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First-order quantum correction to the Larmor radiation is investigated on the basis of the scalar QED on

a homogeneous background of a time-dependent electric field, which is a generalization of a recent work

by Higuchi and Walker so as to be extended for an accelerated charged particle in a relativistic motion. We

obtain a simple approximate formula for the quantum correction in the limit of the relativistic motion

when the direction of the particle motion is parallel to that of the electric field.
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I. INTRODUCTION

The Larmor radiation is the classical radiation from a
charged particle in an accelerated motion [1]. In a recent
paper by Higuchi and Walker [2], the quantum correction
to the Larmor radiation is investigated on the basis of the
scalar quantum electrodynamics (QED). In their approach,
the mode function for the complex scalar field is con-
structed with the Wentzel-Kramers-Brillouin (WKB) ap-
proximation, in a form expanded with respect to ℏ. In a
series of Higuchi and Martin’s work [3–5] (see also refer-
ences therein), it has been well understood that the mode
function reproduces the classical Larmor formula when the
radiation energy is evaluated at the order of ℏ0. The first-
order quantum correction to the classical Larmor radiation
is evaluated at the order of ℏ in Ref. [2], though the
investigation is limited to the nonrelativistic motion of
the charged particle.

In the present paper, we consider a simple generalization
of Higuchi and Walker’s work [2], in order to investigate
the case of a relativistic motion of an accelerated charge.
Assuming a homogeneous but time-varying background of
an electric field, we derive a formula for radiation energy
of the order of ℏ, the first-order correction due to the
quantum effect. This generalized formula is applicable to
an accelerated charge in a relativistic motion, and we focus
our investigation on the first-order quantum correction to
the Larmor radiation in the limit of the relativistic motion.
This paper is organized as follows: In Sec. II, we present
the general formula for the first-order quantum correction
to the Larmor radiation. In Sec. III, we show that the
formula reproduces the same result obtained in Ref. [2],
in the limit of the nonrelativistic motion of an accelerated
charge. Then an approximate formula in the limit of the
relativistic motion is presented. Section IV is devoted
to summary and conclusions. In Appendix A, a brief
derivation of the approximate formulas is summarized.
In Appendix B, we consider the validity of the WKB
approximation. Throughout this paper, we use units in

which the velocity of light equals 1, unless stated
otherwise.

II. FORMULATION

We consider the scalar QED with the action

S ¼
Z

dtd3x

�
ðD��ÞyD���m2

ℏ2
�y�� 1

4�0

F��F
��

�
;

(1)

where D� ¼ ð@=@x� þ ieA�=ℏÞ, e and m are the charge

and mass of the massive scalar field, respectively, and�0 is
the magnetic permeability of vacuum. We work in the
Minkowski spacetime, but consider the homogeneous elec-
tric background field EðtÞ, which is related to the vector

potential by �A� ¼ ð0;AðtÞÞ and _AðtÞ ¼ �EðtÞ, where the

dot denotes the differentiation with respect to the time. The
equation of motion of the free scalar field yields

�
@2

@t2
þ ðp� eAðtÞÞ2 þm2

ℏ2

�
’pðtÞ ¼ 0; (2)

where ’pðtÞ is the coefficient of the Fourier expansion of

the field, i.e., the mode function. Using the mode function,
which is normalized so as to be _’�

p’p � ’�
p _’p ¼ i, the

quantized field is constructed as

�ðxÞ ¼
ffiffiffiffiffiffi
ℏ
L3

s X
p

ð’pðtÞbp þ ’��pðtÞcy�pÞeip�x=ℏ; (3)

where L3 is the volume of the space, the creation and
annihilation operators satisfy the commutation relations,

½bp; byp0 � ¼ �p;p0 ; ½bp; bp0 � ¼ ½byp ; byp0 � ¼ 0; (4)

and the same relations hold for cp and c
y
p . We also quantize

the free electromagnetic field as

A� ¼
ffiffiffiffiffiffiffiffiffi
�0ℏ
L3

s X
�¼1;2

X
k

���

�
e�iktffiffiffiffiffi
2k

p a�k þ H:c:

�
eik�x; (5)
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where ��� denotes the polarization vector, and a�yk and a�k
are the creation and annihilation operators which satisfy
the following commutation relation,

½a�k; a�
0y

k0 � ¼ ���0
�k;k0 : (6)

We consider the process in which one photon is emitted
from a charged particle, as shown in Fig. 1. Note that this
process is prohibited without the background electric field
because of the Lorentz invariance of the Minkowski space-
time, which ensures existence of the frame that the charged
particle is at rest. However, on an electric field background,
we have the radiation energy from the process, which can
be evaluated, as follows. Using the in-in formalism [6,7],
we may compute the radiation energy at the lowest order of
the coupling constant,

E ¼ X
�

Z
d3kℏkha�yk a�ki

¼ ℏ�2
X
�

Z
d3kℏkRe

Z 1

�1
dt2

�
Z 1

�1
dt1hinjHIðt1Þa�yk a�kHIðt2Þjini; (7)

where we adopted the range of the integration from the
infinite past to the infinite future, and jini denotes the initial
state, which we choose as one charged particle state with

the momentum pi, i.e., jini ¼ bypi
j0i, and

HIðtÞ ¼ � ie

ℏ

Z
d3xA�

��
@� � ie

ℏ
�A�

�
�y�

��y
�
@� þ ie

ℏ
�A�

�
�

�
: (8)

Expression (7) leads to the lowest contribution correspond-
ing to the process of Fig. 1,

E ¼ � e2

�0

Z d3k

ð2�Þ3 k
���������

Z
dt

eiktffiffiffiffiffi
2k

p
�
@

@t
’pf

ðtÞ�’pi
ðtÞ

� ’�
pf
ðtÞ @

@t
’pi

ðtÞ
���������

2

�
��������
Z

dt
eiktffiffiffiffiffi
2k

p
�
iðpf � eAÞ

ℏ
’pf

ðtÞ�’pi
ðtÞ

þ ’�
pf
ðtÞ iðpi � eAÞ

ℏ
’pi

ðtÞ
���������

2
�
; (9)

where pf ¼ pi � ℏk, and �0 is the permittivity of vacuum,

which is related to �0 by �0�0 ¼ 1=c2 ¼ 1. Performing
the partial integral and using Eq. (2), we have

E ¼ � e2

�0

Z d3k

ð2�Þ3 k

�
���������

Z
dt

eiktffiffiffiffiffi
2k

p k̂ � ðpi þ pf � 2eAÞ
ℏ

’�
pf
ðtÞ’pi

ðtÞ
��������

2

�
��������
Z

dt
eiktffiffiffiffiffi
2k

p pi þ pf � 2eA

ℏ
’�

pf
ðtÞ’pi

ðtÞ
��������

2
�
; (10)

where k̂ is the unit vector of k, i.e., k̂ ¼ k=jkj.
We consider the following WKB solution for the mode
function

’pðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�pðtÞ

q exp

�
�i

Z t
�pðt0Þdt0

�
(11)

with

�pðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� eAðtÞÞ2 þm2

q
=ℏ; (12)

then Eq. (10) gives

E ¼ � e2

2�0

1

22

Z d3k

ð2�Þ3
���������

Z
dt

k̂ � ð2pi � 2eAðtÞ � ℏkÞ
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�pi

ðtÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�pf
ðtÞ

q

� exp

�
iktþ i

Z tð�pf
ðt0Þ ��pi

ðt0ÞÞdt0
���������

2

�
��������
Z

dt
2pi � 2eAðtÞ � ℏk

ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�pi

ðtÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�pf
ðtÞ

q

� exp

�
iktþ i

Z tð�pf
ðt0Þ ��pi

ðt0ÞÞdt0
���������

2
�

(13)

with

�pi
ðtÞ ¼ 1

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi � eAðtÞÞ2 þm2

q
;

�pf
ðtÞ ¼ 1

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi � ℏk� eAðtÞÞ2 þm2

q
:

(14)

In order to evaluate the quantum correction, we consider
the expansion in terms of a power series of ℏ. Up to the
order of OðℏÞ, we have

�pf
��pi

’ � k � ðpi � eAÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpi � eAÞ2 þm2
p

þ ℏ
2

�
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpi � eAÞ2 þm2

p

� ðk � ðpi � eAÞÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpi � eAÞ2 þm2
p 3

�
;

1

ℏ
ffiffiffiffiffiffiffiffi
�pi

q ffiffiffiffiffiffiffiffiffi
�pf

q ’ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpi � eAÞ2 þm2
p

�
�
1þ ℏ

2

k � ðpi � eAÞ
½ðpi � eAÞ2 þm2�

�
;

then

φ

γ

φ

qi

qf

k

FIG. 1. Feynman diagram for the process.
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E¼� e2

2�0

Z d3k

ð2�Þ3
Z

d�
Z

d�0
��
k̂ � dx

d�

��
k̂ � dx

0

d�0

�

� dx

d�
� dx

0

d�0

�
eik��ik�0

�
1þ ℏk

2

k̂ � ðpi � eAÞ
ðpi � eAÞ2 þm2

þ ℏk
2

k̂ � ðpi � eA0Þ
ðpi � eA0Þ2 þm2

þ iℏ
2

Z t

t0

�
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpi � eA00Þ2 þm2

p

� k2ðk̂ � ðpi � eA00ÞÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpi � eA00Þ2 þm2
p 3

�
dt00 þOðℏ2Þ

�
; (15)

where we used the notations x ¼ xðtÞ, x0 ¼ xðt0Þ, A ¼
AðtÞ, A0 ¼ Aðt0Þ, A00 ¼ Aðt00Þ, and we introduced the
new variable � instead of t by

� ¼ t�
Z t k̂ � ðpi � eAðt00ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpi � eAðt00ÞÞ2 þm2

p dt00; (16)

and �0 is defined in the same way as � but with replacing t
by t0. Furthermore, we introduce the quantities parame-
trized by t (or �),

dx

d	
¼ pi � eA; (17)

dt

d	
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi � eAÞ2 þm2

q
; (18)

then Eq. (15) is rephrased as

E ¼ � e2

2�0

Z d3k

ð2�Þ3
Z

d�
Z

d�0
��
k̂ � dx

d�

��
k̂ � dx

0

d�0

�

� dx

d�
� dx

0

d�0

�
eik��ik�0

�
1þ ℏk

2

�
k̂ � dx

dt

d	

dt

þ k̂ � dx
0

dt0
d	0

dt0

�
þ iℏk2

2

Z t

t0
d	00

�
1�

�
k̂ � dx

00

dt00

�
2
��

þOðℏ2Þ: (19)

The mathematical technique adopted in Ref. [2] is equiva-
lent to replacing k in Eq. (19) by the partial differentiation

with respect to � or �0 which operates to eik��ik�0 . Partial
integrations lead to

E ¼ Eð0Þ þ Eð1Þ þOðℏ2Þ; (20)

where we defined

Eð0Þ ¼ � e2

2�0ð2�Þ3
Z

d�k̂

Z 1

0
dk

Z
d�

�
Z

d�0eikð���0Þ
��
k̂ �d

2x

d�2

��
k̂ � d

2x0

d�02

�
�d2x

d�2
� d

2x0

d�02

�
;

(21)

Eð1Þ ¼ � e2

2�0ð2�Þ3
Z

d�k̂

Z 1

0
dk

Z
d�

Z
d�0eikð���0Þ

�
�
iℏ
4

�
d

d�
� d

d�0

�
d

d�

d

d�0

���
k̂ � dx

d�

��
k̂ � dx

0

d�0

�

� dx

d�
� dx

0

d�0

��
k̂ � dx

dt

d	

dt
þ k̂ � dx

0

dt0
d	0

dt0

��

þ iℏ
2

d2

d�2

d2

d�02

���
k̂ � dx

d�

��
k̂ � dx

0

d�0

�
� dx

d�
� dx

0

d�0

�

�
Z �ðtÞ

�0ðt0Þ
d�00 d	

00

d�00

�
1�

�
k̂ � dx

00

dt00

�
2
���

; (22)

where Eð0Þ and Eð1Þ are the terms of the order of ℏ0 and ℏ1,
respectively. Here, we assumed the boundary terms can be
neglected, as is the case in Ref. [2]. The integration with
respect to k yields

Eð0Þ ¼ e2

ð4�Þ2�0
Z

d�k̂

Z
d�

��
d2x

d�2

�
2 �

�
k̂ � d

2x

d�2

�
2
�
:

(23)
The expression (23) yields the classical formula of the
Larmor radiation from a charged particle. The first-order
quantum correction of the order of ℏ is described by
Eq. (22), which yields

Eð1Þ ¼ e2ℏ
ð4�Þ3�0

Z
d�k̂

Z
d�

Z
d�0 1

�� �0

�
��

d

d�
� d

d�0

�
d

d�

d

d�0

���
k̂ � dx

d�

��
k̂ � dx

0

d�0

�

� dx

d�
� dx

0

d�0

��
k̂ � dx

dt

d	

dt
þ k̂ � dx

0

dt0
d	0

dt0

��

þ 2
d2

d�2

d2

d�02

���
k̂ � dx

d�

��
k̂ � dx

0

d�0

�
� dx

d�
� dx

0

d�0

�

�
Z �ðtÞ

�0ðt0Þ
d�00 d	

00

d�00

�
1�

�
k̂ � dx

00

dt00

�
2
���

: (24)

Equation (24) transforms into Eq. (A3). Other useful for-
mulas are summarized in Appendix A.

III. APPROXIMATE FORMULAS

In the nonrelativistic limit, where the velocity
v ¼ dx=dt is small compared with the velocity of light,
jvj � 1, Eqs. (23) and (24) reduce to

Eð0Þ ¼ e2

6��0

Z
dt _vðtÞ � _vðtÞ; (25)

Eð1Þ ¼ e2ℏ
6�2�0m

Z
dt

Z
dt0

€vðtÞ � _vðt0Þ � _vðtÞ � €vðt0Þ
t� t0

; (26)

respectively. A brief derivation is summarized in
Appendix A. Equation (26) was found for the first time
by Higuchi and Walker in Ref. [2]. In the case of the
periodic electric field, jEj ¼ E0 sin!t, where E0 is a con-
stant, we have the periodic acceleration, j _vj ¼ ðeE0=mÞ�
sin!t. Then
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dEð0Þ

dt
¼ e4E2

0

m2

sin2!t

6��0
; (27)

dEð1Þ

dt
¼ �ℏe4E2

0

m2

!

12��0m
: (28)

After taking an average over a long time-duration, we have

Eð1Þ

Eð0Þ ¼ � ℏ!
mc2

; (29)

where c is the light velocity, which is restored here. The
quantum effect becomes important when the time scale
of the acceleration multiplied by c is comparable to the
Compton wavelength, namely, when the wavelike feature
of the particle appears.

Let us consider a more general case, when the electric
field jEj ¼ E0fðt=t0Þ, where f is a function of t=t0 with
a constant t0ð>0Þ. In this case, the acceleration is j _vj ¼
ðeE0=mÞfðt=t0Þ, and Eqs. (23) and (24) give

Eð0Þ ¼ e4E2
0t0

6��0m
2

Z
d	f2ð	Þ; (30)

Eð1Þ ¼ � ℏe4E2
0

6�2�0m
3

ZZ
d	d	0

fð	Þf;	0 ð	0Þ � fð	0Þf;	ð	Þ
	� 	0

;

(31)

respectively. Then we have

Eð1Þ

Eð0Þ ¼ � ℏ
�mc2t0

D; (32)

where we defined

D¼
�Z

d	00f2ð	00Þ
��1ZZ

d	d	0
fð	Þf;	0 ð	0Þ�fð	0Þf;	ð	Þ

	�	0
;

(33)

where f;	ð	Þ means the differentiation of fð	Þ with respect
to 	. Here, let us consider the following four cases:
(1) fð	Þ ¼ 1� ð	2Þn for j	j � 1 and fð	Þ ¼ 0 for
j	j> 1, (2) fð	Þ ¼ 1=ð1þ 	2Þn for �1< 	<1,
(3) fð	Þ ¼ 1=ðcosh	Þn for �1< 	<1, and
(4) fð	Þ ¼ ð1þ 	Þn for �1 � 	 � 0, fð	Þ ¼ ð1� 	Þm
for 0< 	 � 1, and fð	Þ ¼ 0 for j	j> 1. Figure 2 shows
D as a function of n for cases (1)–(3), in which one can see
that D is positive. Figure 3 shows D as a function of n and
m for case (4), in which too we find that D is positive.

Thus, in all of the above cases, the first-order quantum

correction Eð1Þ is negative. Also, the quantum effect is very
small as long as the motion of the particle is nonrelativistic.
This result is consistent with that found in Refs. [2,8]. The
quantum effect might become important when the emitted
photon energy becomes of order of mc2 [2]. Note that this
speculation is based on the result with the nonrelativistic
approximation.

Next, let us consider the relativistic limit, jpij � jeAj,
m. For simplicity, we consider the case when the direction

of the particle motion is always parallel to that of the
background electric field, i.e., v / A. Namely, we consider
the case when the directions of the particle’s motion and
the background electric field are parallel at any moment,
and adopt this direction as the z axis. Then we may

writeA ¼ ð0; 0; AðtÞÞ, _A ¼ ð0; 0;�EðtÞÞ, v ¼ ð0; 0; vÞ, and
pi ¼ ð0; 0; piÞ. In this case, we have

Eð0Þ ¼ e2

ð4�Þ2�0
Z

d�k̂ð1� cos2
Þ
Z

dt
m4

p6
i

e2 _A2ðtÞ
ð1�vcos
Þ5 :

(34)

The integration with respect to k̂ yields

Eð0Þ ¼ 1

6��0

m4e4

p6
i

Z
dt

_A2ðtÞ
ð1� v2Þ3 : (35)

We consider the case pi � jeAj, m. We also assume
jAj 	 j _A=!j 	 j €A=!2j, where 1=! is a time scale of a
time-varying background electric field. In this relativistic
limit, we have the leading order expression for the quantum
correction (see also Appendix A),

2 4 6 8 10
0

2

4

6

8

10

12

n

D

FIG. 2 (color online). D as a function of n for cases (1)–(3).
The dotted curve is case (1) fð	Þ ¼ 1� ð	2Þn for �1 � 	 � 1
and fð	Þ ¼ 0 for j	j> 1, the (red) dashed curve is case (2)
fð	Þ ¼ 1=ð1þ 	2Þn, and the (blue) solid curve is case (3) fð	Þ ¼
1=ðcosh	Þn.

FIG. 3 (color online). D as a function of m and n of case (4),
fð	Þ ¼ ð1þ 	Þn for �1 � 	 � 0, fð	Þ ¼ ð1� 	Þm for 0< 	 �
1, and fð	Þ ¼ 0 for j	j> 1.
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Eð1Þ ’ � e2ℏ
ð4�Þ3�0

Z
d�k̂ð1� cos2
Þ

Z
d�

Z
d�0

� 1

�� �0
m2

p5
i

1

ð1� v cos
Þ2ð1� v0 cos
Þ2 e
2

�
�
€AðtÞ _Aðt0Þ

� �v2 cos


ð1� v cos
Þð1� v0 cos
Þ
þ ð2þ v0 cos
Þv0

ð1� v cos
Þ2
�
� €Aðt0Þ _AðtÞ

�
� �v02 cos

ð1� v cos
Þð1� v0 cos
Þ þ

ð2þ v cos
Þv
ð1� v0 cos
Þ2

��
:

(36)

Adopting the approximation, v ¼ v0 ¼ �v ’ 1, and
�� �0 ’ ðt� t0Þð1� �v cos
Þ, we have

Eð1Þ ’ � e2ℏ
4ð2�Þ3�0

Z
d�k̂ð1� cos2
Þ

�
Z

dt
Z

dt0
1

ð1� �v cos
Þ5
m2

p5
i

� e2ð €AðtÞ _Aðt0Þ � _AðtÞ €Aðt0ÞÞ
t� t0

: (37)

The integration with respect to k̂ yields

Eð1Þ ’ � e4ℏ
3ð2�Þ2�0

m2

p5
i

Z
dt

Z
dt0

1

ð1� �v2Þ3

�
€AðtÞ _Aðt0Þ � _AðtÞ €Aðt0Þ

t� t0
: (38)

In the case of the periodic background of the electric
field, _AðtÞ ¼ �E0 sin!t, where E0 is a constant, we have

dEð0Þ

dt
¼ e4m4

6��0p
6
i

E2
0cos

2!t

ð1� v2Þ3 ; (39)

dEð1Þ

dt
¼ ℏe4m2

12��0p
5
i

E2
0!

ð1� v2Þ3 : (40)

After averaging over sufficiently long time-duration,
we have

Eð1Þ

Eð0Þ ¼ pi

mc

ℏ!
mc2

: (41)

Note that the quantum correction Eð1Þ is positive, which
is a contrast to the nonrelativistic case.

Similar to the nonrelativistic limit, we next consider
the case _AðtÞ ¼ �E0fðt=t0Þ, with a general function fð	Þ.
In this case, we have

Eð0Þ ¼ e4m4E2
0t0

6��0p
6
i ð1� �vÞ3

Z
d	f2ð	Þ; (42)

Eð1Þ ¼ ℏe4m2E2
0

12�2�0p
5
i ð1� �vÞ3

�
ZZ

d	d	0
fð	Þf;	0 ð	0Þ � fð	0Þf;	ð	Þ

	� 	0
; (43)

and

Eð1Þ

Eð0Þ ¼ pi

�mc

ℏ
mc2t0

D; (44)

where D is defined by Eq. (33). When we adopt the four
function of fð	Þ considered in the case of the nonrelativ-
istic limit, D is positive. Thus, in contrast to the non-

relativistic case, the quantum correction Eð1Þ is positive
again, for all the cases in the present paper.
For the radiation from an electron in a periodic electric

field, e.g., by a laser field, Eq. (41) is estimated as

Eð1Þ

Eð0Þ 	 2:6� 10�3

�
pic

GeV

��
mc2

0:5 MeV

��2
�

!

1015 s�1

�
; (45)

where !	 1015 s�1 corresponds to an x-ray laser.
The quantum effect becomes significant when the
electron kinetic energy reaches the TeV scale. The above
formula is derived under the condition pi � jeAj,m. For a
periodic electric field of large amplitude, pi 	 jeAj, the
condition of the relativistic motion cannot be always guar-
anteed, because the physical momentum might become
jpi � eAj 	m. In this case, it is difficult to express the
quantum correction in a simple analytic form. We need a
more general treatment including fully numerical calcula-
tion, because the nonlocality plays an important role.
Potentially, there is a lot of room for discussion about
how to detect the quantum effect of the Larmor radiation
experimentally, but this is outside of the scope of the
present paper.

IV. SUMMARY

In the present paper, we obtained the general formula,
Eq. (24) or Eq. (A3), for the first-order quantum correction
to the Larmor radiation from a charged particle moving in a
spatially homogeneous but time-dependent electric field.
This formula reproduces the same result as that in Ref. [2],
in the limit of a nonrelativistic motion of the charged
particle. Our result is useful to investigate the case of a
relativistic motion. When the direction of a particle’s mo-
tion is parallel to that of the background electric field, a
simple formula was derived. In the limit of the relativistic
motion of the charged particle, we obtained the formula
(36). Similar to the case of the nonrelativistic motion [2],
the leading quantum effect is described by a nonlocal
difference between _AðtÞ €Aðt0Þ and €AðtÞ _Aðt0Þ, as is demon-
strated in Eq. (38). This quantum effect disappears when _A
is constant. Note that Eq. (38) is the leading term in the
limit of the ultrarelativistic motion, assuming pi � eA, m
and jAj 	 j _A=!j 	 j €A=!2j. We discarded the other sub-
leading terms. For example, the term in proportion to
_AðtÞ _Aðt0Þð _AðtÞ � _Aðt0ÞÞ appears in the subleading terms,
but also disappears when _A is constant. Thus, the essence
of the quantum effect of the Larmor radiation should be the
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nonlocality, which reflects the fact that the exact solution
of motion cannot be represented with simple classical
trajectories in quantum theory [2].

We also note that the expression in the nonrelativistic
limit (26) is not simply connected to that in the relativ-
istic limit (38). The leading contributions for these
opposite limits come from different sources. In the non-
relativistic limit, the leading contribution comes only from
terms in (A2), i.e., the phase of the mode function. On the
other hand, in the relativistic limit, the leading contribution
comes from both (A1) and (A2), i.e., the amplitude and the
phase of the mode function. An interesting question might
be how these facts are related to the difference of our final
results in the opposite limits.

By applying the formula to the cases of a periodic
acceleration and possible function of acceleration, it was
demonstrated that the leading quantum effect enhances the
radiation in the relativistic limit and that it decreases in
the nonrelativistic limit. This quantum effect will become
important when the incident kinetic electron energy ap-
proaches TeV scale for a periodic electric field background
with an x-ray laser. However, this result is obtained assum-
ing that the charged particle is moving in the direction
parallel to that of the background electric field. In a prac-
tical situation, this assumption is somewhat ideal. Here too
there is a lot of room for further investigations of more
general cases (cf. Ref. [2]), but this is outside of the scope
of the present paper.

Our work, which is based on the QED theoretical frame-
work, will be useful to investigate the feature of the radia-
tion from an electron under a strong electric field.
Investigation of the quantum effect in the Larmor radiation
could be related to the subject of testing the QED process
in the strong field background. For example, Chen
and Tajima claimed the possibility of detecting the
Unruh effect in the radiation from an electron under an
ultraintense laser background [9]. Possible signature of
the Unruh effect in the radiation from an electron accel-
erated by an electric field of strong lasers is under debate
(cf. [10–12]). According to Ref. [9], the radiation from the

Unruh effect could be of order of ℏ. The characteristic
signature of the Unruh effect claimed in [9] is in proportion
to E3

0 at order of ℏ. As mentioned in the above, in our

approach, the term in proportion to _AðtÞ _Aðt0Þð _AðtÞ � _Aðt0ÞÞ
appears in the subleading terms in evaluating Eq. (24). This
might give a contribution in proportion to E3

0. However, the

angular dependence is different. In our approach, the quan-
tum radiation of the order ℏ emitted in the direction of
the motion, 
 ¼ 0, is exactly zero from Eq. (19). This is a
difference between our result and the prediction in Ref. [9],
which might be tested experimentally. However, in our
approach, it is difficult to separate the signature of the
Unruh effect from other effects, even if they existed. This
is a disadvantage of our approach.
In Ref. [8], the quantum radiation from a charged par-

ticle moving in an expanding or contracting universe was
investigated. It was shown that the radiation can be re-
garded as the Larmor radiation from a charged particle in
an decelerated (accelerated) motion, because the physical
momentum of the particle decreases (increases) as the
background universe expands (contracts) [8,13]. The ap-
proach developed in the present paper is useful to inves-
tigate the quantum effect of this process [14].
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APPENDIX A: BRIEF SUMMARYOF DERIVATION
OFAPPROXIMATE FORMULAS

It is straightforward to derive the following formulas:
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(A1)
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Then we find

Eð1Þ ¼ e2ℏ
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From the definition of � by Eq. (16), we have

d�

dt
¼ 1� k̂ � dx

dt
¼ 1� v; (A4)

where we defined v ¼ k̂ � v. Then we also have

dx

d�
¼ v

1� v
; (A5)

d2x

d�2
¼ _v

ð1� vÞ2 þ
v _v

ð1� vÞ3 ; (A6)

d3x

d�3
¼ €v

ð1�vÞ3þ
v €v

ð1�vÞ4þ
3 _v _v

ð1�vÞ4þ
3v _v2

ð1�vÞ5 ; (A7)

and
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: (A10)
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In the limit of a nonrelativistic motion of a charged parti-
cle, we use the following approximate formulas,

dx

d�
’ v;

d2x
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d3x

d�3
’ €v;
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dt
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�
v
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dt

�
’ €v2

m
;

then we have the following expression by neglecting sub-
leading terms,

Eð1Þ ¼ e2ℏ
ð4�Þ3�0
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We also neglect the first term of the right-hand side of
(A11), which is of order of _v3. After the integration with
respect to k̂, we have

Eð1Þ ¼ e2ℏ
ð4�Þ2�0
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4

3m
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�
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(A12)

The first term of the right-hand side of (A12) gives no
contribution by assuming that the acceleration is zero at the
boundaries of the time. Then Eq. (26) is obtained.

Now let us consider the case when the particle is moving
with a relativistic speed in the direction parallel to the
electric field. We choose the z axis parallel to this direction.
Then we may write A ¼ ð0; 0; AðtÞÞ, v ¼ ð0; 0; vÞ, and
pi ¼ ð0; 0; piÞ. In this case, we have
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i

; €v ’ �m2e €A
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i

:

We also have
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in the limit of the relativistic motion. These approximate
formulas yield the expression (36) at the leading order.
In this derivation, we note that the following term included
in Eq. (A3),
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gives no contribution at the leading order. Using Eqs. (A4)
and (A8), the right-hand side of Eq. (A13) is written as

Z �
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In the limit of the relativistic motion, the leading term is
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The contribution of this term to Eð1Þ is zero by assuming
that the acceleration is zero at the boundaries of the time.

APPENDIX B: VALIDITY
OF WKB APPROXIMATION

We consider the validity of using the WKB approxima-
tion, which breaks down when the background field varies
rapidly. The following condition is necessary to use the
WKB approximation (e.g., [15]),

1

2�2
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��������
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� 3

2

_�2
p

�2
p

��������� 1: (B1)

Using the expression (12), this condition yields
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��������� 1:

(B2)

In the relativistic limit, jpij � jeAj, m, as is considered in
Sec. III, (B2) reduces to

ℏ2

2ðp2
i Þ3

��������
5

2
ðe _A � piÞ2 þ p2

i ðe €A � piÞ
��������� 1: (B3)

In the case of the periodic electric field, _A ¼ �E0 sin!t,
(B3) gives

ℏ2e2E2
0

p4
i

� 1; and
ℏ2eE0!

p3
i

� 1; (B4)

which can be rewritten as
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�
ℏ!
pi

�
2
�
eE0

pi!

�
2 � 1; and

�
ℏ!
pi

�
2
�
eE0

pi!

�
� 1: (B5)

We impose eE0=! � pi, as a condition of the limit of the
relativistic motion. Then the first inequality (B5) is satis-
fied when the second inequality (B5) is satisfied. Then the
condition required for the WKB approximation is written

as

1:3� 10�10

�
!

1015 s�1

��
eE0

1� 1015 eV=m

��
pic

MeV

��3 � 1:

(B6)

[1] J. D. Jackson, Classical Electrodynamics (Wiley, New
York, 1998).

[2] A. Higuchi and P. J. Walker, Phys. Rev. D 80, 105019
(2009).

[3] A. Higuchi and G.D. R. Martin, Found. Phys. 35, 1149
(2005).

[4] A. Higuchi and G.D. R. Martin, Phys. Rev. D 73, 025019
(2006).

[5] A. Higuchi and G.D. R. Martin, Phys. Rev. D 74, 125002
(2006).

[6] S. Weinberg, Phys. Rev. D 72, 043514 (2005).
[7] P. Adshead, R. Easther, and E.A. Lim, Phys. Rev. D 80,

083521 (2009).
[8] H. Nomura, M. Sasaki, and K. Yamamoto, J. Cosmol.

Astropart. Phys. 11 (2006) 013.

[9] P. Chen and T. Tajima, Phys. Rev. Lett. 83, 256
(1999).

[10] R. Schutzhold, G. Schaller, and D. Habs, Phys. Rev. Lett.
97, 121302 (2006); 97, 139902(E) (2006).

[11] L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, Rev.
Mod. Phys. 80, 787 (2008).

[12] S. Iso, Y. Yamamoto, and S. Zhang, arXiv:1011.4191.
[13] A. Higuchi and P. J. Walker, Phys. Rev. D 79, 105023

(2009).
[14] R. Kimura, G. Nakamura, and K. Yamamoto, Phys. Rev. D

83, 045015 (2011).
[15] N. D. Birrell and P. C.W. Davies, Quantum Fields in

Curved Space (Cambridge University Press, Cambridge,
England, 1982).

FIRST-ORDER QUANTUM CORRECTION TO THE LARMOR . . . PHYSICAL REVIEW D 83, 045030 (2011)

045030-9

http://dx.doi.org/10.1103/PhysRevD.80.105019
http://dx.doi.org/10.1103/PhysRevD.80.105019
http://dx.doi.org/10.1007/s10701-005-6405-0
http://dx.doi.org/10.1007/s10701-005-6405-0
http://dx.doi.org/10.1103/PhysRevD.73.025019
http://dx.doi.org/10.1103/PhysRevD.73.025019
http://dx.doi.org/10.1103/PhysRevD.74.125002
http://dx.doi.org/10.1103/PhysRevD.74.125002
http://dx.doi.org/10.1103/PhysRevD.72.043514
http://dx.doi.org/10.1103/PhysRevD.80.083521
http://dx.doi.org/10.1103/PhysRevD.80.083521
http://dx.doi.org/10.1088/1475-7516/2006/11/013
http://dx.doi.org/10.1088/1475-7516/2006/11/013
http://dx.doi.org/10.1103/PhysRevLett.83.256
http://dx.doi.org/10.1103/PhysRevLett.83.256
http://dx.doi.org/10.1103/PhysRevLett.97.121302
http://dx.doi.org/10.1103/PhysRevLett.97.121302
http://dx.doi.org/10.1103/PhysRevLett.97.139902
http://dx.doi.org/10.1103/RevModPhys.80.787
http://dx.doi.org/10.1103/RevModPhys.80.787
http://arXiv.org/abs/1011.4191
http://dx.doi.org/10.1103/PhysRevD.79.105023
http://dx.doi.org/10.1103/PhysRevD.79.105023
http://dx.doi.org/10.1103/PhysRevD.83.045015
http://dx.doi.org/10.1103/PhysRevD.83.045015

