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We analyze the mass varying neutrino scenario. We consider a minimal model of massless Dirac

fermions coupled to a scalar field, mainly in the framework of finite-temperature quantum field theory. We

demonstrate that the mass equation we find has nontrivial solutions only for special classes of potentials,

and only within certain temperature intervals. We give most of our results for the Ratra-Peebles dark

energy (DE) potential. The thermal (temporal) evolution of the model is analyzed. Following the time

arrow, the stable, metastable, and unstable phases are predicted. The model predicts that the present

Universe is below its critical temperature and accelerates. At the critical point, the Universe undergoes a

first-order phase transition from the (meta)stable oscillatory regime to the unstable rolling regime of the

DE field. This conclusion agrees with the original idea of quintessence as a force making the Universe roll

towards its true vacuum with a zero � term. The present mass varying neutrino scenario is free from the

coincidence problem, since both the DE density and the neutrino mass are determined by the scale M of

the potential. ChoosingM� 10�3 eV to match the present DE density, we can obtain the present neutrino

mass in the range m� 10�2–1 eV and consistent estimates for other parameters of the Universe.
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I. INTRODUCTION

Neutrino mass related questions are of great interest for
particle physics as well as for cosmology (for reviews, see
Ref. [1], and references therein). Current upper limits on
the sum of neutrino masses from cosmological observa-
tions are of the order of 1 eV [2–4], while neutrino
oscillations give a lower bound of roughly 0.01 eV
[5,6], making neutrino mass an established element of
particle physics. Furthermore, understanding the origin of
neutrino mass opens a window into understanding
physical processes beyond the standard model of particle
physics [7–10].

It is now well established that about 74% of the Universe
is comprised of dark energy (DE) (for reviews, see
Ref. [11], and citations therein). The present stage of
evolution of the Universe is governed by this dominant
DE contribution, and the Universe experiences an accel-
erating expansion [12,13]. The nature of DE is still un-
known, and it is one of the major questions of modern
cosmology. There are, broadly speaking, three major
possibilities proposed to explain the DE [11]. Most
straightforwardly, and in good agreement with the current
observational data, it can be present just as the cosmologi-
cal constant [11]. Second, the DE can be accommodated in
some framework of the modified non-Einsteinian gravity
theories (see, e.g., Refs. [14,15]). And last, following the
original proposals [16,17] on the DE originating from a
scalar field action similar to the inflaton field, there has
been a lot of activity in constructing and analyzing various
trial scalar field Lagrangians to model the DE [13]. Note,
that it is even unclear what kind of scalar field potential

governs the inflationary expansion of the Universe [18],
and as the result, the effective quantum field that ade-
quately describes inflation is still under debate [19]. A
similar observation can be drawn from analyzing many
potentials proposed for the DE action [13].
On the other hand, several cosmological and astrophys-

ical observations imply that about 22% of the Universe
consists of dark matter (DM) [11], if we admit the general
relativity theory of gravity. Most likely, DM is formed
through massive weakly interacting particles (WIMPs),
and the nature of these particles is also still unknown.
There are several recent observations performed by
PAMELA [20] and GLAST missions which indicate DM
particle annihilations [21]. Recently, it was proposed that
both of these observations could be used to test baryo-
genesis [22] which is one of the important problems of the
standard particle physics model.
Another puzzling question in modern cosmology is the

coincidence problem—the density of DE is comparable to
the present energy density of DM. In turn, the latter is
comparable (within the order of magnitude), to the energy
density of cosmological neutrinos [1,2]. Is there a mecha-
nism explaining this coincidence? A very convincing an-
swer to this question is given by the mechanism of DM
mass generation via various types of DM-DE couplings,
ranging from Yukawa to more exotic ones [23–28]. The
mass of the DM particle in this approach is naturally time-
dependent, and they were coined varying mass particles
(VAMPs). Various DE-DM interaction models have been
constrained by observations of supernovae type Ia [29],
the age of the Universe [30–32], cosmic microwave

PHYSICAL REVIEW D 83, 045033 (2011)

1550-7998=2011=83(4)=045033(16) 045033-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.045033


background anisotropies [33,34], and large scale structure
formation [35].

Fardon, Nelson, and Weiner elaborated on the VAMP
mechanism in the context of neutrinos [36].1 In their model
the relic neutrinos, i.e., fermionic field(s), interact with a
scalar field via the Yukawa coupling. If the decoupled
neutrino field is initially massless, then the coupling gen-
erates a (varying) mass of neutrinos in this DE-neutrinos
model. This mass varying neutrino (MaVaN) scenario is
quite compelling, since it connects the origin of neutrino
mass to the DE, and solves the additional coincidence
problem of why the neutrino mass and DE are of compa-
rable scales [38]. (For more on the coincidence, see, e.g.
[39]). To consider neutrinos as particles that get their mass
through the coupling is attractive for particle physics, as
well as for its cosmological consequences. However, there
are significant issues that have to be resolved for the sake of
viability of the MaVaN scenario. Most notably, it has been
shown [40] that the model of Ref. [36] suffers from a strong
instability due to the negative sound speed squared of the
DE-neutrino fluid (see also [41]).

Any DM-DE coupling induces observable changes in
large scale structure formation [42]. The main reason for
this is due to the presence of additional DM contributions
(perturbations) in the equation of motion which determines
the dynamics of the scalar field. The changes in the dy-
namics are drastic when massive neutrinos are coupled to
DE [40]. In this case the squared sound speed of the DE-
neutrino fluid defined as c2s ¼ �P=�� (where � represents
the variation, and P and � are pressure and energy density
of the DE-neutrino fluid) is negative. The negative squared
sound speed results in an exponential growth of scalar
perturbations [43–46].

After the critique in Ref. [40], the issue of stability of the
DE-neutrinos fluid has been addressed by many authors
[41,46–53]. Various physical assumptions were made in
those references in order to avoid the exponential cluster-
ing of neutrinos. In particular, to achieve stability, pro-
posals were put forward to make the DE-DM model more
complicated, e.g., by extending it to a multicomponent
scalar field, or by promoting its supersymmetry [49,51].
We however are not inclined to pursue this line of thought
and will explore the simplest possible ‘‘minimal’’ model.
As we will demonstrate, the occurrence of the instability in
the coupled DE-neutrinos model is meaningful, and we
will explore the physical implications of this phenomenon.
Note that Wetterich and coworkers [46] have already ana-
lyzed various implications of the instability in the MaVaN
model on the dynamics of neutrino clustering.

In this paper we again address the analysis of the DE-
neutrinos coupled model. What is really new in our results,
to the best of our knowledge, apart from a consistent

equation for the equilibrium condition, is the analysis of
the thermal (i.e. temporal) evolution of the MaVaN model
and prediction of its stable, metastable, and unstable
phases. The analysis of the dynamics in the unstable phase
results in, for the first time in the framework of the MaVaN
scenario, a picture of the present-time Universe totally
consistent with observations. Our findings are in line
with the original proposal [16,17] of the DE potential
(quintessence) to model the Universe slowly rolling to-
wards its true vacuum (� ¼ 0). As it turns out, the present
Universe, seen as a system of the coupled DE (quintes-
sence) field and fermions (neutrinos) is below its critical
temperature. It is similar to a supercooled liquid which has
not crystallized yet: its high-temperature (meta)stable
phase became unstable, but the new low-temperature stable
phase (� ¼ 0) is still to be reached. The Afshordi-
Zaldarriaga-Kohri instability corresponding to c2S < 0 is

just telling us this.
The rest of the paper is organized as follows: In Sec. II

we give the outlook of the model and formalism applied
and derive the basic equations for the coupled model. In
Sec. III we present the qualitative analysis of the equation
which yields the fermionic (neutrino) mass. Section IV
contains analysis of the coupled model with the Ratra-
Peebles DE potential at equilibrium. The dynamics of the
model applied to the whole universe is studied in Sec. V.
The results are summarized in the concluding Sec. VI.

II. MODEL AND FORMALISM. BASIC EQUATIONS

A. Outlook

In this paper we focus on the case when the scalar field
potential Uð’Þ does not have a nontrivial minimum, and
the generation of the fermion mass is due to the breaking of
chiral symmetry in the Dirac sector of the Lagrangian. A
nontrivial solution of the fermionic mass equation is a
result of the interplay between the scalar and fermionic
contributions. We consider the most natural and intuitively
plausible Yukawa coupling between the Dirac and the
scalar fields.
The key assumption is that the fermionic mass genera-

tion can be obtained from minimization of the thermody-
namic potential. That is, the coupled system of the scalar
bosonic and fermionic fields is at equilibrium, at least at
some temperatures. This will be analyzed below more
specifically. We assume the cosmological evolution, gov-
erned by the scale factor aðtÞ to be slow enough that the
coupled system is at equilibrium at a given temperature
TðaÞ. Then the methods of thermal quantum field theory
[54,55] can be applied.
This problem is rather well studied with quantum field

theory and statistical physics in different contexts [54–56].
The major conceptual difficulty in applying quantum
field-theoretical methods for the dark-energy scalar field
is the lack of ‘‘well-behaved’’ potentials interesting for
cosmological applications. For instance, a class of the

1The DE-neutrino coupling and the baryogenesis constraints
have been studied also in Ref. [37].
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very popular inverse power law slow-rolling quintessence
potentials [13] are singular at the origin. Consequently, the
field theory should be understood as a sort of effective
theory, and we plan to address this issue more deeply in our
future work.

As far as the fermionic sector of the theory is concerned,
one needs to distinguish two different cases pertinent for
neutrino applications:

(i) an equal number of fermions and antifermions, i.e.,
zero chemical potential � ¼ 0;

(ii) a surplus of particles over antiparticles, and small
nonzero chemical potential.

For the bounds on the neutrino chemical potential, see
Refs. [1,57]. If experiments confirm neutrinoless double
beta decay, i.e., that neutrinos are Majorana fermions, then
the lepton number is not conserved [8], and one cannot
introduce a (nonzero) chemical potential. Then case (i)
above is applicable, proviso that the Majorana fields are
utilized instead of the Dirac ones. For the case (i) with
Dirac fermions, the ground state corresponds to a complete
annihilation of fermion-antifermion pairs, i.e. the fermions
completely vanish in the zero-temperature limit.

Assumption of the fermion-antifermion asymmetry and
(conserving) particle surplus, i.e., of a nonzero chemical
potential, results in the fermionic contributions which sur-
vive the zero-temperature limit. However, the smallness of
the zero-temperature contribution renders this issue rather
academic. Indeed, for the neutrinos we are interested
in this study, by assuming the maximal particle surplus
n� � 115 cm�3, one gets the Fermi momentum kF � 3 �
10�4 eV. For m� 10�2 eV, one obtains �ðT ¼ 0Þ ¼
"F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2

q
¼ mþOð10�4 eVÞ. This results in a

nontrivial vacuum with the particle surplus frozen within
an extremely narrow Fermi shell m � " � "F. Thus, try-
ing to grasp the essential physics in this study from possi-
bly the simplest ‘‘minimal model,’’ we assume the
fermions to be described by a Dirac spinor field with
zero chemical potential.

In this work we will use the standard methods of general
relativity and finite-temperature quantum field theory ex-
tended for fields living in a spatially flat universe with the
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric
where the line element is ds2 ¼ dt2 � a2ðtÞdx2. Here t is
the physical time and aðtÞ is the scale factor, which can be
obtained from the Friedmann equations [9,10]

H2ðtÞ ¼
�
_a

a

�
2 ¼ 8�G

3
�tot; (1)

_HðtÞ þH2ðtÞ ¼ €a

a
¼ � 4�G

3
ð�tot þ 3PtotÞ: (2)

Equations (1) and (2) also lead to the continuity equation

_� tot þ 3 _a

a
ð�tot þ PtotÞ ¼ 0: (3)

Here the dot represents the physical time derivative, and
�tot and Ptot are the total energy density and pressure of the
Universe. In accordance with the (standard)�CDMmodel,
the Universe is assumed to consist of (1) DE, (2) cold DM
(CDM) made of weakly interacting massive particles, pre-
sumably MDM > 1� 10 GeV, (3) photons, and (4) bary-
ons. The DM and baryon density parameters today are
�DM ¼ �DMðtnowÞ=�cr � 0:22 and �b ¼ �bðtnowÞ=�cr �
0:04. Here �cr ¼ 3H2

0=ð8�GÞ ¼ 8:1h2 � 10�47 GeV4 is

the critical density today, tnow defines the current time,
H0 ¼ 2:1h� 10�42 GeV is the present Hubble parameter,
G is the Newton constant, and h � 0:72 is the Hubble
parameter in units of 100 km= sec =Mpc. The photon con-
tribution to the energy density today can be neglected. The
flatness of the Universe leads to the relative energy density
of the DE-neutrino coupled fluid �’� � 0:74. To ensure

the accelerated expansion of the Universe today, the right-
hand side (r.h.s.) of Eq. (2) must be positive at t ¼ tnow.
In this paper we will not assume the existence of the

cosmological constant �, as the �CDM model suggests.
Instead, we accept the hypothesis of the dynamical dark
energy described by a scalar field. This is a bold assump-
tion and a highly debatable issue. We vindicate our ap-
proach a posteriori by the consistent picture we arrive at
the end. For a review and/or alternative approaches, see,
e.g., Refs. [13,58,59]. The massless neutrinos are described
by the conventional Dirac Lagrangian. The resulting model
is given by the coupled Dirac and scalar fields. The grand
thermodynamic potential of the coupled model can be
derived from the Euclidian functional integral representa-
tion of the grand partition function. The dynamics of the
coupled model is governed by the Friedmann equations.
Throughout the paper, we use natural units where

ℏ ¼ c ¼ kB ¼ 1.

B. Bosonic scalar field

The bosonic scalar field Hamiltonian in the FLRW
metric reads as [9,60]

HB ¼
Z

a3d3x

�
1

2
_’2 þ 1

2a2
ðr’Þ2 þUð’Þ

�
; (4)

where the comoving volume V ¼ R
d3x, while the physical

volume Vphys ¼ a3ðtÞV. Since this field does not carry a

conserved charge (number), the chemical potential � ¼ 0.
The grand partition function in the functional integral
representation:

Z B � Tre��Ĥ ¼
Z

D’e�SEB (5)

with the bosonic Euclidian action

SEB ¼
Z �

0
d�

Z
aðtÞ3d3x

�
1

2
ð@�’Þ2 þ 1

2a2
ðr’Þ2 þUð’Þ

�
;

(6)

where ’ ¼ ’ðx; �Þ.
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It is instructive to find the partition function of the
free scalar field Uð’Þ ¼ 1

2M
2
b’

2 following the methods

explained by Kapusta and Gale [54] for the case of the
Minkowski metric. Rescaling of the field

~’ ¼ a3=2’ (7)

changes the partition function (5) by a thermodynamically
irrelevant prefactor. The functional integration over ~’ of
the Gaussian action gives

logZB ¼ �V
Z d3k

ð2�Þ3
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

b þ k2=a2
q

þ logð1� e��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

b
þk2=a2

p
Þ
�
: (8)

Then the density (with respect to the physical volume) of
the thermodynamic potential is given by

�B � � 1

�a3V
logZB ¼ �PB

¼
Z d3k

ð2�Þ3
�
"þ 1

�
logð1� e��"Þ

�
; (9)

where " ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

b þ k2
q

and PB is the pressure due to the

bosonic field.

C. Free dirac spinor field

The Dirac Hamiltonian in the FLRW metric is [60]

HD ¼
Z

a3d3x �c

�
� {

a
� � rþm

�
c : (10)

The grand partition function is given by the following
Grassmann functional integral:

Z D � Tre��ðĤ��Q̂Þ ¼
Z

D �cDc e�SED ; (11)

where the conserved charge (lepton number) operator Q̂ ¼R
a3d3xc yc and the Euclidian action

SED ¼
Z �

0
d�

Z
aðtÞ3d3x �c ðx; �Þ

�
�
�o @

@�
� {

a
� � rþm���o

�
c ðx; �Þ: (12)

By rescaling the Grassmann fields (7) and using the stan-
dard techniques [54], we get the thermodynamic potential
density (pressure) as a function of the chemical potential
and temperature:

�D � � 1

�a3V
logZD ¼ �PD

¼ �2
Z d3k

ð2�Þ3
�
"þ 1

�
logð1þ e��"�Þ

þ 1

�
logð1þ e��"þÞ

�
; (13)

where

"ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
; (14)

and "	 ¼ "ðkÞ 	�. The first term on the r.h.s. of Eq. (13)
corresponds to the vacuum contribution to the thermody-
namic potential (pressure):

��0 ¼ P0 ¼ 2
Z d3k

ð2�Þ3 "ðkÞ: (15)

Introducing the notation for the Fermi distribution function

nFðxÞ � 1

e�x þ 1
; (16)

Equation (13) can be brought to the following form:

��D ¼ PD ¼ P0 þ 1

3�2

Z 1

0

k4dk

"ðkÞ ½nFð"�Þ þ nFð"þÞ
:
(17)

D. Coupled model: Scalar field and
dirac massless fermions

Let us consider a scalar bosonic field interacting via a
Yukawa coupling with massless Dirac fermions. The
Euclidian action of the model in the FLRW metric reads

S ¼ SEB þ SEDjm¼0 þ g
Z �

0
d�

Z
a3d3x’ �c c : (18)

The path integral for the partition function of the coupled
model is

Z ¼
Z

D’D �cDc e�S : (19)

The Grassmann fields can be formally integrated out re-
sulting in

Z¼
Z
D’e�Sð’Þ ¼

Z
D’exp½�SEBþ logDetD̂ð’Þ
; (20)

where the Dirac operator is

D̂ð’Þ ¼ �o @

@�
� {

a
� � rþ g’ðx; �Þ ���o: (21)

The thermodynamic potential � of the model (18) at tree
level can be found by evaluating the path integral (20) in
the saddle-point approximation. Assuming the existence of
a constant ðx; �Þ-independent field	c which minimizes the

action Sð’Þ, the term logDetD̂ can be evaluated exactly,
and fermionic contribution to the thermodynamic potential
is given by Eq. (13) or Eq. (17) with the fermionic mass

m ¼ g	c: (22)

The bosonic contribution to the partition function in this
approximation is simply Z / exp½��a3VUð	cÞ
. The
thermodynamic potential density is given then by

�ð	cÞ ¼ Uð	cÞ þ�Dð	cÞ: (23)
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Self-consistency of the employed saddle-point approxima-
tion naturally coincides with the condition of minimum of
the thermodynamic potential at equilibrium (at fixed tem-
perature and chemical potential):

@�ð’Þ
@’

��������’¼	c

¼ 0; (24)

and

@2�ð’Þ
@’2

��������’¼	c

>0: (25)

Note that a nontrivial solution	c of Eq. (24) (if it exists) is
called the classical field: it is the average of the bosonic
field, i.e.,	c ¼ h’i. Equations (22)–(24) can be brought to
the equivalent form:

U0ð	cÞ þ g�s ¼ 0; (26)

where the scalar fermionic density (a.k.a. the chiral
density) �s is given by the following expression:

�s � hN̂i
V

¼ @�D

@m

¼ �0 þ m

�2

Z 1

0

k2dk

"ðkÞ ½nFð"�Þ þ nFð"þÞ
; (27)

and N̂ ¼ R
d3x �c c . Here �0 stands for the vacuum

contribution to the chiral condensate:

�0 � @�0

@m
¼ � m

�2

Z 1

0

k2dk

"ðkÞ : (28)

Note that even if the time, i.e., aðtÞ, does not enter explicitly
in the equations for the thermodynamic quantities of the
coupled, fermionic or bosonic models (9), (13), (23), (26),
and (27), and they look like their counterparts in a flat static
universe, such parameters as, e.g., the temperature and
chemical potential in those equations are time-dependent,
i.e., T ¼ TðaÞ and � ¼ �ðaÞ. The particular form of the
dependencies TðaÞ and �ðaÞ must be determined from the
Friedmann continuity Eq. (3) which relates the energy
density �ðTÞ and pressure PðTÞ to the evolution of aðtÞ
[9,10]. In addition, the fermionic mass m / 	c in the
coupled model is also time varying, since the time enters
into 	c (26) via T, �, and all three functions mðaÞ, TðaÞ,
and �ðaÞ are governed by the Friedmann Eqs. (1)–(3).

The present theory works consistently for the physical
quantities (bosonic or fermionic) measured with respect to
their vacuum contributions. So, in the rest of the paper we
will employ the thermodynamic quantities with subtracted
vacuum contributions, keeping however, the same nota-
tions, e.g.:

�D � �D ��0; PD � PD � P0;

�s � �s � �0:
(29)

Then, according to Volovik [61], the pressure and energy
of the pure and equilibrium vacuum is exactly zero.

(The renormalization of the vacuum terms is, of course, a
very subtle issue. There are alternative approaches to this
problem known from the literature. See, e.g., [62,63].)

III. ANALYSIS OF THE MASS (GAP) EQUATION:
GENERAL PROPERTIES

In cases interesting for cosmological applications, the
scalar field potential Uð’Þ does not have a nontrivial
minimum, and the generation of the fermion mass [i.e. a
solution of (24) 0<	c <1] is due to the interplay be-
tween the scalar and fermionic contributions to the total
thermodynamic potential (23).
From now on, we adapt our equations for the case of

equal number of fermions and antifermions and � ¼ 0, as
discussed in Sec. II A. Keeping in mind the neutrinos, we
assume an extra flavor index of fermions with the number
of flavors s. (For neutrinos, s ¼ 3.) We also assume the
flavor degeneracy of the fermionic sector.
Before proceeding further, we need to make some im-

portant observations regarding the behavior of the coupled
model in two limiting cases. Assuming that a nontrivial
solution of (24) with finite m exists, the fermionic contri-
bution to the thermodynamic potential (pressure) (17) can
be written as

��D ¼ PD ¼ 2s

3�2�4
Ipð�mÞ; � ¼ 0; (30)

where the integral defined as

I pð
Þ �
Z 1




ðz2 � 
2Þ3=2
ez þ 1

dz (31)

can be evaluated analytically in two cases:

Ipð
Þ ¼
8<
:

7�4

120 � �2

8 
2 þOð
4Þ; 
 < 1

3
2K2ð
Þ þOðe�2
Þ; 
 * 1
; (32)

where K�ðxÞ is the modified Bessel function of the second
kind.
In the (classical) low-temperature regime

�m � m

T
� 1; (33)

the above equation results in

��D ¼ PD ¼ 2sm2

�2�2
K2ð�mÞ þOðe�2�mÞ: (34)

To leading order,

��D ¼ PD �
ffiffiffi
2

p
s

�3=2
TðTmÞ3=2e�m=T: (35)

The chiral condensate density (27)

�s ¼ 2sm

�2�2

Z 1

�m

ðz2 � ð�mÞ2Þ1=2
ez þ 1

dz; � ¼ 0 (36)
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can be also evaluated in the low-temperature limit as

�s ¼ 2sm2

�2�
K1ð�mÞ þOðe�2�mÞ; (37)

which gives to leading order

�s �
ffiffiffi
2

p
s

�3=2
ðTmÞ3=2e�m=T: (38)

In this limit the fermions enter the regime of a classical
ideal gas. Indeed, the fermionic particle (antiparticle) den-
sity

nþ ¼ n� ¼ s

�2�3

Z 1

�m

zðz2 � ð�mÞ2Þ1=2
ez þ 1

dz (39)

in the low-temperature limit yields

n	 ¼ sm2

�2�
K2ð�mÞ þOðe�2�mÞ; (40)

and to leading order:

n	 � sffiffiffi
2

p
�3=2

ðTmÞ3=2e�m=T: (41)

We see from Eqs. (34) and (40) that up to termsOðe�2�mÞ,
the fermions satisfy the ideal gas equation of state

PD � ðnþ þ n�ÞT; (42)

and the chiral density is equal to the total particle density n:

�s � n � nþ þ n�: (43)

In the (ultrarelativistic) high-temperature regime

m

T
� 1; (44)

one obtains

��D ¼ PD � 7�2s

180
T4 � s

12
ðmTÞ2: (45)

To leading order, the chiral condensate is

�s � s

6
mT2; (46)

while the particle density is

n	 � 3s�ð3Þ
2�2

T3: (47)

Now we can make some general observations of the
fermionic mass generation in the coupled model:

(i) It is obvious from the sign of �s [cf. (27) and (36)]
that nontrivial solutions of (26) are impossible for a
monotonically increasing potential Uð’Þ. That rules
out some popular potentials, e.g., U / logð1þ
’=MÞ [13,36] for this Yukawa-coupling driven
scenario of the mass generation.

(ii) The monotonously decreasing slow-rolling DE po-
tentials ([16,17] and for reviews, see [11,13]), e.g.,
U / ’�� or U / exp½�A’�
, do have a window of
parameters wherein nontrivial solutions of (26) ex-
ist. As we can see from (38), for those decreasing
potentials the mass equation (26) always has a
trivial solution m ¼ g	c ¼ 1 for the minimum of
the thermodynamic potential (23).2 This solution
corresponds to a ‘‘doomsday’’ vacuum state [61],
when the Universe reached its true ground state with
zero dark-energy density and completely frozen out
fermions. A nontrivial solution of (26), correspond-
ing to another minimum of the potential (23), is
totally due to the fermionic contribution. Since the
latter freezes out in the limit T ! 0, it is clear
qualitatively that such a solution 0<m<1 can
exist only above a certain temperature. For a more
quantitative account of these phenomena, we need
to assume some specific form of the DE potential.
This will be done in the following section.

(iii) To explain the differences between the present
study and earlier related work on mass varying
fermions (see [23,24,36,40], and more references
therein), some clarifications are warranted. It is
usually assumed in the literature that the low-
temperature regime formulas are applicable, and
according to (43) �s ¼ n. The approximation for
(26) then can be written as @U=@mþ n ¼ 0. The
latter is interpreted as a result of minimization of
some effective potential Ueff ¼ Uþ nm with fixed
n, which always has a nontrivial minimum 0<
m<1 for the class of decreasing potentials U;
see, e.g., [23,24]. It turns out that such an approxi-
mation changes the picture qualitatively.

In what follows, we explore in detail the predictions of
the consistent mass Eq. (26) on the mass varying scenario
for the coupled model with a specific DE potential ansatz.

IV. COUPLED MODELWITH THE RATRA-
PEEBLES QUINTESSENCE POTENTIAL

A. Mass equation and critical temperature

Now we analyze in detail our coupled model for a
particular choice of Uð’Þ, the so-called Ratra-Peebles
quintessence potential [16]:

Uð’Þ ¼ M�þ4

’� ; (48)

where �> 0. It is convenient to introduce the dimension-
less parameters

� � M

T
; 
 � g’

T
; �R � �

M4
: (49)

2Recall that the grand thermodynamical potential is equal to
the free energy for the case � ¼ 0.
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Then the mass Eq. (26) can be written as

��2

2s
g���þ4 ¼ I�ð
Þ; (50)

where we introduced

I �ð
Þ � 
�þ2
Z 1




ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 
2

p
ez þ 1

dz: (51)

According to the relation (22) between the fermionic mass
m and the classical field, we get m ¼ T
c, where 
c is
the solution of Eq. (50) corresponding to the minimum
of the thermodynamic potential which reads now as ([cf.
Equation (31)]:

�R ¼ g�
�
�




�
� � 2

3�2

1

�4
Ipð
Þ: (52)

The dimensionless Yukawa coupling constant g� 1. To
reduce the number of model parameters, we can set g ¼ 1.
This is equivalent to the simultaneous rescaling g’ � ~’

andMgðð�Þ=ð�þ4ÞÞ � ~M.3 For simplicity, we also restrict the
number of flavors s ¼ 1.

We define the mass of the scalar field as

m2
	 ¼ @2Uð’Þ

@’2

��������’¼	c

: (53)

In terms of the dimensionless parameters, it reads

m	

M
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð�þ 1Þp �
�


c

�ð�þ2Þ=2
: (54)

It is important to realize that the integral I�ð
Þ on the
r.h.s. of the mass equation is bounded. The quantitative
parameters of the function I�ð
Þ depend on �, but its
shape is always similar to the curve shown in Fig. 1 for
� ¼ 1. So, there exists a maximal �crit (critical tempera-
ture Tcrit) such that for �>�crit (T < Tcrit) only a trivial
solution m ¼ 1 exists, and the stable vacuum has zero
energy and pressure.

The mass equation Eq. (50) is solved numerically for
various values of its parameters, and the characteristic
results are shown in Fig. 1. The numerical results can be
complemented by an approximate analytical treatment of
the problem. The latter turns out to be quite accurate and
greatly helps in gaining intuitive understanding of the
results.

It is easy to evaluate I�ð
Þ to leading order:

I �ð
Þ �
�
�2

12 

�þ2; 
 < 1


�þ3K1ð
Þ; 
 * 1
(55)

For the critical point where I 0
�ð
critÞ ¼ 0, we obtain


crit � �; � � �þ 5
2; (56)

I �ð
critÞ �
ffiffiffiffi
�

2

r
��e��: (57)

The most important conclusion we draw from Fig. 1 is
that there are three phases in the model’s phase diagram.
We analyze each of them in the following subsections.

1. Stable (massive) phase: �<��ðT� < T <1Þ
In this range of parameters the Eq. (50) has two non-

trivial solutions. The root 
c < 
� indicated with a large
dot in Fig. 1 (case a) gives the fermionic mass and corre-
sponds to a global minimum of the potential. So it is a
thermodynamically stable state. In this phase �ð
cÞ< 0,
so the pressure is positive P> 0. Another nontrivial root of
(50) corresponds to a thermodynamically unstable state
(maximum of� indicated with an arrow in Fig. 1). There is
a trivial third root of the mass equation 
 ¼ 1. At these
temperatures it corresponds to the metastable vacuum state
� ¼ 0.
In the high-temperature region of this phase where

� � 1 the fermionic mass is small (see Fig. 2),

m

M
�

� ffiffiffiffiffiffi
6�

p M

T

�
2=ð�þ2Þ / T�2=ð�þ2Þ: (58)

The fermionic contribution to the thermodynamic potential
is dominant, and it behaves to leading order as the potential
of the ultrarelativistic fermion gas [cf. Equation (45)]:

� ¼ �P ¼ � 7�2

180
T4 þOðT2�=ð�þ2ÞÞ: (59)

One can check that the subleading term in the above
expression combines the DE potential contribution and

0

0.5

1

1.5
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3.5
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(c)
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(a)

crit0

-1

-0.5

0

0.5

2 4 6 8 10 12

(d)
(c)
(b)
(a)

FIG. 1 (color online). Left: Graphical solutions of the mass
Eq. (50) for different values of � � M=T (� ¼ 1). Right:
dimensionless density of the thermodynamic potential (52).
The thermodynamically stable solutions of Eq. (50) indicated
by the large dots correspond to the minima of the potential. The
arrows indicate the unstable solutions of the mass equation,
corresponding to the maxima of the potential.

3One can check this scaling also holds for the dynamics of the
model, considered in Sec. V. In particular, the neutrino masses do
not depend on the value of g. To avoid cluttering of notations, we
will drop tildes in the rescaled parameters.
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the first fermionic mass correction, which are both of the
same order.

It is important to stress that in this coupled model with
the slow-rolling potential Eq. (48), the mass generation
does not follow a conventional Landau thermal phase
transition scenario. There is no critical temperature below
which the chiral symmetry is spontaneously broken and the
mass is generated. Instead, the mass grows smoothly as


c / �ð�þ4Þ=ð�þ2Þ, albeit starting from the ‘‘point’’
T ¼ 1. From physical grounds, we expect the applicabil-
ity of the model to have the upper temperature bound:

T & TRD; (60)

where TRD is roughly the temperature of the boundary
between inflation and the radiation-dominated era. The
high-temperature result (59) shows that the stable massive
phase of the present model can indeed be extended up to
those temperatures.

The scalar field and fermionic masses demonstrate op-
posite temperature dependencies. The scalar field is
‘‘heavy’’ at high temperatures:

m	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

6

s
T; � � 1; (61)

however, its mass decreases together with the temperature.
In contrary, the fermionic mass m monotonously increases
with decreasing temperature. The exact numerical results
for the two masses are shown in Fig. 2

2. Metastable (massive) phase:
�� < �< �critðTcrit < T < T�Þ

Upon increasing �, we reach a certain value ��
corresponding to a critical temperature T� when the ther-
modynamic potential has two degenerate minima�ð
�Þ ¼
Pð
�Þ ¼ �ð1Þ ¼ 0. This is shown in Fig. 1 (case b).

After this point, when the temperature decreases further
in the range �� < �< �crit [here �crit stands for the
maximal value of � when a nontrivial solution of the gap
Eq. (50) exists, see Fig. 1], the two minima of the thermo-
dynamic potential exchange their roles. The root 
c now
becomes a metastable state with �ð
cÞ> 0, i.e., with the
negative pressure Pð
cÞ< 0, while the stable state of
the system corresponds to the true stable vacuum of the
Universe [61]�ð1Þ ¼ Pð1Þ ¼ 0. See Fig. 1 (case c). The
system’s state in the local minimum�ð
cÞ is analogous to
a metastable supercooled liquid. We disregard the expo-
nentially small probability of tunneling of the fermions
from the metastable state �ð
cÞ into the vacuum state
�ð1Þ ¼ 0 [18]. Accordingly, the fermionic mass in this
phase is determined by the root 
c of (50).
In the metastable phase 
c * 1, so by using Eqs. (52),

(32), and (50), we obtain the potential:

�R �
�
�


c

�
�
�
1� �


c

� 3�

2
2
c

�
: (62)

From the above result, we can find the metastability point
�ð
�Þ ¼ 0 as


� � �

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6

�

s �
: (63)

Expanding I�ð
Þ near its maximum and using Eqs. (55)–
(57) along with the gap equation, (50), we obtain the
following equation:

ð
c � 
critÞ2
2�

� 1�
�
�

�crit

�
�þ4

: (64)

On finds from the above equation, e.g., how the mass
approaches its critical value:

mcrit �m /
�
T

Tcrit

� 1

�
1=2

; (65)

or the ratios of temperatures and masses at the metastable
and critical points. These latter parameters are given in
Table I.

3. Critical point: � ¼ �critðT ¼ TcritÞ
and phase transition

The critical point of the model corresponds to the case
when the two roots of the mass equation Eq. (50) merge,
and the minimum of the potential disappears. One can
check that instead of the minimum this is an inflection
point of the potential, i.e., �00

Rð
critÞ ¼ 0. This situation is
shown in Fig. 1 (case d). At this point the system is in the
unstable state with the fermionic mass

mcrit

Tcrit
¼ 
crit � �: (66)

In particular, this implies that the fermions are nonrelativ-
istic at the critical temperature. From Eqs. (57) and (50),

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

 m/M

mφ/M

FIG. 2 (color online). Masses of the fermionic and scalar fields
(m and m	, respectively) as functions of � � M=T, � ¼ 1. At

�>�critðT < TcritÞ, the stable phase corresponds to m ¼ 1 and
m	 ¼ 0.
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we find the critical parameter (see Table I for its numerical
values)

�crit �
� ffiffiffi

2
p

��3=2
��e��

�
1=ð�þ4Þ

; (67)

which allows us to evaluate the critical temperature

Tcrit ¼ M

�crit

: (68)

We can also find the potential at Tcrit:

�crit � 5

2�

�
�crit

�

�
�
M4: (69)

Thus, from the viewpoint of equilibrium thermodynamics
at T ¼ Tcrit, the model must undergo a first-order (discon-
tinuous) phase transition and reach its third thermodynami-
cally stable (at T < Tcrit) phase corresponding to the
vacuum �ð
 ¼ 1Þ ¼ Pð
 ¼ 1Þ ¼ 0. During this transi-
tion, the fermionic mass given at the critical point by
Eq. (66) and the scalar field mass

mcrit
	 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð�þ 1Þp �
�crit

�

�ð�þ2Þ=2
M (70)

both jump to their values in the vacuum state m ¼ 1 and
m	 ¼ 0. See Fig. 2.

However, the above arguments are based on the mini-
mization of the thermodynamic potential (i.e. maximiza-
tion of entropy) at equilibrium. To address the question of
how such a system as the Universe evolves towards the new
equilibrium vacuum state, we need to analyze the dynam-
ics of this phase transition. More qualitatively, we need to
study how the particle at the point 
crit at the critical
temperature (see Fig. 1) rolls down towards its equilibrium
at infinity. This issue will be addressed in Sec. V.

B. Equation of state

We define the equation of state in the standard form:

P ¼ w�; (71)

where the total pressure in this model is obtained from
Eq. (52), while the total energy density (�) and its dimen-
sionless counterpart (�R) are determined by the following
equation:

�R � �

M4
¼

�
�




�
� þ 2

�2

1

�4
I"ð
Þ: (72)

Here we define the integral

I "ð
Þ �
Z 1




z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 
2

p
ez þ 1

dz; (73)

which can be evaluated in two limits of our interest:

I"ð
Þ ¼
8<
:

7�4

120 � �2

24 

2 þOð
4Þ; 
 < 1

3
2K2ð
Þ þ 
3K1ð
Þ þOðe�2
Þ; 
 * 1
:

(74)

In the high-temperature region of the stable massive phase
where � � 1, the fermionic contribution is dominant, and
the energy density to leading order is that of the ultrarela-
tivistic fermion gas [cf. Equation (59)]

� ¼ 7�2

60
T4 þOðT2�=ð�þ2ÞÞ: (75)

Thus, in this regime the model follows approximately the
equation of state of a relativistic gas with w � 1

3 .

In the region 
c * 1 which includes the metastable
phase and the critical point, we obtain by using Eqs. (72),
(74), (50), and (62):

TABLE I. Masses, critical temperatures, and potentials for various values of �. All the parameters used in this table are defined in the
text.

� Tcrit

T�
�crit

m�
mcrit

mcrit

M

mcrit
	

M
Tcrit

M
�crit

M4
�crit

M4 wðTcritÞ
1 0.90 0.91 0.558 3.86 0.187 1.10 0.15 0.84 �0:18

2 0.95 1.04 0.70 4.35 0.130 0.97 0.02 0.25 �0:09

4 0.98 1.44 0.81 4.52 0.048 0.70 6� 10�4 0.02 �0:03

10 0.99 3.00 0.91 4.16 2� 10�3 0.33 7� 10�8 9� 10�6 �0:008
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w

FIG. 3 (color online). w � P=� for several values of �. At
�>�critð�Þ, i.e., T < Tcritð�Þ, the equilibrium value w ¼ �1
exactly.
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� �
�
�


c

�
�
�
1þ �þ 3�


c

þ 9�

2
2
c

�
; (76)

and

w � �
1� �


c
� 3�

2
2
c

1þ �þ 3�

c
þ 9�

2
2
c

: (77)

The last equation follows very closely the results of the
exact numerical calculations shown in Fig. 3. At the critical
point, we evaluate

�crit �
�
�crit

�

�
�
�
1þ �þ 3�

�

�
M4; (78)

and making a rough estimate, we get a lower bound:

w � � 5

2

1

�ð1þ �þ 3�
� Þ

 � 1

4
; 8 �  1: (79)

Thus for any power law �  1, the parameter w of this
model at equilibrium cannot cross the bound w<� 1

3 ,

necessary for accelerating expansion of the Universe
€a > 0.4

At T < Tcrit, we obtain the equilibrium value of w in the
stable vacuum state from Eqs. (52) and (72):

w ¼ lim

!1

Pð
Þ
�ð
Þ ¼ �1: (80)

So the true vacuum in this model corresponds to the
Universe with a cosmological constant in the limit � ! 0.

C. Speed of sound

We define the sound velocity as

c2s ¼
dP
dt
d�
dt

¼
dP
d�
d�
d�

; (81)

where to obtain the second expression, we used the fact
that the time enters our formulas only through the tem-
perature TðaðtÞÞ, so

d

dt
¼ d�

dt

d

d�
: (82)

Let us first consider the temperatures T  Tcrit, i.e., � �
�crit. Then

d�

d�
¼ @�

@�
þ @�

@

� d

d�

��������
¼
c

; (83)

where 
 is related to � through the gap Eq. (50):

d


d�

��������
¼
c

� _
c ¼ �þ 4

�

I�ð
cÞ
I 0
�ð
cÞ

¼ �þ 4

�

�
d logI�ð
cÞ

d


��1
: (84)

Note that for the pressure, the following relation

dP

d�
¼ @P

@�
(85)

holds, since

@P

@


��������
¼
c

¼ 0 (86)

is just another form of the gap Eq. (24). Thus

c2s ¼
@P
@�

@�
@� þ @�

@
 _
c

��������
¼
c

: (87)

In the high-temperature regime� � 1 (
c � 1), it is even
easier to use the explicit asymptotic expansions for Pð�Þ
and �ð�Þ in the definition (81) instead of the above formula
(87). A straightforward calculation gives the result

c2s � 1
3 � b�2ð�þ4Þ=ð�þ2Þ; b > 0; (88)

consistent with the earlier observation that for � � 1, the
model behaves as an ultrarelativistic Fermi gas.
In the case 
c * 1 we find

_
 c � �þ 4

�


c

�� 
c

; (89)

and

c2s � �� 
c

�ð�þ 4Þð1þ 4
��Þ

: (90)

Everywhere at T > Tcrit, including the stable and meta-
stable massive phases c2s > 0, so the model is stable with
respect to the density fluctuations. The sound velocity
vanishes in the limit T ! Tþ

crit as

cs / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 
c

p ! 0: (91)

Qualitatively, the vanishing speed of sound is due to diver-
gent _
c (84) and (89) at the critical point.
The above analytical results are in excellent agreement

with the numerical calculations of c2s from the formula (87)
shown in Fig. 4. At the temperatures T < Tcrit, there is no
gap equation relating 
 and �, so the sound velocity is
easily calculated to yield the value in the equilibrium
vacuum state:

c2s ¼ lim

!1

@P
@�
@�
@�

¼ �1: (92)

That what is expected for a barotropic perfect liquid with a
constant w, where c2s ¼ w.

4The relation (79) wðTcritÞ * � 1
4 holds for the model which

contains only the DE-neutrino coupled fluid. In a more realistic
model for the Universe, baryons and DM also contribute to the
total energy density, and as a consequence wðTcritÞ increases; see
Sec. V.
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V. DYNAMICS OF THE COUPLED MODEL
AND OBSERVABLE UNIVERSE

A. Scales and observable universe

In order to make a connection between the above model
results and the observable universe, we need to first con-
clude where we are now with respect to the critical tem-
peratures T� and Tcrit. As one can see from Table I for
�� 1, the model has T� � Tcrit �M. We identify
the current equilibrium temperature of the Universe
with the cosmic background radiation temperature T ¼
2:275 K ¼ 2:4� 10�4 eV. Then we see right away that
we cannot be above the critical temperature of the coupled
model, since:

(i) assuming T > Tcrit leads to M & 10�4 eV, which in
turn implies too small densities ��M4 �
10�16 eV4, i.e, 4 orders of magnitude less than the
observable density;

(ii) At T > Tcrit, the equation of state has w>� 1
4 (see

Fig. 3), which is not even enough to get a positive
acceleration €a > 0, while the observable value w �
�1 [13].

So, the first qualitative conclusion is that we are cur-
rently below the critical temperature. The Universe has
already passed the stable and metastable phases and is
now unstable, i.e. it is in the transition toward the stable
doomsday vacuum m ¼ 1 and � ¼ 0.

Since at the temperature of metastability P� ¼ 0, the
transition occurs somewhere between the beginning of the
matter-dominated era (TMD � 16 500 K � 1:42 eV) and
now, i.e., 1:4 eV * Tcrit > Tnow � 2:4� 10�4 eV.
Because of Eq. (68), this inequality gives us the possible
range of the model’s parameter M:

2:4� 10�4 eV<M & 1:4 eV: (93)

As we will show in the following, other consistency checks
of the model bring the upper bound of M much lower.

B. Universe before the phase transition

In order to apply the results of the coupled model for the
calculation of the parameters of the observable universe,
we need to incorporate the matter (we will just add up the
dark and conventional baryonic matter together) and the
radiation. Assuming a spatially flat universe, the total
energy density is critical, so

�tot ¼ ��;now=a
4 þ �M;now=a

3 þ �’�ð�Þ ¼ �cr ¼ 3H2

8�G
;

(94)

where from now on we denote �’� the energy density of

the coupled model given by Eq. (72). To relate our model’s
parameters to the standard cosmological notations, we
assume that the temperature is evolving as that of the
blackbody radiation, i.e., T ¼ Tnow=a. Then

� � M

T
¼ Ma

Tnow

¼ M

Tnowð1þ zÞ : (95)

We know that

�� ¼ �2

15
T4; (96)

and we set the current density of the coupled scalar field to
the observable value of the dark energy, i.e., 3=4 of the
critical density:

�’�;now ¼ 3

4
� 3H

2
0

8�G
� 31 � ð10�3 eVÞ4; (97)

and

�M;now � 1

4
� 3H

2
0

8�G
: (98)

The equations above allow us to plot the relative energy
densities

�# � �#=�tot (99)

as functions of redshift (or temperature) up to the critical
point; see Fig. 5.5 In the high-temperature limit, the matter
term is subleading and

�tot � �� þ �’� � �2

15

�
1þ 7

4

�
T4: (100)

In this limit, then

�’� ¼ 7

11
� 0:636; �� ¼ 4

11
� 0:363; (101)

which agrees well with the numerical results displayed in
Fig. 5. At the critical point the matter strongly dominates
and �M=��;’� * 102.
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FIG. 4 (color online). The square of the sound velocity for
several values of �. At �>�critð�Þ, i.e., T < Tcritð�Þ, the
equilibrium value c2s ¼ �1 exactly.

5We apologize for some abuse of notations, but using the same
Greek letter for the grand thermodynamic potential and relative
densities seems to be standard now. Since these quantities are
mainly discussed in different sections of the paper, we hope the
reader will not be confused.
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The equation of state parameter of the entire universe,
wtot, is given by Ptot ¼ wtot�tot. Since the matter contribu-
tion PM ¼ 0, then Ptot ¼ P� þ P’�, where P� ¼ 1

3�� and

the pressure of the coupled model P’� is obtained from

Eq. (52). The numerical results of wtot are given in Fig. 6.
To analyze the dynamics of the coupled model, we need,

in principle, to go beyond the saddle-point approximation
applied in the previous sections and solve the equation of
motion:

€’þ 3H _’þ @�

@’
¼ 0: (102)

Above the transition point (T > Tcrit) the dynamics is quite
simple. Let us analyze perturbations to the saddle-point
solution of (24):

’ðtÞ � 	c þ c ðtÞ: (103)

Taylor-expanding the thermodynamic potential of the
coupled model

@�

@’
¼ !2c þ 1

2
�000ð	cÞc 2 þ � � � (104)

with!2 � �00ð	cÞ, we obtain from (102) the equation of a
damped harmonic oscillator to the leading order:

€c þ 3H _c þ!2c ¼ 0: (105)

So, the quintessence field ’ðtÞ oscillates around its saddle-
point value 	c with c ðtÞ / e{!t�ð3=2ÞHt. The damping is
very small, since as one can check

! � 3
2H: (106)

The violation of the above condition and breaking down of
the oscillating regime occurs in the vicinity of the critical
point, which is the inflection point of the potential (! ¼ 0).
This is the well-known phenomenon of the critical slowing
down near phase transition. Retaining the first nonvanish-
ing term in (104), the equation of motion in the vicinity of
the critical point reads

€c þ 3H _c þ 1
2�

000ð	cÞc 2 ¼ 0: (107)

Neglecting the small damping term in this equation, its
solution can be found analytically via a hypergeometric
function. Since the explicit form of this solution is not very
interesting at this point, we just emphasize the qualitative
conclusion of the analysis: the fluctuation c ðtÞ oscillates
near the classical field 	c in the stable (metastable) phase
at T > Tcrit, and it enters the run-away (power-law) regime
when T ! Tþ

crit [64].

C. Late-time acceleration of the
Universe. Toward the end of times

The equilibrium methods are not applicable below the
phase transition, and we study the dynamics of the model
from the equation of motion (102) together with the
Friedmann Eqs. (1)–(3). Solution of the Dirac equations
yields �s / a�3 for the chiral density [65], so the equation
of motion (102) at a � acrit reads

€’þ 3H _’ ¼ � @U

@’
� �s;crit

�
acrit
a

�
3
: (108)

From the results of the previous section, we evaluate the
chiral density at the critical point:

�s;crit � �

�
�crit

�

�
�þ1

M3: (109)

The system of the integro-differential equations (1)–(3)
and (108) was solved numerically. All the quantities enter-
ing those equations are defined in the previous subsection,
except that one needs to include the extra term 1

2 _’2 in the

computation of both �tot and Ptot. However, the numerical
results show that in the regimes of the parameters we are
interested, the kinetic term can be safely neglected. Since
the critical point of the model lies in the matter-dominated
regime (cf. Fig. 5), we start with the Hubble parameter
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FIG. 5 (color online). Relative energy densities plotted up to
the current redshift (temperature, upper axis):�’�—coupled DE

and neutrino contribution; ��—radiation; �M—combined bar-

yonic and dark matters. Parameter M ¼ 2:39� 10�3 eV (� ¼
0:01), chosen to fit the current densities, determines the critical
point of the phase transition zcr � 3:67. The crossover redshift
z� � 0:83 corresponds to the point where the Universe starts its
accelerating expansion.
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FIG. 6 (color online). Equation of state parameter wtot ¼
Ptot=�tot for M ¼ 2:39� 10�3 eV (� ¼ 0:01) plotted up to the
current redshift (temperature, upper axis).
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H ¼ 2=3t (a / t2=3). At the latest times (z & 1), the
Hubble parameter was determined self-consistently from
the numerical solution of the Friedmann equations.

We find numerically that the quintessence field ’ðtÞ
from the critical point to the present time oscillates quickly
(with the period �� 10�27 Gyr) around the smooth
(‘‘mean value’’) solution �’ðtÞ, where the ‘‘mean’’ �’ nulli-
fies the r.h.s. of the equation of motion (108). Relating the
mean values with the physically relevant observable quan-
tities, we can easily obtain the key results analytically.
(They are checked against direct numerical calculations
and found to be accurate within 5% at most). Thus, we get

�’ ¼ ’crit �
�
1þ zcrit
1þ z

�
3=ð�þ1Þ

; (110)

� �’ ¼ �’;crit �
�
1þ z

1þ zcrit

�
3�=ð�þ1Þ

; (111)

where ’crit � �
�crit

M and �’;crit � ð�crit

� Þ�M4. Having a free

model parameter M, we will set it by matching the current
density of the scalar field �’;now to the observable value of

the DE density (97), so

M ¼ ð���’;nowÞð�þ1Þ=ð�þ4Þ���
critT

�3�=ð�þ4Þ
now : (112)

The exponent of the quintessence potential � is now the
only parameter which can be varied. We define the time-
dependent mass via the solution of the motion equation as
mðtÞ ¼ �’ðtÞ, thus obtaining an estimate for the present-
time neutrino mass. Results for various � are given in
Table II. There, we also calculate the critical points pa-
rametrized by the redshifts zcrit and the crossover points z

�.
The latter is defined as the redshift at which the Universe
starts its late-time acceleration, i.e., where wtot ¼ � 1

3 . For

the present time, we find

wnow
tot � �3

4: (113)

As we infer from the data of Table II, the range of ex-
ponents � � 1 corresponds to more realistic predictions
for the neutrino mass [1,7,8] and for the crossover redshift
z� [66]. For � ¼ 0:01, we plot the evolution of the relative
energy densities, the equation of state parameter, and the
neutrino mass in Figs. 5–7.

We consider the quite artificial case of small quintes-
sence exponent� as an ansatz crossing over smoothly from
physically plausible potentials with, say, � ¼ 1 or 2 to the
logarithmic potential

Uð’Þ ¼ M4

�
1þ � log

M

’

�
: (114)

The latter often appears in various contexts [13,36].6

VI. CONCLUSIONS

In this paper we analyzed the MaVaN scenario in a
framework of a simple minimal model with only one
species of the (initially) massless Dirac fermions coupled
to the scalar quintessence field. By using the methods of
thermal quantum field theory, we derived for the first time
(in the context of the MaVaN or, even more broadly, the
VAMP models) a consistent equation for fermionic mass
generation in the coupled model.
We demonstrated that the mass equation has nontrivial

solutions only for special classes of potentials and only
within certain temperature intervals. It appears that these
results have not been reported in the literature on VAMPs
before now.
We gave most of the results for the particular choice of a

trial DE potential—the Ratra-Peebles quintessence poten-
tial. This potential has all the necessary properties we
needed for our task: it is simple, it satisfies the criteria
we found for nontrivial solutions of the mass equation to
exist, and it has only one dimensionful parameter—the
energy scale M to tune. Also, at small values of the
exponent �, it effectively crosses over to the case
of a logarithmic potential. We have checked that other

TABLE II. Model’s parameters and observables for various �.
All the entries in this table are defined in the text.

� M ðeVÞ mnow ðeVÞ zcrit z�

2 9:75� 10�2 167 392 4.9

1 1:69� 10�2 44.6 76.6 2.3

1=2 6:33� 10�3 17.0 27.7 1.5

10�1 2:81� 10�3 2.82 8.73 0.93

10�2 2:39� 10�3 0.27 3.67 0.83

10�3 2:36� 10�3 0.027 1.60 0.82
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FIG. 7. Neutrino mass m forM ¼ 2:39� 10�3 eV (� ¼ 0:01)
plotted up to the current redshift (temperature, upper axis).

6The numerical results for small parameter �, as e.g. � ¼ 0:01
taken for the plots, are virtually indistinguishable for the cases of
the Ratra-Peebles (48) or logarithmic (114) potentials. However,
the Ratra-Peebles potential at more ‘‘natural’’ � ¼ 1, 2 allows to
probe the coupled fermionic-quintessence models in the search
of heavy DM particle candidates.
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potentials, e.g., exponential, lead to a qualitatively similar
picture, but they have at least one more energy scale to
handle, which we consider as an unnecessary complication
at this point.

We analyzed the thermal (i.e. temporal) evolution of the
model, following the time arrow. Contrary to what one
might expect from analogies with other contexts, like,
e.g., condensed matter, the model does not generate the
mass via a conventional spontaneous symmetry breaking
below a certain temperature. Instead it has a nontrivial
solution for the fermionic mass evolving ‘‘smoothly’’
from zero at the point T ¼ 1. The scalar field is infinitely
heavy at the same point. More realistically, we assumed the
model is applicable starting at the temperatures somewhere
in the beginning of the radiation-dominated era. We found
that the DE contribution in this regime is subleading, and
the model behaves as an ultrarelativistic Fermi gas at those
temperatures.

This regime corresponds to a stable phase of the model
given by a global minimum of the thermodynamic poten-
tial �ð’Þ. The temperature/time-dependent minimum h’i
generates the varying fermionic mass m / h’i.

With increase in time, as the temperature decreases, the
model reaches the point of metastability where its pressure
(P) vanishes. From our estimates of the model’s scales, we
showed that this happens during the matter-dominated era
of the Universe. At this point the system’s ground state
becomes doubly degenerate, and the potential� ¼ 0 at the
nontrivial (finite) minimum h’i as well as at the trivial
vacuum ’ ¼ 1.

Further on, at lower temperatures the system stays in the
metastable (supercooled) state until it reaches the critical
point where the local minimum of the thermodynamic
potential disappears and it becomes an inflexion point. At
this critical temperature, the model undergoes a first-order
(discontinuous) phase transition. At the critical point, the
equilibrium values of the fermionic and the scalar field
masses discontinuously jump to the doomsday vacuum
state values m ¼ 1 and m	 ¼ 0, respectively. The square

of the sound velocity and equation of state parameter w
have the equilibrium values corresponding to the de Sitter
universe with a cosmological constant, i.e. c2s ¼ w ¼ �1.
It is worth pointing out that c2s > 0 in both the stable and
metastable phases, and the sound velocity vanishes reach-
ing the critical temperature from above.

Since the equilibrium approach is not applicable below
the critical temperature, we find parameters of the model
from direct numerical solution of the equation of motion
and the Friedmann equations. The single scale M of the
quintessence potential is chosen to match the present DE
density, then other parameters of the Universe are deter-
mined. We obtain a consistent picture: the phase transition
has occurred rather recently at zcrit & 5 during the matter-
dominated era, and the Universe is now being driven
towards the stable vacuumwith zero� term. The expansion

of the Universe accelerates starting from z� � 0:83. Setting
� ¼ 0:01 for M � 2:4� 10�3 eV, we end up with the
neutrino mass m � 0:27 eV.
The present results allow us to propose a completely

new viewpoint not only on the MaVaN, but on the
quintessence scenario for the Universe as well. The
common concerns about the slow-rolling mechanism
for the DE relaxation toward the � ¼ 0 vacuum are
related to the question of what is the mechanism to set
the initial value of the scalar field ’ where it evolves
(rolls down) from. Our results demonstrate that up to
recent times (i.e. above the critical temperature) the
quintessence field was locked around its average (classi-
cal) value h’i. Its value is determined by the scale M
and the temperature. The average h’i gives the fermionic
mass at the same time. The scalar field is rigid (i.e.
massive), although it softens (i.e., its mass decreases)
as the system approaches the critical temperature. Above
the critical temperature, the scalar field can only oscillate
around its equilibrium value h’i. At the critical point,
the minimum of the thermodynamic potential becomes
the inflexion point, the scalar field looses its rigidity
(mass). Then the field can only roll down towards the
new stable ground state � ¼ 0 at ’ ¼ 1. So physically,
the critical point corresponds to the transition of the
Universe from the stable oscillatory to the unstable roll-
ing regime.
A more sophisticated numerical study of the kinetics

after the critical point is warranted in order to address such
issues as the detailed description of the crossover between
different regimes, and the clustering of neutrinos. These
and some other questions are relegated to our future work.
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