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We analyze quartic gauge-invariant interactions of massless higher spin fields by using vertex operators

constructed in our previous works and computing their 4-point amplitudes in superstring theory. The

kinematic part of the quartic interactions of the higher spins is determined by the matter structure of their

vertex operators; the nonlocality of the interactions is the consequence of the specific ghost structure of

these operators. We compute explicitly the 4-point amplitude describing the complete gauge-invariant

1� 1� 3� 3 quartic interaction (two massless spin 3 particles interacting with two photons) and

comment on more general 1� 1� s� s cases, particularly pointing out the structure of 1�1�5�5

coupling.
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I. INTRODUCTION

Constructing consistent gauge-invariant field theories of
interacting higher spins is an important and fascinating
problem that has attracted deep interest. Despite many
efforts by the leading experts in the field and some remark-
able results over recent years (for an incomplete list of
references, see [1–45]), the entire subject is well known to
be difficult to approach. In particular, while there has been
some progress in formulating free higher spin field theories
as well as those with cubic interactions, our understanding
of higher order interactions (such as quartic) is still very
limited.

There are many reasons why the field theories of spins
greater than 2 are of interest and importance. To mention
some of them, while it may not seem plausible that higher
spin particles could ever be observed in a 4-dimensional
world, objects such as higher spins are likely to be present
in higher dimensional physics. Higher spin fields in anti–
de Sitter space are known to be important ingredients in
anti–de Sitter/conformal field theory correspondence [46];
in addition, constructing gauge invariant interactions of
higher spins is by itself an interesting and challenging
mathematical problem. String theory appears to be a par-
ticularly efficient framework for approaching the problem
of higher spins. One reason for this is that the vertex
operators describing the emissions of higher spins by a
string appear very naturally in the massive sector of string
theory (although the mass-to-spin relations for such opera-
tors are usually quite rigid, withm2 roughly proportional to
the spin value s). One could then consider the tensionless
limit �0 ! 1, in which the higher spin operators formally
become massless. One faces several difficulties in this
approach. First, the space-time fields coupling to the mas-
sive operators usually would lack the gauge symmetries
necessary to ensure the consistency of the interactions, and

it is not clear how to recover these symmetries in the
tensionless limit. Second, to recover the gauge-invariant
interactions of the higher spins from string theory correla-
tors, one generally has to consider the low energy limit of
string theory, which of course is different from the tension-
less limit. In our previous works [47,48], we have con-
structed the open string vertex operators that describe the
higher spin fields with spin values from 3–9, which are
massless at an arbitrary tension due to their nontrivial
couplings to the �� � ghost system. The explicit expres-
sions for these vertex operators are given by

Vs¼3ðpÞ¼Ha1a2a3ðpÞce�3�@Xa1@Xa2c a3ei ~p
~X

Vs¼4ðpÞ¼Ha1...a4ðpÞc�e�4�@Xa1@Xa2@c a3c a4ei ~p
~X

Vs¼5ðpÞ¼Ha1...a5ðpÞce�4�@Xa1 ���@Xa3@c a4c a5ei ~p
~X

Vs¼6ðpÞ¼Ha1...a6ðpÞc�e�5�@Xa1 ���@Xa3@2c a4@c a5c a6ei ~p
~X

Vs¼7ðpÞ¼Ha1...a7ðpÞce�5�@Xa1 ���@Xa4@2c a5@c a6c a7ei ~p
~X

Vs¼8ðpÞ¼Ha1...a8ðpÞc�e�5�@Xa1 ���@Xa7c a8ei ~p
~X

Vs¼9ðpÞ¼Ha1...a9ðpÞce�5�@Xa1 ���@Xa8c a9ei ~p
~X; (1)

where Xa and c a are the Ramond-Neveu-Schwarz formu-
lation of superstring theory (RNS) world sheet bosons
and fermions (a ¼ 0; . . . ; d� 1), and the ghost fields are
bosonized according to

b ¼ e��; c ¼ e�

� ¼ e��� � e�� � ¼ e���@� � @�e��
(2)

The operators (1) are picture inequivalent and are the
elements of ghost cohomologies H�3, H�4, and H�5. All
the expressions for the operators (1) are given at their
minimal negative superconformal ghost pictures (e.g. �3
for s ¼ 3 and �5 for s ¼ 9) at which they are annihilated
by the direct picture-changing transformation. The sym-
metric tensors Ha1...asðpÞ describe massless higher spin*dimitri.polyakov@wits.ac.za
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fields in space-time, with the spin values 3 � s � 9. The
equations of motion and the gauge symmetry transforma-
tions follow from the Becchi-Rouet-Stora-Tyutin charge or
transformation on strings (BRST) constraints on the opera-
tors (1) [47]. Namely, the on-shell Fierz-Pauli constraints

Ha1
a1a3...aSðpÞ ¼ 0

pa1Ha1...aSðpÞ ¼ 0

p2Ha1...asðpÞ ¼ 0

(3)

follow from the invariance condition fQ;Vsg ¼ 0, where

Q¼Q1 þQ2 þQ3 (4)

is the BRST operator with

Q1 ¼
I dz

2i	
fcT � bc@cg;

Q2 ¼ � 1

2

I dz

2i	
�c a@X

a;

Q3 ¼ � 1

4

I dz

2i	
b�2:

(5)

The BRST nontriviality conditions, in turn, entail the
gauge symmetry transformations for the higher spins [48].
For the symmetric tensors, the transformations are given by

Ha1...asðpÞ ! Ha1...asðpÞ þ pða1�a2...asÞðpÞ (6)

(where � is also traceless and symmetric) as, under the
shift of symmetric H-tensors by symmetrized derivatives
of �, the vertex operators (1) are shifted by the terms not
contributing to correlation functions. Therefore, the gauge
invariance of the interaction terms for the higher spins,
obtained in the field theory limit of string theory, is ensured
by construction, since the structure of these terms is en-
tirely determined by the correlation functions in string
theory. For detailed BRST analysis of the operators (1),
see [47]. Below, we shall briefly review the relation be-
tween BRST constraints, equations of motion, and gauge
symmetries on the example of the s ¼ 3 operator. (The
s > 3 cases are treated similarly.) The vertex operator for
s ¼ 3 is given by:

Vs¼3ðpÞ ¼ HabcðpÞce�3�@Xa@Xbc cei ~p
~X: (7)

This operator commutes with Q2 and Q3 of the BRST
charge. To commute with Q1, it has to be a dimension 0
primary, i.e. its operator product expansion (OPE) with
stress-energy tensor must not contain singularities stronger
than a simple pole. This entails constraints on the rank 3
H-tensor. For general H, the OPE contains singularities up
to quartic pole, so, to ensure the commutation with Q1, the
coefficients in front of quartic, triple, and double poles
must vanish separately. This leads to tracelessness, trans-
versality, and masslessness conditions, respectively, i.e. to
the Fierz-Pauli constraints (3) on H. At the same time, the
shift (6) shifts the operator (7) by terms not contributing to

correlation functions. To see this, consider the general (not
necessarily symmetric) tensorHajbc. (Note that the form of

constraints (3) following from BRST-invariance arguments
does not depend on the symmetric properties of H and
remains the same.) Under the shift HajbcðpÞ ! HajbcðpÞ þ
pc�abðpÞ, where � is symmetric and traceless, the opera-
tor (7) is shifted by the BRST-exact part,

� ce�3�ð ~p ~c Þ�ab@X
a@Xbei ~p

~X � fQ; ce��4�@�ð ~p ~c Þ
� ð ~c @ ~XÞ�ab@X

a@Xbei ~p
~Xg; (8)

which insertion to any correlator is zero. On the other hand,
the tensor pc�ab can be decomposed as

pc�ab ¼ 1

2
ðpðc�abÞ þ p½c�a�bÞ; (9)

and insertions of operators corresponding to different
Young tableau to correlation functions vanish separately.
As a matter of fact, vanishing of p½c�a�b-type insertions to
correlators is just a particular example of a general prop-
erty of S-matrix elements of s ¼ 3 vertex operators cou-
pling 3-tensors with hooklike Young diagrams—It can be
shown that such operators do not contribute to S-matrices,
which is reminiscent of what happens in the framelike
approach [11,42,49–51], where contributions with hook-
like symmetries are eliminated by algebraic constraints.
Therefore, the correlators are invariant under shifting

symmetric tensor Habc by symmetrized derivative of �,
implying the gauge symmetry (6) in the field theory limit.
In order to compute the correlation functions involving the
operators (1), one also needs their representations in dual
positive ghost pictures. In order to obtain the positive
picture presentation for elements of H�n�2 (physical op-
erators existing at minimal negative picture �n� 2 and

below; n ¼ 1; 2; . . . ), one has to replace e�ðnþ2Þ� with en�

(without changing the matter part) and perform the homo-
topy transformation using theK-operator [52]. Namely, if a
higher spin vertex at minimal negative picture �n� 2 has
the structure

V�n�2 ¼ ce�ðnþ2Þ�Fðn2=2Þþnþ1ðX; c Þ; (10)

where Fðn2=2Þþnþ1ðX; c Þ is the matter primary field of

conformal dimension n2

2 þ nþ 1, one starts with the op-

erator

I
Vn �

I
dzen�Fðn2=2Þþnþ1ðX; c Þ: (11)

This charge commutes with Q1 since it is a world sheet
integral of dimension 1 and b� c ghost number zero but it
does not commute with Q2 and Q3. To make it BRST-
invariant, one has to add the correction terms by using the
following procedure [52,53]. We write

½Qbrst; VnðzÞ� ¼ @UðzÞ þW1ðzÞ þW2ðzÞ; (12)
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and therefore�
Qbrst;

I
dzVn

�
¼

I
dzðW1ðzÞ þW2ðzÞÞ; (13)

where

UðzÞ � cVnðzÞ; ½Q1; Vn� ¼ @U;

W1 ¼ ½Q2; Vn�; W2 ¼ ½Q3; Vn�:
(14)

Let us introduce the dimension 0 K-operator,

KðzÞ ¼ �4ce2��2�ðzÞ � ���1ðzÞ; (15)

satisfying

fQbrst; Kg ¼ 1: (16)

It is easy to check that this operator has a nonsingular
operator product with W1:

Kðz1ÞW1ðz2Þ � ðz1 � z2Þ2nYðz2Þ þOððz1 � z2Þ2nþ1Þ;
(17)

where Y is some operator of dimension 2nþ 1. Then the
complete BRST-invariant operator can be obtained fromH
dzVnðzÞ by the following transformation:

I
dzVnðzÞ!AnðwÞ

¼
I
dzVnðzÞþ 1

ð2nÞ!
I
dzðz�wÞ2n:K@2nðW1þW2Þ:ðzÞ

þ 1

ð2nÞ!
I
dz@2nþ1

z ½ðz�wÞ2nKðzÞ�KfQbrst;Ug; (18)

where w is some arbitrary point on the world sheet. It is
then straightforward to check the invariance of An by using
some partial integration along with the relation (34) as well
as the obvious identity:

fQbrst; W1ðzÞ þW2ðzÞg ¼ �@ðfQbrst; UðzÞgÞ: (19)

Although the invariant operators AnðwÞ depend on an
arbitrary point w on the world sheet, this dependence is
irrelevant in the correlators since all thew derivatives of An

are BRST exact—The triviality of the derivatives ensures
that there will be no w-dependence in any correlation
functions involving An. An alternative (yet technically
more complicated) method to obtain the positive picture
representations for the higher spin operators is to use
sequences of Z-transformations combined with picture
changing [52]. Namely, introduce the Z-operator, trans-
forming the b� c pictures (in particular, mapping inte-
grated vertices to unintegrated) given by [54],

ZðwÞ ¼ b
ðTÞðwÞ
¼

I
dzðz� wÞ3ðbT þ 4c@��e�2�T2ÞðzÞ; (20)

where T is the full stress-energy tensor in RNS theory.
The usual picture-changing operator, transforming the
�� � ghost pictures, is given by �ðwÞ ¼ :
ð�ÞG:ðwÞ ¼
:e�G:ðwÞ. Now we introduce the integrated picture-
changing operators RnðwÞ according to

RnðwÞ ¼ ZðwÞ:�n:ðwÞ; (21)

where :�n: is the nth power of the standard picture-
changing operator:

:�n:ðwÞ ¼ :en�@n�1G � � � @GG:ðwÞ
� :@n�1
ð�Þ � � � @
ð�Þ
ð�Þ:: (22)

Then the positive picture representations for the higher
spin operators An can be obtained from the negative
ones, V�n�2 (1), by the transformation

AnðwÞ ¼ ðR2Þnþ1ðwÞV�n�2ðwÞ: (23)

Since both Z and � are BRST-invariant and nontrivial,
the An-operators by construction satisfy the BRST-
invariance and nontriviality conditions identical to those
satisfied by their negative picture counterparts V�2n�2 and
therefore lead to the same Pauli-Fierz on-shell conditions
(3) and the gauge symmetries (6) for the higher spin fields.
For the s ¼ 3 operator, the above procedure gives

Vs¼3 ¼ ce�3�@Xa1@Xa2c a3ei ~p
~XHa1a2a3ðpÞ !

I
dzV1 ¼ Ha1a2a3ðpÞ

I
e�@Xa1@Xa2c a3ei ~p

~X

½Q1; V1� ¼ @U ¼ Ha1a2a3ðpÞ@ðce�@Xa1@Xa2c a3ei ~p
~XÞ

½Q2; V1� ¼ W1 ¼ 1

2
Ha1a2a3ðpÞe2���fð�ð ~c @ ~XÞ þ ið ~p ~c ÞPð1Þ

��� þ ið ~p@ ~c ÞÞ@Xa1@Xa2c a3ei ~p
~X

þ @Xa1ð@2c a2 þ 2@c a2Pð1Þ
���Þc a3 � @Xa1@Xa2ð@2Xa3 þ @Xa3Pð1Þ

���Þgei ~p ~X

½Q3; V1� ¼ W2 ¼ � 1

4
Ha1a2a3ðpÞe3��2�Pð1Þ

2��2���@X
a1@Xa2c a3ei ~p

~X; (24)

where the conformal weight n polynomials in the derivatives of the ghost fields �, �, � are defined according to [52,53]

PðnÞ
fð�;�;�Þ ¼ e�fð�ðzÞ;�ðzÞ;�ðzÞÞ @

n

@zn
efð�ðzÞ;�ðzÞ;�ðzÞÞ; (25)

where f is some linear function in�,�,�. For example, Pð1Þ
��� ¼ @�� @�, etc. Note that the product (43) is defined in the

algebraic sense (not as an operator product).
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Accordingly,

:K@2W1: ¼ 4Ha1a2a3ðpÞc�fð�ð ~c @ ~XÞ þ ið ~p ~c ÞPð1Þ
��� þ ið ~p@ ~c ÞÞ@Xa1@Xa2c a3ei ~p

~X

þ @Xa1ð@2c a2 þ 2@c a2Pð1Þ
���Þc a3 � @Xa1@Xa2ð@2Xa3 þ @Xa3Pð1Þ

���Þgei ~p ~X

:K@2W2: ¼ Ha1a2a3ðpÞf�@2ðe�@Xa1@Xa2c a3ei ~p
~XÞ þ Pð2Þ

2��2���e
�@Xa1@Xa2c a3ei ~p

~Xg (26)

and

: @2nþ1KKfQbrst; Ug: ¼ �24Ha1a2a3ðpÞ@cc@��e��@Xa1@Xa2c a3ei ~p
~X:@mKKfQbrst; Ug: ¼ 0ðm< 2nþ 1Þ; (27)

and therefore, upon integrating out total derivatives, the complete BRST-invariant expression for the s ¼ 3 operator at
picture 1 is

As¼3ðwÞ ¼ Ha1a2a3ðpÞ
I

dzðz� wÞ2
�
1

2
Pð2Þ
2��2���e

�@Xa1@Xa2c a3 þ 2c�½ð�ð ~c @ ~XÞ þ ið ~p ~c ÞPð1Þ
���

þ ið ~p@ ~c ÞÞ@Xa1@Xa2c a3ei ~p
~X þ @Xa1ð@2c a2 þ 2@c a2Pð1Þ

���Þc a3 � @Xa1@Xa2ð@2Xa3 þ @Xa3Pð1Þ
���Þ�

� 12@cc@��e��@Xa1@Xa2c a3

�
ei ~p

~X: (28)

To abbreviate notations for our calculations of the correlation functions in the following sections, it is convenient to
write the vertex operator As¼3 (46) as a sum,

As¼3 ¼ A0 þ A1 þ A2 þ A3 þ A4 þ A5 þ A6 (29)

where

A0ðwÞ ¼ 1

2
Ha1a2a3ðpÞ

I
dzðz� wÞ2Pð2Þ

2��2���e
�@Xa1@Xa2c a3ei ~p

~XðzÞ (30)

and

A6ðwÞ ¼ �12Ha1a2a3ðpÞ
I

dzðz� wÞ2@cc@��e��@Xa1@Xa2c a3gei ~p ~XðzÞ (31)

have ghost factors proportional to e� and @cc@��e��, respectively, and the rest of the terms carry ghost factors
proportional to c�:

A1ðwÞ¼�2Ha1a2a3ðpÞ
I
dzðz�wÞ2c�ð ~c @ ~XÞ@Xa1@Xa2c a3ei ~p

~XðzÞ

A2ðwÞ¼2Ha1a2a3ðpÞ
I
dzðz�wÞ2c�ð@2c a2 þ2@c a2Pð1Þ

���Þc a3ei ~p
~XðzÞ

A3ðwÞ¼�2Ha1a2a3ðpÞ
I
dzðz�wÞ2c�@Xa1@Xa2ð@2Xa3 þ@Xa3Pð1Þ

���Þei ~p ~XðzÞ

A4ðwÞ¼2iHa1a2a3ðpÞ
I
dzðz�wÞ2c�ð ~p ~c ÞPð1Þ

���@X
a1@Xa2c a3ei ~p

~XðzÞ

A5ðwÞ¼2iHa1a2a3ðpÞ
I
dzðz�wÞ2c�ð ~p@ ~c Þ@Xa1@Xa2c a3ei ~p

~XðzÞ:

(32)

We are now prepared to analyze the four-point 1� 1�
3� 3 amplitude (leading to the gauge-invariant quartic
interaction of spin 3 and spin 1 particles), which will be
computed in the next sections.

II. 1� 1� 3� 3 QUARTIC INTERACTIONS—
PRELIMINARIES

The goal of the next two sections is to compute the
4-point function of two s ¼ 3 vertex operators with
2-photons, describing the gauge-invariant 1� 1� 3� 3
interactions in the low energy limit of string theory. The

photon vertex operators are the standard ones, and it is
convenient to take them unintegrated at superconformal
pictures �1 and �2:

Vð�1Þ
s¼1 ðpÞ ¼ ce��c mei ~p

~XAmðpÞ
Vð�2Þ
s¼1 ðpÞ ¼ ce�2�@Xmei ~p

~XAmðpÞ:
(33)

To cancel the background charges, the operators in the
4-point 3� 3� 1� 1 amplitude must be chosen to have
total b� c ghost number þ3, � ghost number �2, and �
ghost number þ1. Therefore, with the picture choice (33)
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for the photons, it is clear that both of the s ¼ 3 operators
have to be taken at their positive pictureþ1 representation
(32). It is furthermore clear that the amplitude Að1� 1�
3� 3Þðp1; . . . ; p4Þ will only be contributed by the terms

Að1� 1� 3� 3Þðp1; . . . ; p4Þ
¼ Sð1� 1� 3� 3Þðp1; . . . ; p4Þ

þ ðp3 $ p4ÞSð1� 1� 3� 3Þ
� hVs¼1ðp1ÞVs¼1ðp2ÞVs¼3ðp3ÞVs¼3ðp4Þi

¼ X5
j¼1

hVs¼1ðp1ÞVs¼1ðp2ÞAjðp3ÞA0ðp4Þi þ ðp3 $ p4Þ;

(34)

with A0, Aj given in (32). Note that, with the picture choice

(33) for the s ¼ 1 operators, the A6 part of Vs¼3 at positive
picture does not contribute to the correlator at all due to the
ghost balance constraint. The structure of the amplitude
(34) is remarkably different from the standard Veneziano
form. Recall that the standard Veneziano expression for
4-point amplitude in string theory arises as a result of 3 out
of 4 operators taken unintegrated (multiplied by the c
ghosts) and one integrated (with the b� c ghost number
0), in order to ensure the b� c ghost anomaly cancellation.
(This choice is related to fixing the SLð2; RÞ global sym-
metry with the ghost part of the correlator producing the
standard Koba-Nielsen’s determinant.) The single integra-

tion then leads to the Veneziano structures� ��
� in the open

string case or � ���
��� for closed strings where � are the

gamma-functions of Mandelstam variables. With the s ¼ 3
vertex operators, the structure of amplitudes is different, as
their ghost couplings (both b� c and �� �) are non-
standard. For example, the s ¼ 3 operators at positive
pictures exist in the integrated form only (unlike the stan-
dard operators that can be taken integrated or uninte-
grated); at the same time, their integrands contain terms
with b� c ghost numbers 1 and 2 (as opposed to the
standard integrated vertices for which the integrands have
ghost number zero). As is clear from (32)–(34), the ghost
number balance of the 1� 1� 3� 3 4-point function
requires both of the s ¼ 3 operators to be taken integrated
at positive pictures. Therefore, the 4-point amplitude in-
volves the double world sheet integration, and its form is
quite different from Veneziano type. In particular, it leads
to nonlocalities appearing in the quartic interactions in-
volving the higher spins. Our goal now is to analyze the
hVVAjA0i correlators contributing to the 4-point amplitude

(34) one by one. The first step is to fix the points u1, u2,w1,
w2 in the amplitude hVs¼1ðu1ÞVs¼1ðu2ÞAs¼3ðw1ÞAs¼3ðw2Þi
by using the remnant gauge symmetry on the world sheet.
Note that, while u1, u2 are the actual points of the unin-
tegrated s ¼ 1 vertices, w1 and w2 are the points defining
the contours for the integrated s ¼ 3 vertices at positive

pictures (corresponding to the w-points in the expression
(32) for the As¼3 vertex). In the standardN-point amplitude
case (involving 3 unintegrated vertices and N � 3 inte-
grated), the remnant gauge symmetry is well known to
be given by SLð2; RÞ subgroup of conformal symmetry,
allowing us to fix the locations of the unintegrated opera-
tors at 3 particular points (with the standard choice 0, 1 and
1). In the operator language, the SLð2; RÞ symmetry sim-
ply reflects the fact that translating an unintegrated vertex
operator of the form �cVðz1Þ to some new point z2
changes it by BRST-exact terms not contributing to corre-
lation functions (since all the z-derivatives of the uninte-
grated vertices are BRST exact, e.g. @ðcVÞðzÞ ¼ ½Q;VðzÞ�
etc. In our case, because of the nonstandard ghost structure
of the spin 3 operators, the situation is different, and the
actual remnant gauge symmetry is bigger than SLð2; RÞ.
Namely, all w-derivatives of the As¼3ðwÞ operators are
BRST exact, so the w-points can be chosen arbitrarily.
So, in case of the 4-point amplitude (34), the remnant
gauge symmetry on the world sheet allows us to fix 4 rather
than 3 points, i.e. it contains an extra generator in addition
to the standard SLð2; RÞ part. As has been pointed out in
[52], the extra gauge symmetries on the world sheet are
closely related to the global space-time �-symmetries that
are realized nonlinearly and stem from hidden space-time
dimensions in string theory. Just like the higher spin ver-
tices, the �-symmetry generators are essentially mixed
with the ghosts, being the elements of nontrivial ghost
cohomologies H�3 �H1, H�4 �H2, and H�5 �H3,
with each cohomology essentially contributing an extra
space-time dimension. In this context, as the higher spin
vertex operators and the �-symmetries have similar ghost
cohomology structures, the appearance of extra gauge
symmetries on the world sheet is not surprising.
Therefore, using the SLð2; RÞ symmetries plus the extra
symmetry, it is convenient to set

z1 ¼ 0; z2 ¼ 1 w1 ¼ w2 ¼ 0: (35)

Such a choice may appear somewhat unusual; indeed, in
the standard case, the unintegrated vertices are set at three
different points (e.g. such as 0, 1,1), since, if one formally
fixes two operators at coincident (or infinitely close)
points, one faces the normal ordering issue (although the
SLð2; RÞ symmetry in principle allows us to fix the opera-
tors at 3 infinitely close points). In the case of the higher
spin operators, however, fixing the w-points is merely
related to the choice of their integration contours; thus
the gauge choice (35) is appropriate.

III. 1� 1� 3� 3 AMPLITUDE: THE
CALCULATION

It is convenient to start with evaluating the ghost part of
the 4-point function, common for all the terms in (34).
We get
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Fghðu;z1;z2Þ¼ lim
u!1hce

�2�ð0Þce��ðuÞce�ðz1ÞPð2Þ
2��2���e

�ðz2Þi¼6uz1ðz21þz22Þ
ðz1�z2Þ2

: (36)

The first contribution is given by

S1ð1� 1� 3� 3Þ ¼ hVs¼1ðp1; 0ÞVs¼1ðp2;1ÞA1ðp3; 0ÞA0ðp4; 0Þi ¼ Amðp1ÞAnðp2ÞHa2a3a4ðp3ÞHb1b2b3ðp4Þ
� lim

u!1

Z 1

0
dz2

Z z2

0
dz1z

2
1z

2
2Fghðu; z1; z2Þ � h@Xmei ~p1

~Xð0Þc nei ~p2
~XðuÞðc a1@X

a1Þc a4@Xa2@Xa3

� ei ~p3
~X@Xb1@Xb2c b3ei ~p4

~Xi: (37)

The c -correlator gives

lim
u!1hc

nðuÞc a1c a4ðz1Þc b3ðz2Þi

¼ �na1�a4b3 � �na4�a1b3

uðz1 � z2Þ ; (38)

so the c -correlator multiplied by Fghðu; z1; z2Þ gives

½6ð�na1�a4b3 � �na4�a1b3Þz1ðz1 þ z2Þ2�=½ðz1 � z2Þ3� with
the u-factor canceled. Because of conformal invariance,
it is clear that the remaining X-correlator will contribute
terms of the order of u0 to the overall correlator, with all
other terms vanishing on-shell—In other words, no pair-

ings of @X’s with ei ~p2
~X contribute to the overall 4-point

amplitude. For this reason, the relevant contributions from
the X-correlator are reduced to the 3-point function

SX ¼ h@Xmei ~p1
~Xð0Þ@Xa1@Xa2@Xa3ei ~p3

~Xðz1Þ
� @Xb1@Xb2@Xb3ei ~p4

~Xðz2Þi: (39)

This function is not difficult to evaluate. To keep our
expressions as compact as possible for the subsequent
integrations in z1, z2, it is convenient to use the following
notations for computing the X-correlators.

Namely, each term contributing to the correlator (39)
can be classified in terms of numbers of pairings between

@X’s with the exponents and between each other. That is,
let M1, M2 be pairing numbers between @Xmð0Þ and

ei ~p3
~Xðz1Þ, ei ~p4

~Xðz2Þ, respectively, with the obvious con-
straint 0 � M1, M2 ¼ 1 (since there is only one @X in
the expression for the photon). Next, let N1, N2 be pairing

numbers of @X’s in the s ¼ 3 operator at z1, with ei ~p1
~Xð0Þ

and ei ~p4
~Xðz2Þ with 0 � N1, N2 � 3. Finally, let P1, P2

satisfying 0 � P1, P2 � 2 stand for the pairings between

@X’s of the second s ¼ 3 vertex at z2 with ei ~p1
~Xð0Þ and

ei ~p3
~Xðz1Þ. It is then straightforward to show that the corre-

lator is contributed by two types of terms. The first type
includes the kinematic factors sextic in momentum (ac-
cordingly, leading to six derivative interactions in the low
energy limit). These terms appear when all @X’s in the
correlator (39) (total number 6) are contracted with the
exponents. The second type involves the kinematic factors
quartic in momentum, appearing when 4 out of 6 @X’s are
contracted with the exponents, while the remaining 2 are
contracted with each other. These terms lead to four de-
rivative quartic interactions in space-time. Given the Pauli-
Fierz conditions (3) on the s ¼ 3 fields, there are no terms
quadratic in momentum or momentum-independent.
Computing the X-correlator (39) and multiplying by the

c -ghost factor (38), we obtain the six-derivative part of the
correlator S6-der1 ð1� 1� 3� 3Þ (37), given by

S6-der1 ð1� 1� 3� 3Þ ¼ 72Amðp1ÞAnðp2ÞHa2a3a4ðp3ÞHb1b2b3ðp4Þ � ð�na1�a4b3 � �na4�a1b3Þ

� X1
M1¼0

X3
N1¼0

X2
P1¼0

ð�1ÞP1

N1!ð3� N1Þ!P1!ð2� P1Þ!�
Yn1
�¼1

Y3
�¼N1þ1

YP1

�¼1

Y3
�¼P1þ1

ðip1Þa�ðip4Þa�ðip1Þb�ðip3Þb�

� ðipm
3 ÞM1ðipm

4 Þ1�M1 �
Z 1

0
dz2

Z z2

0
dz1z

2
1z

2
2ðz21 þ z22Þz1þ ~p1 ~p3�M1�N1

1 z ~p1 ~p4�1þM1�P1

2

� ðz1 � z2Þ ~p3 ~p4�8þN1þP1 : (40)

A few comments should be made to explain our notations here and below. First, regarding the products appearing

in (40): For example,
QN1

�¼1ðip1Þa� stands for the usual product ðipa1
1 Þ . . . ðipaN1

1 Þ for 1 � N1 � 3, but it is set to 1

if N1 ¼ 0. Similarly,
Q

3
�¼N1þ1ðipa�

4 Þ stands for the product ipaN1þ1

4 . . . ip
a3
4 if N1 ¼ 0, 1, 2, but it is set to 1 if N1 ¼ 3, and

similarly for all other products of that type. The product ðipm
3 ÞM1ðipm

4 Þ1�M1 obviously stands for ipm
4 for M1 ¼ 0 and ipm

3

forM1 ¼ 1 and similarly for all other products of that type. The next step is to perform the integration of (37) in z1 and z2.
This can be done by using
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Z 1

0
dz2

Z z2

0
dz1z

a
1z

b
2ðz1 � z2Þc ¼ �ðaþ 1Þ�ðcþ 1Þ

ðaþ bþ cþ 2Þ�ðaþ cþ 2Þ : (41)

Integrating (37) then gives the following answer for S6-der1 ð1� 1� 3� 3Þ:

S6-der1 ð1� 1� 3� 3Þ ¼ 72Amðp1ÞAnðp2ÞHa2a3a4ðp3ÞHb1b2b3ðp4Þ � ð�na1�a4b3 � �na4�a1b3Þ

� X1
M1¼0

X3
N1¼0

X2
P1¼0

ð�1ÞP1

N1!ð3� N1Þ!P1!ð2� P1Þ!�
Yn1
�¼1

Y3
�¼N1þ1

YP1

�¼1

Y3
�¼P1þ1

ðip1Þa�ðip4Þa�ðip1Þb�

� ðip3Þb�ðipm
3 ÞM1ðipm

4 Þ1�M1ð ~p3 ~p4 � ~p1 ~p2Þ�1 � �ð ~p3 ~p4 þ N1 þ P1 � 7Þ

�
�
�ð ~p1 ~p3 �M1 � N1 þ 6Þ
�ð� ~p2 ~p3 �M1 þ P1 � 1Þ þ

�ð ~p1 ~p3 �M1 � N1 þ 4Þ
�ð� ~p2 ~p3 �M1 þ P1 � 3Þ

�
: (42)

We find that the expression (42) contains the factor
Gðp1; p2; p3; p4Þ ¼ ð ~p3 ~p4 � ~p1 ~p2Þ�1. [This factor will ac-
tually appear in all the terms in the 4-point amplitude (34).]
If we are on-shell, the denominator in this expression is
zero and the correlator (42) diverges. It must be stressed,
however, that terms in the low energy effective action,
appearing in the field theory limit of string theory, are
determined by appropriate terms in conformal beta-
functions on the world sheet, rather than by the on-shell
correlators. The conformal beta-function, in turn, is deter-
mined by the structure constants that are essentially taken
off-shell. (The on-shell limit then corresponds to the con-
straint � ¼ 0.) For example, if � is a scalar massless
space-time field, to obtain the linear term in its
�-function proportional to��� ¼ �p2� (corresponding
to the free field part of its low energy effective action), one
has to take the dilaton’s vertex operator initially off-shell
(so that p2 � 0) and perform the internal normal ordering
in this vertex operator, leading to the flow �p2� log�,

where � is the world sheet cutoff. Similarly, the denomi-
nator of Gðp1; . . . ; p4Þ is nonzero in the off-shell case
relevant to the �-function computations, so the corre-
sponding quartic terms in the low energy effective action
include the factor

Gðp1; p2; p3; p4Þ ¼ ðp2
1 þ p2

2 � p2
3 � p2

4Þ�1; (43)

where we used ðp1 þ p2Þ2 ¼ ðp3 þ p4Þ2. This is the factor
reflecting the nonlocality of the quartic couplings of the
higher spin fields in the position space. We find that, from
the string theory point of view, this nonlocality is the
consequence of the specific ghost structure of the higher
spin vertex operators, as we already noted above. The
calculation of the 4-derivative part of the correlator (37)
(quartic in momentum) is similar. The result is given by

S4-der1 ð1� 1� 3� 3Þ ¼ D1 þD2 þD3; (44)

where

D1 ¼ �72Amðp1ÞAnðp2ÞHa1a2a4ðp3ÞHb1b2b3ðp4Þð�na3�a4b3 � �na4�a3b3Þ�ma3 � X2
N1¼0

X2
P1¼0

ð�1ÞP1

N1!ð2� N1Þ!P1!ð2� P1Þ!

� Yn1
�¼1

Y3
�¼N1þ1

YP1

�¼1

Y3
�¼P1þ1

ðip1Þa�ðip4Þa�ðip1Þb�ðip3Þb� �Gðp1; p2; p3; p4Þ�ð ~p3 ~p4 þ N1 þ P1 � 6Þ

�
�
�ð ~p1 ~p3 � N1 þ 4Þ
�ð� ~p2 ~p3 þ P1 � 2Þ þ

�ð ~p1 ~p3 � N1 þ 2Þ
�ð� ~p2 ~p3 þ P1 � 4Þ

�
; (45)

D2 ¼ �72Amðp1ÞAnðp2ÞHa1a2a4ðp3ÞHb1b2b3ðp4Þð�na3�a4b3 � �na4�a3b3Þ�mb2
X3
N1¼0

X1
P1¼0

ð�1ÞP1

N1!ð3� N1Þ!

� YN1

�¼1

Y3
�¼N1þ1

ðip1Þa�ðip4Þa�ðipb1
1 ÞP1ðipb1

3 Þ1�P1 �Gðp1; p2; p3; p4Þ�ð ~p3 ~p4 þ N1 þ P1 � 6Þ

�
�
�ð ~p1 ~p3 � N1 þ 6Þ
�ð� ~p2 ~p3 þ P1Þ þ �ð ~p1 ~p3 � N1 þ 4Þ

�ð� ~p2 ~p3 þ P1 � 2Þ
�
; (46)
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D3 ¼ �72Amðp1ÞAnðp2ÞHa1a2a4ðp3ÞHb1b2b3ðp4Þ � ð�na3�a4b3 � �na4�a3b3Þ�mb2
X1

M1¼0

X2
N1¼0

X1
P1¼0

ð�1ÞP1

N1!ð2� N1Þ!

� YN1

�¼1

Y3
�¼N1þ1

ðip1Þa�ðip4Þa�ðipm
3 ÞM1ðipm

4 Þ1�M1ðipb1
1 ÞP1ðipb1

3 Þ1�P1 �Gðp1; p2; p3; p4Þ�ð ~p3 ~p4 þ N1 þ P1 � 7Þ

�
�
�ð ~p1 ~p3 �M1 � N1 þ 6Þ
�ð� ~p2 ~p3 �M1 þ P1 � 1Þ þ

�ð ~p1 ~p3 �M1 � N1 þ 4Þ
�ð� ~p2 ~p3 þ P1 �M1 � 3Þ

�
: (47)

This concludes the computation of the S1ð1� 1� 3� 3Þ contribution to the quartic interaction of 1� 1� 3� 3.
The next contribution, S2ð1� 1� 3� 3Þ, is given by

S2ð1� 1� 3� 3Þ ¼ hVs¼1ðp1; 0ÞVs¼1ðp2;1ÞA2ðp3; 0ÞA0ðp4;0Þi
¼ Amðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ lim

u!1

Z 1

0
dz2

Z z2

0
dz1z

2
1z

2
2 �hce�2�@Xmei ~p1

~Xð0Þce��c nei ~p2
~XðuÞ

� ce�@Xa1c a2ð@2c a3 þ 2@c a3Pð1Þ
���Þei ~p3

~Xðz3ÞPð2Þ
2��2���e

�@Xb1@Xb2c b3ei ~p4
~Xðz2Þi: (48)

The hc � ghosti factor of this contribution is

lim
u!1hce

�2�ð0Þce��c nðuÞce�c a2ð@2c a3 þ 2@c a3Pð1Þ
���Þðz1Þe�Pð2Þ

2��2���c
b3ðz2Þi ¼ 24�na2�a3b3z1z

3
2ðz21 þ z22Þ

ðz1 � z2Þ3
þOðu�1Þ:

(49)

Computing the hXi part using the same conventions as above and integrating the overall correlator over z1 and z2, we
obtain

S2ð1� 1� 3� 3Þ ¼ 48Amðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ�na2�a3b3
X1

M1¼0

X1
N1¼0

X2
P1¼0

ð�1ÞP1

P1!ð2� P1Þ!�
YP1

�¼1

Y2
�¼P1þ1

ðipb�
1 Þ

� ðipb�
3 ÞGðp1; p2; p3; p4Þðipm

3 ÞM1ðipm
4 Þ1�M1ðipa1

1 ÞN1ðipa1
4 Þ1�N1 � �ð ~p3 ~p4 þ N1 þ P1 � 7Þ

�
�
�ð ~p1 ~p3 �M1 � N1 þ 5Þ
�ð� ~p2 ~p3 þ P1 �M1 � 2Þ þ

�ð ~p1 ~p3 �M1 � N1 þ 3Þ
�ð� ~p2 ~p3 þ P1 �M1 � 4Þ

�
: (50)

This contribution is quartic in momentum. The next contribution is given by

S3ð1� 1� 3� 3Þ ¼ hVs¼1ðp1; 0ÞVs¼1ðp2;1ÞA2ðp3; 0ÞA0ðp4; 0Þi ¼ Amðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ
� lim

u!1

Z 1

0
dz2

Z z2

0
dz1z

2
1z

2
2 � hce�2�@Xmei ~p1

~Xð0Þce��c nei ~p2
~XðuÞce�@Xa1

� @Xa2ð@2Xa3 þ @Xa3Pð1Þ
���Þei ~p3

~Xðz1ÞPð2Þ
2��2���e

�@Xb1@Xb2c b3ei ~p4
~Xðz2Þi: (51)

The computation gives

S3ð1� 1� 3� 3Þ ¼ Sð1Þ3 þ Sð2Þ3 þ Sð3Þ3 ; (52)

where Sð1Þ3 and Sð2Þ3 are the contributions quartic in momentum while Sð3Þ3 ¼ Sð3Þ4-der3 þ Sð3Þ6-der3 contains both 4 and 6
derivative terms. These contributions are given by, accordingly,

Sð1Þ3 ¼ 24Amðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ � �nb3�ma3
X2
N1¼0

X2
P1¼0

ð�1ÞP1

P1!ð2� P1Þ!N1!ð2� N1Þ!

� YN1

�¼1

Y2
�¼N1þ1

YP1

�¼1

Y2
�¼P1þ1

ðipa�
1 Þðipa�

4 Þðipb�
1 Þðipb�

3 ÞGðp1; p2; p3; p4Þ � �ð ~p3 ~p4 þ N1 þ P1 � 6Þ

�
�
�ð ~p1 ~p3 � N1 þ 4Þ
�ð� ~p2 ~p3 þ P1 � 2Þ þ

�ð ~p1 ~p3 � N1 þ 2Þ
�ð� ~p2 ~p3 þ P1 � 4Þ

�
: (53)
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Sð2Þ3 ¼ 24Amðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ�nb3�ma3
X1

M1¼0

X2
N1¼0

X1
P1¼0

ð�1ÞP1

N1!ð2� N1Þ!�
YN1

�¼1

Y2
�¼N1þ1

YP1

�¼1

Y2
�¼P1þ1

ðipa�
1 Þ

� ðipa�
4 Þðipm

3 ÞM1ðipm
4 Þ1�M1ðipb1

1 ÞP1ðipb1
3 Þ1�P1Gðp1; p2; p3; p4Þ � �ð ~p3 ~p4 þ N1 þ P1 � 7Þ

�
�
�ð ~p1 ~p3 �M1 � N1 þ 6Þ
�ð� ~p2 ~p3 �M1 þ P1 � 1Þ þ

�ð ~p1 ~p3 �M1 � N1 þ 2Þ
�ð� ~p2 ~p3 �M1 þ P1 � 3Þ þ

2�ð ~p1 ~p3 �M1 � N1 þ 5Þ
�ð� ~p2 ~p3 �M1 þ P1 � 2Þ

þ 2�ð ~p1 ~p3 �M1 � N1 þ 3Þ
�ð� ~p2 ~p3 �M1 þ P1 � 4Þ

�
: (54)

The 6-derivative part of Sð3Þ3 is given by

Sð3Þ6-der3 ¼ 24Amðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ � �nb3
X1

M1¼0

X2
N1¼0

X2
P1¼0

� ð�1ÞP1

P1!ð2� P1Þ!N1!ð2� N1Þ!

� YN1

�¼1

Y2
�¼N1þ1

YP1

�¼1

Y2
�¼P1þ1

ðipa�
1 Þðipa�

4 Þðipb�
1 Þðipb�

3 Þðipm
3 ÞM1ðipm

4 Þ1�M1Gðp1; p2; p3; p4Þ

�
�
�ðip1Þa3�ð ~p3 ~p4 þ N1 þ P1 � 6Þ

�
�ð ~p1 ~p3 �M1 � N1 þ 4Þ
�ð� ~p2 ~p3 �M1 þ P1 � 2Þ þ

�ð ~p1 ~p3 �M1 � N1 þ 2Þ
�ð� ~p2 ~p3 �M1 þ P1 � 4Þ

�

þ ð2ipa3
4 Þ�ð ~p3 ~p4 þ N1 þ P1 � 7Þ

�
�ð ~p1 ~p3 �M1 � N1 þ 5Þ
�ð� ~p2 ~p3 �M1 þ P1 � 2Þ þ

�ð ~p1 ~p3 �M1 � N1 þ 3Þ
�ð� ~p2 ~p3 �M1 þ P1 � 4Þ

��
: (55)

The 4-derivative part of Sð3Þ3 is given by

Sð3Þ4-der3 ¼ �24Amðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ�nb3�ma3
X1
N1¼0

X2
P1¼0

ð�1ÞP1

P1!ð2� P1Þ!

� YP1

�¼1

Y2
�¼P1þ1

ðipb�
1 Þðipb�

3 Þðipa1
1 ÞN1ðipa1

4 Þ1�N1Gðp1; p2; p3; p4Þ

�
�
ipa3

1 �ð ~p3 ~p4 þ N1 þ P1 � 5Þ
�
�ð ~p1 ~p3 � N1 þ 2Þ
�ð� ~p2 ~p3 þ P1 � 3Þ þ

�ð ~p1 ~p3 � N1Þ
�ð� ~p2 ~p3 þ P1 � 5Þ

�

þ ipa3
4 �ð ~p3 ~p4 þ N1 þ P1 � 6Þ

�
�ð ~p1 ~p3 � N1 þ 3Þ
�ð� ~p2 ~p3 þ P1 � 3Þ þ

�ð ~p1 ~p3 � N1 þ 1Þ
�ð� ~p2 ~p3 þ P1 � 5Þ

��

� 24Amðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ�nb3�mb2
X2
N1¼0

X1
P1¼0

ð�1ÞP1

P1!ð2� P1Þ!

� YN1

�¼1

Y2
�¼N1þ1

ðipa�
1 Þðipa�

4 Þðipb1
1 ÞP1ðipb1

3 Þ1�P1Gðp1; p2; p3; p4Þ

�
�
ipa3

1 �ð ~p3 ~p4 þ N1 þ P1 � 5Þ
�
�ð ~p1 ~p3 � N1 þ 4Þ
�ð� ~p2 ~p3 þ P1 � 1Þ þ

�ð ~p1 ~p3 � N1 þ 2Þ
�ð� ~p2 ~p3 þ P1 � 3Þ

þ ipa3
4 �ð ~p3 ~p4 þ N1 þ P1 � 6Þ

�
�ð ~p1 ~p3 � N1 þ 5Þ
�ð� ~p2 ~p3 þ P1 � 1Þ þ

�ð ~p1 ~p3 � N1 þ 3Þ
�ð� ~p2 ~p3 þ P1 � 3Þ

��

� 24Amðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ�nb3�a2b2
X1

M1¼0

X1
N1¼0

X1
P1¼0

� ðipm
3 ÞM1ðipm

4 Þ1�M1ðipa1
1 ÞN1ðipa1

4 Þ1�N1ðipb1
1 ÞP1ðipb1

3 Þ1�P1Gðp1; p2; p3; p4Þ

�
�
ipa3

1 �ð ~p3 ~p4 þ N1 þ P1 � 6Þ
�
�ð ~p1 ~p3 � N1 �M1 þ 4Þ
�ð� ~p2 ~p3 þ P1 �M1 � 2Þ þ

�ð ~p1 ~p3 �M1 � N1 þ 2Þ
�ð� ~p2 ~p3 þ P1 �M1 � 4Þ

�

þ ipa3
4 �ð ~p3 ~p4 þ N1 þ P1 � 7Þ

�
�ð ~p1 ~p3 � N1 �M1 þ 5Þ
�ð� ~p2 ~p3 þ P1 �M1 � 2Þ þ

�ð ~p1 ~p3 � N1 þ 3Þ
�ð� ~p2 ~p3 þ P1 �M1 � 4Þ

��
(56)
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This concludes the computation of Sð3Þ3 and of S3ð1� 1� 3� 3Þ. The final contribution to the amplitude,
S4ð1� 1� 3� 3Þ, is given by

S4ð1� 1� 3� 3Þ ¼ hVs¼1ðp1; 0ÞVs¼1ðp2;1ÞðA4 þ A5Þðp3; 0ÞA0ðp4; 0Þi ¼ iAmðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ
� lim

u!1

Z 1

0
dz2

Z z2

0
dz1z

2
1z

2
2 � hce�2�@Xmei ~p1

~Xð0Þce��ðc nei ~p2
~XðuÞc�ð ~p ~c ÞPð1Þ

��� þ ~p@ ~c Þ

� @Xa1@Xa2c a3ei ~p3
~Xðz1Þ � Pð2Þ

2��2���e
�@Xb1@Xb2c b3ei ~p4

~Xðz2Þi: (57)

As previously, it is convenient to split this contribution into 6 and 4 derivative parts:

S4ð1� 1� 3� 3Þ ¼ S6-der4 þ S4-der4 : (58)

The 6-derivative part is computed to give

S6-der4 ¼�24iAmðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ�
X1

M1¼0

X2
N1¼0

X2
P1¼0

ð�1ÞP1

N1!ð2�N1Þ!P1!ð2�P1Þ!

�YN1

�¼1

Y2
�¼N1þ1

YP1

�¼1

Y2
�¼P1þ1

ðipa�
1 Þðipa�

4 Þðipb�
1 Þðipb�

3 Þðipm
3 ÞM1ðipm

3 Þ1�M1Gðp1;p2;p3;p4Þ

�
�
2ð�na3pb3

3 þ�a3b3pn
3Þ�ð ~p3 ~p4þN1þP1�7Þ

�
�ð ~p1 ~p3�M1�N1þ6Þ
�ð� ~p2 ~p3�M1þP1�1Þþ

�ð ~p1 ~p3�M1�N1þ4Þ
�ð� ~p2 ~p3�M1þP1�3Þ

�

þð2�na3pb3
3 ��a3b3pn

3Þ�ð ~p3 ~p4þN1þP1�6Þ
�
�ð ~p1 ~p3�M1�N1þ5Þ
�ð� ~p2 ~p3�M1þP1�1Þþ

�ð ~p1 ~p3�M1�N1þ3Þ
�ð� ~p2 ~p3�M1þP1�3Þ

��
: (59)

Finally, the 4-derivative part of S4-der4 contributes

S4-der4 ¼ Sð1Þ4-der4 þ Sð2Þ4-der4 þ Sð3Þ4-der4 ; (60)

where

Sð1Þ4-der4 ¼ 24iAmðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ
X1
N1¼0

X2
P1¼0

ð�1ÞP1

P1!ð2� P1Þ!

� YP1

�¼1

Y2
�¼P1þ1

ðipb�
1 Þðipb�

3 Þðipa1
1 ÞN1ðipa1

4 Þ1�N1Gðp1; p2; p3; p4Þ

�
�
2�a2mð�na3pb3

3 þ �a3b3pn
3Þ�ð ~p3 ~p4 þ N1 þ P1 � 5Þ

�
�ð ~p1 ~p3 � N1 þ 3Þ
�ð� ~p2 ~p3 þ P1 � 2Þ þ

�ð ~p1 ~p3 � N1 þ 1Þ
�ð� ~p2 ~p3 þ P1 � 4Þ

�

þ �a2mð2�na3pb3
3 � �a3b3pn

3Þ�ð ~p3 ~p4 þ N1 þ P1 � 6Þ
�
�ð ~p1 ~p3 � N1 þ 4Þ
�ð� ~p2 ~p3 þ P1 � 2Þ þ

�ð ~p1 ~p3 � N1 þ 2Þ
�ð� ~p2 ~p3 þ P1 � 4Þ

��
; (61)

Sð2Þ4-der4 ¼ 24iAmðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ
X2
N1¼0

X1
P1¼0

ð�1ÞP1

N1!ð2� N1Þ!

� YN1

�¼1

Y2
�¼N1þ1

ðipa�
1 Þðipa�

4 Þðipb1
1 ÞP1ðipb1

3 Þ1�P1Gðp1; p2; p3; p4Þ

�
�
2�b2mð�na3pb3

3 þ �a3b3pn
3Þ�ð ~p3 ~p4 þ N1 þ P1 � 5Þ

�
�ð ~p1 ~p3 � N1 þ 5Þ
�ð� ~p2 ~p3 þ P1Þ þ �ð ~p1 ~p3 � N1 þ 3Þ

�ð� ~p2 ~p3 þ P1 � 2Þ
�

þ �b2mð2�na3pb3
3 � �a3b3pn

3Þ�ð ~p3 ~p4 þ N1 þ P1 � 6Þ
�
�ð ~p1 ~p3 � N1 þ 6Þ
�ð� ~p2 ~p3 þ P1Þ þ �ð ~p1 ~p3 � N1 þ 4Þ

�ð� ~p2 ~p3 þ P1 � 2Þ
��
; (62)

and
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Sð3Þ4-der4 ¼ 24iAmðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ
X1

M1¼0

X1
N1¼0

X1
P1¼0

ð�1ÞP1 � ðipm
3 ÞM1ðipm

4 Þ1�M1ðipa1
1 ÞN1ðipa1

4 Þ1�N1ðipb1
1 ÞP1

� ðipb1
3 Þ1�P1Gðp1; p2; p3; p4Þ �

�
2�a2b2ð�na3p

b3
3 þ �a3b3pn

3Þ�ð ~p3 ~p4 þ N1 þ P1 � 6Þ

�
�
�ð ~p1 ~p3 �M1 � N1 þ 5Þ
�ð� ~p2 ~p3 �M1 þ P1 � 1Þ þ

�ð ~p1 ~p3 �M1 � N1 þ 3Þ
�ð� ~p2 ~p3 �M1 þ P1 � 3Þ

�
þ �a2b2ð2�na3p

b3
3 � �a3b3pn

3Þ

� �ð ~p3 ~p4 þ N1 þ P1 � 7Þ
�
�ð ~p1 ~p3 �M1 � N1 þ 6Þ
�ð� ~p2 ~p3 �M1 þ P1 � 1Þ þ

�ð ~p1 ~p3 �M1 � N1 þ 4Þ
�ð� ~p2 ~p3 �M1 þ P1 � 3Þ

��
: (63)

This concludes the computation of S4ð1� 1� 3� 3Þ and
of Sð1� 1� 3� 3Þðp1; . . . ; p4Þ in general. The overall
4-point amplitude Að1� 1� 3� 3Þðp1; . . . ; p4Þ describ-
ing the 1�1�3�3 quartic interaction is obtained from
Sð1�1�3�3Þðp1; . . . ;p4Þ by adding Að1�1�3�3Þ�
ðp1; . . . ;p4Þ¼Sð1�1�3�3Þðp1; . . . ;p4Þþðp3$p4Þ, ac-
cording to (34).

IV. 4-POINTAMPLITUDE AND 1� 1� 3� 3
QUARTIC INTERACTION

Now that our computation of the 1� 1� 3� 3 point
amplitude is complete, the concluding step is to deduce
the related quartic interaction from the structure of
Að1� 1� 3� 3Þ. The momentum factors of ipJðJ ¼
1; . . . ; 4Þ translate into derivatives of the space-time fields
Am, An,Ha1a2a3 andHb1b2b3 in the position space, while the
common Gðp1; p2; p3; p4Þ factor reflects the nonlocality of
the interaction. In addition, all the terms in the amplitude
(34) contain the �-function factors with the structure

�ðM1; N1; P1Þ � �ð ~p3 ~p4 � aðM1; N1; P1ÞÞ

�
�
�ð ~p1 ~p3 þ bðM1; N1; P1ÞÞ
�ð� ~p2 ~p3 � cðM1; N1; P1ÞÞ

þ �ð ~p1 ~p3 þ bðM1; N1; P1Þ � 2Þ
�ð� ~p2 ~p3 � cðM1; N1; P1Þ � 2Þ

�
; (64)

where a, b, and c are the numbers appearing in summations
over M1, N1, and P1. The � function factor is of some
subtlety. While the numbers a, b, and c differ from term to
term, it is easy to see that, in general, a > 0, b > 0, and
b � 2 for each term in the amplitude. For this reason, in the
field theory limit ~pI ~pJ ! 0 that we are interested in,

�ðM1; N1; P1Þ generally includes the singular part, with
simple poles in ~p3 ~p4 and ~p1 ~p3 (the latter only appear in
terms with b ¼ 2), as well as the part regular in ~pI ~pJ. The
singular part is actually related to the flow of the cubic part
of the effective action, rather than to the genuine quartic
interaction we are looking for. That is, the singular terms in
the �-function factors are related to two types of ex-
changes: The first is the s ¼ 1 field exchange between
two s ¼ 3 vertices, while the second is the s ¼ 3 field
exchange between s ¼ 3 and s ¼ 1 operators. These are
the exchanges that induce the renormalization group flows
on the world sheet for s ¼ 1 and s ¼ 3 fields, resulting in
the leading (cubic) order terms in the low energy effective
action. Schematically, the �-function of the s ¼ 1 field in
the s ¼ 3 background is given by �A ���Aþ CH2,
where C are the structure constants appearing in the
1� 3� 3 3-point amplitude (expressed in the position
space). This particularly leads to cubic terms of the type
�CAH2 in the low energy effective action. At the same
time, the low energy effective equations of motion for the
s ¼ 3 gauge field in the presence of s ¼ 1 background are
given by, in the leading order, �H � �H � CAH ¼ 0
which, if substituted into cubic terms, lead to ‘‘nonlocal’’

quartic terms of the type � C2A2H2

� which structurally coin-

cide with the contribution of the singular part of the
�-function factor to the 4-point amplitude. To obtain the
genuine quartic 1� 1� 3� 3 interaction from the 4-point
amplitude (34), one has to subtract the singularities from
each of the �-function factors appearing in the expressions
(42)–(63), similar to the procedure explained in [55]. The
�-function factors with bðM1; N1; P1Þ> 2 can be expanded
in ~pI ~pJ with the leading order terms given by

�ðaðM1; N1; P1Þ; bðM1; N1; P1Þ; cðM1; N1; P1ÞÞ

¼ �ð ~p3 ~p4 � aÞ
�
�ð ~p1 ~p3 þ bÞ
�ð� ~p2 ~p3 � cÞ þ

�ð ~p1 ~p3 þ b� 2Þ
�ð� ~p2 ~p3 � c� 2Þ

�

	 ð�1Þaþcðb� 3Þ!ðc� 2Þ! ~p2 ~p3

a! ~p3 ~p4

f1þ ðb� 2Þðb� 1Þðc� 1Þcþ ð ~p1 ~p3Þ½ðb� 2Þðb� 1Þðc� 1ÞcLðb� 1Þ þ Lðb� 3Þ�
þ ð ~p2 ~p3Þ½ðb� 2Þðb� 1Þðc� 1ÞcLðcÞ þ Lðc� 2Þ� � ð ~p3 ~p4Þ½ðb� 2Þðb� 1Þðc� 1Þcþ 1�þg . . . : (65)
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Then the related factors in the quartic terms in the low energy effective action are given by replacing each of the�ða; b; cÞ
factors in the amplitude according to

�ða;b;cÞ ! ~�ða;b;cÞ
¼�ðaðM1;N1;P1Þ; bðM1;N1;P1Þ; cðM1;N1;P1ÞÞ

� ð�1Þaþcðb� 3Þ!ðc� 2Þ! ~p2 ~p3

a! ~p3 ~p4

f1þðb� 2Þðb� 1Þðc� 1Þcþ ~p1 ~p3½ðb� 2Þðb� 1Þðc� 1ÞcLðb� 1ÞþLðb� 3Þ�
þ ~p2 ~p3½ðb� 2Þðb� 1Þðc� 1ÞcLðcÞþLðc� 2Þ�� ~p3 ~p4½ðb� 2Þðb� 1Þðc� 1Þcþ 1�g; (66)

where

LðnÞ ¼ Xn
m¼1

1

m
: (67)

Each of ~� contributes, in the leading order in ~pI ~pJ, the
factor given by

~�ða; b; cÞ 	 ð�1Þaþcþ1 ~p2 ~p3

ðb� 3Þ!ðc� 2Þ!
a!

� LðaÞ½1þ ðb� 2Þðb� 1Þðc� 1Þc�: (68)

Similarly, in the special case of b ¼ 2, the� ! ~� replace-
ment for the quartic term in the low energy effective action
is given by

�ða; 2; cÞ ! ~�ða; 2; cÞ

¼ �ða; 2; cÞ þ ð�1Þaþcþ1a!c!ð ~p2 ~p3Þ
ð ~p3 ~p4Þ

� ½1þ ~p1 ~p3 þ LðcÞ ~p2 ~p3�
þ ð�1Þaþca!ðc� 2Þ!

�
1

~p3 ~p4

þ 1

~p1 ~p3

�

� ð1þ Lðc� 2Þ ~p2 ~p3Þ (69)

with the leading order contribution

~�ða; 2; cÞ 	 ð�1Þaþcþ1a!c!LðaÞ ~p2 ~p3

þ ð�1Þaþcþ1a!ðc� 2Þ!ðLðaÞ � 2Lðc� 2ÞÞ
(70)

to the amplitude. This concludes the evaluation of the
gauge-invariant 1� 1� 3� 3 quartic interaction in the
low-energy effective action.

V. 1� 1� 5� 5 STRUCTURE: CONCLUSION
AND DISCUSSION

In this paper we have obtained the gauge-invariant
quartic interaction of massless higher spin fields in string
theory approach. Although we have concentrated on the
1� 1� 3� 3 case, with the structure of higher spin vertex
operators, basic properties of amplitudes discussed in this
paper (such as nonlocality and derivative structure of the

kinematic part of the amplitude) will also hold for more
general 1� 1� s� s cases. The nonlocality structure of
the 4-point amplitude calculated in this paper is the con-
sequence of the specific ghost structure of the vertex
operators for the massless s ¼ 3 fields. In particular, non-
standard ghost coupling of s ¼ 3 vertices leads to two
integrated vertices appearing in the 4-point amplitude
(contrary to 1 out of 4 integrated vertex in the standard
Veneziano case) producing the factor that diverges on-shell
but leads to nonlocalities in the �-function equations
(which essentially are the off-shell equations). Thus the
emergence of the nonlocalities is closely related to the OPE
structures in nontrivial �� � and b� c ghost cohomolo-
gies that the higher spin vertex operators belong to. In our
future works, we hope to perform this OPE analysis in
more details. Below, we shall just briefly comment on the
relation of the nonlocalities with the OPE structure of the
higher spin operators. The nonlocalities stem from the fact
that the s ¼ 3 operators at the positive pictures exist only at
integrated b� c-pictures, namely, they are the elements of
the R2 b� c ghost cohomology (see [52] for discussion).
Their OPE with each other produces a massless vertex
proportional to the s ¼ 1 operator at a ‘‘double-integrated’’
b� c-picture (that is �AðpÞ:Z2VphðpÞ:), where Vph is the

standard operator of a photon and the Z-transformation
operator is given in (20). It is straightforward to check
that the proportionality coefficient is AðpÞ � p�2. (Note
that the expression for the double-integrated photon
�:Z2VphðpÞ: is by itself quadratic in momentum that also

can be seen from direct computation.) Thus the inverse
Z-transform, applied to the OPE of two s ¼ 3 operators,
produces the s ¼ 1 operator times the factor of
AðpÞ � p�2 which ultimately leads to the nonlocality in
the space-time effective action. A separate question is
whether these nonlocalities can be cured by introducing
auxiliary compensator fields. To answer this question from
the string theory point of view, one has to construct vertex
operators that could be interpreted as the sources of the
compensator. Construction of such objects in open string
theory may not be easy, as they would probably carry
higher ghost numbers and their BRST analysis would be
quite cumbersome. An important step in this direction
would be to relate vertex operator formalism in string
theory to the framelike formulation of higher spin field
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theories (rather than to the metric one consider in this
paper), as it could be more natural to describe the objects
like compensators in the framelike approach. Developing a
string-theoretic description of higher spin theories in the
framelike approach (e.g. finding suitable operators to de-
scribe frame fields and connections) is a particularly inter-
esting problem and is currently work in progress.

As for the local part of the 3� 3� 1� 1 interaction
terms, it is structurally reminiscent of the 3-point
3� 3� 2 amplitude on the disc describing cubic gravita-
tional couplings of massless spin 3 field, that can be ex-
pressed in terms of linearized Weyl tensor [41]. In
particular, the minimal number of derivatives in the kine-
matic part of 1� 1� 3� 3 is equal to 2� 3� 2 ¼ 4,
similar to the 3� 3� 2 case. While it is known that cubic
s� s� 2 gauge-invariant couplings always contain a
minimum of 2s� 2 space-time derivatives [41], it looks
plausible that a similar derivative rule applies to the kine-
matic part quartic 1� 1� s� s couplings as well, as the
disc 2� s� s amplitude (with two spin s operators on the
boundary and the spin 2 operator in the bulk) is structurally
similar to the special limit (p3 ¼ p4) of the kinematic part
of the 1� 1� s� s point amplitude in open string theory
(where p3 and p4 are the momenta of the spin s particles).
So at least string theory appears to predict that the minimal
derivative rule for the quartic 1� 1� s� s couplings
should be similar to the one established for the 2� s� s
case. This certainly is the case for s ¼ 3, and it would be
interesting to check if this rule also works for spins higher
than 3. Conceptually, the calculation performed in this
paper for the 1� 1� 3� 3 case should be quite similar
for 1� 1� s� s amplitudes with higher values of s as
well. In any case, the derivative/momentum structure of the
amplitudes is tightly controlled by the ghost structure of
the vertex operators and by the overall ghost number
balance. For example, the 1� 1� 5� 5 amplitude
Að1� 1� 5� 5Þðp1; . . . ; p4Þ is structurally

Að1�1�5�5Þðp1; . . . ;p4Þ
¼Sð1�1�5�5Þðp1; . . . ;p4Þ

þðp3$p4ÞSð1�1�5�5Þ
¼hVð�2Þ

s¼1 V
ð�2Þ
s¼1 ð0Þ:��1Vð�2Þ

s¼1 :ð1ÞAð0Þ
s¼3ðz1ÞAð0Þ

s¼3ðz2Þi; (71)

where, as previously, Vð�2Þ
s¼1 ¼ ce�2�@XneipXAnðpÞ are un-

integrated photon operators at picture �2, and ��1 ¼
�4ce��2�@� is the inverse picture changing, so the photon
at picture�3 has the overall ghost structure�e��4�, while

Að0Þ
s¼3ðzÞ �Ha1...a5

I
dwðz� wÞ4e2�Pð4Þ

2��2���

� @Xa1@Xa2@Xa3@c a4c a5eipXðwÞ: (72)

Note that, although the full BRST-invariant expression for

spin 5 operators contains, apart from Að0Þ, terms with ghost
structures �ce�þ� and �@cce2�, the ghost balance con-

dition only allows the contributions from Að0Þ-part with the
ghost structure�e2� (provided, of course, that the photons
are chosen at pictures�2 and�3). Again, we see that, first
of all, the amplitude contains a double world sheet inte-
gration (as in the 1� 1� 3� 3 case), leading to the non-
locality of the interaction. While the computation of the
matter/kinematic part of this amplitude is relatively
straightforward and similar to the 1� 1� 3� 3 case de-
scribed above, the evaluation of the ghost part of this
amplitude is quite tedious due to lengthy operator products

of the ghost polynomials Pð4Þ
2��2��� with the ghost expo-

nents and between themselves. Below we present the ex-
pression for the 1� 1� 5� 5 amplitude up to numerical
coefficients which can be fixed by explicit evaluation of
these operator products. Evaluating the correlator (71) and
integrating in z1, z2, we get the answer

S1�1�5�5 ¼ Amðp1ÞAnðp2ÞHa1a2a3ðp3ÞHb1b2b3ðp4Þ�a4b4�a5b5�a3n

� X4
L¼0

X2L
Q¼0

XQ
Q1¼0

X2L�Q

Q2¼0

X4�Q2

R1¼0

X1
M1¼0

X2
N1¼0

X3
P1¼0

ð�1ÞP1

N1!ð2� N1Þ!P1!ð3� P1Þ!�L;Q;Q1;Q2;R1

� YN1

�¼1

Y2
�¼N1þ1

YP1

�¼1

Y2
�¼P1þ1

ðipa�
1 Þðipa�

4 Þðipb�
1 Þðipb�

3 Þðipm
3 ÞM1ðipm

3 Þ1�M1 �Gðp1; p2; p3; p4Þ

� �ð9þQ1 �Qþ R1 �M1 � N1 þ ~p1 ~p3Þ�ð2L� 20þ N1 þ P1 þ ~p3 ~p4Þ
�ðP1 �M1 þ R1 þQ1 �Q� 11� ~p2 ~p3Þ

þ ðm $ n; N1 $ P1Þ � ð�1ÞN1þP1 ; (73)

where �L;Q;Q1;Q2;R1
are the numerical coefficients to be

extracted from the ghost OPEs. The overall amplitude
Að1� 1� 5� 5Þðp1; . . . ; p4Þ is again obtained from
Sð1�1�5�5Þðp1; . . . ;p4Þ by adding Að1�1�5�5Þ¼
Sð1�1�5�5Þþðp3$p4Þ according to (71). The

kinematic part of this amplitude contains a minimum
number of 6 space-time derivatives. At the same time, all
the �-functions in the denominator of (73) are proportional
to �ð ~p2 ~p3Þ�1 in the field theory limit, for all the values of
M1, P1,Q1, R1, andQ. For this reason, the local part of the
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amplitude (73) is of at least 8 powers in momentum,
again according to the 2s� 2-rule conjectured above.
One has to check explicitly, however, whether this rule
holds in each separate case for different values of s. As the
massless higher spins are described in terms of physical
vertex operators in open string theory, it would be interest-
ing to generalize the calculations presented in this paper
(as well as in our previous works [47,48]) by coupling
these operators to Chan-Paton matrices and computing
their correlators. This could lead to new interesting non-
Abelian extensions of theories with massless higher spin
fields.
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