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Localization methods reduce the path integrals in N � 2 supersymmetric Chern-Simons gauge

theories on S3 to multimatrix integrals. A recent evaluation of such a two-matrix integral for the

N ¼ 6 superconformal UðNÞ �UðNÞ Aharony-Bergman-Jafferis-Maldacena theory produced detailed

agreement with the AdS/CFT correspondence, explaining, in particular, the N3=2 scaling of the free

energy. We study a class of p-matrix integrals describing N ¼ 3 superconformal UðNÞp Chern-Simons

gauge theories. We present a simple method that allows us to evaluate the eigenvalue densities and the free

energies in the large N limit keeping the Chern-Simons levels ki fixed. The dual M-theory backgrounds

are AdS4 � Y, where Y are seven-dimensional tri-Sasaki Einstein spaces specified by the ki. The

gravitational free energy scales inversely with the square root of the volume of Y. We find a general

formula for the p-matrix free energies that agrees with the available results for volumes of the tri-Sasaki

Einstein spaces Y, thus providing a thorough test of the corresponding AdS4=CFT3 dualities. This formula

is consistent with the Seiberg duality conjectured for Chern-Simons gauge theories.
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I. INTRODUCTION AND SUMMARY

The AdS/CFT correspondence [1–3] provides many
predictions about the dynamics of strongly interacting field
theories in various numbers of dimensions. For the case of
three dimensions, Ref. [4] predicted that the number of
low-energy degrees of freedom onN coincidentM2-branes

scales as N3=2 for large N. Remarkably, this surprising
prediction was recently confirmed [5] in the context of
the Aharony-Bergman-Jafferis-Maldacena (ABJM) con-
struction [6] of the UðNÞk �UðNÞ�k Chern-Simons (CS)
gauge theory on coincident M2-branes. The paper [5] was
in turn based on [7] where the methods of localization [8]
were shown to reduce the path integral of the Euclidean
ABJM theory on S3 to a matrix integral. This matrix model
was solved in the large N limit with N=k kept fixed [5,9],
leading to precise tests of the AdS/CFT correspondence for
Wilson loops and for the free energy (by which we mean
minus the logarithm of the Euclidean partition function).
The exact solution of this matrix model is related by
analytic continuation to a solution [10] of another matrix
model describing the topological Chern-Simons theory on
S3=Z2; in particular, the formula for the resolvent has the
same structure in the two cases. A generalization of the
matrix model to the case where the Chern-Simons levels do
not add up to zero was considered in [11].

The aim of our paper is to build on the major progress
recently achieved in [5,7,9] in several ways. In Sec. II we
revisit the matrix integral for the ABJM theory on S3 and
uncover the details of the eigenvalue distribution. The
matrix eigenvalues are located along the branch cuts of
the resolvent used in [5] and derived in [10] for the S3=Z2

model. While the end points of the cuts can be read off
directly from the resolvent, the cuts themselves are not

simply parallel to the real axis, in contrast with the matrix
model of [10]. In order to gain intuition for the location of
the eigenvalues, we develop a numerical method for finite
N and k. This method allows us to access values ofN and k
that are large enough for the result to be a good approxi-
mation to the limit studied in [5,9]. Furthermore, we focus
on the limit where N is sent to infinity at fixed k where the
ABJM model is expected to be dual to the AdS4 � S7=Zk

M-theory background. In this strong coupling limit, which
is not of the ’t Hooft type, we find analytically that the
structure of the solution simplifies considerably. An ansatz

where the real parts of the eigenvalues scale with
ffiffiffiffi
N

p
allows us to calculate the free energy analytically. Unlike
in [5], our method does not rely on resolvents or mirror

symmetry. We confirm that the free energy scales as N3=2

with the coefficient found in [5].
In Sec. III we develop our analytic approach further and

apply it to the large N limit of matrix models describing
quiver Chern-Simons gauge theories on S3. We study ex-
plicitly a class of N ¼ 3 superconformal UðNÞp gauge
theories with bifundamental matter, quartic superpoten-
tials, and Chern-Simons levels k1; k2; . . . ; kp that sum to

zero. These models were introduced in [12] where their
type IIB brane constructions were presented. The
type IIB brane constructions involve N D3-branes
that are wrapped around a circle and intersect the
ð1; q1Þ; ð1; q2Þ; . . . ; ð1; qpÞ 5-branes located sequentially

along the circle. The dual AdS4 � Y M-theory back-
grounds for these models, which involve certain seven-
dimensional tri-Sasaki Einstein spaces Y, were conjectured
in [13]. The tri-Sasaki Einstein spaces Y are defined to
be bases of hyper-Kähler cones [14–16], and we take
the Einstein metric on them to be normalized so that
Rmn ¼ 6gmn. The p-matrix models for the gauge theories
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dual to AdS4 � Y may be read off from [7]. In the large N
limit we calculate the eigenvalue densities for these matrix
models and show that they are piecewise linear. This
remarkably simple conclusion allows us to evaluate the

coefficient of the N3=2 scaling of the free energy as a
function of the levels ki and compare it with the calculation
on the gravity side of the AdS/CFT correspondence [5,17].
For an arbitrary compact space Y we find that the gravita-
tional free energy is

F ¼ N3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�6

27VolðYÞ

s
: (1)

For p ¼ 3 the tri-Sasaki Einstein spaces Y are the
Eschenburg spaces [18] whose volumes were determined
explicitly in [19]. Our 3-matrix model free energy is in
perfect agreement with this volume formula.

Furthermore, we carry out calculations of the p-matrix
model free energy and use them to conjecture an explicit
general formula for the volumes via the AdS/CFT corre-
spondence. For a general p-node quiver with CS levels
ka ¼ qaþ1 � qa, with 1 � a � p and qpþ1 ¼ q1, we con-

jecture in Sec. IV that

VolðYÞ
VolðS7Þ ¼

P
ðV;EÞ2T

Q
ða;bÞ2E

jqa � qbjQp
a¼1½

Pp
b¼1 jqa � qbj� ; (2)

where the sum in the numerator is over the set T of all
trees (acyclic connected graphs) with p nodes. Such a
tree ðV; EÞ consists of the vertices V ¼ f1; 2; . . . ; pg and
jEj ¼ p� 1 edges. The volumes of the corresponding tri-
Sasaki Einstein spaces Y had previously been studied by
Yee, who expressed them through an integral formula
[Eq. (3.49) of [20]]. In the cases we have checked, our
formula (2) is consistent with that of [20]. Equation (2) is
invariant under permutations of the qa, supporting the
conjectured Seiberg duality for Chern-Simons theories
with at least N ¼ 2 supersymmetry [21–23], which may
be motivated by interchanging different types of 5-branes
in the type IIB brane constructions of these models.

Recent work [5,7,24] and the present paper hint at a
special role that may be played by the Euclidean path
integral of a three-dimensional conformal field theory
on S3. This quantity may be analogous to the conformal
anomaly coefficients in even dimensional CFTs. Recall
that the anomaly coefficients are very useful measures of
the number of degrees of freedom. For even dimensional
theories with weakly curved dual backgrounds, these co-
efficients can be calculated using dual gravity in AdS space
[25] leading to precise tests of the AdS/CFT correspon-
dence. Such a definition of the number of degrees of free-
dom is not available for three-dimensional CFTs. As
mentioned already, the path integral on S3 can be reduced
to matrix integrals using supersymmetric localization
methods [7]. Earlier work on gravity in Euclidean AdS4
[17] has pointed to the usefulness of the corresponding

quantity: After adding certain surface counterterms, the
action becomes finite and appears to be unambiguous.
The successful matching of this finite gravitational action
with the path integral on S3 in [5] for the N ¼ 6 ABJM
theory and in the present paper for a class of N ¼ 3
superconformal theories provides evidence for the useful-
ness of this quantity as a measure of the number of degrees
of freedom.
One may hope that the free energy on S3 is also a useful

quantity for nonsupersymmetric fixed points.1 For ex-
ample, one could aim to match the large N free energy
on S3 for the nonsupersymmetric example of AdS/CFT
correspondence conjectured for the OðNÞ sigma model in
three dimensions [26].

II. ABJM MATRIX MODEL

A. Matrix model setup

As shown in [7], the partition function for the ABJM
theory on S3 localizes on configurations where the auxil-
iary scalars � and ~� in the two N ¼ 2 vector multiplets
are constant N � N Hermitian matrices. Denoting the

eigenvalues of � and ~� by �i and ~�i, with 1 � i � N,
one can write the partition function as

Z ¼ 1

ðN!Þ2
Z �YN

i¼1

d�id~�i

ð2�Þ2
�Q

i<jð2 sinh�i��j

2 Þ2ð2 sinh~�i�~�j

2 Þ2Q
i;jð2 cosh�i�~�j

2 Þ2

� exp

�
ik

4�

X
i

ð�2
i � ~�2

i Þ
�
; (3)

where k is the Chern-Simons level, and the precise nor-
malization was chosen as in [5]. The integration contour
should be taken to be the real axis in each integration
variable. When the number N of eigenvalues is large, the
integral in Eq. (3) can be approximated in the saddle-point
limit by Z ¼ e�F, where the ‘‘free energy’’ F is an extre-
mum of

Fð�i; ~�iÞ ¼ �i
k

4�

X
j

ð�2
j � ~�2

j Þ

�X
i<j

log

��
2 sinh

�i � �j

2

�
2
�
2 sinh

~�i � ~�j

2

�
2
�

þ 2
X
i;j

log

�
2 cosh

�i � ~�j

2

�
þ 2 logN!

þ 2N logð2�Þ (4)

with respect to �i and ~�i. The goal of this section is to
compute the leading contribution to F in such a large N
expansion while holding k fixed.

1Of course, another nonsupersymmetric measure of the num-
ber of degrees of freedom, which is very useful physically, is the
thermal free energy.
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Varying (4) with respect to �j and ~�j we obtain the

saddle-point equations:

� @F

@�i

¼ ik

2�
�i �

X
j�i

coth
�j ��i

2
þX

j

tanh
~�j ��i

2
¼ 0;

� @F

@~�i

¼� ik

2�
~�i �

X
j�i

coth
~�j � ~�i

2
þX

j

tanh
�j � ~�i

2
¼ 0:

(5)

Similar saddle-point equations appear in the context of
matrix models derived from topological string theory
[10,27] and can be solved using powerful techniques based
on holomorphy arguments and special geometry. Such
methods were used in [5] to solve Eqs. (5) in the limit
where N is taken to infinity while holding N=k fixed. Our
goal in this paper is more modest than solving the matrix
model for any value of the ’t Hooft parameterN=k. We will
work at fixed k and take the large N=k limit. As we will see
shortly, in such a limit we can find the eigenvalue distri-
bution using a more elementary approach.

B. A numerical solution

To gain intuition, one can start by solving the saddle-
point equations (5) numerically for any values of N and k.
One of the simplest ways to do so is to view Eqs. (5) as
describing the equilibrium configuration of 2N point par-
ticles whose 2D coordinates are given by the complex

numbers �j and ~�j and that interact with the forces given

by Eq. (5). This equilibrium configuration can be found by
introducing a time dimension and writing down equations

of motion for �jðtÞ and ~�jðtÞwhose solution approaches the
equilibrium configuration (5) at late times in the same way
as the solution to the heat equation approaches a solution to
the Laplace equation at late times. The equations of motion
for the eigenvalues are

��
d�i

dt
¼ � @F

@�i

; �~�

d~�i

dt
¼ � @F

@~�i

; (6)

where �� and �~� are complex numbers that need to be
chosen in such a way that the saddle point wewish to find is
an attractive fixed point as t ! 1.

In Fig. 1 we show typical eigenvalue distributions that
can be found using the method we just explained. There are
several features of the saddle-point configurations that are
worth emphasizing:

(i) The eigenvalues �j and ~�j that solve (5) are not real.

That the eigenvalue distributions do not lie on the

real axis might be a bit puzzling given that �i and ~�i

are supposed to be eigenvalues of Hermitian matri-
ces. However, it is well known that in general, when
using the saddle-point approximation, the main con-
tribution to an oscillatory integral may come from
saddles that are not on the original integration

contour but through which the integration contour
can be made to pass. We will assume that the inte-
gration contour that should be chosen in writing
down the integral in Eq. (3) can be deformed so
that saddle points like those in Fig. 1 are the only
important ones.

(ii) The eigenvalue distributions are invariant under

�i ! ��i and ~�i ! �~�i.
Indeed, the saddle-point equations (5) are invariant
under these transformations, so it is reasonable to
expect that there should be solutions that are also
invariant.

(iii) In the equilibrium configuration the two types of
eigenvalues are complex conjugates of each other:
~�j ¼ ��j.

Indeed, it is not hard to see that upon setting
~�j ¼ ��j the two equations in (5) become equiva-

lent, so it is consistent to look for solutions that
have this property.

(iv) As one increases N at fixed k, the imaginary part of
the eigenvalues stays bounded between ��=2 and
�=2, while the real part grows with N. We will
show shortly that, for the saddle points we find, the

real part grows as N1=2 as N ! 1.

C. Large N analytical approximation

Let us now find analytically the solution to the saddle-
point equations (5) in the large N limit. As explained

above, we can assume ~�j ¼ ��j and write2

�j ¼ N�xj þ iyj; ~�j ¼ N�xj � iyj; (7)

where we introduced a factor of N� multiplying the real
part because we want xj and yj to be of order OðN0Þ and

40 20 20 40
Re

2

2

Im
N and 100, k 1

FIG. 1 (color online). Numerical saddle points for the ABJM
matrix model. The eigenvalues for N ¼ 25 are plotted in black
and those for N ¼ 100 are plotted in orange. The plot has been
obtained with �� ¼ �~� ¼ 1. As mentioned in the text, the real
parts of the eigenvalues grow with

ffiffiffiffi
N

p
.

2After completing this work, we became aware that Ref. [28]
employs a similar ansatz.
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become dense in the large N limit. The constant � is so far
arbitrary but will be determined later.

In passing to the continuum limit, we define the func-
tions x; y: ½0; 1� ! R so that

xj ¼ xðj=NÞ; yj ¼ yðj=NÞ: (8)

Let us assumewe order the eigenvalues in such a way that x
is a strictly increasing function on ½0; 1�. Introducing the
density of the real part of the eigenvalues

�ðxÞ ¼ ds

dx
; (9)

one can approximate (4) as (see Appendix A)

F ¼ k

�
N1þ�

Z
dxx�ðxÞyðxÞ

þ N2��
Z

dx�ðxÞ2fð2yðxÞÞ þ � � � ; (10)

where the function f is

fðtÞ ¼ �2 � ðargeitÞ2: (11)

In other words, f is a periodic function with period �
given by

fðtÞ ¼ �2 � t2 when � � � t � �: (12)

It may be a little puzzling that while the discrete ex-
pression for the free energy in Eq. (4) is nonlocal, in the
sense that there are long-range forces between the eigen-
values, its large N limit (10) is manifestly local. One can
understand this major simplification from examining,
for instance, the first saddle-point equation in (5). The
force felt by �i due to interactions with far-away eigenval-

ues �j and ~�j is

� coth
�j � �i

2
þ tanh

~�j � �i

2

� �sgn ðRe�j � Re�iÞ þ sgn ðRe~�j � Re�iÞ; (13)

the corrections to this formula being exponentially sup-

pressed in Re�j � Re�i and Re~�j � Re�i. In other words,

the nonlocal part of the interaction force between eigen-
values is given just by the right-hand side of Eq. (13). The

nonlocal part of the force vanishes when Re�j ¼ Re~�j, so

in assuming that the two eigenvalue distributions are com-
plex conjugates of each other, we effectively arranged for
an exact cancellation of nonlocal effects. All that is left are
short-range forces, which in the large N limit are described
by the local action (10).

One can view F as a functional of �ðxÞ and yðxÞ and look
for its saddle points in the set

C ¼
�
ð�; yÞ:

Z
dx�ðxÞ ¼ 1;�ðxÞ � 0 pointwise

�
: (14)

These constraints mean that � is a normalized density.
Motivated by the numerical analysis we performed, we

assume that � and y describe a connected distribution of
eigenvalues contained in a bounded region of the complex
plane.
Let us assume a saddle point for F exists. As N ! 1,

we need the two terms in (10) to be of the same order in N
in order to have nontrivial solutions, so from now on we
will set

� ¼ 1
2 : (15)

The real part of the eigenvalues therefore grows as N1=2,

and to leading order, the free energy behaves as N3=2 at
large N. In writing (10) we omitted the last two terms from
Eq. (4). They do not depend on � or y and hence do not
affect the saddle-point equations. They are also lower order
in N given the choice of �.
To find a saddle point for F, one can add a Lagrange

multiplier � to (10) and extremize

~F ¼ N3=2

�
k

�

Z
dxx�ðxÞyðxÞ þ

Z
dx�ðxÞ2fð2yðxÞÞ

� �

2�

�Z
dx�ðxÞ � 1

��
(16)

instead of (10). As long as �ðxÞ> 0, the saddle-point
eigenvalue distribution satisfies the equations

4��ðxÞfð2yðxÞÞ ¼ �� 2kxyðxÞ;
2��ðxÞf0ð2yðxÞÞ ¼ �kx:

(17)

Plugging (12) into (17) one obtains

�ðxÞ ¼ �

4�3
; yðxÞ ¼ �2kx

2�
; (18)

as long as ��=2 � yðxÞ � �=2. If � is supported
on ½�x�; x�� for some x� > 0 that we will determine
shortly, we can calculate � from the normalization of the
density �ðxÞ:

Z x�

�x�
dx�ðxÞ ¼ 1 ) � ¼ 2�3

x�
: (19)

Plugging this formula back into (10), we obtain the free
energy in terms of x�:

F ¼ N3=2ð12�4 þ k2x4�Þ
24�2x�

þ oðN3=2Þ: (20)

This expression is extremized when

x� ¼ �

ffiffiffi
2

k

s
; yðx�Þ ¼ �

2
: (21)

Luckily, the answer yðx�Þ ¼ �=2 is consistent with our
assumption that ��=2 � yðxÞ � �=2 without which
Eq. (18) would not be correct. In Appendix B we check
that assuming yðx�Þ>�=2 implies a contradiction. The
extremum of F obtained from Eqs. (20) and (21) is
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F ¼ �
ffiffiffi
2

p
3

k1=2N3=2 þ oðN3=2Þ: (22)

This result agrees with the free energy found in [5] using
the regularized Euclidean action in AdS4 [17].

In the large N limit the eigenvalues therefore condense
on two line segments, and on these two line segments they
have uniform density. In Fig. 2 we compare the analytical
result for the density with the numerical one.

We would like to compare the location of our eigenvalue
distributions with the results of [5]. Noting a similarity
between the ABJM matrix model and the S3=Z2 matrix
model solved in [10], Drukker, Marino, and Putrov [5]
wrote down a resolvent for the ABJM model. This resol-
vent has cuts in the � plane corresponding to the locations
of the eigenvalues. In particular, it has a cut where the �i

eigenvalues are located and a second cut where the ~�i

eigenvalues are located but shifted by �i. More specifi-
cally, the resolvent has the form

!ð�Þ ¼ 2 log

�
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe� þ bÞðe� þ 1=bÞ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe� � aÞðe� � 1=aÞ

q ��
; (23)

where aþ 1=aþ bþ 1=b ¼ 4 and, at strong coupling,

aþ 1

a
� b� 1

b
¼ 2i exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N

k
� 1

12

s �
þ � � � : (24)

The ellipses denote terms exponentially suppressed
in N=k relative to the leading term. Solving the equations
for a and b, we find that the branch points in the � plane
are at

	 loga ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N

k
� 1

12

s
þ i�

2
; (25)

	 logb ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N

k
� 1

12

s
þ i�

2
: (26)

These expressions are in agreement with (21) in the largeN
limit.
Let us also try to compare our findings with the exact

results found for the supersymmetric Wilson loops in the
ABJM theory [5,9]. The expectation values of 1=6 and 1=2
supersymmetric Wilson loops are proportional, respec-

tively, to the expectation values of
P

N
i¼1 e

�i and
P

N
i¼1½e�i þ

e
~�i� in the matrix model [5,7,9,29]. In our approach, these

quantities become

hW1=6
h i ¼ 2�iN

k

Z x�

�x�
e�ðxÞ�ðxÞdx; (27)

hW1=2
h i ¼ 2�iN

k

Z x�

�x�
ðe�ðxÞ þ e

~�ðxÞÞ�ðxÞdx: (28)

If we evaluate (27) and (28) using the saddle point we have
found, we get

hW1=6
h i � �

ffiffiffiffiffi
N

2k

s
e�

ffiffiffiffiffiffiffiffi
2N=k

p
; (29)

hW1=2
h i � i

2
e�

ffiffiffiffiffiffiffiffi
2N=k

p
: (30)

The exponents in these formulas agree with the results
in [5,9,29].
We should keep in mind that the ABJMmodel has a type

IIA string interpretation only in the limit where N=k 
 1,

N1=2=k5=2 � 1. These conditions apply only in the limit
where both N and k are taken to infinity. Our approxima-
tions are only applicable in the M-theory limit where N is
taken to infinity at fixed k. Thus our Wilson loops have a
dual interpretation as wrapped M2-branes in M theory
rather than as strings in type IIA string theory.

III. NECKLACE QUIVER GAUGE THEORIES

In this section we consider a class of quiver Chern-
Simons UðNÞk1 �UðNÞk2 � � � � �UðNÞkp gauge theories

whose quiver diagrams look like necklaces (see Fig. 3)
[12,13]. In the N ¼ 2 superspace formulation the theory
is coupled to bifundamental chiral superfields Aa and Ba,
a ¼ 1; 2; . . . ; p, whose interactions are governed by the
quartic superpotential

W ¼ � Xp
a¼1

2�

ka
ðBa�1Aa�1 � AaBaÞ2: (31)

The 4D ‘‘parent theories’’ for these Chern-Simons models,
i.e. the 4D gauge theories with the same type of quiver

4 2 2 4
x

0.02

0.04

0.06

0.08

0.10

0.12

N 200, k 1

FIG. 2 (color online). Comparison between analytical predic-
tion and numerical results for the density of eigenvalues �
defined in Eq. (9). The dotted black line represents the analytical
calculation, and the numerical result is shown in orange dots.
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diagrams and superpotentials, arise onN D3-branes placed
on generalized conifolds [30,31]. For

Pp
a¼1 ka ¼ 0 and

N ¼ 1 the moduli space of each 3D model was calculated
in [12,13] and shown to be given by a certain hyper-Kähler
cone in four complex dimensions [14–16]. Therefore, it
was conjectured that such a model describes the low-
energy dynamics of N coincident M2-branes placed at
the tip of this cone. The quiver Chern-Simons gauge theo-
ries were therefore conjectured to be dual to the AdS4 � Y
backgrounds of M theory where Y are the bases of the
cones. These gauge theories are natural generalizations of
the ABJM model that is found for p ¼ 2.

The gauge theories in Fig. 3 arise from the following
type IIB brane construction [12]. We considerN D3-branes
filling directions 0123 where x3 is a circle and then add
a sequence of ð1; qÞ 5-branes (the bound states of an
NS5-brane and qa D5-branes) filling directions 012 and
located at specific points along the x3 circle. If we express
the CS levels as

ka ¼ qaþ1 � qa; (32)

where qa are integers, then as we move around the circle
we find the ordering ð1; qaÞ of the 5-branes. This picture is
helpful in considering certain transformations in the gauge
theory that are analogous to the Seiberg duality in four-
dimensional gauge theory [21–23]. As in that case, these
transformations are related to interchange of adjacent
branes and thus correspond to interchange of qa and
qaþ1. (There is also a shift in the rank of one of the gauge
groups that may be neglected in the large N limit.) Our
explicit answer for the free energy will have this symmetry.

For a general set of Chern-Simons levels such a p > 2
gauge theory has N ¼ 3 superconformal invariance,
but in the special case where p is even and the CS levels
are ðk;�k; k;�k; . . .Þ the supersymmetry is enhanced to

N ¼ 4 [12,32,33]. Then Y ¼ S7=ðZp=2 � Zkp=2Þ and

VolðYÞ ¼ 4�4=ð3kp2Þ. For more general ki the eight-
dimensional cone is not an orbifold, which complicates
the calculation of its volume. Nevertheless, these volumes
were computed in [19,20], and we can compare the result
on the gravity side with our calculation of the free energy.

A. Multimatrix models

As explained in [7], the partition function for the
necklace quivers in Fig. 3 localizes on configurations
where the scalars �a in the N ¼ 2 vector multiplets are
constant Hermitian matrices. Denoting by �a;i, 1 � i � N,

the eigenvalues of �a, the partition function takes the form
of the matrix integral

Z ¼ 1

ðN!Þp
Z �Y

a;i

d�a;i

2�

�Yp
a¼1

�
0
@Qi<jð2 sinh�a;i��a;j

2 Þ2Q
i;j 2 cosh

�a;i��aþ1;j

2

exp

�
i

4�

X
i

ka�
2
a;i

�1A: (33)

The normalization of the partition function was chosen so
that it agrees with the ABJM result from Eq. (3) in the case
p ¼ 2. As in the ABJM case, the integration contour
should be taken to be the real axis in each integration
variable. The saddle-point equations following from (33)
are

ika
�

�a;i � 2
X
j�i

coth
�a;j � �a;i

2
þX

j

tanh
�aþ1;j � �a;i

2

þX
j

tanh
�a�1;j � �a;i

2
¼ 0: (34)

These equations can be solved numerically using the
method described in Sec. II B: By replacing the right-
hand side of these equations by �ad�a;j=dt, we obtain a

system of first order differential equations whose solution
converges at late times t to a solution of Eq. (34) provided
that the constants �a are chosen appropriately. We will now
show how to obtain an approximate analytical solution
valid in the limit where N is taken to be large and k is
held fixed.
Based on our intuition from the ABJM model, let us

assume that in this case too the real part of the eigenvalues

behaves as N1=2 at large N while the imaginary part is of
order 1. So if one writes

�a;j ¼ N1=2xa;j þ iya;j; (35)

then the quantities xa;j and ya;j become dense in the largeN

limit. Under this assumption, we will be able to solve
the saddle-point equations to leading order in N in a
self-consistent way. We can pass to the continuum limit

FIG. 3 (color online). Necklace quiver diagrams for UðNÞp
Chern-Simons gauge theories.
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by considering the normalized densities �aðxÞ of the xa;j
together with the continuous functions yaðxÞ that describe
the imaginary parts of the eigenvalues as functions of x. Let
us first make a rough approximation to the saddle-point
equations (34). When N is large, we have

coth
�a;j � �a;i

2
� sgnðxa;j � xa;iÞ;

tanh
�a;j � �a	1;i

2
� sgnðxa;j � xa	1;iÞ:

(36)

To leading order in N, the saddle-point equations then
become

Z
dx0½2�aðx0Þ � �aþ1ðx0Þ � �a�1ðx0Þ�sgnðx0 � xÞ ¼ 0:

(37)

Differentiating with respect to x, we immediately conclude
that all �a must be equal to one another to leading order in
N, so we can write �aðxÞ � �ðxÞ for some density function
�ðxÞ that is normalized as

Z
dx�ðxÞ ¼ 1: (38)

With the simplifying assumption that the densities �a

are equal, one can go back to the integral (33) and calculate
the free energy functional F½�; ya� to leading order in N
(see Appendix A):

F½�; ya� ¼ N3=2

2�

Z
dxx�ðxÞ Xp

a¼1

kayaðxÞ

þ N3=2

2

Z
dx�ðxÞ2 Xp

a¼1

fðyaþ1ðxÞ

� yaðxÞÞ þ oðN3=2Þ; (39)

where f is the same function that was defined in (11). We
wish to evaluate the integral (33) in the saddle-point ap-
proximation where it equals Z ¼ e�F, the free energy F
being an appropriate critical point of F½�; ya�. Let us
assume that the eigenvalue distribution corresponding to
this saddle point is connected, symmetric about x ¼ y ¼ 0,
and bounded.

In looking for the eigenvalue distribution that extremizes

(39) to order OðN3=2Þ, an important observation is that, in
fact, one cannot find this distribution, because to this order
in N F½�; ya� has a flat direction given by yaðxÞ ! yaðxÞ þ
�yðxÞ for any function �yðxÞ. The second term in Eq. (39)
is clearly invariant under this transformation, and the first
term is also invariant because

Pp
a¼1 ka ¼ 0. The existence

of this flat direction is not a problem at all if one just wants
to compute the free energy F to leading order in N. If one’s
goal is instead to find the eigenvalue distributions for the
saddle point, subleading corrections to (39) that presum-
ably lift this flat direction must be taken into account. In

this paper we will content ourselves with calculating the

free energy to order OðN3=2Þ and will leave a careful
analysis of how the flat direction gets lifted for future work.
Before we examine the extremization of the free energy

functional (39) in more detail, let us make a few comments
and present a result that follows already from the discus-
sion above. Suppose we manage to find a saddle point of F
by extremizing (39) for a quiver Chern-Simons gauge
theory that in the large N limit and at strong ’t Hooft
coupling is dual to an AdS4 � Y M-theory background.
Let us assume that this saddle point gives the most impor-
tant contribution to the partition function. What can we
learn? From (39) one may infer that the free energy grows

as N3=2 at large N as expected from supergravity, so our
computation provides a gauge theory explanation of this

N3=2 behavior. Moreover, one can compare the free energy
we obtain with the exact M-theory result

F ¼ N3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�6

27VolðYÞ

s
(40)

that can be derived as a straightforward generalization of
the ABJM computation in [5]. Via this formula we will
compare successfully our matrix model results with the
expressions for the volumes of tri-Sasaki Einstein space
available in the literature [19,20].

B. A class of orbifold Chern-Simons theories

The vacuum moduli space of the nonchiral quivers with
alternating CS levels ðk;�k; k;�k; . . .Þ and N ¼ 1 is the
orbifold C4=ðZp=2 � Zkp=2Þ [12]. There is an induced

orbifold action on the unit 7-sphere in C4, and thus the
internal space Y is S7=ðZp=2 � Zkp=2Þ. Consequently, we
expect

Vol ðYÞ ¼ 4VolðS7Þ
kp2

¼ 4�4

3kp2
; (41)

where in the second equality we used the round 7-sphere
volume VolðS7Þ ¼ �4=3.
This formula can be reproduced very easily from the

matrix model computation. The saddle-point equations

(34) are solved by setting �2a;i ¼ �i and �2aþ1;i ¼ ~�i, �i

and ~�i being the eigenvalues for the saddle point of
the ABJM matrix model discussed in detail in Sec. II.
The free energy of the p-node quiver with CS levels
ðk;�k; k;�k; . . .Þ is therefore p=2 times the free energy
in the ABJM model, and thus

F ¼ p

2
FABJM ¼ �

ffiffiffi
2

p
6

pk1=2N3=2 þ oðN3=2Þ: (42)

Using Eq. (40), one immediately reproduces the volume of
the S7 orbifold in Eq. (41).
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C. Warm-up: A four-node quiver

Another case we can easily solve using the approxima-
tion scheme developed above is that of the four-node
quiver with CS levels ka ¼ ðk; k;�k;�kÞ (see Fig. 4).
The two Z2 symmetries of the quiver, one acting by inter-
changing nodes 1 $ 4 and 2 $ 3 and the other by inter-
changing nodes 1 $ 2 and 3 $ 4, allow us to set

�1;j ¼ �2;j ¼ �j; �3;j ¼ �4;j ¼ ~�j: (43)

Moreover, in the saddle-point equations (34) it is consistent

to set ~�j ¼ ��j as in the ABJM case, which reduces our task

to finding a single eigenvalue distribution �i. In passing to
the continuum limit, we should therefore set

y1 ¼ y2 ¼ �y3 ¼ �y4 ¼ y: (44)

The free energy functional (39) then becomes

F½�; y� ¼ 2kN3=2

�

Z
dxx�ðxÞyðxÞ

þ N3=2
Z

dx�ðxÞ2½�2 þ fð2yðxÞÞ� þ oðN3=2Þ:
(45)

In the paragraph following Eq. (39) we discussed how
for arbitrary p-node quivers we would not be able to solve
for the ya themselves, but only for differences of consecu-
tive ya, because the leading large N contribution to the free
energy functional is invariant under the shifts ya ! ya þ
�y for any function �y. In the case of the ðk; k;�k;�kÞ
quiver we will, however, be able to determine the location
of the eigenvalues exactly, because the ansatz (44) breaks
this shift symmetry.

In order to find the saddle points of (45) in the set (14),
we should add a Lagrange multiplier � to enforce the
normalization condition for � and extremize the functional

~F½�; y� ¼ F� N3=2

2�
�

�Z
dx�ðxÞ � 1

�
: (46)

Let us assume the eigenvalue distribution is symmetric
around x ¼ y ¼ 0 and ranges between ½�x�; x��. Let us
focus on the region where x � 0. Solving the equations of
motion we obtain

�ðxÞ ¼ �

8�3
; yðxÞ ¼ 2k�2x

�
; if jyðxÞj � �

2
: (47)

Since �ðxÞ> 0 in this region, we have�> 0 and yðxÞ � 0.
Assuming yðx�Þ<�=2, we can find � in terms of x� from
the normalization condition for � and then express F in
terms of x� and extremize it. The extremization yields

x� ¼ 21=4�=
ffiffiffi
k

p
and yðx�Þ ¼ �=

ffiffiffi
2

p
>�=2, which sug-

gests that the assumption yðx�Þ<�=2 might be wrong.
One could imagine that yðx�Þ>�=2, but solving the
saddle-point equations in the region where y > �=2 would
yield �ðxÞ< 0.
The correct answer is yðx�Þ ¼ �=2, and in fact yðxÞ ¼

�=2 on some interval ½x�=2; x�� with 0< x�=2 < x�. On
this interval,

�ðxÞ ¼ �� 2k�x

4�3
; yðxÞ ¼ �

2
; (48)

where in obtaining these equations we only varied (46)
with respect to �. The quantity x�=2 can be obtained from

setting yðx�=2Þ ¼ �=2 in (47):

x�=2 ¼ �

4�k
: (49)

One can now find � by imposing the normalization con-
dition for � and then express the free energy F in terms of
x� and extremize with respect to x�. The result is that

x� ¼ 2x�=2 ¼ 2�

ffiffiffiffiffi
2

3k

s
; � ¼ 4�2

ffiffiffiffiffi
2k

3

s
: (50)

The density of eigenvalues is constant on ½�x�=2; x�=2� and
then drops linearly to zero on ½�x�;�x�=2� and ½x�=2; x��.
See Fig. 5 for a comparison of this analytical prediction
with a numerical solution of the saddle-point equations.
The free energy for this model can be computed

from (45):

F ¼
ffiffiffiffiffiffi
32

27

s
�k1=2N3=2 þ oðN3=2Þ: (51)

Using (40), we infer that the gravity dual of the Chern-
Simons quiver gauge theory with CS levels ðk; k;�k;�kÞ
is AdS4 � Y where the volume of the compact space Y is

Vol ðYÞ ¼ �4

16k
: (52)

Satisfyingly, this result is in agreement with the calculation
of the corresponding integral representation given in [20]
for k ¼ 1, which we will review in Sec. IV.

FIG. 4 (color online). Four-node quiver diagram obtained as a
particular case of the general quivers presented in Fig. 3.
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Let us also note that this volume is the same as that of a
Zk orbifold of the Sasaki-Einstein space Q2;2;2, which in
turn is a Z2 orbifold of the coset space SUð2Þ � SUð2Þ �
SUð2Þ=ðUð1Þ �Uð1ÞÞ. If we denote the generators of the

three SUð2Þ factors by ~JA, ~JB, and ~JC, then the two Uð1Þ
groups we are modding out by are generated by JA3 þ JB3
and JA3 þ JC3.Q

2;2;2 admits a toric Sasaki-Einstein metric,
and a proposal for the Chern-Simons quiver gauge theory
dual to AdS4 �Q2;2;2=Zk was made in [34,35]. This pro-
posal is quite similar to the ðk; k;�k;�kÞ nonchiral quiver
in Fig. 4, except it is chiral—see Fig. 6. Because of the
chiral nature of the quiver, the corresponding matrix model
that follows from [7] is somewhat different. Its analysis is
beyond the scope of this paper.

D. Extremization of the free energy
functional and symmetries

Since the free energy functional (39) depends only on
differences between consecutive ya, we find it convenient
to introduce the notation �ya ¼ ya�1 � ya and to write
ka ¼ qaþ1 � qa as in Eq. (32). Equation (39) becomes

F½�; �ya� ¼ N3=2

2�

Z
dxx�ðxÞ Xp

a¼1

qa�yaðxÞ

þ N3=2

2

Z
dx�ðxÞ2 Xp

a¼1

fð�yaðxÞÞ þ oðN3=2Þ:

(53)

This expression should be extremized over the set

C ¼
�
ð�; �yaÞ:

Z
dx�ðxÞ ¼ 1;�ðxÞ � 0 and

Xp
a¼1

�yaðxÞ ¼ 0 pointwise

�
: (54)

Since
Pp

a¼1 �ya ¼ 0, one could either use this constraint
to solve for one of the �ya and extremize (53) only with
respect to the remaining ones, or, as we will do, one could
introduce a Lagrange multiplier 	ðxÞ that enforces the
constraint and treat all �ya on equal footing. Because of
the normalization constraint (38) we also need a Lagrange
multiplier �. We therefore will extremize

~F½�; �ya� ¼ F½�; �ya� � N3=2

2�
�

�Z
dx�ðxÞ � 1

�

� N3=2

2�

Z
dx�ðxÞ	ðxÞ Xp

a¼1

�yaðxÞ (55)

instead of (53). Suppose a saddle point exists. As long as
�ðxÞ> 0, the saddle-point eigenvalue distribution should
satisfy the equations

Xp
a¼1

½2�fð�yaðxÞÞ�ðxÞþðqax�	ðxÞÞ�yaðxÞ�¼�; (56a)

�f0ð�yaðxÞÞ�ðxÞþqax¼	ðxÞ: (56b)

The extremization problem has the following discrete
symmetries:
(i) The free energy functional (53) has a Z2 symmetry

under which qa and �ya all change sign, so in the

4 2 2 4
x

2

4

4

2
y

N 100, k 1,1, 1, 1

4 2 2 4
x

0.02
0.04
0.06
0.08
0.10
0.12
0.14

N 100, k 1,1, 1,

FIG. 5 (color online). Comparison between numerics and analytical prediction for the four-node quiver with k ¼ f1; 1;�1;�1g. The
dotted black lines represent the large N analytical prediction, and the orange dots represent numerical results.

FIG. 6 (color online). The Chern-Simons quiver gauge theory
dual to AdS4 �Q2;2;2=Zk as proposed in [34,35].
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large N limit the partition function and the free
energy are also invariant under sending qa ! �qa
for all a. This symmetry acts as ka ! �ka and is
therefore a parity transformation.

(ii) Equation (53) is invariant under an overall shift of
all the qa. This symmetry was to be expected given
that, after all, the original integral (33) depends only
on ka, which are differences of consecutive qa.

(iii) Interestingly, the free energy functional we are
extremizing is invariant under permutations of the
qa and �ya, so the partition function and the free
energy will also be invariant under permutations of
the qa. Up to order OðN0Þ shifts in the ranks of the
gauge groups, which should be dropped in the large
N limit we are taking, such permutations corre-
spond to Seiberg dualities in the N ¼ 2 Chern-
Simons gauge theories [21–23].

Some of the symmetries discussed above correspond to
the action of the dihedral group Dp on the CS levels ka.

Our formalism shows that to leading order in N the free

energy is in fact invariant under a larger symmetry group
that acts on the qa and that includes the dihedral group.

E. Three-node quivers

Let us now compute the free energy for arbitrary three-
node quivers with CS levels ðk1; k2; k3Þ satisfying k1 þ
k2 þ k3 ¼ 0. Since the ka sum to zero, two of them must
have the same sign and be smaller in absolute value than
the third. Let us begin by studying the particular case
where k2 � k1 � 0 and k3 < 0. For simplicity, we chooseP

3
a¼1 qa ¼ 0, which implies

q1 ¼�2k1 þ k2
3

; q2 ¼ k1 � k2
3

; q3 ¼ k1 þ 2k2
3

;

(57)

and we have q3 > 0> q2 � q1 and jq3j> jq1j � jq2j.
The solution to Eqs. (56) is symmetric about x ¼ ya ¼ 0
and when x � 0 it breaks into three regions:

0� x� �

3�q3
: �ya ¼ 3�2xqa

�
; �¼ �

6�3
; (58a)

�

3�q3
� x�� �

3�q1
: �y1 ¼ ðq1 � q2Þx

4��
��

2
; �y2 ¼ ðq2 � q1Þx

4��
��

2
; �y3 ¼ �; �¼ 2�� 3�q3x

6�3
; (58b)

� �

3�q1
� x� �

�ðq3 � q1Þ : �y1 ¼��; �y2 ¼ 0; �y3 ¼ �; �¼�þ ðq1 � q3Þ�x
2�3

: (58c)

The first region ends when one of the three differences �ya
reaches 	�. The relations between the qa imply that at
the end of the first region �y3 ¼ �, while j�y1j ¼
�jq1j=jq3j<� and j�y2j ¼ �jq2j=jq3j<�. Throughout
the second region �y3 ¼ �. The second region ends when
�y1 or �y2 reaches 	�. When q1 ¼ q2, the third region is
absent. When q1 < q2 < 0, in this region �y2 is monotoni-
cally increasing and �y1 is monotonically decreasing,
and since

P
�ya ¼ 0 it must be that �y1 reaches ��

next. In the third region the �ya are all constant and the
density � decreases linearly to zero. See Fig. 7 for a
particular example.

The normalization condition on � yields

� ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18q1ðq1 þ q2Þð2q1 þ q2Þ

q22 � 5q21 � 5q1q2

s

¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk1 þ k2Þðk2 � k3Þðk1 � k3Þ

ðk1k2 � k1k3 � k2k3Þ

s
: (59)

Performing the integral (39), one obtains

F ¼ N3=2�

3�
¼ N3=2�

ffiffiffi
2

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2Þðk2 � k3Þðk1 � k3Þ

k1k2 � k1k3 � k2k3

s
:

(60)

Given the free energy in the case k3 < 0< k1 � k2, it is
actually possible to compute the free energy for any three-
node quivers. Indeed, since in the case where there are only
three nodes a permutation of the ka can be thought of as a
relabeling of the nodes, the free energy must be invariant
under all such permutations. In addition, the free energy
must be invariant under sending ka ! �ka according to
the second discrete symmetry discussed at the end of
Sec. III D. Combining these two properties, one can find
the free energy of an arbitrary quiver with CS levels ka by

constructing the new CS levels ~k1 ¼ minðjk1j; jk2j; jk3jÞ,
~k3 ¼ �maxðjk1j; jk2j; jk3jÞ, and ~k2 ¼ �~k1 � ~k3 that sat-

isfy ~k3 < 0< ~k1 � ~k2 and for which Eq. (60) holds. The
unique extension of (60) that gives the correct answer for
arbitrary CS levels is

F ¼ N3=2�
ffiffiffi
2

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjk1j þ jk2jÞðjk2j þ jk3jÞðjk1j þ jk3jÞ

jk1jjk2j þ jk1jjk3j þ jk2jjk3j

s
:

(61)

Quite remarkably, this formula, whose derivation is
based solely on gauge theory arguments, agrees with the
supergravity prediction: Using (40), one can reproduce the
volume of a Zgcdfk1;k2;k3g orbifold of a compact Eschenburg

space. The Eschenburg space is specified by three rela-
tively prime integers ta, and its volume is [19]
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VolðSðt1; t2; t3ÞÞ
VolðS7Þ ¼ t1t2 þ t1t3 þ t2t3

ðt1 þ t2Þðt2 þ t3Þðt1 þ t3Þ : (62)

In terms of the ka, the positive integers ta are ta ¼
jkaj= gcdfk1; k2; k3g [13], so

VolðYÞ
VolðS7Þ ¼ 1

gcdfk1; k2; k3g
VolðSðt1; t2; t3ÞÞ

VolðS7Þ
¼ jk1jjk2j þ jk1jjk3j þ jk2jjk3j

ðjk1j þ jk2jÞðjk2j þ jk3jÞðjk1j þ jk3jÞ ; (63)

in agreement with (40) and (61).

F. General four-node quivers

We can also compute the leading large N contribution to
the free energy for arbitrary four-node quivers. Let us
first examine the case where q4 � q2 � q1 � q3 and jq4j
is the largest among the qa. It is convenient to requireP

4
a¼1 qa ¼ 0 since many of the intermediate formulas

simplify under this assumption. Then we have q4 > 0 �
q1 � q3 and jq4j � jq3j � jq1j � jq2j. As in the three-
node case, the solution to Eqs. (56) is symmetric about x ¼
ya ¼ 0 and when x � 0 it breaks into three regions:

0 � x � �

4�q4
: �ya ¼ 4�2xqa

�
; � ¼ �

8�3
; (64a)

�

4�q4
� x � � �

4�q3
: �y1 ¼ ð3q1 þ q4Þx

6��
� �

3
; �y2 ¼ ð3q2 þ q4Þx

6��
� �

3
; �y3 ¼ ð3q3 þ q4Þx

6��
� �

3
;

�y4 ¼ �; � ¼ 3�� 4�q4x

16�3
; (64b)

� �

4�q3
� x � �

2�ðq2 þ q4Þ : �y1 ¼
ðq1 � q2Þx

4��
; �y2 ¼ ðq2 � q1Þx

4��
; �y3 ¼ ��;

�y4 ¼ �; � ¼ �þ ðq3 � q4Þ�x
4�3

: (64c)

The first region ends where �y4 reaches �. At this end
point j�yaj ¼ �jqaj=jq4j � � for a ¼ 1, 2, 3. The second
region ends where �y3 ¼ ��. At this end point �y1 ¼
�ðq1 � q2Þ=ðq1 þ q2 � 2q3Þ, and since q1 � q3 and
q2 � q3, by the triangle inequality it follows that jq1 �
q2j � q1 þ q2 � 2q3, so j�y1j � �. Similarly, j�y2j � �
also. Last, if q2 ¼ q1, the third region does not exist. When
q2 > q1 and q1 < 0, �y1 is monotonically decreasing and
�y2 is monotonically increasing in the third region, and this
region ends where �y1 ¼ �� and �y2 ¼ �. See Fig. 8 for
an example.

From
R
dx�ðxÞ ¼ 1, one can find that � is given by

8�2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q3
� 1

q4
þ 4ðq2 þ q3Þ

ðq2 þ q4Þ2
þ 12

q2 þ q4

s
: (65)

The free energy is

F ¼ N3=2�

3�

¼ 8�N3=2

3

�
1

q3
� 1

q4
þ 4ðq2 þ q3Þ

ðq2 þ q4Þ2
þ 12

q2 þ q4

��1=2
:

(66)

Given Eq. (66), one can use the symmetries we dis-
cussed at the end of Sec. III D to compute the free energy
of a quiver gauge theory with arbitrary qa. Indeed, one
can define ~qa to be a permutation of the four numbers
qa � 1

4

P
4
b¼1 qb that gives j~q4j � j~q3j � j~q1j � j~q2j. If ~q4

is negative, one should flip the sign of all ~qa, so we can
assume ~q4 > 0. By construction, the ~qa sum to zero, so the

3 2 1 1 2 3
x
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3

y
N 100, k 1, 3, 4
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FIG. 7 (color online). Comparison between numerics and analytical results for a three-node quiver. The dotted black lines represent
the analytical large N approximation, while the orange dots represent numerical results.
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second and third largest in absolute value, namely, ~q3 and
~q1, are negative. Therefore, the ~qa satisfy all the assump-
tions under which Eq. (66) was derived, and since the free
energy does not change in going from qa to ~qa, one can
plug the ~qa into Eq. (66) to find the free energy of an
arbitrary four-node quiver theory. The unique extension of
(66) to arbitrary qa can also be written as

F¼N3=2�
ffiffiffi
2

p
3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

4
a¼1ð

P
4
b¼1qabÞP

ða;bÞ�ðc;dÞ�ðe;fÞ
jqabjjqcdjjqefj� P

ða;b;cÞ
jqabjjqbcjjqcaj

vuuut ;

(67)

where qab denotes qa � qb, and in the denominator the
first sum is over distinct unordered pairs of numbers from
1 to 4 while the second sum is over unordered triplets.
Using Eq. (40), we obtain a prediction for the volume of the
compact space Y:

VolðYÞ
VolðS7Þ

¼

P
ða;bÞ�ðc;dÞ�ðe;fÞ

jqabjjqcdjjqefj �
P

ða;b;cÞ
jqabjjqbcjjqcajQ

4
a¼1ð

P
4
b¼1 jqabjÞ

:

(68)

IV. A GENERAL FORMULA AND ITS TESTS

Equations (67) and (68) suggest a generalization to
arbitrary p-node quivers. Note first that the numerator of
Eq. (68) is a sum over all possible graphs with 4 nodes and
3 edges from which we subtract the sum over all cyclic
graphs with 4 nodes and 3 edges, yielding a sum over all
possible trees.

We conjecture that for a p-node quiver, the volume
of the tri-Sasaki Einstein space Y (normalized so that
Rmn ¼ 6gmn) is given by

VolðYÞ
VolðS7Þ ¼

P
ðV;EÞ2T

Q
ða;bÞ2E

jqa � qbjQp
a¼1½

Pp
b¼1 jqa � qbj� ; (69)

where T is the set of all trees (acyclic connected graphs)
with nodes V ¼ f1; 2; . . . ; pg and edges

E ¼ fða1; b1Þ; ða2; b2Þ; . . . ; ðap�1; bp�1Þg: (70)

A standard result in graph theory states that trees with p
nodes have p� 1 edges.
The conjecture in Eq. (69) is consistent with the results

from two-, three-, and four-node quivers, and we also
checked it for five- and six-node quivers. This formula is
invariant under all the symmetries discussed at the end of
Sec. III D. In particular, a quite nontrivial check of our
approach is that this formula is invariant under the Seiberg
dualities described in [21–23]. The connection we observe
between large N matrix integrals and sums over the tree
graphs is reminiscent of the connection between matrix
models for 2D quantum gravity and the Kontsevich matrix
model which generates ribbon graphs [36].
An integral representation of volumes of tri-Sasaki

Einstein spaces was given by Yee [20]. In general, our
spaces Y are Zk orbifolds of those considered in [20],
where k ¼ gcdfkag. To simplify the following discussion,
let us focus on the k ¼ 1 case. In this case [20],

Vol ðYÞ¼ 2p�2�4

3VolðUð1Þp�2Þ
Z Yp�2

j¼1

d
j
Yp
a¼1

1

1þðPp�2
j¼1 Q

j
a
jÞ2 :

(71)

Here, VolðUð1Þp�2Þ is the volume of a unit cell in the
ðp� 2Þ-dimensional lattice defined by the identifications

�j 
 �j þ �j, where �j satisfy
Pp�2

j¼1 Q
j
a�j 2 2�Z for all

a ¼ 1; . . . ; p. The Qj
a span the kernel of

1 1 1 � � � 1
q1 q2 q3 � � � qp

� �
: (72)

(TheQj
a are taken to be relatively prime here.) In theUð1Þp

Chern-Simons gauge theory, the Qj
a are the charges of the
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FIG. 8 (color online). Comparison between numerics and analytical results for a four-node quiver. The dotted black lines represent
the analytical large N approximation, while the orange dots represent numerical results.
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bifundamental fields under the unbroken Uð1Þp�2 symme-

try [13]. We can take a spanning set of ~Qj
to be, for a fixed

j, Qj
1 ¼ q2 � qj, Q

j
2 ¼ qj � q1, and Qj

j ¼ q1 � q2 with

all other Qj
a ¼ 0. For this choice of Qj

a, the volume of
Uð1Þp�2 is

Vol ðUð1Þp�2Þ ¼ ð2�Þp�2

jq1 � q2jp�3
: (73)

Note that VolðYÞ is invariant under permutation of the qa.
Although we have not carried out the integral in general,
we can investigate specific cases with ease. For example,

for the choice ~q ¼ ð3; 2; 1; 2Þ, corresponding to the ~k ¼
ð1; 1;�1;�1Þ quiver, both our formulas (69) and (71) give
VolðYÞ ¼ �4=16. A more nontrivial choice is ~q ¼
ð3; 2; 1; 5Þ for which both formulas yield 139�4=4725.
By evaluating (71) numerically, we were able to check
agreement with (69) in a number of randomly selected
cases for p ¼ 4, 5, and 6.

The volume formula (69) is invariant under a shift
qa ! qa þ 1. In the type IIB brane construction, which
involves a sequence of ð1; qaÞ 5-branes, this symmetry
corresponds to the T transformation of the SLð2;ZÞ
S-duality group. We could use the SLð2;ZÞ symmetry to
generalize the free energy to theories whose brane con-
structions involve general ua ¼ ðpa; qaÞ 5-branes. This
generalization is accomplished by replacing the differ-
ences jqa � qbj in the volume formula with jua ^ ubj ¼
jpaqb � pbqaj. For special cases where some of the pa

vanish, this formula describes theories with fields in the
fundamental representation. For example, for the ABJM
model with Nf flavors, corresponding to u1 ¼ ð1; kÞ, u2 ¼
ð1; 0Þ, u3 ¼ ð0; NfÞ, our formula predicts

VolðYÞ
VolðS7Þ ¼ 2kþ Nf

2ðkþ NfÞ2
: (74)

This equation agrees with the explicit matrix model calcu-
lation [37] and with the volumes of Eschenburg spaces
SðNf;Nf; kÞ [19].

V. DISCUSSION

In this paper we have studied p-matrix models describ-
ing certain UðNÞp Chern-Simons quiver gauge theories
with N ¼ 3 supersymmetry. In the large N limit these
theories are dual to 11-dimensional supergravity on
AdS4 � Y, where Y is a tri-Sasaki Einstein space. By
finding an analytical large N limit of the matrix integrals,
we were able to check the supergravity prediction that the
logarithm of the partition function of the gauge theories

on S3 should grow as N3=2. In AdS4 � Y the coefficient
of proportionality depends on the volume of the com-
pact spaces Y, so we could compare our gauge theory
results with the volumes computed earlier using geometric

techniques [19,20]. These successful comparisons con-
stitute new detailed tests of the AdS4=CFT3 dualities. In
Eq. (69) we conjectured an explicit combinatorial volume
formula for arbitrary p. It should be possible to derive this
formula in an independent way using algebraic geometry
techniques similar to those in [38].
Quite generally, the main difficulty in solving matrix

models is that the interactions between the eigenvalues are
long-ranged, and the saddle-point approximation yields
integral equations in the continuum limit. Remarkably, in
solving the models described in this paper, one can set up
an approximation scheme where the eigenvalue distribu-
tions can be found by solving algebraic equations. The
limit in which the saddle-point equations simplify is the
limit of ‘‘large cuts’’ where the eigenvalues grow as an
appropriate positive power of N. Perhaps the key insight in
solving these matrix models was that the long-range forces
between the eigenvalues can be made to vanish by choos-
ing the distribution of the real parts of the eigenvalues to be
the same for each set of eigenvalues. The remaining inter-
action forces between the eigenvalues are short-ranged,
and that is the reason why in the right variables the
saddle-point equations were local and algebraic in the large
N limit.
While we worked in the limit where N is sent to infinity

and the Chern-Simons levels ka are kept fixed, it is of
obvious further interest to relax these assumptions and
study 1=N corrections. In doing so, a subtle issue that
needs a better understanding is the imaginary part of the
free energy. At first sight, the imaginary part in the ABJM
model is of orderOðNÞ. On the other hand, one could argue
that this imaginary part is only defined modulo 2� because
a shift of the free energy by an integer multiple of 2�i
leaves the partition function unchanged.
Another interesting generalization of our results is to

solve the matrix model in the scaling limit where the
Chern-Simons levels are sent to infinity, with N=ka kept
finite. One could calculate the free energy as a function of
the ‘t Hooft-like couplings N=ka and check that, as pre-
dicted by the AdS/CFT correspondence, it should interpo-
late between an N2 behavior at small N=ka dictated by

perturbation theory and the k1=2N3=2 behavior at large
N=ka that we found. For p ¼ 2 this check was performed
in [5] by computing the resolvent of the matrix model
using the techniques developed in [10]. We believe a
similar check should also be possible for the N ¼ 3
theories studied in this paper, using perhaps similar tech-
niques. Such an approach should also provide access to the
ABJ-like cases where the ranks of the p gauge groups are
not equal.
Finally, it would be interesting to investigate whether the

large N matrix integrals we have calculated play a role in
four-dimensional gauge theories, for example, in the 4D
parent theories [30,31] of the 3D Chern-Simons models we
have studied.
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APPENDIX A: TAKING THE CONTINUUM
LIMIT OF THE FREE ENERGY

We start with the matrix integral Eq. (33) and write it as

Z ¼
Z

e�Fð�a;iÞ
Y
a;i

d�a;i; (75)

where we divide the free energy into the following three
pieces: F ¼ Fext þ Fint þ Fconst.

3 We have defined Fext to
be the contribution to the free energy from the external
potential

Fext � � i

4�

X
a;i

ka�
2
a;i: (76)

The contribution to F from the eigenvalue interactions is

Fint � � log
Yp
a¼1

Q
i>j 4sinh

2ð�a;i��a;j

2 Þ2Q
i;j 2 coshð�a;i��aþ1;j

2 Þ
: (77)

Finally, there is an overall normalization Fconst chosen to
be consistent with [5]:

Fconst � pðlogN!þ N log2�Þ: (78)

It will turn out that Fconst does not contribute at leading
order in our large N expansion.

To take the continuum limit, we begin with the assump-
tions justified in the text of the paper that the eigenvalue
distributions lie along curves symmetric about the origin in
the complex � plane, that we can order the eigenvalues
such that Re�a;j ¼ Re�b;j for any a and b, and that

jRe�a;jj 
 jIm�a;jj. More specifically we assume the fol-

lowing variant of (35):

�a;j ¼ N�xj þ iya;j; (79)

where �> 0.
Taking the continuum limit of Fext is straightforward.

The leading term in N cancels because
P

aka ¼ 0, and we
are left with

Fext ¼ N�

2�

X
a;j

kaxa;jya;j þOðNÞ: (80)

Letting the real parts of the eigenvalue distributions extend
from �x� to x�, we can introduce an eigenvalue density
�ðxÞ and approximate the sum over j as an integral over x:

Fext ¼ N1þ�

2�

X
a

ka
Z x�

�x�
xyaðxÞ�ðxÞdxþOðNÞ: (81)

Taking the continuum limit of Fint is more involved. We
begin by reorganizing the products:

Fint ¼ � log
Yp
a¼1

�Y
i>j

�
4sinh2ð�a;i��a;j

2 Þ
2 coshð�a;i��aþ1;j

2 Þ2 coshð�a;i��a�1;j

2 Þ
�

� 1Q
i
2ð�a;i��aþ1;i

2 Þ
�

¼ � log
Yp
a¼1

�Y
i>j

� ð1� e��a;iþ�a;jÞ2
ð1þ e��a;iþ�aþ1;jÞð1þ e��a;iþ�a�1;jÞ

�

� 1Q
i
2 coshð�a;i��aþ1;i

2 Þ
�
: (82)

We then convert the logarithm of the product into a sum
over logarithms:

Fint ¼
Xp
a¼1

�X
i>j

X1
n¼1

1

n
½2eð��a;iþ�a;jÞn � ð�1Þnðeð��a;iþ�aþ1;jÞn

þ eð��a;iþ�a�1;jÞnÞ� þX
i

log

�
2 cosh

�a;i � �aþ1;i

2

��
:

(83)

Making use of the assumption (79) and taking the contin-
uum limit, the interaction energy reduces to

Fint ¼
Xp
a¼1

Z x�

�x�

�
N log

�
2 cos

yaðxÞ � yaþ1ðxÞ
2

�

þ
Z x

�x�

X1
n¼1

N2

n
½2eð��aðxÞþ�aðx0ÞÞn

� ð�1Þnðeð��aðxÞþ�aþ1ðx0ÞÞn

þ eð��aðxÞþ�a�1ðx0ÞÞnÞ��ðx0Þdx0
�
�ðxÞdx: (84)

We now estimate the integral over x0 in the above
expression for Fint. Consider the following related integral:

3In the following, we will use the product formula logðxyÞ ¼
logxþ logy, although this is strictly speaking only correct up to
integer multiples of 2�i. The extra contributions would not
affect the saddle-point equations.
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I ¼
Z x

�x�
eð��bðxÞþ�aðx0ÞÞn�ðx0Þdx0

¼ 1

n
eð��bðxÞþ�aðx0ÞÞn dx0

d�a

�ðx0Þ
��������x

�x�

� 1

n

Z x

�x�
eð��bðxÞþ�aðx0ÞÞn d

dx0

�
dx0

d�a

�ðx0Þ
�
dx0

¼ 1

n

dx

d�a

�ðxÞeð��bðxÞþ�aðxÞÞn þ � � � : (85)

Given (79), the integral in the third line will be suppressed
by a factor of 1=N� compared with the boundary term. The
boundary contribution from x� will be suppressed by an
exponential amount because Re½�að�x�Þ�< Re½�bðxÞ�.
The last line of (85) reduces to

I ¼ N�� �ðxÞ
n

einðyaðxÞ�ybðxÞÞ þOðN�2�Þ: (86)

Introducing the notation �ya ¼ ya�1 � ya, the interac-
tion energy reduces to

Fint ¼ N2��
Xp
a¼1

Z x�

�x�

X1
n¼1

½2� ð�1Þnðe�in�yaþ1ðxÞ

þ ein�yaðxÞÞ��ðxÞ
2

n2
dxþOðN2�2�; NÞ: (87)

We are tacitly assuming that �< 1 and so can drop the
order N term from the energy. Reorganizing the sum
over a, we can write this energy as

Fint ¼ N2��

2

Xp
a¼1

Z x�

�x�
fð�yaÞ�ðxÞ2dxþOðN2�2�; NÞ;

(88)

where we have defined the function

fðyÞ � X1
n¼1

4

n2
½1� ð�1Þn cosny�: (89)

Clearly f is a periodic function of y with period 2�.
Recall the Fourier series expansion for y2 in the domain
��< y < �:

y2 ¼ X1
n¼1

4ð�1Þn
n2

cosnyþ 2
ð2Þ: (90)

In the fundamental domain��< y < �, the function f is
thus

fðyÞ ¼ �2 � y2: (91)

APPENDIX B: A MORE DETAILED CHECK
FOR THE ABJM THEORY

We explore solutions to Eqs. (17) where jyj � �=2.
Based on the numerical results in Sec. II B, we expect
the eigenvalue distributions to be invariant under �i !
��i and ~�i ! �~�i, which implies yð�xÞ ¼ �yðxÞ and
�ð�xÞ ¼ �ðxÞ. Assuming k > 0, we will focus only on
the x � 0 region. Plugging (12) into (17) one obtains

�ðxÞ ¼ �

4�3
; yðxÞ ¼ �2kx

2�
; if jyðxÞj � �

2
; (92)

and

�ðxÞ ¼ kð�� 2kx�Þ
4�3

;

yðxÞ ¼ �ð2�� 3kx�Þ
2�� 4kx�

; if
�

2
� yðxÞ � 3�

2
;

(93)

and so on. From Eq. (92) we infer that�> 0 and yðxÞ � 0
if x � 0. We could have in principle also allowed yðxÞ ¼
�=2 over some range of x, but then the first equation in (17)
would imply that x ¼ �=�k, so yðxÞ could equal �=2 only
on a set of measure zero.
Assuming a connected distribution of eigenvalues of

each type where � is supported on ½�x�; x�� for some
x� > 0, there are two possibilities: Either yðx�Þ>�=2 or
yðx�Þ � �=2. Assuming yðx�Þ>�=2 we immediately
reach a contradiction. Indeed, consider the point x�=2 ¼
�=�k where yðx�=2Þ ¼ �=2 and Eq. (92) joins onto

Eq. (93). For x > x�=2, Eq. (93) implies �ðxÞ< 0, which
contradicts the assumption that �ðxÞ> 0. It must be that
�ðxÞ ¼ 0 for x > x�=2 and thus jyðxÞj � �=2 for our ei-

genvalue distribution.
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