@l + by.gzdy A daz, (236)

plus of course there are F; and F'5 fields whose orientations
will be discussed soon. Recall also that all the coefficients
in the above metric are constants. This is going to be useful
soon.

Under two T dualities along (x, #,) directions, the B field
(2.36) completely dissolves in the metric to give us the
following non-Kéhler geometry:

ds? = dr* + [dz + Ay co{8,)(dx — b4 d6,)
+ Az COt<62>dy]2 + [aldﬁ% + (dx - bxgldel)z]
+ [dy* + ay(dO; — by, dy)?], (2.37)

where the coefficients appearing in the metric are defined
in terms of the coefficients of (2.35) appearing above. The
metric (2.37) is a non-Kéhler deformation of (2.35).
The complex structures of the base tori change from

T = L Jay to
Ty = —by, +iJay,
_ by, Vo
T+ ab?, 1+ ab?,
dz; = dx + 7,d6,,
dz, = dy + 7,d0,,

DZ = dZ - Albx(?] C0t<01>d61,

Ty =

(2.38)

so that the metric (2.37) takes the following suggestive
format:

ds®> = dr’ + (Dz + A, co{8,)dx + A, cot(h,)dy)?

|73
+ ldz; > + A|d22|2,

P (2.39)
2

where |7,|, is the complex structure of the second torus in
the absence of B fields. Note that the coefficients in front of
the dz; and dz, tori are different. This means that the
global extension of the local metric (2.37) should have
two two-spheres of unequal sizes which, in other words,
should be a resolved conifold. Thus the five-branes wrap
the two-cycle of a non-Kéhler resolved conifold, exactly as
we have been considering earlier.

There are still a few loose ends that we need to tie up
before we go to the analysis of the geometry after the
transition. For example, what happens at the orientifold
point? How do the seven-branes behave in the final 7-dual
setup? What happened to the RR three- and five-forms?

To understand these issues let us analyze the system
carefully. As discussed in [9] there are two possible ways
to perform the orientifolding operation here. The first O
action has already been discussed in the previous subsec-
tions. The second O action is given by Eq. (4.6) of [9] i.e.
(x,0,) = (—x, 7 — 0,). For this action we can keep the

PHYSICAL REVIEW D 83, 046006 (2011)

D5-branes parallel to the seven-branes once we are away
from the orientifold point. Such a configuration breaks
supersymmetry. However, we can form a bound state of
D5- and D7-branes that is supersymmetric. This configu-
ration is then different from the one studied before. In the
full global geometry we can assume that the bound state is
embedded in a nontrivial way in the non-Kéhler resolved
conifold space, and the fluxes give rise to a dipole defor-
mation of the bound state (see [17,22] for more details).

This picture can also be understood as an N D5-brane
bound states on a single D7-brane with all other seven-
branes moved away in the (x, ;) direction. To go to the
heterotic side we need to go to the orientifold point. At the
O point the world-volume gauge fluxes are all projected
out because only dipole deformations are allowed.
However, note that in the far IR the resolution cycle is
very small and therefore the wrapped D5-branes are frac-
tional three-branes in the IIB setup. Thus at the orientifold
point we may rotate the three-form fluxes (i.e. the five-
brane sources) so that the local RR field is the following
(see also [5])':

Brr = b dx Adz + b,dx Ady + b,y dx A d6,
+ l;ygldy A d01 + l;zgldz A d01 + Eglgzdel A d02,
(2.40)

where Eaﬁ = Ealg(r, 0,, 6,), which also means that the D5-
branes at the O point form a nontrivial surface that could
still be viewed as a bound state with the seven-branes. The
Bys in (2.36) will give rise to dipole deformation at the O
point. The heterotic metric then is (2.37) whose global
extension should be the non-Kihler resolved conifold
mentioned before.

The rest of the analysis follows a similar route as out-
lined earlier. The gravity dual should in general be non-
geometric, but if we concentrate only on the geometric
portion of the moduli space of solutions, the gravity dual is
a small deformation over the Maldacena-Nunez geometry
at the far IR. This small deformation cannot be ignored;
otherwise, the Bianchi identity will not be satisfied.

III. ANALYSIS OF TORSION CLASSES

Now that we have a few pieces of evidence that suggest
that there is a possibility to describe the strongly coupled
theory on the heterotic five-branes using a gravitational
description, we should seriously check the supersymmetry
of the underlying gravitational solutions. In fact as pointed
out in [9] and in Sec. I A, the issue of supersymmetry is
subtle: There is no immediate guarantee that the back-
grounds in the IIA, IIB, and M theories are SUSY after
performing all the transformations. In this section we will

!Note that the rotation keeps one component of the three-form
fluxes along the orbifold direction. As is well known, this
requirement is enough to survive the O action.

046006-10



TOWARD THE GRAVITY DUAL OF HETEROTIC SMALL ...

therefore analyze the torsion classes in all the intermediate
theories and ask under what conditions SUSY could be
preserved. Such an analysis will also help us fix many of
the free parameters in the intermediate theories.

A manifold with SU(3) structure has all the group-
theoretical features of a Calabi-Yau, namely, invariant
two- and three forms, J and (), respectively. On a manifold
of SU(3) holonomy, not only are J and {) well defined, but
they are also closed: dJ = 0 = d(). If they are not closed,
dJ and d€) give a good measure of how far the manifold is
from having SU(3) holonomy [32]:

d] = =3Im(W, Q) + Wy A J + W

_ (3.1
dQ =W J>+ Wy AJ + Ws A Q.
The W’s are the (3® 3 @ 1) ® (3 ® 3) components of the
intrinsic torsion: W, is a complex zero-formin 1 ® 1, W, is
a complex primitive two-form, so it lies in 8 ® 8, W3 is a
real primitive (2, 1) @ (1, 2)-form and it lies in 6 ® 6, W, is
a real one-form in 3 ® 3, and finally W5 is a complex
(1, 0)-form, so its degrees of freedom are again 3 & 3.
It is sometime convenient to express the torsion classes
using another definition. These have appeared in the litera-
ture in the following guise (see also [33] for more details):

dQ. AT =W7JATAJ,
dQ%? = WiIAJ + W5 A,
dJ®D =[J AW,]%D + Ws,
W, =13J.dlJ,
Ws =10, .d0.,

(3.2)

Hy = e*® xg d(e ??J)

o F4\/ITzsin02

F3\/ﬁsin01
F5\/F, sinf
A(dy + cosBdd, + cosbrdp,) + 3/ sind,

F4\/F1 Sin02

PHYSICAL REVIEW D 83, 046006 (2011)

where W, = W] + Wi, W, = W5 + W5, and the con-
traction operator . is defined as

k n n—k
s AN AT — AT

3.3)
1 kra..a a efn
(L, M) — ;an UMy g e 3.4)
The two definitions are related as
Wy =Wi +iWy,  W,=Wi+iw;, WwZ=w,
W4 = W4, Re(Ws) = _Ws. (35)

A. Torsion classes in the heterotic theory

In the following we will study the torsion classes for the
heterotic string theories before and after geometric transi-
tion. Before geometric transition we have the heterotic
string theory as in [9]:

ds®> = k™ 2e* Fyds3,,; + k*ds2, (3.6)
where k2(r, 8, 0,) = h™/2¢% and
ds2 = Fydr* + Fy(dy + cos6,d¢; + cosfrdp,)?
+ F3(d6? + sin?6,dp?) + F4(d63 + sin6,d $3),
3.7)

where F; are functions'' of r. The metric is of course
related to the type IIB metric studied in [9] and discussed
further in Sec. I A. The NS three-form flux is

[k*(JJF F,sinf, + 2¢,F5sinf, — F,sinf,) — 2kFk, sinf,1d6, A dp,

[kz(\/ F1F2 Sin92 + 2¢rF4 Sin02 - F4r Sinaz)

- 2kF4kr Sinﬂz]dﬁl A d¢l A (dl// + COSHldQZ’)] + 00502d¢2) + 2k\/F1F2 Sinaz(kd)gz - kgz)dd)z
A (dp + costdey + cosOr,dp,) A dr + 2k F 1 Fysin(kpy — kg )dy A (dif + costdepy + cosbrdp,) A dr

+ 2kF4 Sinel Sinez(kd)gl - kﬁl)dd)l A d02 A d¢2 + 2kF3 Sil’lel Sinez(kd)gz - kgz)dﬁl A d(}l)l A d¢2,

(3.8)

which in turn will soon be related to W5. Here we have defined k, = d,k and F,,, = 9,F,,, with a being any of the internal
coordinates. Now to see the precise connection of H; with W5 we first need to write the vierbeins for the internal space.

They are given by

"In this paper we will not investigate the case where F; are more generic functions of (r, 8;, ¢;, ). The analysis with generic F; will
definitely be technically challenging and will give us a bigger moduli space of solutions, but the physics will remain unchanged.
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e! = ky[F5(cosiy,df, + sing, sinf,d¢,), Q= (e! +ie*) A(e* +ie*) A (e + ied), (3.11)

e = ky[F5(— singy;d6, + cosi, sinf,d ),

3 = kyJF,(cosrodby + sinis, sinfrdeb,), which will immediately give us the following values for W,
VFi(cosyod, + sing, sindrd b o)  and Wy

e* = kyJF4(— sini, dO, + cosiy, sinfrde,),

¢ = ky(JF5(dip + cosd¢p + costrdgpy), W, =W, =0, (3.12)

e® = k\[F,dr.

The fundamental two-form J and holomorphic three-form implying that the internal manifold is a complex manifold.

Q) are defined in terms of these vierbeins as The three-form NS flux would be directly related to W; if
we demand d(*¢H3) = 0. In that case W5 = #¢H;. Thus
J=e' A+ Anet+ e A, (3-10)  for our case Wj is
| :

dr A d01 A d¢1

2 sind sin 9
W3=7(F4F3,—F3F4,+F3\/F1F2—F4JF1F2), ( 1 :

dr A do, A d¢2> (3.13)

The above three torsion classes told us how to put three-form flux on a complex manifold. However, supersymmetry is still
not guaranteed. To demand supersymmetry we first require to compute W, and ReWs. For our case they are given by

W4=<F3r Vi Fy  Fy = vEFS ) 2kg, 2k92
k

dr + =" a6 do,,
2F3JF, 2F,JF, g Ot dn

3kr F2r F3r F4r 1 ) 3k9 Sk(;
ReWs = + + + — = dr + —‘de 2d0,.
s <2k 4F,  aF,  aF, 2\F 1A

(3.14)

The SUSY condition requires 2W, = ReWs so k is a function of only r. The SUSY requirement from the torsion classes
gives rise to the following constraint equation for the warp factors F;:

o 1 5 o 1 [F
o, logF; + 0,108F; — ~, logF + 20, logk = (— + — WF5 — ‘/ 3.15
(\/F_l 4) P08 <JT 4) 084 Ty o 0BT TR O l08 <F3 F4> WE o G

|
This constraint equation would also be the one that we will with all the fibration vanishing, i.e. b;; = 0, where i, j =
need to impose on the type IIB side. From [26] we expect  r, i, 0,, ¢, (see also Appendix B for more details).
e? = h='2F; ! to also come out of the torsional constraint
(3.15). However, observe that (3.15) is independent of F, B. Torsion classes in the type IIA theory
so Fy is a free parameter for the background. Therefore
without loss of generality one may choose

We want to make sure that during our duality chain
discussed in [9] the solutions we take are all supersym-
metric, as the final heterotic metric after the transition will

F32 cosh B come from dualizing the type IIB case after geometric
et =plFy =92 L (3.16)  transition. The starting point of the IIB solution is obvi-
‘[1 + F(2)sinh2 B ously supersymmetric [provided the warp factors satisfy

the constraint Eq. (3.15)]. However, after the coordinate
transformation and shift in the metric it is not obvious that
asin (1.2), which will keep the spacetime part of the metric ~ the IIA solutions before and after flop are still supersym-

independent of any warp factor. This would then be con-  metric. Therefore in this section we will calculate the

sistent with the solutions of [26]. torsion classes for the IIA solutions and impose constraints
After the geometric transition, as we discussed in detail ~ to make them supersymmetric.

earlier, we expect the generic solution to look like (2.18). Before the flop the ITA metric takes the similar form as

The torsion classes for this case is a special case of (3.17) the deformed conifold as discussed in [9]:
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aF,
AA,
+ Ayc080,c081(dpy — by p,d0r — by, dr) P + ajy 4, [d0F + (dd) — by 9,db) — by, ,dr)?]

+ aj¢,¢l[d0% +(dp, — by,9,d0r — b¢2rdr)2:|

+2ajy 4 cospld0,d0y — (d) — by 4, d0, — by dr)(ddy —by,p,d0s — by, dr)]

+2ajy, 4, SINYL(AD, — by g,d0, — by, dr)dOy + (dey — by g dOy — by, dr)d6;] (3.17)

ds%o :FOdS%IZS +F1dr2 + [dl,l/ _b¢rdr_b¢02d02 + AICOSgl(dd)] - bd,]oldel —b¢lrdr)

As before, to compute the torsion classes we need the vierbeins. For our case, they are

e! = \[F,dr, e’ = Kd#,, e* = —K(dp, — by,g,d0, — by, dr),

e? = G(dy — by,dr + Ajcost (dp, — by gdb; — by ,dr) + Aycosty(ddy — by, d0y — by, ,dr)),
e = L[singy(dpy — by,p,d0, — by, ,dr) + cospdb, — adb,],

% = Llcosy(dy — by,g,d0, — by ,dr) — singgd, — aldp; — by g,d0, — by, ,dr)],

(3.18)

where G, L, K, and a are defined as

[aF, , , Joo Joio
G = m’ L= Vaj¢1¢1’ K = \Ja<1¢z¢z - #): a =" (3.19)

T, T

From the above vierbeins we can write the complex vierbeins as
E, =e!' +ie? E, = &> + i(Ae* + Be"), Ey = ¢ + i(Be* — Ae®) (3.20)

with A and B as functions of the radial direction r which in turn are determined by the SU(3) structure of the underlying
manifold satisfying A> + B> = 1.
With all these preparations, we are now ready to write the torsion classes. They are given by

1 ) . .
Wy = — m(—m%z@bwﬂw — 2iL*AGb 4, K*B + 2L*ANF1K*B + 2iGL*K cosi*b ., ,aB*
- iL3GKb¢2¢92,,aB2 + iL3Gb¢,]0],,Ka - iL3Gb¢,]01,,KaB2 - iLszd,lgl,,KzAB + G’BVF1AL?A, sinf,a*
+ G?*B{JF|BA, sin6,L? + G*B{JF|AA, sin0,K* + 2GL K sinh b, 4, , cospAa + 2L*GBK>
- 2iGL’K cos¢2b¢,292,,a + iL3GKb¢292,,aL2K2,/F1GB)
W4 = W4rdl" + W401d01 + W492d92 + W4¢]d¢1 + W4¢zd¢2

ReWs = ws el + wsoe? + wsaed + wyaet + wsse’ + waoed, (3.21)

where w; are given in Appendix B. Once we know W, W,, and W5, it is easy to calculate W, and W5 from (3.1). We will not
give the explicit expressions here. Note also that since W; and W, are not zero, the type IIA manifold is not complex. This
is of course consistent with our earlier works [5,7,9,22]. The supersymmetry condition imposes the following constraints:
2wag, = Kws,s + Kby g W+ — alws,s + alby g ws,s,
2wy, = JF\wsa + Kby ,ws,e — Lsingby ,ws,s — L(aby,, — cosib g, )ws,s,
2wag, = L(—singby g, + cosih)ws,s — L(costhb g, + singh)ws,s, (3.22)

2wy, = L(singpws,s + cosifws,), 2Wyp, = —aLws, — Kws,s

with ws,2 = 0. These conditions are in addition to the condition (3.15), and therefore would constrain the warp factors
further.
After the flop the IIA metric takes the similar form as the resolved conifold [9]:
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ds%o = FOdS%123 + Fldr2 + €2¢[dlp - bl/,’udx“ + Al COSHl(d(]Sl - bqﬁlﬁldel - b¢]rdr)
+ Az 00592(d¢2 - b¢202d02 - b¢2rdr)]2 + e(2¢)/3a2(k2G2 + kG3 + Gl)[dQ% + (d(b% - bd)leldal - b¢],dr)2]
+ ePOBLA UG,y + nGy + G)[dO3 + (dep3 — by, d0, — by,,dr)?], (3.23)

and the definitions of coefficients are the same as in [9]. We define
F?2=eRDBa2(K*G, + kG5 + G)), T3} = PP (UG, + uGs + G)). (3.24)

To determine the supersymmetry condition now, we follow the same procedure, namely, compute the torsion classes. In the
following we give the general torsion classes assuming that the fields and metric can depend on angular coordinate 6; and
6, also. But first we need the vierbeins for the metric (3.23). They are

€1 = fldﬁl, 83 = fzdez, €6 = \/-F—Tdr,
e = Fildd) = by,p,d6) — by, dr), ¢ = Fy(ddy = by,p,d0; — by,.dr), (3.25)
65 = €¢[d¢ - b,/,rdr + Al COSHl(d(,Z’)l - b¢]0[d01 - bd,lrdl") + A2 COSQz(d(f)z - b¢292d02 - b¢2,dr)].

Using these vierbeins it is a straightforward (but nevertheless tedious) exercise to determine the torsion classes. This time
we find the following values for the torsion classes:

1
Wy = 6}‘1}'2\/F_1(f%b¢1r,92 + f%bdhr,(?l - 62¢A2 COSH2\/F_1b¢292A91 + 62¢A1 00801\/71[94,[9],52
+ l.€2¢‘\/F_1(A2‘01 COS@Z - AI»OZ COSG])),
+ +
W, = —.7:2,91 Fado, do, + —‘Tl’ez Fido, do, — (Fie*A, sind,\F; — F3e?? A sind WF,

I Fi 2f F>
- .7:2 22A5 4, cosOy[F| — F3e*PA 0, cosO\F, = 2F2Fr Fs, — 2F%F  F1,)dr, ReWs

J_fz :Fz (e? F\Faly,c080, = 2F FagNFi = 2F 16, FolFi — F1 Fadbs,)

sz_. \/——(Az 005‘926 f1.7:2b¢7r91 A 00591€¢T1b¢101rf2 + A 00591€¢flb¢1r01f2 + €¢f1f2b¢r01
2

o
_\/F1.7:1.7:2b¢20201)+\/—j_-23_- (=2F 10, FNFi1 = 2F\ ForoNF1 — FiF2d0F1 + €? Fi Fal,, cosby)
1
—ot
+ ——=—5—(—A, cosf,e? by g, + Ay coshre? by 9, + Ay cosOie? Fiby .
\/'FTf%ﬁ( 2 26 F1 F2b g0, 2 20 F1F2b g, 0, 1 12 F1bg 0, F>

5

e
VI F Fa
QFFr+2F 1 Farb, +2F 1 Fa0) (3.26)

+ €¢f|fzb¢r02 - \/F_lflbqslelerz) +
6

\/_.7’13:2

(—kbg,g,, Fo+ kby o, F2r— F1F2bg,0,r

+ F1F2by,re,)

|

where W, and W; can be easily determined from the above  will put further constraints on the parameters of the back-
information. Note that the type IIA manifold after geomet-  ground. Combining the other two set of constraints (3.15)
ric transition is again a noncomplex non-Kihler manifold  and (3.22), we can fix most of the parameters of our
as we would have expected. The supersymmetry condition  background. The remaining parameters, which are not
fixed by our constraint equations, will give rise to a class

of backgrounds corresponding to various gauge theory

2W, = ReWs deformations, as shown in Fig. 3.
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geometric

Nongeometric landscape

transitions

N =1 gauge theory MN type geometry

. Geometric landscape
configurations

FIG. 3 (color online). The heterotic transitions corresponding
to various gauge theory deformations. We see that the dual
configurations are generically nongeometric. The geometric
(but non-Kihler) regions are shown in blue. The black dot is
the warped-deformed conifold geometry, or the Maldacena-
Nunez type of geometry.

Combining all the ideas together, we see that a careful
analysis of the torsion classes for various intermediate
configurations allows us to present explicit supersymmet-
ric solutions for the geometric transitions. This would then
justify not only the supersymmetric cases studied in [9],
but also the new heterotic configurations that we present in
this paper. Therefore combining the above set of argu-
ments, stemming from torsion classes and explicit back-
grounds analysis, we believe, should strongly justify the
new heterotic duality that we conjecture in this paper.

IV. VECTOR BUNDLES THROUGH CONIFOLD
TRANSITION

To study the vector bundles we will start from the
anomaly condition for the heterotic theory with torsion.
As emphasized in [26] a more useful way to express the
anomaly condition is to complexify the heterotic three-form
H to G and write the anomaly condition as

G =dB + a[Qs(w.) — Q5(4)], 4.1)

where w is the modified spin connection, now described
using the one-form G, defined in the following way:

wy =0 —1G with G=Ge?=G;jeve . (4.2)

The complexified three-form is very useful in many analy-
ses, for example, writing the superpotential [23] or the
action, and can be expressed in terms of the real three-
form HH of the heterotic theory complexified with the
geometrical data [26]. One may easily show that the
Chern-Simons term related to the torsional-spin connec-
tion w is given by

PHYSICAL REVIEW D 83, 046006 (2011)

Q3(0,) = Qs(@) +105(G) — Yw AR + G AR,),
4.3)

where we define Q4(G) in a somewhat similar way as

Q3(A) or Q3(w):

0;(G) =GAdG —1GAGAG. (4.4)
The quantity R is the curvature polynomial due to the
torsion and is defined as

G AG,

Rz = dG — (4.5)

Q9 |

whereas R, differs from the usual curvature polynomial by
— % o A w.In fact, we can write in a more compact form as

00, = (@~ 16)R, —Ry) 46

with the curvature polynomials defined above.'?

From the above analysis it is easy to infer what the
background torsion is. If we concentrate only to the lowest
order in '’ and linear order in G, the three-form back-
ground is given by

!
G = dB(l - %Rwe_2> L' O4(0) + O@?), (4.7)

where we have imposed (23(A) = 0 because the gauge
group is completely broken. To all orders in G and «’ the
equation that we need to solve is

/

G+%|:a)/\RG+G~/\’Rw— G‘/\RG]

=dB + a'Q;(w) = f. (4.8)
Thus f will have a term linear in '. Using this, the solution
for G is written in terms of powers of «’ in the following
way:

G= Z a™H, + L’ Z ah,,

4,
N 4.9)

where n goes from zero onwards. As discussed in [26], the
various terms in G can be presented as

"In this form it is instructive to compare with the other choice

of torsional-spin connection w_:
Qs(0-) = (@ + JH)(R,, + 1R ;- + 1H A H),

which differs in relative signs and an additional term.
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ho_ll—zﬁoAﬁoAﬁozo, f

hy — lTr(ﬁo A EO A I’INI) = —%Tr(a)o A dﬁo) + %Tr(wo A I:IO A ﬁo) - %Tr(ﬁo A R‘Uo)
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1 - - 1 ~ =
Hy= — 3 + 1 Tr(hy A dhg) + G Tr(wg A hy A hy),

(4.10)

+ iTI‘([:IO A dﬁo + };0 A dﬁo) - %Tr(ljlo A HO A ﬁo),

where the tilde terms are one-forms constructed out of
three-forms using vierbeins as in (4.2) and the subscript 0
denotes zeroth order' in a’. Solving the above set of
equations gives us the following:

G= —%d(B +iJy) + a’Q3(wg) + corrections, (4.11)

where, as one would have expected, the complexified
Kidhler form appears naturally from our analysis. The
corrections are both to J as well as well as to higher orders
in a’. The — % coefficient can be absorbed by redefining G.
Once we do that, we could rewrite the real part of G, i.e.
HH , in the following way:

5{=f+%/(w0/\f/\f+f/\Rwo+%f/\df

—eining)

(4.12)

A=

where f = dB + a’Q;(w) as defined in (4.8) above. Since
we know FH from Appendix A, we can determine f or f to
lowest order in &’ by solving the cubic equation (4.12).
Therefore the story after the transition is simple: The
torsion and the metric are the only information needed to
specify the dual geometry. On the other hand, before the
transition the situation is more involved. There is a non-
trivial vector bundle:
Sp(2N) X @, (4.13)

where, as mentioned earlier, the gauge group G comes from
the type IIB seven-branes. Various distributions of the

F-theory seven-branes d la [34] will give various G. If H

denotes the torsion before the transition, we expect dJH to
have contributions from TrFg X Fg as well as from

TrFs,0n) X Fspen)- As before, the torsion H will have
two parts: one proportional to N and the other independent
of N. The part independent of N could be balanced by the
torsional curvature and the G bundle. It will be interesting to
work out the full picture as both sides, before and after the
transition, require careful analysis of the Bianchi identity. A
more detailed analysis of how to pull the bundle (4.13)
through the conifold point will be discussed elsewhere.

BWe write @ and J as w =Y a"w, and J =Y a"J,, re-
spectively, to compare terms order by order in a'. This is
discussed in more detail in [26].

[

V. CONCLUSION AND DISCUSSIONS

In this paper we gave some evidence for the gravity dual
of large N heterotic small instantons. We pointed out that
geometric transition in the heterotic setup is related to a
small instanton transition under which the small instantons
smoothen out. This way the Sp(2N) gauge symmetry
before the transition is completely broken, and therefore
in the dual side we no longer have branes or vector bundles
but only torsion. For certain cases the gravity duals are
deformations of the corresponding type II cases because of
the underlying Bianchi identity.

We left many questions unanswered. For example,

(i) Can this way of thinking be extended to the type 1IB
case also? Recall that the IIB D3-branes are small
instantons on the seven-branes in the full F-theory
setup. Therefore before the transition we can move
the seven-branes along the Coulomb branch so that
the SUSY remains unbroken at low scales. Then
presumably the large N limit of D3-branes could
be studied via this mechanism. It would be miracu-
lous to recover ADS target space from the ADHM
sigma model.

(i1) In the heterotic side the vector bundle is completely
broken. So to satisfy the Bianchi identity we cannot
allow a closed three-form. However, in IIB there
might be a situation where all the D3-brane
small instantons smoothen out on a subset of the
allowed seven-branes. The gauge fields on these
seven-branes become all massive, but we can still
have nonzero TrF A F from the other seven-branes.
Therefore we might be able to allow for a
closed three-form and still satisfy the Bianchi
identity.

(iii)) One of the issues that we skimmed over is the
ADHM sigma model and possible contributions
to the world-sheet superpotential. The precise ques-
tion is as follows. Could there be an ADS-like
contribution to the ADHM sigma model that can
tell us how the target space changes from a non-
Kihler resolved conifold to a non-Kéhler deformed
conifold (or even to a nongeometric one)?

(iv) In the type IIB case the effect of a world-volume
quartic potential plus the ADS contribution can also
be seen from the Gukov-Vafa-Witten type of bulk
superpotential [35]. Now that we know the heterotic
superpotential [23,24], we should be able to see the
connection between this superpotential and the to-
tal ADHM superpotential.
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(v) Is it possible to understand the full cascading dual-
ities from this perspective? This may be more tricky
because in type I we do not have D3-brane degrees of
freedom. But maybe they all can be understood
directly from the F-theory viewpoint where the D3-
branes are small instantons on the seven-branes and
the D5-branes (that are not parallel to the seven-

PHYSICAL REVIEW D 83, 046006 (2011)

Note: As we were writing this draft two interesting
papers appeared in the archive that studied some aspect
of the story in a slightly different guise [37]. The second
paper in [37] studied some aspect of heterotic-conformal
field theory (0, 2) sigma model. It would be interesting to
relate them to our results. Some other papers with some
indirect relations to our work can be found in [38].

branes) are in fact T-dual to type I small instantons.'*

(vi) We discussed how the Maldacena-Nunez solution

[19] should be deformed slightly to satisfy the
Bianchi identity. However, we did not compute
the actual deviations of the components of the
metric or the three-form in this paper. Although
this is technically challenging as the components
of trRy AR, from the metric (2.18) are rather
unwieldy (see also Appendix A for the form for
FH), it will nevertheless be an interesting exercise
to get the background precisely. This will then
provide another confirmation of the heterotic
duality.

(vii) Last but not least, we have not said anything about
the Eg X Eg case. As discussed in the introduction,
here the story may follow a similar line of thought
as in [14]. We will discuss about this case and
hopefully some of the above mentioned points in
what follows.
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APPENDIX A: THE TORSION FOR THE DUAL
GRAVITATIONAL BACKGROUND

The modified HH for the heterotic background (2.18) is
rather involved because of the nontrivial fibration structure
in the definition of Dd¢;. However, if we consider the
simpler case where Dd¢; = d¢p;, the three-form, or the
torsion, can be easily found. Under this simplification J{
is given by
J

1
(—=BKL?a, + B’KL*a, — L*>a(1 — B*>)BK, — 2L?a*V'1 — B?sin(y)L,B?
VKA - B

— L2a%(1 — B?)sin()B,K — (cos())*L3av1 — B2a, + L3a>V1 — B2 sin(y)a, — aBK? sin(y)LB,1 — B*
— L2a%(1 — B?)sin()BK, + (cos())*La(1 — BY)L,BK + (cos())*L3av1 — Ba,B?

— 2(cos())2L2a*V1 — B2L, + 2aB*K? sin(y) b, L1 — B2 + 2L3a?V1 — B¢, B? — 2L3a*V1 — Bsin(y) b,
+ 2(cos())2L3a1 — B2 ¢, — La*(1 — B)sin(y)L,BK + (cos(14))*L3a*V1 — B*BB,

— La?(1 — BY)JASGA, sin(6,) — 2(cos(4))*L2a(1 — B2)¢,.BK — aB>K? sin(¢)L,V1 — B?

— (1 = BY)LJAsGA, sin(6;) + (cos(4))2L*a(1 — B*)B,K — La(1 — B*)L,BK + (cos())?L*a(1 — B*)BK,

— aB3K sin(y)L%a, — a®B*K sin(¢)L2B, + 2L2*a*(1 — B?)sin(y)$,BK + aBK sin(¢)L*a, — V1 — B*L3aa, B>

'“In fact there is already a hint that such deformation of the instantons that we see in the heterotic side should have an equivalent story
in the 7-dual of the IIB geometric transition. This construction has appeared in the second reference of [4] some time back, and here
we will elaborate the story very briefly. The IIA brane construction after the last cascade will be M D4-branes in the interval between
the two orthogonal NS5-branes, and no D4-branes on the other side. Once we shrink the P! to zero size, the two NS5-branes in the
T-dual picture come together. To see the subsequent behavior, we lift this to M theory. There the SUSY condition is preserved only
when the shrunk D4-branes (or M5-branes now) deform to form a diamond structure between the two M5-branes (see [36] for more
details about this construction). Therefore the final configuration is like two intersecting M5-branes with the intersection “‘point”
blown up and the M5-branes between the two orthogonal M5-branes virtually dissolved. The T-dual type IIB configuration will give us
a deformed conifold and no D3-branes. Note that the deformation of the shrunken M5-branes exactly creates the extra metric
components required to convert the resolved conifold geometry to a deformed one in the 7-dual IIB side. This is almost like the small
instanton story: The small instantons deform and become geometry. The only difference is that in the IIA and M theories the curved
MS5-branes become M planar M5-branes and consequently lose the U(M) gauge symmetry to end up with M U(1)’s. In the heterotic
theory the k instantons blow up to lose the Sp(2k) gauge symmetry, but now due to the background G subgroup of SO(32) all the gauge
symmetries are completely broken.

046006-17



CHEN et al. PHYSICAL REVIEW D 83, 046006 (2011)
— L3aV1 — B sin(4)BB, — L2a(1 — BY)B,K — 2L3a>V1 — B2¢, + 2V1 — BPLKK, + 2L2a?V1 — B?L,
— 21 = BLé,K? — B2K2L A1 — B2 + V1 — B2L3aa, — 2J1 — B2LBB,K? — 2(cos(¢))2L3a1 — B2, B>
— aBK\JASGA, sin(0,V1 — B2 — L3a?V1 — B?sin(¢)a, B> + 2L2a*V1 — B2 sin(y)L, + 2L2%a(1 — B2, BK
+ 2(cos())2L2a1 — B2L,B% + 2a*B3K sin(y) ¢, L? — 2a* BK sin(¢h)p,L> — 2a>B3K sin(p)L, L
+2a?BK sin(¢)L,L — L3a>1 — B2BB, + W1 — B2L¢ K?B2 + 21331 — B2 sin(y) ¢, B
— aB?K sin(¢) LK1 — B2 — 31 — BALKK,B? — 2L.2a?\1 — B’L,BY)E, A E5 A E,

(—2(cos())*B*L3a’ ¢, + 2(cos())’BL3a*p, + (cos(i))?>B*L3a’B,

1
i JAKALA - B
+ 2(cos())*B3L?a*L, — 2(cos())>BL*a*L, + a(1 — B>)K sin(/)LBK, + a(1 — B*)K?sin(/)LB,

— B2LB,K? — aV'| — B’KL?BB, — 2BL¢,K? + 2BLKK, + 2B’L$,K*> — 2B’LKK,

+ a(l — B2)K\JA5GA, sin(6,) — BL\JASGA, sin(0,)V1 — B> + 2B*L3a*¢,

—2(1 — B))K2¢,LB — 2BL3a*¢, + (1 — B2)K?LB, + 2BL*a’L, + 2aV'1 — B*K$,L>B?

+ (cos())?B3L3aa, + V1 — B2KL?a, + (cos())*BLaL N1 — B2K — B*L*aK,N1 — B? — 2B3L2a’L,
— av1 — B*K sin(¢)L2%a, — 2a*V1 — B*K sin(¢)L,L + (1 — B2)KL,B — B3L3a*sin()a,

— BLa*\JAsGA, sin(0,)V1 — B2 + av'1 — B2K sin(¢)L?a,B* — 2a(1 — B)K?sin(i) ¢, LB
+ (cos(4))>BL2aB,KN1 — B2 + a>J1 — B2K sin(¢)L,LB> — V1 — B*KL?a,B> + 2B3L3a3 sin(¢) ¢,

+ a(1 — BY)K?sin()L,B — B*L3a? sin(y)B, + (1 — B)KLBK, + 241 — B K sin() b, L2 + BL3aa,

— B3L3aa, — a1 — BPKLL,B* — 2B3L2a3 sin()L, + 2BL2a% sin()L, + BL3a?sin(¢/)a, — B*L3a®B,

— 2(cos())*B*L*a¢, N1 — B?K — B*L*a® sin()K,N1 — B> + (cos())*B*L*aK, N1 — B?

— (cos(¢))*BL3aa, — 2BL3a’ sin(y)p,)E, A E5 A Eg

+ ! (
JASL?K~/1 — B?

— 212a(1 — BY) sin(4)b,BK + 2B°KLL, — 2BK sin()L,La + La(1 — B2 sin()L,BK + 2B3K sin(4)L,La

—2B3K ¢, L> + B’KL’B, + 2BK sin() ¢, L>a — 2B*K sin(¢) ¢, L>a

— BK sin()L2a, + B2K? sin(¢)LV1 — B — 20301 — B2 sin(4)$,B2 — (cos())V1 — B*L3a, B>

+ 2021 — B sin(y)L,B? + 2(cos()V1 — B*L2L,a — (cos(4))*(1 — B)LB,K + B?K sin(4/)L2aB,
+ B2K sin(w)LKrm + 2(cos())*(1 — B%)L*>¢,BK — (cos(i))*(1 — B*)LL,BK

+ L3a>V1 — Bsin(4)BB, + L2a(1 — B2)sin()B,K — (cos(4))V1 — B2L3aBB, + 2L2a1 — B’L, B
+ 2(cos(p)V1 — B2L3b,aB? + L3av1 — B2 sin(¢)a,B? — L3av1 — B2 sin()a,

+ La(1 — B)JASGA, sin(6,) — 2(cos())>V1 — B*L2L,aB? + (cos(4))V1 — B2L%a,
+203a\1 — B2¢, — 2021 — B2L, + L3a1 — B’BB, + B*K sin(¢)L2a,
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+2BK¢,L? — 2BKLL, + BK?sin(¢)LB,N1 — B2 + L2a(1 — B?)sin(¢)BK, — 2L3aV1 — B*¢,B?
— (cos(¢))*(1 — B?)L?>BK, — 2L*a*V1 — B>sin( )L, + 2L3a*N'1 — B*sin(¢) ¢,
— 2B2K?sin() ¢, LN1 — B> + BKyJAsGA, sin(0,)V1 — B> — 2(cos(¢))*V1 — B2L3,a)E; A E, A Es

_ SISy 120 426 1248 + 26, INT — BBK + 2L, La — 2L LaB’ — LT — BBK
JVASKLN1 — B?

— L2aBB, + L%a, — L*a,B*> — LB,KV1 — B2 — LBK,N1 — B2)E, A E4 A Eg

(—=(1 — B)K?sin(¢)L,B — 2BL*aL, — 2J1 — B2KLL,B?

1
JAL2KNT — B?

— B2Lasin(¢)LV1 — B2’K — (cos())*B*L3a, — V1 — B2K sin()L2a,B? + BLa\JA;GA, sin(6,)V1 — B?

+ V1 — BKLL, — 2J1 — B2K ¢, 12 + B*L3aB, + 2B°L%aL, + BL2asin(p)KN1 — B2 — 2B°L3ad,
— (1 — B)K?sin()LB, + (cos())*BL3a, — (cos())*B*L*KN1 — B> + V1 — B2K sin()L2a,

+2v1 — B2K sin(¢)L,La + 2(cos())*B3L3p,a + B2L3a? sin(¢)B, + 2(cos(4))*BL2L,a
+2B3L2a% sin(¢)L, — (cos(4))*BL2B,KN1 — B2 + 2(cos(¢))*B*L>¢ V1 — B K

+2BL3a? sin(y) ¢, — 2(cos())*BL3 b,a — (cos(p)?BALL N1 — B2K — 2V1 — B*K sin(¢),L%a

+ B3L3asin(¢)a, — (1 — B?)K sin()LBK, — 2(cos())?B>L*L,a — 2B3L3a? sin(¢) ¢,

— V1= B2KL2BB, + 2(1 — BY)K2sin(¢),LB — (1 — BX)KyJAGA, sin(6,) + 2BL3ad,

—2BL?a®sin(Y)L, + 2V1 — B2K ,L>B? — (cos(i4))*B2L3aB, — BL3asin(y)a,)E, A Es A E,,

V1-BLa+BK
GK

_ —1-B’La+BK

GK
+ %(mLa + BK)(cos(¢)A, cos(@z)Lam + cos(i)A, cos(0,)BK

E, A E5 A Es,

E, A Ey A Eg,

al, cos(6,)(—v1 — B’La + BK) sin(is)
KZ

+ %(Vl — B%La + BK)(— cos(¢/)A, cos(6,)BLa + cos(i)A, cos(6,)V1 — B’K

+ A, cos(0,)V1 — BAL)E; A Ey A E5 + Ey ANE, A Eg

(=1 = B2La + BK)A, cos(6,) sin()

- BA] COS(al)L)E:; A E5 A EG - LK

E, AN Es A Eg,

where the function B is a function of radial direction r and is determined by the SU(3) structure of the manifold.
G =vA, L = A, K = \JA; — Ayb, a=byy, Ay =ay, Ay =y,

and E; are defined in the following way:

E, = fAsdr, E; = Kd#,, E, = —Kd¢,, E, = G(dy + A cosb,ddp, + A, coshrdp,),
Es = L(sinyyd¢, + cosypdb, — adb),), E¢ = L(cospdgp, — sinpd, — add,).
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APPENDIX B: GENERAL TORSION CLASSES FOR TYPE ITIA

The type IIA torsion classes before geometric transition are given by the following expressions:

~1 , , .
W, = m(—;LzGK%MﬂAB — 2iL*AGb ;, K*B + 2L?AVFIK?B + 2iGL3K cos by, ,aB>

— iL’GKb g, ,aB? + iL*Gby o ,Ka — iL3Gby 5 KaB* — iL?Gby 4 K*AB + G*BJFTAL?A, sind, a>

+ G?B{JF|BA, sin0,L* + G?ByJF|AA, sin0,K* + 2GL K singyb 4, , cospAa + 2L*GBK?

— 2iGL3K cosy®b g, ,a + iL3GKby 4 ,aL?K*FGB),

W4 = W4rdi" + W4‘91d01 + W402d02 + W4¢Id¢1 + W4¢zd¢2,
ReWs = ws,ie! + wspe? + wsaed + wsaet + wsse’ + wsoeb, (B1)
where w,’s appearing above are defined in the following way:
1 ) . .

- W[_ singg A, cos,L*by, ,a’B* — cost A\ L*sinyyby ,aB> — singy A, cos§,L>K?b,, ,aB>
— singy A, cos0,L Kby N1 — B*Ba® + cost; A L3 singby, ,KN1 — B*B — sinip A, cos§,LK>by N1 — B’B
+ siny A, cosb,L?K?by ,a — 2LL,K?* + cosO A L*sinfby ,a + sing A, cos,L*b y a?

+ JF,GA, sind,V1 — B2 L2a* + L\JF,GA, sin6,V1 — B2 + \/F,GA, sin6,K>v1 — B2 — 2L2KK,],

War =

1
L[A2 cosf, cosy BPKL?a* — Ay cosO, singy B3 Kby, g L*a® — A, cosb, singy B3K b, 4,

Ry N =
+ A, cosf, cosy B3 K> + 2L%aB3KA | cosf, + A, cosb,L sim//mabd,lglKZBzx
+ A, cosf,L cos wmaKsz — A, cosf, cosy BKL?>a*> + A, cosf,L> sinz//ma3b¢10132
+ L1 — B2a2A, cosf, B2 + A, cosf,L cos 1 — B2aK2B? — A, cosf, cosy BKL2a?
+ Ay cost singy BKby g rL?a* + Ay costy singy BK?by, g — A, cos, cosiy BK® — 2L?aBK A cosb,
— L1 — B2a2A, cosh, — A, cosO,L3 cosy 1 — B2a® — A, cosh, L3 sintpma3b¢lel
— A, cosf,L cospv 1 — B2aK? — A, cosf, L sim,bmabd,lﬂl K?],

1

Vi = TR
— LA cost singhby, 9 B°K — Lcosy BKA, cost; — cospv1 — B2L2aA, cosé,
+ L*A, cosb, sin¢b¢202ma + LA cost singby, 5 BK — L*A, cost, sinzpbd,zgzaBzm
+ cosyyL?al, cosﬁlBQW + A, cosﬂszazBQW],

(B3K® + B3KL?a® — L1 — B2aK?B? — L3V1 — B2a3B? — BK3 — BKL*d>

—L2arN1 — B2A, cosf, + A, cosf,B2K*V1 — B2 + Lcosiy B3KA, cosf,

1
Wag, = = F7—=—|
kT = BL
+ LV1 — B2aK? + L*V1 — B%a®) cosh, sinip A, ],

1
Wyg, = 5[\/ 1 — B2 (W1 — B2La + BK)A,L cosd, sinK?), (B2)
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1
JFGK?L? L2

o Q¢92¢1¢2K00S¢ V1-— sz¢2’L o Qf¢91¢1BL2 + Qf¢¢1¢2L2b¢191 Sin¢b¢29zBa

rl//02¢zBK2 - Qr¢0|¢zL Sin¢b¢202V1 - B2K - erp@]gz Sln(!/LVI - BZK

Wsel =

+ Qr¢gl¢2L COS{le - B2K + er//¢1¢2Lb¢l‘91 COSl[/Vl - BzK - Qr¢92¢1L2 coszﬂBa
_ J1 - g2 _ J1 — B2k <inils — : 2
Qrpp, LN1 — B°Kby g, costh — Q4 4, IN1T — B°Ksingy — Q4. 9,4, sinby, L*Ba

+ Qll/92¢1¢2b¢zr sintﬂbd,]ngLza - Q‘/“92¢1¢2Lb¢2’ Sinlf/]bd’le] v 1= BZK

+ Qr¢92¢1L Sin¢b¢101 V1 — BZK + 2Q,¢,92¢2aLv1 - BZK + Q,¢¢1¢2L2Bab¢292 COSl,b

o Q¢91¢1¢2Lb¢1r5in¢b¢’292 V1 - B’K — Qr¢¢1¢2Lb¢191 Sinlpb(/’ﬁz V1 - B’K

- Qr¢¢1¢2L2b¢101 COSlﬁBa + Ql//(;ld,]d)szbd)lrSinl/lb¢znga + Ql/l@]@g(ﬁz Sinlpb¢2rLV1 - BZK

+ Q¢0]¢l¢2Lb¢erOS¢V1 - BZK - erb@zd)le sin¢b¢lnga + Qr¢02¢1LCOS¢V] - BZK

+ ZQ¢92¢]¢2Lb¢],aV1 - BZK + Q¢91¢]¢2L23b¢2r - Q,¢02¢2a2LzB + Qrt//(‘)l(szZ sin¢b¢2923a
- Q,’[,glgzd,] sim/tbqf,l,LzBa + Q¢02¢1¢2b¢1rBK2 + er/,glgz sinz//LzBa - Q¢51¢]¢2L2b¢,erOSl//Ba

+ Qg g, L2Basing — Q5 4 L>cospBa + Qg g 4 singby LV1 — B’K
— 2 2 2
Qyo,6,0,0,,0°BL* + Qyg,4,4,b4,, cosyBL a],

1 . .
W52 = m[ﬂ,¢0192 COSl,[/ + Qrwglqubg%ez COS’# + Q”//al(ﬁZ Slnlp’ - Q”/,92¢] COSl,[/b¢191 + Q,¢02¢] Slnl,[/

+ ‘Q”l//¢1¢2b¢191b¢292 cosi + QV¢¢1¢2b¢191 singy + Qr¢¢1¢z cosyy — Qr¢¢1¢2 Sinl//b(ﬁﬁz
= Qyo,0,0,C05Ubg = Qg 9,9, COSYbG, + Qygg,6,04,06,0, COSY + Qyg 9,0, s
+ Ql/f92¢1¢2b¢zr COSl//b¢19] o Q¢92¢1¢2b¢2r8in¢]’ (B3)
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W563 -

W564 -

1 .
m[_ﬂrd/g]@ Sln(//Al COSH]LG - er//t91¢|A2 00502 COS¢1LG + er/,02¢2aAl COSH[LG

= Qg 0,0,6, 50Dy, LG — Qg 4 0, LGsingby, g + Qg 4 Ay cosd LG cos i

= Qyyg,g,81 0080, LG sinihbg g, + Qryg,, LG sing Ay c0s01by 0, + Qygo,9, L sinhGby,

= Oy, LGald;cos0, + Q4 4, LGby g Ay coshy cosyy

= Qg 6, LGby g Ay costsingiby g, + Qg 4, LGA, cOSO2b 9,0 + Qg g, 4, L singgGA | cost by, ,

- Ql/“g]gzd)]LCOSl//V _BZ\/FI - Ql//‘glgzqu\/FlLaVl - B2 + Ql//l9102¢>z Sin¢/A1 Cosalbd,erG
+ Q¢01¢1¢2LGA2 C0562 COSl//b¢2r + Qlﬂﬁltﬁl(ﬁzLGblﬁrCOSlp + Q¢91¢1¢2LGb¢er1 00801 COS{#

- Q¢01¢|¢2LGb¢1rAl cosf, Sinl,//l’)d)zg2 + Q¢9|¢’1¢2LV] — BZ‘/F1 sinys
- Q¢0]¢I¢ZLGb¢,sin¢b¢202 + Q¢01¢I¢ZLV1 - Bz‘,F]bd’zﬂz COSI# - Q¢02¢|¢2ch¢zr Sini,ZfAl C0S01b¢]gl
+ Qy0,0,0,LGh g, a8 0802 + Qg4 4,b9,0 V1LV = B2+ Q 9,4, 9, LGal cos61 by,

+ Qyo,9,6,LGaby, + Qyp,g,0,04,0 VFIBK + Qg 9,4, SN LG = Qg 9,4, VFIBK + Q9,4 4,aLG
+ Q,9,4,4,LG cosi], (B4)

1
Kiz\/}r—,ll?G[Q“/ngezG COSlpAI COS@lLVI - B2 + Qr¢91¢2GA2 00502b¢292LaV1 - 32 + QFWGIGZGA2

X C0502Lavl - lg2 + Qr¢0102GA2 COSBZBK + Qr0]¢1¢2 Vl - B2LG Sinlll - er/“g]d)l Sinll/Az Cosazvl - BZLG
- Qrﬁlﬁzdn COS¢V1 - BZLG - Q,0]02¢2GLaV1 - B2 + err/,glquGAz COSezbd,zngK

+ Qyo,0,0,06,0,Gb g, cOS A cosO LN — B2 — Q.4 by 9, GA, cosOrLav1 — B
= Qry0,0,09,0,GA2 COSOBK + Qg g,4,,G cospV1 = B2hy, L = Qp,9,,4,Gby, Lavl — B2

+ Q"91¢1¢2 V1 — BzLqubz@z cosi + Q¢92¢1¢2b¢191Gb¢’La V1 - B> + Q¢'92¢1¢2b¢191Gb¢VBK
- 90102¢1¢2Gb¢1rBK + Qr¢01¢2GA1 COSHILV1 - sz(bzgz COS(p + Qr¢91¢2GA1 COSHILV1 - 32 Sil’llp
—Q,y0,6,b,0,GeospAcosO LNT — B> + Q4 5 by o GAycosbrby o Lavl — B

+ 00y ,6,b4,0,GA1 cosO L] — B?siny
+ Qg 0,06,0,GD2c0802b4,0,BK + 0,y 4, 4,04,0,GA  c0sO LV = B2byy, 9, cosif

+ Qraz¢l¢2b¢10]GLaV1 - B2 + Qr92¢|¢2b¢101GBK - Q¢0102¢1Gb¢]rA2 COS&QBK
- Q¢0102¢]Gb¢r COSlﬂV 1 - BzL - Q¢0]02¢1Gb¢erOS¢A1 COSﬁlLVI - 82
- Q¢0192¢1Gb¢1rA2 COSHzLaVI — B — Q¢9102¢2Gb¢rldlv1 — Bz — Q¢9192¢2Gb¢2rA2 COSHzLClVI - 32

+ legl(bld,szerl - Bsz(l,zgz C()Sdf + Q¢91¢1¢2Gb‘//rv1 - B2L Sil’lw + Qlﬂalqﬁ](ﬁz'\/FlL Sinlpbd,zgz
+ Qw01¢1¢2GA2 00592b¢],b¢2923K + Q¢9]¢1¢2Gb¢er1 COSB]LVI - B2b¢202 COSl,[/

+ Q¢01¢1¢2GA2 00502b¢],b¢292Lav1 - 32 + Q¢91¢1¢2Gb¢1rA1 COS01LV1 - B2 Sinlp
— Qy,0,6,GbyBK + Qg 4.5, Gsiny Ay cosbN 1 — B2by L — Qg o 4. Gy A, cos6,BK
- leolgz(j,szd’erOSlﬂA] COSH]LVI - B2 + Q¢02¢]¢2b¢]0]Gb¢er2 COSHzLaVI - B2

+ Q¢02¢1¢2b¢10]Gb¢2rA2 COsngK - Q¢0102¢1 Sinlﬁ'\/F]L - Q¢02¢]¢2a\/F1L - Q¢gl¢]¢2\/F1L COSI,[/
- Qralgzd)zGBK], (BS)
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1
W55 = —Kz\/F_'lLZG[_Q”bgzd,lAz COSHzKG + Qr¢02¢zA] COS@]KG + er[/¢|¢2A2 00802b¢202KG + Qrﬂzlﬁ]d’zKG
- Ql[/t‘)]ﬂqu] COSl/IB\/FlL - Q¢9|02¢2\[F18La + Q¢6]02¢2\/F1V] - BZK + Q¢0|¢1¢2B‘,F1Lb¢202 COS(//
+ Ql/l@,(ﬁl(sz'\,FlL Sil’llp + Q¢92¢]¢2KGA2 COS02b¢zr + Q¢92¢1¢2Kber + Q¢92¢1¢2KGA1 COSGlbd,]r
+ Q‘//92¢1¢2b¢191 VFiBLa — Q‘//92¢1¢2b¢191 VIV — BZK]’ (B6)
1
— J1 — R2K — J1 — B2
Ws6 = W[QrﬂlﬂzqﬁzG 1 B°K Q¢92¢1¢zb¢191Gb¢er2 C0502 1 B°K + Q¢02¢1¢2b¢1016b¢rBLa

- sztblqﬁzbtbl@leWVl - BZK + Q¢02¢]¢2b¢]0]Gb¢er2 COSGzBL(J + 99102¢1¢ZGCOS¢Bb¢2VL
- 90102¢1¢2Gb¢1rBLa + 901024714’26[)?51’\'1 - BZK - Qr¢01¢1 Sinl//Az COSGzBLG - ‘Q’r0102¢1 COSI,[/BLG

+ O, 9,4,GA2c08602b 9. BLa — Q4 9. GA; cos0,V1 — B2K + Q4 4, G cosip BA,| cosf, L
+ Qr¢glngA2 COSHZBLa + er/,0]¢2GBA1 COSB]L Siniﬁ + Qrkbgld’zGBAl COSBlLbd,zgz COSl/f

- Qr¢91¢2GA2 C0562b¢20zvl - BzK - er//flzqﬁlbtﬁlﬁchostAl COSH]L

- Qr¢02¢lb¢|0|GA2 COS@QBLCZ + err/,gzd,lbd,]g]GAz C0502V1 - BzK + er//¢1¢2b¢101GBA1 COS@]Lbd,zgz COSI,//
+ Qr¢¢]¢2b¢]0|GBA1 COSQIL Sinlﬂ + er//¢|¢2b¢|9|GA2 C0892b¢zngL(l

- Qr¢¢1¢2b¢191 GA2 C0802b¢292\/1 - BZK - 9,9192¢2GBL61 + Qr01¢l¢zBLGb¢202 COS(,//

+ Qr91</’1¢zBLG singy + Qr92¢1¢zb¢191GBLa - ‘Qr02q§1¢2b¢191GV1 — B2K
= Qyg,0,6,Gb g, cOsyBA| cosO L — Qg 0,4, Gby, A cosdrBLa

+ Q¢9]02¢1Gb¢1rA2 COS92V1 - BZK - Q¢0102¢1Gb¢rCOS¢BL

- Q¢0]02¢2Gb¢2rCOS$BA1 COS01L + Ql/”glgz(/,sz(perz COS02V1 - BZK - Q,/”glgzd)sz,/jrBLa

+ Q¢0]02¢2Gb¢,r\/1 - BZK - Q¢9|02¢2Gb¢2"A2 CosazBL(l + Q¢01¢]¢2G SiniﬂAz COSGszqurL
+ Q¢01¢1¢2Gb¢1VBA1 CoselLb¢202 COS¢ + Q¢91¢1¢2Gb¢erA1 COS@lL Sinlp + Qwel‘/’l‘bszl/’rBLbd’zgz COSlp

+ Q¢91¢1¢2Gb¢rBL Sinlp + Q¢91¢1¢2GA2 00802b¢1,b¢2923La - Q¢91¢1¢2GA2 C0562b¢1rb¢292\/1 - B2K
+ Ql//02¢|¢zb¢|0|Gb(ﬁerOSl'l[BAl COS@[L - Qllfezqf’ll;bz\/FlK]’ (B7)

where (), are now given by the following components:
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1
= [GLK, siny B> + G,Lby g Ksinby g — G,Lby g Ksinby g B>+ GLby g K, sinthby o

V1 —

—GLby,g, Kcostp — G,LKcosipby o — GLby g K, sinthpby o B> + GL,by o Ksingby o
+ GL,K sinyB?> — LGA, cosOyb by ¢ Ksingy B> + LGb K singby o + LGb,, K cosi B>
— LGA, cosbyby K costp + LGA, cosbrby K cosyyB* — LGb K singby o B

— LGAcosOby K cosiy + LGA  cosOby K cosy B> — GLby 5 K singby » B*

+ GLby g Ksinrby.g, , + G,LK sinyrB? — GL,by o K singrb g B2

+ GLby,g, Ksingby g, — G.Lby g Kcosp — GLK coshby g, r + GLK cospby, g, rB?
+ GLby g K, cosyB> — GLK, cosyyby g + GLK,cosiyby o B> — GL,K cosiby g
+ GL,K cosipby,9,B> — GLby g K, cosyy + GLby o K cosyyB> + G,LK cosiby o B

d
+ GLby,p, K cosiy B> — GLbd,Ig]KsinwEbd,z@sz + G,Lby ¢ K cosi B>

~ GL,by g Kcosyy + L1 — BVFIK sings — LV1 — BVF1by o K singiby, .

- LszGAl cosOiby sinby g a + Lm\/ﬁbd,lg][{coszﬁ

+ G, LN1 = B, Basingby g, + G,LN1— B2Bcosiiby,g.a — G, L1 — B2b,y 4 Bacosy
— GLby,g K singby 9 BB, — L*N'1 — B2Gb,,Basingib, o, + LN1— B2Gb,,b, o Basings

+ Lszb¢,b¢lnga cosipby o + L2mBGA1 cosbiby ,cospa

+ LszAz c0s0yb 4,,b 4 9 Basing + LZWGAZ costyb Bacosi

+ L1 = B2Gby,Bacosyy + LN1 — BVFIK cosiprby g — GLK, sings + GLK cossb 5, BB,

+ GLK siny BB, + 2GL,1 — B?by, o BLasiniby o + GLby o K cosrBB, + 2GL,N1 — B*BLassinis
+2GL N1 = BBcosyiby, g, La — 2GLA1 — Bby 4 BLacosy + GL*b, g B,asingiby o V1 — B

— GL,Ksing + GL?by o Ba, singrby o N1 — B> — GL?by 4 ,Bacosy1 — B

+ GL?Ba, sinV1 — B> + GL?b,, 4, Basinrby o N1 — B> + LGA| cost by K singrby,,

— LGA, cost by, K sinz//b¢29232 + LGb by 9 Ksing — LGb¢,b¢]01Ksin1//Bz

+ GL?B,asingV1 — B2 + LGby,by o K cosyby g, — LGb by g K cosirb g B2

+ LGAycosbyby by ¢ Ksing + GL?B, cos ¢b¢292am + GL’B coswb(ﬁzgz,,am

— GL?by 9 B.a cosyv1 — B? — GL?b 4 Ba, cosyv1 — B2 + GLB cosz/;bd,zgza,m

+ GL2by, 5 Basingiby,s N1 — B2 — GLcosyb,,K + G,LN1 — B2Basing — G,LK siny],

G,BL*a’> + GB,L?a*> + 2GBLa’L, + 2GBL%aa, + G,BK*> + GB,K*> + 2GBKK,

— GAcos0,L?*b,,,Basing + GAjcosbLby, N1 — BK sing,
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Q"l//91¢2 =

Qrpo,0, =

er//92¢2 =

Qrypg, =

Qr¢92¢2

Q”//¢1¢2 -

V1 - B?

1
———=[~G,LKcosy) B> — GLK, cosyy B> + GL,K cosi) — GL,K cosiy B> — G,Lby o K siniy
/1 _ B2 11

+ G,Lby,g KsinyB> + GLby o ,Ksingy B> — LGA| cosf by K singy — GLsinyby 5 K

— LGb,, K singg + LGb K singy B> + LGb by o K cosyB> + LGA | cosf by K singy B> + G,LK cosi
+ GLK, cosp — G,LN1 — B2Bcospra — G,LN1 — B?by 4 Basing — GL*B, cosirav1 — B2

— GL?BcosyaN1 — B2 — GL?by o B,asing1 — B2 — GL?b,, 4 Ba, sinyV1 — B?

~2GL 1 - BBcosyyLa — 2GL1 — B?by 4 BLasing — GL?b,, 4 Basinyv1 — B?

~ VFIKN1 = B2Lcosyy + GLby o K sinysBB, — GLK cosyy BB, + LN1 — BGb,, Basiny

+ LN1 = B2BGA cosb,b,,, singra + IN1 — B2F1by o K sings — LN 1 — B2Gb,by 4 Ba cosi

= GL,singby g K + GLby 4 K, siny B> + GL,bq;]lgleinz,//B2 — GLbgy,g K, singy — GL cosgbbWKbq;lg]],

1
———[G,LK cosyyB*> + GLK, cosiy B> — GL,K cosiy + GL,K cosyB*> + LGb K sinys
-8B

— LGb K sinyB*> — G,LK costp — GLK,cosyp — G,L*N1 — B°Bcosya — GL*B, cosipav1 — B?

d
— GL?>Bcospa N1 — B> — ZGd—L\H — B>BcosyyLa + VF1KNV1 — B?L cosyy + GLK cosiBB,
r

d
= GLK sinyiby,p,B—B + 2GLN1 — BBLasingbg,g, + G,LN1 — B*Basinyb,,,
p .

— G,LKsinyrby,9, B> + GL,Ksinby g — GL,K singb 9, B> + GLK, sinby o — GLK, siniby o B
+ GLKsinbyg , — GLKsingby, 4, B> + G,LK sinthby,4 + GL?Ba Sinlﬂb(bzgzyrm

+ GL?B,a sin;lfbd,zgzm + GL’Ba, sinl//b¢292m + Lszblp,Ba sinys

+ LGA, cosbyby K sing + LGb K cosiby g + LZWGAZ costrby, Basiny

+ L1 = B2Gb,,Bacosyb,, g, — LN1 — BNFIK singiby, s, — LGA, cosfyby K siny B2

— LGb,,Kcosyby o B*],

~L — G,BL — GB,L — 2GBL, + GA, cosb,b,, ,BLasiny + GA, cosbyb, V1 — B2K siny

-1
\/1—_32[—GVL2\/1 — B?Basiny — G,LK sinyy + G,LK sinyyB> — GL?>B,asinyyv1 — B?

—2GL,N1 — B*BLasing — GL?Ba, singyV'1 — B2 + GLK sin¢ BB, — GLK, sinyy + GLK, siny B
— GL,Ksinyy + GL,K singy B> — L*N'1 — B*Gb,,,Bacosiy — GLcosyb K + LGb,, K cosyy B

+ LV1 — B2JFIK siny],

= —L — G,BL — GB,L — 2GBL, + GA, cosb,b, ,BLasinyy + GA, cosb,b,, N1 — B*K sini

—1
[-G,LN1 — B2Basiny — G,LK sings + G,LK sinyB> — GL*B,asinyV1 — B?

—2GL,N1 — B?BLasiny — GL?Ba, sinyyV'1 — B> + GLK siny BB, — GLK, sinyy + GLK, sinys B>
— GL,K sinyy + GL,K sinyyB*> — L*N'1 — B’Gb,,,Bacosiy — GLcosyb,,, K + LGb K cosyyB?

+ LV1 — B2JFI1K siny],
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Qr0|02¢1 = #
V1—B?

+ GAy cos0yby g, K2BV1 — B2 + 2GAy costyby o KBKN1 — B2 + GA, costaby, e K*BA1 — B?

[GBbd)zrv 1 - BZAZ Sin02L2a2 + GBb¢2rV 1 - BzAz Sin02K2 + GAZ,VC0502b¢202KzBV 1- B2

+ GA|, cosBL? cosiby g.aV 1 — B> + GA| cosB,L* cosiyby 5 aVl — B

+ 2GA, cos#,BL coswb(l,zgzaer + G,A  cost KL cosipb g9, B> + GA| cost, KL, sinyy B>

— GAjcost KL, cosifby,g, + GA; cost KL, cosz//b¢29282 — GAjcost | KLcosby,g, ,

+ GA| cost KL cosiby g, B>

—GA costK,Lcosiby g + GA cost K, Lcosiby, g B> —GA; ,cosf KLsiny + GA; ,cosf; KLsiny B
—GAjcost,K,Lsingy + GAcost,K,Lsiny B> — GA| ,cos; KLcosby g +GA; ,cos KLcosib, g B>

d
—G,A cosf,KLsiny + d—GAl cos6 KLsinyrB> — G,A cost KLcosby g
p 2

+GA, cos@lBL2cos¢/b¢292,ra\/T:—B§+ GAjcosfBL*cosiby g aN1—B?
+2GA,cos0yb g6 BLAL A1 — B

+2GA, cosﬁzbd,zngLzaa,m + GA,| ,cosf,BL? singravl — B2 + GA, cosf, B,L? sinpav1 — B2
+2GA, cosd, BL sinpaL N1 — B2 + GA, cosd, BL? sinpa, N1 — B? + GA,, cos02b¢,zngL2a2m
+ GA, cosyby g, BL2aN1 — B2 + GA, cosOyby. g B,L2aN1 — B? + GA, cos6, KL sinyBB,

+ GAj cos0 KL cosiyby g, BB, + GA1 — B2A, cos6, BL? cosihby,g,a + G A1 — B2A, cosbyb g9, BL*a*
+ Gl — B2A, cosf, BL sinpa + GAN1 — B2A, c086,b 4,0, K*B — GA cosf KL, sini

+ GBby, V1 — B2L2A, sinf, ],

1 . .
Qyg.0,, = \/T—Bz[_GrLAZ cos0,K siny + G,LA, cosO,K singy B> — GL,A, cosb,b 4 K cosi

+ GL,A;costyby g K cosyB> — GL,A; cost,K singy + GL, A, cos6,K sinyy B2
- BGb¢er1 - B2L2A1 Sin01 - BGb¢er 1— BZA2 Sin02K2 - BGb¢er 1 - BzAz Sin02L2a2
— GLA,costby g K, cosp + GLA, cost,by g K, costyB? — GLA, , cos0,K sing
+ GLA,, cos6,K siny B2 + G, LA, cosb,b 4 o K cosy B> — GLA, cosh,K, singy + GLA, cosb,K, sini B>
— GLA,cosOyby g K cosyy + GLA,cosbrby o K cosiyB?
—GLA,,co86,b 9 Kcosiy + GLA, ,cos0,by 5 Kcosiy B> — G, LA,cosOyb y o K cosi

d
— d—GL2V 1= B?Acosb by, g B+ G,L*N1—B*A;cos0,Bsina — G,L*V1 — B*Aycostyb g Bacosis

p

—2GL,N1—B?Acosb by g BL +2GL,N1—B*Ajcost,BsingLa—2GL,N1—B?A;co860,by 9 BLacosys
+GLA,cos6,Ksinys BB,
+GLAycos0,b g Kcosyy BB, — GL?*A, ,cos6,b, g BVl — B> —GL?*A cosb by 5 ,BV1—B?
—GL?Acos6by g BN1—B*—GL*A, ,cos6,b 4 4 BacosyV 1 — B> — GL?A,cos6,by 4, BacosyV1— B
—GL?A;c086,b 4 9 B,acosyyV1 — B> —GL*Aycos0,b 4 o Ba,cospV'1 — B>+ GL*A, ,cosf,Bsinav'1 — B2

d
+ GL*A,co0s0,B,sinpav1 — B>+ GL*A,cos6,B sin;bd—aw/ 1—B?],
r
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Qr01¢]¢2 =

1
W[G,VI — B?A, cos#,BL*a’> + G,N'1 — B?A| cosf,BL? cospa + G, N1 — B2A, cosh,K*B

— G,A cosf KLcosy + G, A cost, KL cosy B> + GA,, cosﬂzBLZazm

+ GA, cosﬁzB,Lzazm + 2GA, cosHZBLaerm + 2GA, cosHZBLzaa,m

+ GA| , cosf; BL? cos yav1 — B2 + GA, cosd,B,L? cospav1 — B2

+ 2GA, cosf,BL cosgba%Lm + GA, cosf,BL? cospa N1 — B2 + GA,, cos,K2BV1 — B2
+ 2GA, cosHZKBK,m + GA, COSQQKZB,m — GA,,cosf KL cosiy

+ GA,,cosf, KL cosyy B> — GA| cosf K, L cosyy + GA| cosf K, LcosyB> — GA| cosf KL, cosy
+ GA, cost,KL,cosyB> + GA, cosf,KL cosyy BB, ],

PHYSICAL REVIEW D 83, 046006 (2011)

19,610, = N2

1

[-G,L?>N1 — B?A, cosf,Bacosyy — G,LA, cost,K cosyy + G,LA, cosh,K cosis B>

d
— G,L>N1 — B*A, cos6,B — 2GL,N1 — B*A, cos#,BLacosyy — G— LA, cosf,K cosis

dr

d
+ GL,A, cosh,K cosyy B> — 2Gd—L\/1 — B2A cosfBL — GL?A,, cosf,BacosypV1 — B?
r

— GL*A, cost,B,acosyV1 — B> — GL*A, cost,Ba, cosiyV1 — B> — GLA, , cosf,K cosis
+ GLA,, cos0,K cosyy B> + GLA, cos6,K cosyy BB, — GLA, cos0,K, cos i

+ GLA, cos6,K, cosy B> — GL*A |, cosfBV1 — B> — GL*A | cos6B,V1 — B],

GA|costLBcosiyLa — BLasingby g — KN1 — B>costp + V1 — B*Ksingby, .,

Qyo0,6, =

Qyo,0,6, = GLA, cosO,BcosyLa + by g BLasinyg + lemK siny — chosg//,
Qyo 6, = —GAjcostLsingyBLa — mK,

Qy9.0,0, = GLA, cosfy singyBLa + V1 — B2K,

90102¢I¢2 = GBLZA] Sin01 + Az Sin92L2a2 + AZ Sinﬁsz.

(B8)

Once we have all the components, we can plug this in the SUSY constraint equations (3.22) and get the additional relations
between the parameters introduced in [9]. Together with (3.15) we can finally write the precise SUSY backgrounds in the
chain of geometric transitions.
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