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We show how expansions in powers of Planck’s constant ℏ ¼ h=2� can give new insights into

perturbative and nonperturbative properties of quantum field theories. Since ℏ is a fundamental parameter,

exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics

of the ℏ expansion depends on the scheme; i.e., different expansions are obtained depending on which

quantities (momenta, couplings, and masses) are assumed to be independent of ℏ. We show that if the

coupling and mass parameters appearing in the Lagrangian density are taken to be independent of ℏ, then
each loop in perturbation theory brings a factor of ℏ. In the case of quantum electrodynamics, this scheme

implies that the classical charge e, as well as the fine structure constant are linear in ℏ. The connection

between the number of loops and factors of ℏ is more subtle for bound states since the binding energies

and bound-state momenta themselves scale with ℏ. The ℏ expansion allows one to identify equal-time

relativistic bound states in QED and QCD which are of lowest order in ℏ and transform dynamically under

Lorentz boosts. The possibility to use retarded propagators at the Born level gives valencelike wave

functions which implicitly describe the sea constituents of the bound states normally present in its Fock

state representation.
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I. INTRODUCTION

Planck’s constant ℏ ¼ h=2� is the fundamental constant
of nature related to quantum effects [1]. The most familiar
application of the Planck constant is the commutation
relation ½xi; pj� ¼ iℏ�ij which limits simultaneous mea-

surements of position and momentum. More generally, ℏ
enters explicitly in the commutation relations of conjugate
operators and fields, thus providing the fundamental basis
of quantum field theory. Each order of an expansion in ℏ
must obey all the underlying symmetries of the theory.

The Planck constant has units of action; i.e., the product
of energy and length in units where the velocity of light
c ¼ 1. One commonly assumes units such that ℏ ¼ 1.
However, it is illuminating to keep the occurrence of
powers of ℏ explicit since this allows one to distinguish
quantum versus classical physics. For example, the AdS/
CFT prediction for the ratio of shear viscosity to the
entropy density of a multiparticle system has the lower
limit [2] �=s � ℏ=4�. The origin of ℏ in this relation can
be traced to the assumed quantum form of the entropy of a
black hole in a higher dimensional theory. The empirical
observation that �=s in heavy-ion collisions at the
Relativistic Heavy Ion Collider [3] is not far from the
AdS/CFT prediction thus suggests that the dynamics of
high energy central heavy-ion collisions is in the quantum
domain.

Physical phenomena are usually expected to follow
the laws of classical theory in the (hypothetical) limit
ℏ! 0. Surprisingly, this is true only for a careful choice
of ℏ-independent quantities (momenta, couplings, and

masses). A simple illustration is provided by the standard
harmonic oscillator in nonrelativistic quantum mechanics
where the potential is VðxÞ ¼ 1

2m!2x2. The propagation of

a particle from ðti; xiÞ to ðtf; xfÞ is given by the path integral
Aðxi; xf; tf � tiÞ
¼

Z
½DxðtÞ� exp

�
im

2ℏ

Z tf

ti

dtð _x2 �!2x2Þ
�

¼
Z
½D�ðtÞ� exp

�
im

2

Z tf

ti

dtð _�2 �!2�2Þ
�
: (1)

In the second equality we have removed the explicit de-

pendence on ℏ by scaling the coordinates as � � x=
ffiffiffi
ℏ
p

.
(The scaling of the Jacobian is irrelevant for this discus-
sion.) Remarkably, the full quantum mechanical structure
of the harmonic oscillator model persists as ℏ! 0 when
one uses the scaled variables �, since the propagation
�i ! �f is independent of ℏ, as are the scaled bound-state

energies �n � En=ℏ ¼ !ðnþ 1
2Þ. Thus, there is a domain

of positions x / ffiffiffi
ℏ
p

and momenta m _x / ffiffiffi
ℏ
p

where the
action S is proportional to ℏ and the system stays quantum
mechanical even in the ℏ! 0 limit. On the other hand, the
propagation between fixed (ℏ-independent) positions xi, xf
involves large values of �i, �f / 1=

ffiffiffi
ℏ
p

, and thus the tran-

sitions between highly excited levels (with n of order 1=ℏ)
correspond to classical dynamics in the ℏ! 0 limit.
In the case of general relativity, ℏ can be eliminated [4]

from the equations of motion, and physical phenomena
only depend on dimensionless quantities such as �QED.

Although mass cancels out of the equations of motion
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in classical gravity (due to the equivalence principle), it
appears in the Schrödinger equation [5], but always in the
form ~m ¼ m=ℏ. As we shall show, ~m is the fundamental
mass parameter which appears in the equations of motion
for fields when one formulates quantum field theory
through the action principle and functional integrals.

In quantum field theory the T-matrix elements of lowest
order in ℏ are usually considered to be tree diagrams
(Born approximation), with each loop correction introduc-
ing one additional power of ℏ [6]. However, Donoghue and
Holstein and their collaborators [7] have demonstrated that
classical physics (of lowest order in ℏ) can also emerge
from loop diagrams where zero mass quanta appear. As we
shall see, the difference arises from the definition of the
ℏ! 0 limit, i.e., the limit depends on which Lagrangian
parameters are taken to be independent ℏ.

Born diagrams usually provide a good first approxima-
tion to scattering amplitudes in quantum field theory.
However, the bound-state poles of a scattering amplitude
are not present in tree (or any finite number of loop)
diagrams, but instead are generated by the divergent per-
turbative expansion of the covariant Green’s function. For
example, the Schrödinger and Dirac bound states, which
arise from tree-level interactions of an electron in an
external Coulomb potential, emerge in field theory from
the infinite sum of ladder and crossed-ladder Feynman
diagram contributions to the electron-muon Green’s func-
tion in the limit where the muon mass is taken to infinity
[8]. The binding is caused by loop momenta which are / ℏ,
thus changing the relation between the number of loops
and the power of ℏ.

We shall argue that the ℏ expansion can provide a
systematic approximation scheme for bound states formed
by interactions between particles. This expansion is
equally valid for relativistic and nonrelativistic dynamics.
We find that the lowest-order interaction kernel in ℏ
indeed defines a viable ‘‘Born term for bound states.’’
This Born approximation is insensitive to the i" prescrip-
tion of propagators, which allows a simple Hamiltonian
equal-time development in cases where the Coulomb in-
teraction dominates. A hidden Lorentz boost covariance
provides a nontrivial test that the approximation correctly
includes all contributions of lowest order in ℏ.

II. THE ℏ EXPANSION

There is a general understanding that each loop contri-
bution to quantum field theory amplitudes is associated
with one factor of ℏ [6]. Loop integrals represent quantum
fluctuations and classical physics is expected to emerge
from the Born term in the ℏ! 0 limit. To fully define this
limit one needs to specify the ℏ dependence of the fields,
couplings and mass parameters of the action S. The choice
is not as obvious as it sounds since ℏ appears not only in the
path integral measure expðiS=ℏÞ but (for dimensional rea-
sons) also in the action itself. In this section we establish

the scaling with ℏ which makes the loop and ℏ expansions
equivalent. In specific problems the energies and momenta
may also scale with ℏ, as illustrated by the harmonic
oscillator above. In the next section we show how the
contribution from momenta of OðℏÞ in the multiple loops
of ladder diagrams describes the physics of scattering from
a fixed potential and gives rise to Schrödinger and Dirac
bound states.
We use units where the speed of light c ¼ �0 ¼ 1.

Planck’s constant ℏ then has dimension of energy E times
length L; i.e, ½ℏ� ¼ E � L. The dimensions of the fields and
other parameters of the action are as usual fixed by the
requirement that S=ℏ be dimensionless.
The gluon part of the QCD action,

� 1

4

Z
d4xðG��Þ2

¼ � 1

4

Z
d4x

�
@�A� � @�A� þ i

g

ℏ
½A�; A��

�
2
; (2)

sets ½A� ¼ E1=2 � L�1=2. The gluon coupling g has dimen-

sion ½g� ¼ E1=2 � L1=2, ensuring that �s ¼ g2=4�ℏ is di-
mensionless. This requires that g appear with an inverse
factor of ℏ in (2). For the same reason the classical electric
charge e and massm are divided by ℏ in the action SSQED of

scalar QED,

SSQED ¼
Z

d4x

���
@� þ i

e

ℏ
A�

�
	

�y

�
��

@� þ i
e

ℏ
A�

�
	

�
�m2

ℏ2
	y	

�
: (3)

The boson field dimensions ½	� ¼ ½A� ¼ E1=2 � L�1=2 im-
plied by (2) and (3) agree with the dimensions of the
corresponding classical fields. Fermion field dimensions
are convention dependent since Grassmann numbers have
no classical counterparts. While factors of ℏ are rarely
displayed in quantum field theory, the convention of
Ref. [9] is to write the electron part of the QED action in
the form

S QED ¼
Z

d4x½ �c ðiℏ@� eA�mÞc �; (4)

with a factor ℏ in the kinetic term. This gives the electron

field the dimension ½c � ¼ L�3=2 so that c yc has the
dimension of a probability density. With this convention
the classical charge and mass appear in the action without a
factor of ℏ, and the anticommutator of the electron field is

fc yðt; xÞ; c ðt; yÞg ¼ �3ðx� yÞ: (5)

Insofar as ℏ is regarded as a constant of nature, the
factors of ℏ in the action only serve to ensure the proper
units of the parameters. However, to define an ℏ expansion
we need to specify the dependence on ℏ of all quantities
appearing in the action. In analogy to the harmonic oscil-
lator (1) we take the boson fields to scale as
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~A � A=
ffiffiffi
ℏ
p

; ~	 � 	=
ffiffiffi
ℏ
p

; (6)

with ~A and ~	 independent of ℏ. Thus, ½ ~A� ¼ ½ ~	� ¼ L�1.
Similarly, we take the parameters

~g � g

ℏ
; ~e � e

ℏ
; and ~m � m

ℏ
(7)

to be independent of ℏ. Thus, ~m has the dimensions of
wave number ½ ~m� ¼ L�1. In the functional integral mea-
sures for the gluon and scalar fields,

� 1

4ℏ

Z
d4xðG��Þ2 ¼ � 1

4

Z
d4xð@� ~A� � @� ~A�

þ i~g
ffiffiffi
ℏ
p ½ ~A�; ~A��Þ2;

1

ℏ
SSQED ¼

Z
d4x½ð@� þ i~e

ffiffiffi
ℏ
p

~A�Þ ~	�y

� ½ð@� þ i~e
ffiffiffi
ℏ
p

~A�Þ ~	� � ~m2 ~	y ~	;

(8)

ℏ then appears exclusively in the combinations ~g
ffiffiffi
ℏ
p

and

~e
ffiffiffi
ℏ
p

. Hence loop corrections of Oð~g2Þ and Oð~e2Þ will be
of OðℏÞ.

With the convention of a factor ℏ in the derivative as in
(4) we take the fermion field to be independent of ℏ, while
the coupling and mass should scale as in (7). Then,

1

ℏ
SQED ¼

Z
d4x½ �c ði@� ~e

ffiffiffi
ℏ
p

~A� ~mÞc � (9)

again ensuring that each loop is of OðℏÞ.
The present derivation is equivalent to (albeit perhaps

more transparent than) the standard one of Ref. [6], which
associates a factor ℏ with each propagator, an ℏ�1 with
each vertex and assumes the parameters appearing in the
action to be independent of ℏ, i.e., ~g, ~e, ~m / ℏ0 as in (7).

Thus, the free gluon propagator hAAi ¼ ℏh ~A ~Ai / ℏ since

h ~A ~Ai / ℏ0 at Born level. Similarly, the Born term of

hAAAi ¼ ℏ3=2h ~A ~A ~Ai / ~gℏ2. The fermion propagator
hc �c i is of Oðℏ0Þ with the field normalization implied by
(4). Each loop correction adds one power of ℏ.1

According to (7) the equivalence of the loop and ℏ
expansions thus, remarkably, requires that the classical
couplings g, e and masses m divided by ℏ are fixed in the
ℏ! 0 limit. For example, the dimensionless fine structure
constant,

� � e2

4�ℏ
¼ ~e2ℏ

4�
; (10)

is then / ℏ. The alternative of keeping e and m indepen-
dent of ℏ was considered in Ref. [7], where it was found
that classical physics can emerge from loops in an ampli-
tude where pairs of massless photons appear in the t
channel.
Even though variations of ℏ can not be studied experi-

mentally, an ℏ expansion is useful as a formal tool which
clarifies the structure of theory. The most appropriate
expansion scheme depends on the physics at hand.
In the remaining part of this paper we shall be mostly

concerned with bound-state equations which require sum-
ming an infinite number of perturbative diagrams. The ℏ
expansion will allow us to identify a Born term for bound
states to which loop corrections may be systematically
applied. In particular, we shall make use of the fact that
Born terms are insensitive to the i" prescription of the
propagators, whereas that prescription is crucial for loops.

III. APPLICATION OF THE ℏ EXPANSION
TO BOUND STATES

Bound states in quantum field theory can be identified
from the divergence of the perturbative series of the T
matrix at each bound-state energy. In the familiar case of
nonrelativistic QED atoms, the divergence arises from
ladder diagrams with loop momenta which scale with �.
The binding energy of hydrogen thus scales as En=me ¼
� 1

2�
2=n2 / ℏ2. Hence, an ℏ expansion at bound-state

poles requires that the external momenta in the T matrix
scale with ℏ. In such a limit the usual relation between the
number of loops and power of ℏ need not hold. The ladder
diagrams are in fact sensitive to infrared loop momenta that
contribute inverse powers of ℏ. The lowest-order contribu-
tion in � to the hydrogen atom is also of lowest order in ℏ,
i.e., it is a Born term for the bound state. The loop momenta
do not scale with ℏ in the higher-order corrections to
propagators and vertices, implying the usual relation be-
tween the number of such loops and the power of ℏ.
The bound-state poles of nonrelativistic QED atoms

are obtained by summing ladder diagrams, the first two
of which are shown in Fig. 1. The tree diagram in
(a) generally dominates the loop diagram (b) at small
coupling strength �. However, for external momenta
within the range of the atomic wave function the loop
diagram is unsuppressed even in the �! 0 limit. In the
center-of-mass system this requires jp2j ¼ jp1j to be of

FIG. 1. The first two ladder diagrams contributing to non-
relativistic atoms in the limit of small coupling � are shown.

1Reference [6] uses the normalization convention for fermion
fields where there is no factor of ℏ in the kinetic part of the action
(4). Then, the fermion fields scale similarly to the boson fields
(6), and identical results are obtained for the powers of ℏ in
amplitudes. The normalization convention only affects the
Jacobian of the functional integral (and the external lines of
the Green function).
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Oð�mÞ (m being the mass of the constituents) and
jp0

i �mj to be of Oð�2mÞ. The restricted range of the
loop momentum, d4k / �5 in the bound-state domain, as
well as the additional factor of � in the loop diagram, is
balanced (relative to the tree diagram) by its three addi-
tional propagators, each of which is of Oð1=�2Þ. The
situation repeats for all of the higher-order, multiloop
ladder diagrams, allowing the ladder series to diverge
and bound-state poles to occur at any value of �.

Since � ¼ ~e2ℏ=4� / ℏ the previous argument demon-
strates that the loop diagram in Fig. 1(b) is, in the bound-
state domain, of the same order also in ℏ as the tree
diagram of Fig. 1(a). The loop does not bring an extra
factor of ℏ since we consider a limit where the (external
and internal) momenta depend on ℏ, similarly to the case of
the harmonic oscillator (1). Repeating the argument for
ladder diagrams with more rungs, we may conclude that
the Schrödinger equation defines the Born term for non-
relativistic atoms. The standard higher-order corrections in
� to the binding energies and wave functions are also of
higher order in ℏ.

The energy k0 / �2m exchanged in the ladder loops is
of higher order in ℏ than the 3-momentum jkj / �m. Thus,
in the Born approximation we may set k0 ¼ 0 in the photon
propagators. This makes the nonrelativistic bound-state
dynamics equivalent to tree-level scattering from an exter-
nal, instantaneous potential.

The relativistic Dirac-Coulomb electron bound states
are obtained by summing e� scattering diagrams which
include all ladder and crossed-ladder photon exchanges
[8]. In the limit where the muon mass is large, the sum
of crossed and uncrossed photon exchanges gives a �ðk0Þ
which suppresses energy exchange and reduces the dynam-
ics to tree-level scattering. In this sense the relativistic
Dirac-Coulomb bound states are also of lowest order in ℏ.

IV. BOUND STATES IN A STATIC
EXTERNAL POTENTIAL

The i" prescription in propagators is related to the
boundary condition in time and is irrelevant at lowest order
in ℏ. Heuristically, this is seen from the damping factors
expð�t�Þ which give energy denominators Einitial �
Eintermediate � i� where � ¼ �ℏ. In perturbative expansions
of the Smatrix the tree diagrams are in fact independent of
i". Conversely, the i" prescription determines the disconti-
nuities of diagrams which are of higher order in ℏ through
the pinching of loop integrals. For Born level bound states
this prescription independence allows alternative but
equivalent wave functions as we shall next discuss.

Consider first the Dirac-Coulomb bound states in a static
external potential. In four-momentum space the interac-
tions with the Coulomb potential A0ðkÞ do not change
the energy component p0 of the particle’s momentum.
Denoting a single Coulomb photon interaction by K the
Green’s function G of the particle can be expanded as

Gðp0;pÞ ¼ Sþ SKSþ SKSKSþ . . . ¼ Sþ SKG

¼ RðE;pÞ
p0 � E

þ . . . : (11)

In the last equality we displayed the pole contribution of a
bound state with energy E, whose residue RðE;pÞ is easily
seen to satisfy the Dirac equation. SinceK preserves p0 the
Green’s function G is independent of the i" prescription at
the negative-energy pole of the Dirac propagator SðpÞ.
In other words, for p0 > 0 we have p0 þ Ep > 0, where

Ep �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. In particular, the bound-state energy E is

the same whether we use a Feynman SF or retarded SR
propagator,

SF=Rðp0;pÞ � i
pþm

ðp0 � Ep þ i"Þðp0 þ Ep � i"Þ : (12)

If we time order the interactions through a Fourier
transform p0 ! t the bound state gives a stationary con-
tribution Gðt;pÞ ¼ expð�iEtÞRðE;pÞ þ . . . . However, the
Fock state decomposition of its equal-time wave function
depends on the choice of propagator (12). In the Feynman
propagator SFðt;pÞ the negative-energy components
move backward in time. This gives rise to ‘‘Z’’ diagrams
describing particle-antiparticle pair fluctuations in the
time-ordered interactions with the static potential. The
equal-time wave function of a Dirac-Coulomb bound state
thus has Fock components with any number of pairs, and
its explicit expression is, to the best of our knowledge, not
known even in simple cases such as a 1=r potential.
In the case of the retarded propagator SR (12), the

negative-energy components move forward in time,

SRðt;pÞ ¼ 
ðtÞ
2Ep

½ðEp�
0 � p � �þmÞe�iEpt

þ ðEp�
0 þ p � ��mÞeiEpt�: (13)

The corresponding time-ordered interactions have no Z
contributions, thus only the single bound particle is present
at any intermediate time. As a consequence of this, the
retarded propagator is local in space at infinitesimal times,

lim
t!0þ

SRðt; xÞ ¼ �0�3ðxÞ: (14)

By contrast, the right-hand side would be nonlocal in x for
the Feynman propagator SF. This may be understood by
invoking a completeness sum over states at an earlier time:
the particle first moves backward in time and then returns
to x0 � x at t ¼ 0.
The absence of pair production in retarded propagation

as well as the locality property (14) allows a one-particle
Hamiltonian description as in relativistic quantum me-
chanics [10]. The bound-state wave functions are then
given by the Dirac equation. These single-particle wave
functions describe the same bound states, which, using
Feynman propagators, contain an indefinite number of
particle pairs arising from Z diagrams. As we have seen
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from (11), the bound-state energies E of both pictures
agree at lowest order in ℏ.

V. RELATIVISTIC BOUND STATES
IN FIELD THEORY

The Hamiltonian description of relativistic bound states
in an external Coulomb potential can in certain cases be
extended to field theory [10]. According to the above
arguments the binding energies will at Born level be inde-
pendent of the i" prescription used in the bound particle
propagators. This allows the use of the retarded propagator
SR (13) which suppresses Z diagrams and makes the time
evolution local as in (14). Coulomb exchange gives an
instantaneous potential due to the absence of @0A

0 terms
in the Lagrangian density. Transversely polarized photons
propagate in time and thus they generate higher Fock
states. Here we only consider cases where Coulomb ex-
change is dominant.

In D ¼ 1þ 1 dimensions only Coulomb exchange con-
tributes in a gauge where A1 ¼ 0. For an e��þ state where
the electron is at x1 and the muon at x2

jE; t ¼ 0i ¼
Z

dx1dx2c
y
e ðt ¼ 0; x1Þ�ðx1; x2Þ

� c �ðt ¼ 0; x2Þj0i; (15)

the equation of motion (Gauss’ law),

� @2xA
0ðx; x1; x2Þ ¼ e½�ðx� x1Þ � �ðx� x2Þ�; (16)

determines the instantaneous Coulomb field,

� A0ðx; x1; x2Þ ¼ 1
2e½jx� x1j � jx� x2j�: (17)

It is then straightforward [10] to determine the condition on
the bound-state wave function �ðx1; x2Þ which ensures a
stationary time development,

�0ð�i ~@x1�1 þmeÞ�ðx1; x2Þ � �ðx1; x2Þ�0ði@ x2�
1 þm�Þ

¼ ½E� Vðx1 � x2Þ��ðx1; x2Þ: (18)

Here the kinetic term of the electron operates on �ðx1; x2Þ
from the left, and that of the muon from the right. The
potential following from (17) is

VðxÞ ¼ 1
2e

2jxj: (19)

In D ¼ 1þ 1 dimensions the Dirac matrices as well as the
wave function �ðx1; x2Þmay be taken to be 2� 2matrices.

Not surprisingly, the bound-state equation (18) has a
‘‘double Dirac’’ form and, as such, was proposed already
by Breit [11]. Now this equation is seen to provide an
approximation of lowest order in ℏ to relativistic bound
states, with the potential (19) in 1þ 1 dimensions fixed
by QED.

A stringent test that (18) actually represents the exact
Born level result is that it is consistent with the Poincaré
invariance of QED. Translational invariance is explicit,
but the boost invariance is hidden (dynamic), since the

constituents are at equal time in all frames. It turns out [12]
that for the linear potential (19) (and for no other form of
the potential) the bound-state energy indeed has the correct
dependence on the CM momentum P of the bound state,

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
: (20)

The P dependence of the wave function �ðx1; x2Þ is non-
trivial. It resembles an ordinary Lorentz transformation, but
with E! E� VðxÞ (the canonical energy) in the boost
parameter. Thus, the wave function contracts at a rate which
depends on the separation x between the constituents.
The properties of the relativistic bound states defined by

(18) merit further study. At large separations between the
constituents, where VðxÞ 	 E, the wave function has a
constant, nonvanishing density in x. This may reflect the
particle pairs which are polarized from the vacuum in a
formulation using Feynman propagators.
The two very different but equivalent pictures of bound

states that we find here using retarded vs. Feynman time
development may be related to the well-known puzzle of
the quark model vs. parton model views of real hadrons:
Hadron excitation spectra reflect mainly their valence
quark degrees of freedom, even though sea quarks contrib-
ute importantly to deep inelastic scattering at low xBj and

low Q2 [13].
A bound-state equation analogous to (18) may be de-

rived in D ¼ 3þ 1 dimensions by assuming a nontrivial
boundary condition in Gauss’ law (16). The homogenous
solution for A0 then gives rise to a linear potential. Poincaré
invariance is respected similarly to the 1þ 1-dimensional
case. It is also possible to derive the analogous Born level
meson and baryon bound states in QCD [10]. The qqq
potential is gauge covariant and confines the three quarks
in a symmetric way. In some respects this resembles the
soft-wall AdS/QCD models [14,15] which utilize a linear
potential in an effective Dirac equation in AdS space.

VI. CONCLUSIONS

The Planck constant ℏ ¼ h=2� is a fundamental con-
stant of nature which gives a measure of quantum effects.
In this paper we have shown how expansions in powers of
Planck’s constant ℏ can give new insights into perturbative
and nonperturbative properties of quantum field theories.
Since ℏ is a fundamental parameter, exact Lorentz invari-
ance and gauge invariance are maintained at each order of
the expansion.
It is common to set ℏ ¼ 1 since there is a general belief

that the power of ℏ is given by the number of loops in the
perturbative expansion [6]. In the functional integral ℏ
appears in the measure expðiS=ℏÞ, and the action S is
usually assumed to be independent of ℏ. It is then argued
that classical physics emerges in the ℏ! 0 limit since the
rapidly varying phase S=ℏ selects field configurations
for which the action S is stationary. This argument is,
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however, somewhat oversimplified since there may be field
configurations which make S / ℏ. We have illustrated this
with the harmonic oscillator, whose full quantum mechani-
cal bound-state spectrum persists in the ℏ! 0 limit.

In fact, the physics of the ℏ expansion depends on the
scheme; i.e., different expansions are obtained depending
on which quantities (momenta, couplings, and masses) are
assumed to be independent of ℏ. We have shown that if the
coupling and mass parameters appearing in the Lagrangian
density are taken to be independent of ℏ, then each loop in
perturbation theory brings a factor of ℏ. In the case of
quantum electrodynamics, this scheme implies that the
classical charge e, as well as the fine structure constant,
are linear in ℏ.

We have also noted that for dimensional reasons the
QCD coupling g is divided by ℏ in the action (2).
Similarly, the classical charge e and mass m are divided
by ℏ in the QED action (3).

It may seem natural to fix the classical quantities g, e,
and m as ℏ! 0, as is done in [7]. However, this scheme
introduces a nontrivial dependence on ℏ into the action S.
We also note that the fine structure constant � ¼ e2=4�ℏc
diverges in the ℏ! 0 limit if the classical coupling e is
held constant. Furthermore, it has been demonstrated
through explicit examples in this scheme that loops con-
taining massless quanta, such as the gravitational form
factors of the electron, can contribute to classical physics
in the ℏ! 0 limit [7]. The underlying reason is that an ℏ
expansion is not uniquely defined without specifying
which quantities (momenta, couplings, and masses) are
to be regarded as independent of ℏ.

On the other hand, if the parameters of the action,
~g ¼ g=ℏ, ~e ¼ e=ℏ, and ~m ¼ m=ℏ are taken to be indepen-
dent of ℏ, the fine structure constant � ¼ ~e2ℏ=4� / ℏ and
the ℏ expansion is equivalent to the perturbative expansion.
For example, in the ℏ! 0 limit, the loops which define the
 function vanish, so that the running coupling ~eð�2Þ is
constant as in a conformal theory.

The ℏ expansion is particularly nontrivial and illuminat-
ing in the case of bound states. We have considered
whether one can define a Born term for bound states, which
is equivalent to a tree (no loop) approximation when ~g, ~e,
and ~m are fixed. This would allow an unambiguous and
physically motivated approximation scheme for relativistic
bound states, maintaining all symmetries of the theory at

each order in ℏ. In the familiar case of nonrelativistic QED
atoms the binding energy Ebind / �2m / ℏ3 ~m depends on
ℏ. In order to stay on the bound-state pole of a Green’s
function in the ℏ! 0 limit we must allow the momenta to
scale with ℏ, which introduces additional sources of ℏ. This
is why the sum of multiloop ladder diagrams in perturba-
tion theory reduces to a Born approximation for atomic
states.
Born terms are insensitive to the i" prescription of

perturbative propagators. This is explicitly seen for tree
diagrams of the S matrix, and we have shown that it holds
also for bound states in a Coulomb potential. Using
Feynman or retarded propagators does, however, make a
consequential difference for the wave functions of the
equal-time bound states. Relativistic bound states given
by the Dirac equation have an indefinite number of particle
pair constituents in their Fock expansion which arise from
Z diagrams due to Feynman propagators. In contrast, if one
chooses retarded propagators, the bound state appears to
contain just a single particle (of positive or negative en-
ergy) whose distribution is given by the standard Dirac
wave function.
Our understanding of bound states formed by the mutual

interactions of relativistic particles is still very limited.
This may be due to the lack of a physically well motivated
and manageable first approximation akin to the tree dia-
grams of scattering amplitudes. In this paper we have
shown that there is a well-defined Born approximation
for relativistic bound states. With retarded propagation
one obtains simple and specific bound-state equations.
The two-body equations in QED and QCD have a hidden
boost invariance which strongly suggests that they include
all effects of lowest order in ℏ. Just as for the Dirac
equation, the resulting valence wave functions implicitly
describe the multiple pair constituents generated by
Feynman propagation.
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A. R. Neghabian and W. Glöckle, Can. J. Phys. 61, 85
(1983).

[9] J. J. Sakurai, Advanced Quantum Mechanics (Addison-
Wesley, Reading, MA, 1967), Sec. 3–10.

[10] P. Hoyer, arXiv:0909.3045; Proc. Sci., EPS-HEP2009
(2009) 073; Acta Phys. Pol. B 41, 2701 (2010).

[11] G. Breit, Phys. Rev. 34, 553 (1929).
[12] P. Hoyer, Phys. Lett. 172B, 101 (1986); Report No. HU-

TFT-85-49, 1985.
[13] A.M. Cooper-Sarkar, 38th International Symposium On

Multiparticle Dynamics ISMD08, Hamburg, Germany,
2008, (DESY, Hamburg, 2009), http://www-library
.desy.de/preparch/desy/proc/proc09-01.html.

[14] A. Karch, E. Katz, D. T. Son et al., Phys. Rev. D 74,
015005 (2006).

[15] G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett. 102,
081601 (2009).

THE ℏ EXPANSION IN QUANTUM FIELD THEORY PHYSICAL REVIEW D 83, 045026 (2011)

045026-7

http://dx.doi.org/10.1016/S0370-2693(02)01246-7
http://dx.doi.org/10.1103/PhysRevD.68.084005
http://dx.doi.org/10.1103/PhysRevD.68.084005
http://dx.doi.org/10.1103/PhysRevD.71.069904
http://dx.doi.org/10.1103/PhysRevD.67.084033
http://dx.doi.org/10.1103/PhysRevD.67.084033
http://dx.doi.org/10.1103/PhysRevD.71.069903
http://dx.doi.org/10.1103/PhysRevLett.93.201602
http://dx.doi.org/10.1103/PhysRevLett.93.201602
http://arXiv.org/abs/0909.3045
http://dx.doi.org/10.1103/PhysRev.34.553
http://dx.doi.org/10.1016/0370-2693(86)90224-8
http://www-library.desy.de/preparch/desy/proc/proc09-01.html
http://www-library.desy.de/preparch/desy/proc/proc09-01.html
http://dx.doi.org/10.1103/PhysRevD.74.015005
http://dx.doi.org/10.1103/PhysRevD.74.015005
http://dx.doi.org/10.1103/PhysRevLett.102.081601
http://dx.doi.org/10.1103/PhysRevLett.102.081601

