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We propose a stochastic method for solving Schwinger-Dyson equations in large-N quantum field

theories. Expectation values of single-trace operators are sampled by stationary probability distributions

of the so-called nonlinear random processes. The set of all the histories of such processes corresponds to

the set of all planar diagrams in the perturbative expansions of the expectation values of singlet operators.

We illustrate the method on examples of the matrix-valued scalar field theory and the Weingarten model of

random planar surfaces on the lattice. For theories with compact field variables, such as sigma models or

non-Abelian lattice gauge theories, the method does not converge in the physically most interesting weak-

coupling limit. In this case one can absorb the divergences into a self-consistent redefinition of expansion

parameters. A stochastic solution of the self-consistency conditions can be implemented as a ‘‘memory’’

of the random process, so that some parameters of the process are estimated from its previous history. We

illustrate this idea on the two-dimensional OðNÞ sigma model. The extension to non-Abelian lattice gauge

theories is discussed.
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I. INTRODUCTION

Modern lattice QCD simulations are mostly based on the
direct evaluation of the path integral of the theory. Such an
approach, while being very general and efficient for many
applications, suffers from a number of problems, most
notable of which are the sign problem at finite chemical
potential, the critical slowing down at small quark masses,
and large finite-volume effects as well as small signal-to-
noise ratios in the analysis of excited states. These prob-
lems are inherent to standard Monte Carlo simulations and
cannot be efficiently solved by simply increasing the com-
putation power, since the required computing time quickly
increases (in the worst cases, exponentially) with the re-
quired precision. Such a situation makes it tempting to
devise alternative simulation algorithms for non-Abelian
lattice gauge theories.

One of the efficient alternative numerical methods is
the so-called diagrammatic Monte Carlo method, a method
based on the stochastic summation of all the terms in the
strong- or weak-coupling expansion of the observable of
interest [1,2]. Such a method in some cases allows one to
reduce or avoid completely the sign problem in the original
path integral, and does not suffer from finite-volume ef-
fects. Furthermore, one can construct algorithms which
yield particular correlation functions in terms of probabil-
ity distributions of some random variables, which greatly
facilitates the analysis of excited states [1,2]. This is the
idea of the ‘‘worm’’ algorithm by Prokof’ev and Svistunov
[1], in which the probability distribution of the positions x,
y of the ‘‘head’’ and the ‘‘tail’’ of the worm yields the
two-point Green function Gðx; yÞ. The diagrammatic

Monte Carlo method and the worm algorithm have been
successfully applied to a number of statistical models with
discrete symmetry groups, such as the Ising model, the XY
model, and unitary Fermi gas, and showed practically no
critical slowing down near quantum phase transitions.
However, the application of such methods to lattice field

theories with continuous field variables [such as two-
dimensional OðNÞ and CPðNÞ sigma models, Abelian
gauge theories, and the �4 theory] has resulted so far in
quite complicated and model-dependent algorithms [2]. A
generalization of such algorithms to SUðNÞ sigma models
or to non-Abelian gauge theories has not yet been found.
These algorithms are, in essence, based on the strong-
coupling expansion, and while their applicability is not
limited by the strong-coupling regime, one can expect
that algorithms based on the weak-coupling expansion
might show better performance near the continuum limit.
Typically, the weak-coupling expansion in such lattice

theories is either quite complicated or nonconvergent. Up
to now, the divergent behavior of the weak-coupling per-
turbative expansions strongly limits the applicability of
the diagrammatic Monte Carlo model to field theories
with continuous field variables. In a recent paper [3] a
method was proposed to construct convergent series which
approximate the nonanalytic path integrals with the desired
precision. This method, however, is difficult to generalize
to physically interesting field theories such as non-Abelian
lattice gauge theories.
Another way to obtain convergent series while preserv-

ing important physical properties of the theory is to sum
over only diagrams with a certain topology. This corre-
sponds to the large-N limit in quantum field theories and
matrix models, that is, the limit of infinite dimensionality
of an internal symmetry group, such as OðNÞ or SUðNÞ.*buividovich@itep.ru
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For such theories, each Feynman diagram acquires a factor
N�, where � is the Euler character of this diagram [4]. In
the limit N ! 1, the contribution of planar diagrams with
� ¼ 2 dominates, and the sum over all planar diagrams
typically has a finite convergence radius [5,6].

In this paper we describe a stochastic method for sum-
ming over all planar diagrams in large-N quantum field
theories. The method is based on the stochastic solution of
Schwinger-Dyson equations, so that the correlators of field
variables are obtained as stationary probability distribu-
tions of certain random variables. In this way, we imple-
ment the idea of importance sampling, so that numerically
small observables correspond to unlikely events. These
probability distributions are sampled by the so-called
nonlinear random processes. In contrast to conventional
Markov chains, stationary probability distributions of such
random processes satisfy nonlinear equations, and hence
they can be called ‘‘nonlinear random processes’’ or ‘‘non-
linear Markov chains’’ in the terminology of [7,8]. The
factorization of single-trace operators in the large-N limit
of quantum field theories corresponds to the phenomena of
‘‘chaos propagation’’ in random processes [9].

While in the diagrammatic Monte Carlo method and in
the worm algorithm the diagrams are stored in computer
memory as a whole and are updated in such a way that
the detailed balance condition is satisfied at each step, the
method described in this paper works only with external
lines. In contrast to the standard Metropolis algorithm, one
should not know explicitly the weight of each diagram,
and the transition probabilities do not satisfy any detailed
balance condition. Unlike the quite popular ‘‘numerical
functional methods’’ in continuum gauge theories (see
[10] for a review), the proposed method does not require
any truncation of the hierarchy of Schwinger-Dyson equa-
tions, and works only with singlet operators with respect to
the internal symmetry group. Another distinct feature is
that the computational complexity of the method does not
depend on N, while the standard Monte Carlo method,
the functional methods, and the worm algorithm all require
infinite computational resources in the limit N ! 1. This
feature might be advantageous for numerical checks of the
predictions of the holographic models which are dual to
large-N quantum field theories [11].

In Sec. II we analyze the general structure of Schwinger-
Dyson equations in large-N quantum field theories using
the example of a scalar matrix-valued field theory. When
large-N factorization is taken into account, Schwinger-
Dyson equations become nonlinear equations with infi-
nitely many unknowns. In Sec. III we describe nonlinear
random processes of recursive type [7], which can be
used to stochastically solve such equations. In Sec. IV
we apply such random processes to solve Schwinger-
Dyson equations in several large-N theories. In Sec. IVA
we consider the scalar matrix-valued field theory, for
which the perturbative expansion yields the conventional

Feynman diagrams in momentum space. In Sec. IVB
this solution is compared with the exact solution of the
simplest quantum field theory in zero dimensions, that is,
the Hermitian matrix model [6]. The convergence of such a
solution and the strength of the sign problem are discussed.
In Sec. IVC we consider the Weingarten model [12,13]
and demonstrate how the proposed method can be used to
simulate random surfaces on the hypercubic lattice. In this
case, our method reproduces an ensemble of open, rather
than closed, random surfaces, with critical behavior which
is quite different from that of the closed planar random
surfaces. Since the structure of Schwinger-Dyson equa-
tions in the Weingarten model is similar to the loop equa-
tions in large-N non-Abelian lattice gauge theories [14],
studying this model might be helpful for further extensions
of the present approach to non-Abelian gauge theories.
While the method described in Sec. III works well for

noncompact field variables, for field theories with compact
field variables, such as nonlinear sigma models or non-
Abelian lattice gauge theories, a straightforward stochastic
interpretation of Schwinger-Dyson equations is only pos-
sible in the strong-coupling limit. In the weak-coupling
limit one expects the field correlators to contain both the
perturbative part in the coupling constant g and the non-
perturbative corrections of the form expð�c=g2Þwith some
constant c. Moreover, a perturbative expansion in powers
of g typically results in asymptotic series, and nonpertur-
bative corrections appear as a result of the resummation of
such series [15].
In Sec. V we show how such nonperturbative corrections

can be taken into account by a further relaxation of the
Markov property of the random process. The basic idea
is to absorb the divergent part of the series into a self-
consistent redefinition of the expansion parameter. These
redefined parameters play the role of nonperturbative
‘‘condensates’’ [15,16]. It turns out that the redefined
expansion parameters can be estimated with increasing
precision from the previous history of the random process
which solves the Schwinger-Dyson equations, thus
leading to the emergence of the memory of the random
process. The approach of the redefined parameters to
their self-consistent values is reminiscent somehow of the
renormalization-group flow [10]. Such a dependence on
the previous history makes the random process essentially
non-Markovian, so that the stationary probability distribu-
tion also satisfies some nonlinear equation.
We illustrate this idea using the example of an OðNÞ

sigma model in two dimensions, which is equivalent to a
bosonic random walk with a self-consistent mass. The
random process which simulates this model has memory
but no ‘‘recursive’’ structure. Presumably, in order to
sum up both perturbative and nonperturbative corrections
which arise in non-Abelian lattice gauge theories or
UðNÞ sigma models, one should devise the recursive non-
linear random process (which would sum up perturbative
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corrections) with memory (which would generate nonper-
turbative quantities in a renormalization-group-like way).

Finally, in the concluding section we summarize the
present work and discuss its extension to non-Abelian
lattice gauge theories in the limit of large N.

II. GENERAL STRUCTURE OF SCHWINGER-
DYSON EQUATIONS FOR LARGE-N QUANTUM

FIELD THEORIES

In order to analyze the general structure of Schwinger-
Dyson equations for large-N quantum field theories, let us
first consider the theory of a Hermitian N � N matrix-
valued field �ðxÞ with the following Lagrangian:

L ½�ðxÞ� ¼ N Tr�ðxÞðm2 � �Þ�ðxÞ þ N�

4
Tr�4ðxÞ: (1)

This theory is most convenient to illustrate the method
described in this paper, since its perturbative expansion
leads to conventional Feynman diagrams in momentum
space. Since this theory should be somehow regularized,
let us assume from the very beginning that the action (1) is
defined on the Euclidean hypercubicD-dimensional lattice
with total volume V in lattice units. Thus, the coordinates x
take integer values, and � is the lattice Laplacian (for
definiteness, with periodic boundary conditions).

Schwinger-Dyson equations for a theory with the action
(1) read [17]

ðm2 � �1ÞGðx1; x2Þ ¼ �ðx1; x2Þ þ �Gðx1; x1; x1; x2Þ; (2)

ðm2 � �1ÞGðx1; . . . ; xnÞ
¼ �ðx1; x2ÞGðx3; . . . ; xnÞ þ �ðx1; xnÞGðx2; . . . ; xn�1Þ

þ Xn�1

m¼3

�ðx1; xmÞGðx2; . . . ; xm�1ÞGðxmþ1; . . . ; xnÞ

þ �Gðx1; x1; x1; x2; . . . ; xnÞ; n > 2; (3)

where the single-trace correlators are Gðx1; . . . ; xnÞ ¼
h1N Trð�ðx1Þ . . .�ðxnÞÞi, �1 is the Laplacian acting on x1,

and we have already taken into account the factorization
property in the limit N ! 1 [4]:�
1

N
Trð�ðx1Þ . . .�ðxnÞÞ 1N Trð�ðy1Þ . . .�ðymÞÞ

�

¼
�
1

N
Trð�ðx1Þ . . .�ðxnÞÞ

��
1

N
Trð�ðy1Þ . . .�ðymÞÞ

�

þO

�
1

N2

�
: (4)

These equations hold for any argument of the correlators,
but the resulting system is redundant, and it is sufficient to
consider only those Schwinger-Dyson equations which
were obtained by the variation of the fields at x1.

It is convenient now to go to the momentum representa-
tion, introducing the Green functions in momentum space,

Gðk1; . . . ; knÞ ¼
P

x1
. . .

P
xn
expðiPmkm � xmÞGðx1; . . . ; xnÞ.

In order to keep all expressions as symmetric as possible,
we do not separate the factor �ðPmkmÞ in Gðk1; . . . ; knÞ
explicitly. This condition will be automatically satisfied
by the nonlinear random process which we describe in
Sec. IVA. Equations (2) and (3) in the momentum repre-
sentation are

Gðk1; k2Þ ¼ G0ðk1ÞV�ðk1 þ k2Þ þG0ðk1Þ �
V2

� X
q1;q2;q3

�ðk1 � q1 � q2 � q3ÞGðq1; q2; q3; k2Þ;

(5)

Gðk1; . . . ; knÞ ¼ G0ðk1Þ
Xn�1

m¼3

�ðk1 þ kmÞVGðk2; . . . ; km�1Þ

�Gðkmþ1; . . . ; knÞ
þG0ðk1Þ�ðk1 þ k2ÞVGðk3; . . . ; knÞ
þG0ðk1Þ�ðk1 þ knÞVGðk2; . . . ; kn�1Þ
þG0ðk1Þ �

V2

X
q1;q2;q3

�ðk1 � q1 � q2 � q3Þ

�Gðq1; q2; q3; k2; . . . ; knÞ; (6)

where G0ðkÞ ¼ ðm2 þP
�4sin

2ðk�=2ÞÞ�1 is the free scalar

propagator on the hypercubic lattice. All momenta are
assumed to lie in the first Brillouin zone �� � k� � �

and are added modulo 2�. The structure of these equations
is schematically illustrated in Fig. 1, where dashed blobs
denote the Green functions Gðk1; . . . ; knÞ and empty blobs
denote G0ðkÞ.
Thus we have obtained an infinite system of quadratic

functional equations for the set of functions Gðk1; . . . ; knÞ
with n ¼ 2; 4; . . . . Such a structure is common for large-N
quantum field theories; Schwinger-Dyson equations are
quadratic equations for an infinite set of unknown varia-
bles. In the case of scalar matrix field theory considered

FIG. 1. Schematic illustration of the structure of the
Schwinger-Dyson equations (6). Dashed blobs denote the
Green functions Gðk1; . . . ; knÞ and empty blobs denote the free
propagator G0ðkÞ.
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here, the unknown variables are the functions of the
sequences of momenta fk1; . . . ; kng for any even n � 2.
In the case of lattice gauge theories or string theories,
Schwinger-Dyson equations are most naturally formulated
in terms of the Wilson loops, which are the functions
defined on the discrete space of closed loops on the
lattice [12–14]. In this case, the equations are also
quadratic with respect to the Wilson loops. For an OðNÞ
sigma model, Schwinger-Dyson equations are also qua-
dratic equations which involve only the two-point function
(see Sec. V).

Typically, systems of equations with infinitely many
unknowns can be efficiently solved by stochastic methods.
It is advantageous to estimate the value of each unknown
variable as a probability of observing some state of a
random process. In this case the unknowns with numeri-
cally small values correspond to unlikely events, and the
set of infinitely many unknown variables is automatically
truncated to a set of unknowns with sufficiently large
values. Such methods are well known mainly in the context
of kinetic equations [9]. Recently, they were also discussed
in the context of probabilistic programming [7]. In the
next section we describe a discrete-time, discrete-space
method of such type, which is in our opinion most suitable
for solving the Schwinger-Dyson equations in the large-N
limit.

III. STOCHASTIC SOLUTION OF NONLINEAR
EQUATIONS BY RANDOM PROCESSES

OF RECURSIVE TYPE

We consider nonlinear equations of the following form:

wðxÞ ¼ pcðxÞ þ
X
y

peðxjyÞwðyÞ

þ X
y1;y2

pjðxjy1; y2Þwðy1Þwðy2Þ; (7)

where x, y, y1, y2 are the elements of some space X
and

P
x, and x 2 X denotes summation or integration

over all the elements of this space. We also assume that
the functions pcðxÞ, peðxjyÞ, and pjðxjy1; y2Þ satisfy the

inequalitiesX
x

jpcðxÞj þ jpeðxjy1Þj þ jpjðxjy1; y2Þj< 1 (8)

for any y1, y2.
We would like to find a stochastic process for which

wðxÞ is proportional to the probability of the occurrence of
the element x in some configuration space. Obviously, an
ordinary Markov process with configuration space X can-
not solve such a problem, since stationary distributions of
Markov processes obey linear equations. In order to solve
the nonlinear equation (7), one can, for example, somehow
extend the configuration space. Extensions of Markov
processes with stationary probability distributions which
obey nonlinear equations have been considered recently in

[7,8]. In this section we concentrate on random processes
similar to the recursive Markov chains of [7]. The basic
idea is that, at any time, one can leave the current chain and
start a new one, then return back to the old chain at some
time. The initial state of a newly created chain depends on
the states of older chains. Thus one does not have a single
Markov chain, but rather an infinite stack of chains. The
random process which we describe below will be similar to
these recursive Markov chains, but instead of referring to
‘‘recursion,’’ we will explicitly introduce the underlying
stack structure. Here we first consider Eqs. (7) with the
coefficients pcðxÞ, peðxjyÞ, and pjðxjy1; y2Þ all being posi-

tive, and in the Appendix we generalize to coefficients with
arbitrary signs or complex phases.
Consider an extended configuration space which con-

sists of ordered sequences fx1; . . . ; xng for arbitrary
n � 1, with x1; . . . ; xn 2 X. It is illustrative to interpret
such configuration space as a stack of elements of the
space X, so that xn is at the top of the stack. The desired
random process can be specified by the following
prescriptions. At each discrete time step, do one of the
following:
Create.—With the probability pcðxÞ create a new ele-

ment x 2 X and push it to the stack.
Evolve.—With the probability peðxjyÞ pop the element y

from the stack and push the element x to the stack.
Join.—With the probability pjðxjy1; y2Þ consecutively

pop two elements y1, y2 from the stack and push a single
element x to the stack.
Restart.—With the probability 1�P

xðpcðxÞ þ
peðxjy1Þ þ pjðxjy1; y2ÞÞ, where y1, y2 are the two topmost

elements in the stack, empty the stack and push a single
element x 2 X into it, with a probability distribution pro-
portional to pcðxÞ.
The last action is also the procedure used to initialize

the random process. The ‘‘evolve’’ action is just the evo-
lution of a single Markov chain at the top of the stack,
with transition probabilities proportional to peðxjyÞ.
The condition (8) and the positivity requirement ensure
that pcðxÞ, peðxjyÞ, and pjðxjy1; y2Þ can be interpreted as

probabilities.
Consider now an equation for the stationary probability

distribution of such a Markov chain. It has a general
form pðAÞ ¼ P

BPðB ! AÞpðBÞ, where pðAÞ is a station-
ary probability of the occurrence of a state A andPðB ! AÞ
is the transition probability between the states B and A.
Let Wðx1; . . . ; xnÞ be the stationary probability to find the
elements x1; . . . ; xn in the stack. This probability distribu-
tion function is obviously normalized to unity:

X1
n¼1

X
x1

. . .
X
xn

Wðx1; . . . xnÞ ¼ 1:

The equation for the stationary probability distribution in
our case reads
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Wðx1Þ ¼ N �1
c pcðx1Þ�R þX

y

peðx1jyÞWðyÞ

þ X
y1;y2

pjðx1jy1; y2ÞWðy1; y2Þ; (9)

Wðx1; . . . ; xnÞ ¼ pcðxnÞWðx1; . . . ; xn�1Þ
þX

y

peðxnjyÞWðx1; . . . ; xn�1; yÞ

þ X
y1;y2

pjðxnjy1; y2Þ

�Wðx1; . . . ; xn�1; y1; y2Þ; n> 1; (10)

where

�R ¼ X
n

X
x1

. . .
X
xn

ð1� pcðxnÞWðx1; . . . ; xn�1Þ

�X
y

peðxnjyÞWðx1; . . . ; xn�1; yÞ

� X
y1;y2

pjðxnjy1; y2ÞWðx1; . . . ; xn�1; y1; y2ÞÞ (11)

and N c ¼
P

xpcðxÞ. By a direct substitution one can
check that there is a factorized solution for Wðx1; . . . ; xnÞ:

Wðx1; . . . ; xnÞ ¼ w0ðx1Þwðx2Þ . . .wðxnÞ; (12)

where wðxÞ obeys exactly Eq. (7) and w0ðxÞ obeys the
following inhomogeneous linear equation:

w0ðxÞ ¼ N �1
c pcðxÞ�R þX

y

peðxjyÞw0ðyÞ

þ X
y1;y2

pjðxjy1; y2Þw0ðy1Þwðy2Þ: (13)

Thus, for any equation of the form (7) with positive
coefficients which satisfy (8), there is a random process
whose stationary distribution encodes the solution of this
equation as in (12). The factorization of the stationary
probability distribution of random processes with such an
infinite configuration space is known as the ‘‘propagation
of chaos’’ in random processes and was discovered for
classical kinetic equations by McKean, Vlasov, and Kac
[9]. Comparing Eq. (7) with the Schwinger-Dyson equa-
tions (2), (3), and (5), we conclude that this property
corresponds to the factorization of single-trace operators
in large-N quantum field theories. It is interesting that time
reversal of the random process described above leads to the
so-called branching random process [9], which has quite
different properties. This is due to the fact that for such
random processes there is no detailed balance condition,
and hence no time reversal symmetry. We do not consider
here a subtle mathematical question of the existence of
solutions to Eq. (7), since in our case it is ensured by the
physical applications of this equation.

Finally, let us describe a practical procedure for finding
wðxÞ by simulating the random process described above.

By standard statistical methods, one should sample the
probability distribution pðxnÞ of the topmost element in
the stack [provided there is more than one element in it;
otherwise we estimate w0ðxÞ rather than wðxÞ; see (12)].
From (12), we get pðxnÞ ¼ s�1wðxnÞ, with s ¼ P

xwðxÞ.
It should be stressed that wðxÞ is not normalized to unity,
but rather satisfies the inequality

P
xwðxÞ ¼ s < 1. The

value of the normalization constant s can also be easily
found numerically, since the probability to find n elements
in the stack decreases as sn for n > 1.

IV. STOCHASTIC SOLUTION OF SCHWINGER-
DYSON EQUATIONS BY RECURSIVE

RANDOM PROCESSES

A. Scalar matrix field theory

After presenting the general method in Sec. III, we are
ready to describe a stochastic numerical solution of the
Schwinger-Dyson equations (5) and (6). For simplicity, let
us assume that the coupling constant � in (1) is negative.
This allows us to apply directly the results of Sec. III,
where all the coefficients in (7) are assumed to be positive.
In the case of positive �, additional sign variables for each
sequence of momenta can be easily introduced following
the Appendix. This will be done in the next subsection
for the Hermitian matrix model. Note that while at finite N
the theory with a negative coupling constant is not defined
and the correlators are nonanalytic in � [3], in the leading
order in N perturbative series converge even when the
coupling is negative, but not exceeding some critical value
[6]. Correspondingly, in the planar approximation the cor-
relators are analytic in �.
The space X in (7) should be the space of ordered

sequences (of any size) of momenta fk1; . . . ; kng; corre-
spondingly, the extended configuration space is a stack
which contains such sequences. It is convenient also to
introduce two normalization constants N and c, so that
the functions wðk1; . . . knÞ which will be estimated stochas-
tically are defined as

Gðk1; . . . ; knÞ ¼ N Vncn�2wðk1; . . . ; knÞ; (14)

where V is again the total volume of space. The constant c
can be thought of as the renormalization constant for the
one-particle wave functions, and N as the overall wave-
function normalization.
In terms of the functions wðk1; . . . ; knÞ the Schwinger-

Dyson equations (5) and (6) read

wðk1; k2Þ ¼ G0ðk1ÞN �1 �ðk1 þ k2Þ
V

þG0ðk1Þ�c2

� X
q1;q2;q3

�ðk1 � q1 � q2 � q3Þwðq1; q2; q3; k2Þ;

(15)
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wðk1; . . . ; knÞ ¼ G0ðk1Þc�2 �ðk1 þ k2Þ
V

wðk3; . . . ; knÞ

þG0ðk1Þc�2 �ðk1 þ knÞ
V

wðk2; . . . ; kn�1Þ

þG0ðk1ÞN c�4
Xn�1

m¼3

�ðk1 þ kmÞ
V

� wðk2; . . . ; km�1Þwðkmþ1; . . . ; knÞ
�G0ðk1Þ�c2

X
q1;q2;q3

�ðk1 � q1 � q2 � q3Þ

� wðq1; q2; q3; k2; . . . ; knÞ: (16)

Comparing the Schwinger-Dyson equations (15) and
(16) with the general equation (7), we arrive at the random
process which stochastically solves these equations. This
random process is specified by the following probabilistic
choice of actions at each discrete time step:

Create.—With the probability G0ðkÞðN VÞ�1 push a
new sequence of momenta fk;�kg to the stack.

Add.—With the probability G0ðkÞc�2=V modify the
topmost sequence of momenta fk1; . . . ; kng in the
stack by adding a pair of momenta fk;�kg either as
fk; k1; . . . ; kn;�kg or fk;�k; k1; . . . ; kng.

Create vertex.—With the probability j�jG0ðq1 þ q2 þ
q3Þc2 replace the topmost sequence fq1; q2; q3; k2; . . . ; kng
in the stack by fq1 þ q2 þ q3; k2; . . . ; kng. This action can
only be performed if the topmost sequence contains more
than two elements.

Join.—With the probability G0ðkÞN c�4=V pop the
two sequences fk1; . . . ; kng, fq1; . . . ; qmg from the stack
(provided there are more than two elements in it)
and join them into a single sequence as
fk1; . . . ; kn; k; q1; . . . ; qn;�kg. Push the result to the stack.

Restart.—Otherwise, restart with a stack containing a
sequence fk;�kg, k being distributed with a probability
proportional to G0ðkÞ.

Since the momenta are always added to the stack in pairs
which sum up to zero, for all sequences in the stack the
total sum of all momenta in the sequence is always zero.
The V�1 factors in (15) and (16) ensure that the probability
distributions of the newly created momenta can be normal-
ized to unity.

Let us check whether the inequalities (8) are satisfied for
such a process, that is, whether the total probability of all
possible actions does not exceed unity. For the free propa-
gator G0ðkÞ, one has the inequalities G0ðkÞ< 1=m2 andP

kG0ðkÞ<V=m2. The total probability of all possible
actions can then be estimated as ðN �1 þ c�2 þ j�jc2 þ
N c�4Þ=m2. Clearly, for sufficiently small j�j this estimate
can always be made smaller than unity by increasing c and
N . In Secs. IVA and IVB wewill analyze such bounds on
coupling constants in more detail for the Hermitian matrix
model and for the Weingarten model.

Since the constructed process involves no permutations,
one can trace the history of each momentum in the stack—
from creation to joining into a vertex or a ‘‘restart opera-
tion.’’ By drawing all the momenta in the stack as points on
the vertical lines of some two-dimensional grid and con-
necting the corresponding points along the horizontal lines,
all planar diagrams of the theory (with an arbitrary number
of external lines) can be obtained. Note also that the
number of vertices in the planar diagrams drawn by this
random process cannot exceed the number of time steps
from the previous ‘‘restart’’ action. Thus, in order to max-
imize the mean order of diagrams which are summed up in
some fixed number of time steps, it is advantageous to
maximally reduce the rate of restart events, that is, to
saturate the inequalities (8).
One could also try to devise a random process which

would solve the Schwinger-Dyson equations (2) and (3)
directly in physical space-time, rather than in momentum
space. The configuration space of such a process would be
the stack of sequences of points fx1; . . . ; xng. As compared
to the algorithm in momentum space, there would be an
additional choice of moving the last point xn in the topmost
sequence to adjacent lattice sites, with the probability
proportional to the hopping parameter � ¼ ð2Dþm2Þ�1.
This would correspond to drawing the worldlines of virtual
and real particles by bosonic random walks. Interestingly,
such worldlines can be mapped onto the string world sheets
in simplicial string theory [18]. In addition, the creation of
a new interaction vertex would only be possible if three
such random walks intersect in one point. However, this is
an unlikely event, with the probability going to zero in the
continuum limit. Thus, solving the Schwinger-Dyson
equations directly in the coordinate representation would
lead to a less efficient numerical algorithm.
Note that for the theory (1) at finite N the Schwinger-

Dyson equations are linear equations, which are,
however, defined on much larger functional space:
the set of unknown functions also includes expec-
tation values of multitrace operators, such as
hTrð�ðx1Þ . . .�ðxnÞÞTrð�ðy1Þ . . .�ðymÞÞi. One can try to
solve these linear equations by interpreting them as the
equations for the stationary probability distribution of a
Markov process. The configuration space of such a
process should be a space of sequences of the form
ffx1; . . . ; xng; . . . ; fy1; . . . ; ymgg, thus encoding the expecta-
tion values of all multitrace operators. However, such a
straightforward procedure leads to non-normalizable tran-
sition probabilities, indicating that the series which one
tries to sum up are divergent. Only when the terms sub-
leading in 1=N are omitted from the Schwinger-Dyson
equations can they be interpreted as stochastic equations.
At the same time, we obtain the Markov process on the
extended configuration space described in Sec. III, which
we interpret as the stack of sequences. The property of the
propagation of chaos [9] ensures large-N factorization of
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single-trace operators [see Eq. (12)]. We are thus led to the
random process of recursive type [7].

B. Hermitian matrix model

To check the considerations of the previous subsection,
let us consider the theory (1) in zero dimensions, that is,
the Hermitian matrix model with the following partition
function:

Z ð�Þ ¼
Z Y

i;j

d�ij exp

�
�N=2Tr�2 þ �N

4
Tr�4

�
: (17)

The Green functions now depend only on one integer n:
Gn � GðnÞ ¼ h1N Tr�2ni. The Schwinger-Dyson

equations (2) and (3) also take a very simple form:

G1 ¼ 1þ�G2;

Gn ¼ 2Gn�1 þ
Xn�2

m¼1

GmGn�m�1 þ�Gnþ1; n> 1:
(18)

Here we will assume that the coupling constant � can be
both positive and negative, in order to illustrate the method
described in the Appendix. Let us again define the ‘‘renor-
malized’’ Green functions wn as Gn ¼ N cn�1wn. In the
case of an arbitrary sign of �, the configuration space of the
random process should be the stack which contains integer
positive numbers and additional sign variables. Following

the Appendix, we introduce the variables wðþÞ
n and wð�Þ

n ,
which are proportional to the probabilities to find the
elements fn;þg or fn;�g at the top of the stack (provided

the stack contains more than one element). Then wn ¼
wðþÞ

n � wð�Þ
n . We thus arrive at the following random pro-

cess for the stochastic evaluation of wð�Þ
n . At each discrete

time step, one performs, at random, one of the following
actions:

(i) With the probabilityN �1 add a new element f1;þg
to the stack.

(ii) With the probability 2c�1 increase the topmost
element in the stack by 1 and do not change its sign.

(iii) With the probability j�jc decrease the topmost
element in the stack by 1 (if it is greater than 1)
and multiply its sign by the sign of �.

(iv) With the probability N c�2 pop the two elements
fn; s1g and fm; s2g from the stack (provided there
are more than two elements) and push the element
fnþmþ 1; s1s2g to the stack.

(v) Otherwise, empty the stack and push a single ele-
ment f1;þg into it.

Note that for positive � elements with a minus sign are not

generated, so that wð�Þ
n � 0 and the random process auto-

matically reduces to the one described in Sec. III.

The inequalities (8) now read

N �1þ2c�1þj�jcþN c�2 � 1; N >0; c>0:

(19)

As discussed in Sec. IVA, in order to increase the effi-
ciency of the algorithm it is advantageous to saturate this
inequality. It is easy to see that, at the same time, we
saturate the upper bound on the absolute value of the
coupling constant �. Maximizing this upper bound with
respect toN and c, we see that j�j cannot exceed the value
�� ¼ 1=16 ¼ 3=4�c, where �c ¼ 1=12 is the convergence
radius of the planar perturbative expansion which can be
found from the exact solution of the matrix model (17) [6].
Thus, the random process described above covers only
some finite subrange of coupling constants for which
the model (17) is defined. It is easy to understand the origin
of this limitation; in fact, this random process simulates
an ensemble of diagrams with an arbitrary number of
external legs, with the weight of each diagram being pro-
portional to �Nv , where Nv is the number of vertices. The
number of open diagrams with a given number of vertices
is obviously larger than the number of closed diagrams;
hence the sums over open diagrams have a smaller con-
vergence radius.
For j�j< ��, there is a continuous set of N , c which

saturate the inequality (19). One can, for example, fix c and
express N as a function of �:

N ¼ c2 � 2c� j�jc3 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3ðcj�j � 1Þð4� cþ c2j�jÞp

2
:

(20)

We call the solution with the minus sign in front of the
square root ‘‘branch 1’’ and the other solution ‘‘branch 2.’’
In Fig. 2 we plot the Green functions Gnð�Þ, evaluated

using the random process described above, as functions of
� up to n ¼ 5. These results were obtained after N ¼ 106

discrete time steps at fixed c ¼ 8 and with N given by
branch 1 of (20). The error bars are smaller than the
symbols on the plot. Solid lines are the exact results for
Gnð�Þ in the planar approximation, obtained using the
saddle point method [6].
The autocorrelation time and mean stack size for

the random process described above are plotted in
Figs. 3 and 4, respectively, as functions of the coupling
constant �. The observable used to define the autocorrela-
tion time was the sum of all numbers in the stack. First, we
note that branch 1 is more advantageous for simulations,
since with larger mean stack size one can gain more
statistics. However, in this case the autocorrelation time
is also larger. Interestingly, for this branch both the auto-
correlation time and the mean stack size have a maximum
near � ¼ 0 rather than near the ‘‘critical point’’ of the
random process ��. For branch 2, these quantities increase
slowly towards ��.
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In order to characterize the strength of the sign problem,
we consider the quantity

�s
n ¼ ðwðþÞ

n � wð�Þ
n Þ=ðwðþÞ

n þ wð�Þ
n Þ: (21)

�s
n ¼ 1 if the random process generates only elements with

a plus sign, and �s
n ¼ 0 if the numbers of pluses and

minuses cancel exactly. In practice, it is advantageous
to have as large a �s

n as possible, so that the difference

wðþÞ
n � wð�Þ

n can be estimated with maximal precision. �s
n

are plotted in Fig. 5 as functions of � for n ¼ 1, 3, 5. For
� < 0, �sð�Þ decreases with � and n. The sign cancellation
is thus moderate for n ¼ 1 [�s

1ð� ��Þ 	 0:75] and becomes

more and more important for higher-order correlators—�s
5

at � ¼ � �� is close to zero. It is interesting that �s
n are

almost equal for two different choices of N in (20).
Thus there are no indications of severe critical slowing

down in the whole range of possible coupling constants

� �� < � < ��. The sign problem is also moderate for low-
order correlators, but becomes more severe for higher-
order correlators. It could be extremely interesting to
extend the applicability of the random process described
above up to � ¼ �c while preserving these attractive fea-
tures of the algorithm.

C. Random planar surfaces: The Weingarten model

The Weingarten model [12,13] is a lattice field theory
which in the large-N limit reproduces the sum over all
closed surfaces with genus one on the hypercubic lattice.
The action for each surface is proportional to its area; thus
the model can be considered as a lattice regularization of
bosonic strings with a Nambu-Goto action. Although this
model does not have a nontrivial continuum limit for any
space dimensionality [19], the structure of the functional
integral and of the Schwinger-Dyson equations in this
model are similar to those in large-N non-Abelian lattice
gauge theory, and the analysis of this model might be
helpful for the extension of the approach described here
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to non-Abelian gauge theories. In order to derive the
Schwinger-Dyson equations, it is convenient to consider
the reduced Weingarten model [13], which in the large-N
limit is equivalent to the original model, similar to the
Eguchi-Kawai model for non-Abelian lattice gauge theory.
It can be shown that, in contrast to reduced lattice gauge
theories, for the reduced Weingarten model additional
twisting is not necessary [20].

The reduced model is defined by an integral over com-
plex N � N matrices U� � Uy�� with � ¼ 1; . . . ; D:

Zð	Þ ¼
Z

DU� exp

�
�N

XD
�¼1

TrðU�U
y
�Þ

þ N	
XD

��
¼1

TrðU�U
U
y
�U

y

 Þ
�
: (22)

If one treats the second term in the exponent in (22) as a
perturbation and expands Zð	Þ in powers of 	, the result-
ing sum over planar diagrams is equivalent to the sum over
all possible closed surfaces of genus one on the lattice with

weight 	jSj, where jSj is the area of each surface.
A basic observable in this model is the sum over all

planar surfaces which are bounded by some closed loop C.

The loop C can be uniquely specified by a sequence
f�1; . . . ; �ng, where the �’s take the values �1; . . . ;�D.
In order to reconstruct the loop C from the sequence, one
should start from an arbitrary point on a hypercubical
lattice and move along one link in the direction �1, for-
ward if�1 is positive and backward if�1 is negative. From
this new position one should similarly move in the direc-
tion �2, and so on. From the diagrammatic expansion one
can see that such a sum over surfaces is given by the
following correlator:

WðCÞ ¼ Wð�1; . . . ; �nÞ ¼
�
1

N
TrðU�1

. . .U�n
Þ
�
; (23)

where one takes the conjugate variable Uy
j�Aj if �A is

negative. This observable is similar to the Wilson loop in
lattice gauge theory, but, unlike theWilson loop, it does not
have a ‘‘zigzag symmetry’’ [11]: passing a link forward
and immediately backward changes the value of the
Wilson loop. In the large-N limit the single-loop observ-
ables factorize, which allows us to obtain a closed set of
Schwinger-Dyson equations for Wð�1; . . . ; �nÞ [12,13]:

Wð�1;�2Þ ¼ �ð�1;��2Þþ	
X

j�j�j�1j
Wð�;�1;��;�2ÞWð�1; . . . ;�nÞ

¼ �ð�1;��2ÞWð�3; . . . ;�nÞþ�ð�1;��nÞWð�2; . . . ;�n�1Þ

þ Xn�1

A¼3

Wð�2; . . . ;�A�1ÞWð�Aþ1; . . . ;�nÞ�ð�1;��AÞþ	
X

j�j�j�1j
Wð�;�1;��;�2; . . . ;�nÞ; n> 2: (24)

These equations should hold for any lattice link �k belonging to the loop C, but the resulting system of equations is
redundant, and it is sufficient to consider only one link �1 on the loop. Equations (24) are schematically illustrated in
Fig. 6, where the link �1 is marked by a thick line.

We see that Eqs. (24) again take a form similar to (7). Let us now define the renormalized observable wð�1; . . . ; �nÞ by
rescalingWð�1; . . . ; �nÞ by the factorsN and q asWð�1; . . . ; �nÞ ¼ N qnwð�1; . . . ; �nÞ. One can interpret the factor qn
as the mass attached to the boundaries of random surfaces, somewhat like the bare quark mass in QCD. Equations (24) then
take the following form:

wð�1;�2Þ ¼ ðN q2Þ�1�ð�1;��2Þþ	q2
X

j�j�j�1j
wð�;�1;��;�2Þwð�1; . . . ;�nÞ

¼ q�2�ð�1;��2Þwð�3; . . . ;�nÞþq�2�ð�1;��nÞwð�2; . . . ;�n�1Þ

þN q�2
Xn�1

A¼3

wð�2; . . . ;�A�1Þwð�Aþ1; . . . ;�nÞ�ð�1;��AÞþ	q2
X

j�j�j�1j
wð�;�1;��;�2; . . . ;�nÞ; n> 2:

(25)

Let us now devise a random process of the type described
in Sec. III, which stochastically solves these equations. The
configuration space is now a stack which contains closed
loops, that is, sequences of indices � ¼ �1; . . . ;�D. The
desired random process is defined by the following pos-
sible actions at each discrete time step:

Create a new loop.—With the probability 2DN �1q�2

create a new elementary loop C ¼ f�;��g, where
� ¼ �1; . . . ;�D is random (either positive or negative),
and push it to the stack.
Join loops.—With the probability 2DN q�2 pop the

two loops C1 ¼ f�1; . . . ; �ng, C2 ¼ f
1; . . . ; 
mg from
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the stack and form a new loopC by joining the loopsC1,C2

with a link in the random direction � (either positive or
negative): C ¼ f�1; . . . ; �n;�; 
1; . . . ; 
m;��g. This ac-
tion can only be performed if there are more than two loops
in the stack.

Flatten loop.—If the three links in the end of the se-
quence on the top of the stack form a boundary of the
plaquette, that is, if the topmost loop has the form C ¼
f�1; . . . ; �n;�; 
;��g for some � and 
, replace these
three links by a single link in the direction 
 with the
probability 	q2: C0 ¼ f�1; . . . ; �n; 
g.

Append to the loop.—With the probability 4Dq�2 ap-
pend a pair f�;��g, where � is random (either positive
or negative), to the topmost sequence f�1; . . . ; �ng in the
stack as f�;��;�1; . . . ; �ng or f�;�1; . . . ; �n;��g. The
probabilities of these two choices are equal.

Restart.—Otherwise, start with a stack containing an
elementary random loop C ¼ f�;��g, where � ¼
�1; . . . ;�D is chosen randomly.

Again assuming that the sum of the probabilities of
all possible actions is equal to 1 and the probability of
restart events is minimized, we obtain an equation relating
	, N , and q:

	q2 þ 2Dq�2ðN þN �1 þ 2Þ ¼ 1: (26)

Maximization with respect to N yields the relation be-
tween q and 	:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 32D	
p
2	

s
: (27)

We call the solution with the minus sign in front of the
square root ‘‘branch 1’’ and the other solution ‘‘branch 2.’’

The value of 	 in (27) cannot exceed the critical
value �	ðDÞ ¼ 1=ð32DÞ. As we have already seen on the
example of the matrix model, this critical value does not
necessarily coincide with the true critical point 	cðDÞ at
which the sum over planar surfaces diverges. Indeed, �	ðDÞ
does not exceed the lower bound 	cðDÞ> ð24ðD� 1ÞÞ�1

obtained in [13], and is significantly lower than the critical
values obtained numerically in [20]. In fact, for	 ¼ �	D all
the observables are still dominated by the lowest-order
perturbative contributions. Expectation values of the ob-
servables W1�0 � Wð�;��Þ (1� 0 loop) and W1�1 �
Wð�; 
;��;�
Þ (1� 1 loop), which were obtained after

107 iterations of the random process described above [with
q given by branch 1 of (27)], are plotted in Fig. 7 as
functions of the coupling constant 	. The solid line corre-
sponds to the first two terms in the perturbative expansion:
W1�0 ¼ 1þ 2ðD� 1Þ	2 þOð	4Þ, W1�1 ¼ 	þ 8ðD�
1Þ	3 þOð	5Þ. Within statistical errors, one sees only the
lowest-order perturbative contributions. It should be
stressed that the proposed random process implements
stochastic summation of diagrams of all orders, but due
to the smallness of 	< �	ðDÞ, a very large computational
time is required to see the contributions of higher-order
terms.
Note that when the coupling constant 	 tends to zero

(that is, the ‘‘bare string tension’’ of the random surfaces
tends to infinity) and q lies between the two solutions
of (27), the above random process describes just the growth
of ‘‘branched polymers,’’ whose branches are bosonic
random walks and hence correspond to particles rather
than ‘‘strings.’’ These branches consist of loops in which
every lattice link is passed twice and which hence sweep
out zero area.
Taking the limit 	 ! 0 in (27), we find that the

minimal value of q is �q ¼ ffiffiffiffiffiffiffi
8D

p
. In order to understand

this critical value, we first note that in the limit 	 ! 0 the
observables Wð�1; . . . ; �nÞ are all equal to 1 if the links
�1; . . . ; �n form a loop which sweeps zero area, and
zero otherwise. The probability to encounter such loops
in the random process described above is hence propor-
tional to wð�1; . . . ; �nÞ 
 q�n. Simple examples of
such loops, which can be also thought of as the random
treelike graphs on the lattice, are shown in Fig. 8. Now
imagine adding to some loop k links stemming from some
lattice site. Since the loop includes each link twice, the

FIG. 6 (color online). Schematic illustration of the structure of
the loop equations (24) in the Weingarten model (22). These
equations should hold for any link (marked by a thick line)
which belongs to the loop.
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FIG. 7 (color online). The observables W1�0 � Wð�;��Þ
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Þ ¼ 	þ 8ðD� 1Þ	3 þ
Oð	5Þ. The data were obtained after 107 iterations of the
algorithm described above.
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probability of such a configuration decreases by q�2k. The
number of possible configurations of k links is ð2� 2DÞk
since each of the k links can point along any of the D
directions, both forward and backward. An additional fac-
tor of 2 appears since the zero-area loops pass through each
point twice, and the new links can be inserted between the
links pointing either forward or backward (for example,
compare the configurations on the left and on the right of
Fig. 8). Finally, one can add any number k ¼ 1; 2; . . . ;1 of
branches to any point belonging to the branched polymer.
At the criticality, adding any number of random links to
some configuration should not change its overall weight.
Therefore, the change of the weight due to the added links
times the number of ways to add them should be equal to
unity. We are thus led to the following equation for �q:

Xþ1

k¼1

ð4Dq�2Þk ¼ 4Dq�2

1� 4Dq�2
¼ 1; (28)

or 8D �q�2 ¼ 1. Thus, in the limit 	 ! 0 we indeed repro-
duce branched polymers with the correct critical behavior.

At nonzero 	, deviation from trivial branched polymer
configurations can be characterized by the rate of the
‘‘flatten loop’’ events. Indeed, since the probability of n
such events is proportional to	n, such a sequence of events
corresponds to a random surface (which is, in general,
open) consisting of n lattice plaquettes, plus some number
of random trees. One can therefore think of the random
process described above as the process of drawing random
loops which sweep out random planar surfaces. The aver-
age rate of ‘‘flattening’’ events is plotted in Fig. 9 on the
right as a function of the coupling constant 	 for different
dimensions D and for different choices of q in (27).
One can see that in the whole range of coupling constants,
0<	< �	ðDÞ, the rate of flattening events is numerically
very small. On the other hand, the number of links in the
loops, as well as the number of loops stored in the stack, is
quite large. The mean stack size and mean length of the
topmost loop in the stack are plotted in Fig. 10 as a function
of the coupling constant 	 for different dimensions D and
for different choices of q in (27). One can conclude, there-
fore, that the branched polymers actually dominate in the
properties of the random process described above. The
critical behavior of these random trees is universal for
any dimension D; that is why observables such as the
mean stack size or the mean loop length, which are mainly

sensitive to the length of loops rather than to the area of
random surfaces, practically do not depend on space
dimensionality.
While the closed planar surfaces in the vicinity of the

true critical point 	cðDÞ of the Weingarten model are also
dominated by branched polymers [19], in our ensemble of

FIG. 8. Two simple configurations of branched polymers on
the lattice. The configurations on the left and on the right count
as different configurations.
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open random surfaces this dominance can be thought of as
the manifestation of the tachyonic instability of open,
rather than closed, strings. The fact that the critical cou-
pling �	ðDÞ in our case is smaller than the true critical point
	cðDÞ can be explained by the fact that the number of
open surfaces with a given area is obviously larger than the
number of closed surfaces with the same area. The true
critical coupling constant 	cðDÞ can be quite easily found
by a very simple reweighting procedure, which will be
described in detail in a separate publication.

V. RESUMMATION OF DIVERGENT SERIES AND
RANDOM PROCESSES WITH MEMORY

In Sec. IV we have described a stochastic method for the
solution of the Schwinger-Dyson equations for theories
with noncompact variables. This method works only at
small coupling constants and implements stochastic sum-
mation of perturbative series. For theories with compact
variables, such as nonlinear � models or lattice gauge
theories, the structure of the Schwinger-Dyson equations
is such that the method described can be straightforwardly
applied only in the strong-coupling regime, where one can
stochastically sum all terms in the strong-coupling expan-
sion. However, the continuum limit of such theories
typically corresponds to the weak-coupling limit. An addi-
tional complication is that for physically interesting theo-
ries the observables cannot be expressed as convergent
power series in the small coupling constant g, but rather
contain a nonanalytic part which is typically of the form
expð�c=g2Þ with some constant c [15].

In this section we point out one possible way to deal with
this problem. The basic idea is to absorb nonperturbative
corrections into some self-consistent redefinition of the
expansion parameter [15,16]. Recently, a similar resum-
mation method was also considered in [21]. Solving the
self-consistency condition leads to the concept of a non-
linear random process with memory [8], in which all the
previous history of the process is used to estimate the value
of the self-consistent expansion parameter.

Let us illustrate this idea on the simplest example
of anOðNÞ sigma model in the limit of large N. The model
is defined by the following path integral over unit
N-component vectors nðxÞ living on the sites of the
D-dimensional hypercubic lattice:

Z ¼
Z
jnðxÞj¼1

DnðxÞ exp
�
N

�

X
hxyi

nðxÞ � nðyÞ
�
; (29)

where the summation goes over all neighboring lattice
sites. Despite its simplicity, this model in D ¼ 2 dimen-
sions is asymptotically free and has a mass gap which
depends nonperturbatively on the coupling constant �.
Schwinger-Dyson equations in this theory can be written
in terms of the two-point function �ðx; yÞ ¼ hnðxÞ � nðyÞi,
�ðxÞ � �ðx; 0Þ as

�ðxÞ ¼ 1

�

X
�

ð�ðx� e�Þ � �ðxÞ�ð�e�ÞÞ þ �ðx; 0Þ: (30)

Clearly, these equations have a structure similar to (7),
but the inequalities (8) are satisfied only for sufficiently
large �, that is, in the strong-coupling regime. Therefore,
the continuum limit at � ! 0 cannot be reached by the
method described in Sec. IV.
Let us, however, rewrite Eq. (30) as

�ðxÞ ¼ 1

�þP
�
�ð�e�Þ

�X
�

�ðx� e�Þ þ ��ðxÞ
�
; (31)

and introduce the ‘‘hopping parameter’’

� ¼ 1

�þP
�
�ð�e�Þ : (32)

Now Eq. (30) in the form (31) looks like the equation for
the free massive scalar propagator on the lattice with the
mass m2 ¼ ��1 � 2D in lattice units. Note that �ð�e�Þ
tends to unity as � tends to zero; hence m2 also tends to
zero, and the continuum limit is approached.
Let us now solve Eq. (31) stochastically, assuming

that �ðxÞ is proportional to the stationary probability
distribution wðxÞ of some random process: �ðxÞ ¼ cwðxÞ,P

xwðxÞ ¼ 1. From (31) we get c ¼ ��
1�2D� . Equation (31)

now looks like

wðxÞ ¼ �
X
�

wðx� e�Þ þ ð1� 2D�Þ�ðxÞ: (33)

Combining this equation with the definition (32), it is
easy to show that � obeys the following self-consistency
condition:

� ¼ 1

2Dþ �wð0Þ : (34)

Equation (33) has the form (7) without the nonlinear
term and thus can be interpreted as the equation for the
stationary probability distribution of the position of an
ordinary bosonic random walk, defined by the following
possible actions at each discrete time step:
Move.—With the probability 2D� move along the ran-

dom unit lattice vector �e�.

Restart.—With the probability ð1� 2D�Þ start again at
the origin x ¼ 0.
This ensures thatwð0Þ> 0 and hence � never exceeds its

critical value �c ¼ ð2DÞ�1. Therefore �ðxÞ andwðxÞ can be
expanded in powers of �.
Thus we have defined a new expansion parameter �,

which should obey the self-consistency equation (34), and
we have obtained a well-defined convergent expansion,
namely, the sum over all paths on the lattice with the
weight �L, where L is the length of the path. Note that
the quantity �ð�e�Þ in fact plays a role similar to the gluon
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condensate (which is expressed in terms of the mean pla-
quette in lattice theory) in non-Abelian gauge theory: one
can absorb all the divergences into the self-consistent
definition of condensates [15,16].

The final step in the construction of the nonlinear ran-
dom process which solves Eq. (30) is the solution of the
self-consistency equation (34). One possible solution is to
use the iterations

�iþ1 ¼ 1

2Dþ �wð0;�iÞ : (35)

Here wð0;�Þ is the return probability of a bosonic random
walk with the hopping parameter �. In practice, one should
simulate the bosonic randomwalk at fixed � ¼ �i for some
number T of discrete time steps, and then estimate wð0;�iÞ
as wð0;�iÞ 	 tð0Þ=T, where tð0Þ is the number of discrete
time steps spent at x ¼ 0. From (35) one then gets �iþ1,
and the process is repeated until the value of � stabilizes
with sufficient numerical precision. We call this ‘‘algo-
rithm A.’’ One can also consider an ultimate case, for
which the return probability is updated and estimated as
tð0Þ=t every time the point x ¼ 0 is reached. Now t is the
time from the start of the random process and tð0Þ is the
number of time steps spent at x ¼ 0. This case will be
called ‘‘algorithm B.’’

Mathematically, such random processes are not Markov
processes, since the transition probabilities at each next
step depend (via �i) on the behavior of the process at all
previous time steps. Stationary probability distributions of
such processes obey nonlinear equations [such as (30)] [8],
and hence they are also called nonlinear random processes.

As an interesting side remark, let us discuss such a
theory at finite temperature, which is described by a bo-
sonic random walk on the cylinder. Clearly, an ordinary
bosonic random walk does not feel this compactification of
space, and its stationary probability distribution is just a
periodic linear combination of the corresponding distribu-
tion in infinite space. Such behavior cannot lead to any
nonlinear finite-temperature effects such as phase transi-
tions. On the other hand, if the parameters of the random
walk depend on the return probability, as in (34), there is a
nonlinear feedback mechanism since in the compactified
space the returns are more likely. Thus finite temperature
indeed affects the local behavior of the randomwalker with
memory and might lead to interesting critical phenomena.

In order to illustrate such a stochastic solution of
Eq. (30), we consider the case D ¼ 2. In two dimensions
the model (29) is asymptotically free, and one can intro-
duce the lattice spacing by fixing the value of mass in

physical units (we set mphys ¼ 1): mphysað�Þ ¼ mlattð�Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1ð�Þ � 2D

p
. The process of convergence of the lattice

spacing to its exact value is illustrated in Fig. 11 for
both algorithms A and B. For algorithm A we have used
T ¼ 5� 105. Algorithm A converges much faster than
algorithm B. The values of lattice spacing obtained using

both algorithms are compared with the exact solution in
Fig. 12. In agreement with asymptotic freedom, lattice
spacing quickly decreases with �. Again, algorithm A
yields more precise results in the same number of time
steps.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented numerical strategies for
the stochastic summation and resummation of perturbative
expansions in large-N quantum field theories. Our basic
approach was to interpret the Schwinger-Dyson equations
as the equations for the stationary probability distribution
of some random process. Since Schwinger-Dyson equa-
tions in such theories are nonlinear equations, we had to
use so-called nonlinear random processes, rather than
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ordinary Markov processes whose stationary probability
distributions always obey linear equations.

It is interesting to note that since the configuration
spaces of random processes described in this paper are
discrete, their numerical implementation require floating-
point operations only for the random choice of actions.
Thus such algorithms can be potentially much faster than
the standard Monte Carlo simulations based on floating-
point arithmetic, and can be advantageous for machines
based on GPUs.

Our final goal is to extend the presented approach to
non-Abelian lattice gauge theories. However, in this case
a direct stochastic interpretation of Schwinger-Dyson
equations is only possible at strong coupling, while the
continuum limit of such theories corresponds to the weak-
coupling limit. In Sec. V, we have discussed a way to
access the weak-coupling limit, which, however, was im-
plemented numerically only for an OðNÞ sigma model at
large N. The basic idea is to absorb the divergences into a
self-consistent redefinition of the expansion parameter
and solve the self-consistency conditions using random
processes with memory. In some sense, an OðNÞ sigma
model can be thought of as the bosonic random walk in its
own condensate, and the approach to the self-consistent
value of the mass gap (see Fig. 11)—as a renormalization-
group flow.

For non-Abelian gauge theories the redefined expansion
parameters can emerge as the Lagrange multipliers for the
‘‘zigzag symmetry’’ of the QCD string and should also
satisfy some self-consistency conditions [16]. Zigzag sym-
metry means that when one adds a line which is passed
forward and backward to the boundary of the fluctuating
string, the amplitudes should not change. In lattice gauge
theory, this condition is equivalent to the unitarity of the
link variables Uðx;�Þ, which is similar to the condition
jnðxÞj ¼ 1 in an OðNÞ sigma model. These redefined pa-
rameters can also be related to the gluon condensate [16].
By analogy with the sigma model, one can think that non-
Abelian gauge theories are similar to strings moving in
some self-consistent condensates. Such a picture is also
close to the idea of holographic AdS/CFT duality for non-
Abelian gauge theories, where the dual string lives in some
self-consistent gravitational background, and the parame-
ters of this background can be related to gluon condensates
in gauge theory [11]. In fact, the requirement that the
metric of the holographic background approaches that of
the AdS space-time ensures the zigzag symmetry of the
strings which end on the AdS boundary [11].

In view of these qualitative considerations, our hope is
that the loop equations in non-Abelian gauge theories can
be solved stochastically by a random process similar to the
one which was devised for the Weingarten model of ran-
dom surfaces (see Sec. IVC), but with some self-consistent
choice of parameters, which might be implemented as the
memory in the random process.

Among other possible applications of the presented
method, one can think of the solution of Schwinger-
Dyson equations in continuum gauge theories, combined
with the renormalization-group methods [10], numerical
analysis of quantum gravity models described by various
matrix models, and numerical solutions of hydrodynamical
equations [22].
It should be noted here that several attempts at the

stochastic solution of the loop equations in large-N gauge
theories were already described in the literature quite a
long time ago [23]. These algorithms were, in essence,
based on the so-called branching random processes, so that
the Wilson loop WðCÞ is proportional to the probability of
the transition from the initial loop configuration C to the
empty configuration with no loops. In particular, in con-
trast to the algorithm described in Sec. IVC, where one of
the basic steps is to join loops, in the algorithms described
in [23] the basic step was to split a self-intersecting loop
into two loops. As a result, these algorithms did not imple-
ment the importance sampling and were not able to pro-
duce any sensible results for the four-dimensional gauge
theory. Generally, branching random processes similar to
those considered in [23] can be obtained from the recursive
nonlinear random process described in this paper by time
reversal. However, since such processes do not satisfy any
detailed balance condition, they are not invariant under
this operation, and they lead to very different numerical
algorithms.
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APPENDIX: STOCHASTIC SOLUTION
OF NONLINEAR EQUATIONS WITH

COEFFICIENTS OF ARBITRARY SIGN

The random process described in Sec. III was devised
under the assumption that the coefficients pcðxÞ, peðxjy1Þ,
and pjðxjy1; y2Þ are real and positive for any x, y1, and y2.

In this appendix we show how the solution of Eq. (7), with
arbitrary signs or complex phases on the right-hand side,
can be reduced to the solution of another equation of
the form (7) with all positive coefficients, provided the
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inequalities (8) are satisfied. We begin by discussing
the case of real but nonpositive coefficients in detail,
and finally sketch the extension to complex-valued
coefficients.

To this end, let us represent the sign-alternating coeffi-
cients in (7) as

pcðxÞ ¼ pðþÞ
c ðxÞ � pð�Þ

c ðxÞ;
peðxjyÞ ¼ pðþÞ

e ðxjyÞ � pð�Þ
e ðxjyÞ;

pjðxjyÞ ¼ pðþÞ
j ðxjy1; y2Þ � pð�Þ

j ðxjy1; y2Þ;

(A1)

where pð�Þ
c ðxÞ, pð�Þ

e ðxjyÞ, and pð�Þ
j ðxjy1; y2Þ are all positive

and also obey the following inequality:

X
s¼�

X
x

pðsÞ
c ðxÞ þ pðsÞ

e ðxjy1Þ þ pðsÞ
j ðxjy1; y2Þ< 1 (A2)

for any y1, y2. Obviously, these inequalities can be satisfied
if the inequalities (8) are satisfied. Let us now introduce

two functions wðþÞðxÞ and wð�ÞðxÞ, which satisfy the fol-
lowing equations:

wðþÞðxÞ ¼ pðþÞ
c ðxÞ þX

y

pðþÞ
e ðxjyÞwðþÞðyÞ þX

y

pð�Þ
e ðxjyÞwð�ÞðyÞ þ X

y1;y2

pðþÞ
j ðxjy1; y2ÞwðþÞðy1ÞwðþÞðy2Þ

þ X
y1;y2

pðþÞ
j ðxjy1; y2Þwð�Þðy1Þwð�Þðy2Þ þ

X
y1;y2

pð�Þ
j ðxjy1; y2ÞwðþÞðy1Þwð�Þðy2Þ þ

X
y1;y2

pð�Þ
j ðxjy1; y2Þwð�Þðy1ÞwðþÞðy2Þ;

wð�ÞðxÞ ¼ pð�Þ
c ðxÞ þX

y

pðþÞ
e ðxjyÞwð�ÞðyÞ þX

y

pð�Þ
e ðxjyÞwðþÞðyÞ þ X

y1;y2

pðþÞ
j ðxjy1; y2ÞwðþÞðy1Þwð�Þðy2Þ

þ X
y1;y2

pðþÞ
j ðxjy1; y2Þwð�Þðy1ÞwðþÞðy2Þ þ

X
y1;y2

pð�Þ
j ðxjy1; y2ÞwðþÞðy1ÞwðþÞðy2Þ þ

X
y1;y2

pð�Þ
j ðxjy1; y2Þwð�Þðy1Þwð�Þðy2Þ:

(A3)

It is now easy to check that the difference

wðxÞ ¼ wðþÞðxÞ � wð�ÞðxÞ (A4)

satisfies Eq. (7). On the other hand, Eqs. (A3) again have
the form of (7) with all positive coefficients, but with the
configuration space X0 being the direct product X � Z2. In
other words, each variable x now, in addition, carries the
‘‘sign’’ þ or �, which can be written as fx;þg or fx;�g.
Based on the results presented in Sec. III, one can devise
the random process which solves these equations:

Create.—With the probability pð�Þ
c ðxÞ create a new ele-

ment fx;�g 2 X0 and push it to the stack.

Evolve.—With the probability pðþÞ
e ðxjyÞ pop the element

fy;�g from the stack and push the element fx;�g to the

stack; with the probability pð�Þ
e ðxjyÞ do the same but flip

the sign of y.

Join.—With the probability pðþÞ
j ðxjy1; y2Þ consecutively

pop two elements fy1; s1g, fy2; s2g from the stack and push a
single element fx; s1s2g to the stack. That is, two pluses or
two minuses associated with the y’s give fx;þg, but one
plus and one minus give fx;�g. With the probability

pð�Þ
j ðxjy1; y2Þ do the same, but flip the resulting sign; that

is, push the element fx;�s1s2g to the stack.
Restart.—Otherwise, empty the stack and push a single

element fx;�g 2 X0 into it, with the probability propor-

tional to pð�Þ
c ðxÞ.

As in Sec. III,wðþÞðxÞ andwð�ÞðxÞ are proportional to the
probability of finding the elements fx;þg or fx;�g on the
top of the stack, provided there is more than one element
in it.
The extension of this construction to complex-valued

coefficients is quite straightforward. We represent the co-
efficients in (7) as pcðxÞ ¼

R
2�
0 d�pcðx; �Þ expði�Þ, where

pcðx; �Þ is real and positive, and similarly for the other
coefficients. The configuration space X0 becomes the direct
product X � S1, where S1 is the unit circle in the complex
plane. The stack now contains the pairs fx; �g, with
� 2 ½0; 2�� being the complex phase. The function
wðxÞ is estimated as wðxÞ ¼ R

2�
0 d�wðx; �Þ expði�Þ, where

wðx; �Þ is the probability to find the element fx; �g at the
top of the stack. In the random process, new elements
are created with a probability distribution proportional to
pcðx; �Þ, and in the ‘‘evolve’’ and the ‘‘join’’ actions the
phases of the elements and the coefficients in (7) are added
modulo 2�, similarly to signs.
Note that this solution does not, in general, have the

property of importance sampling. Indeed, one can have
some x for which wðxÞ is numerically very small, but the
random process can spend an almost equally large amount
of time in the states fx;þg and fx;�g, so that numerically

large wðþÞðxÞ and wð�ÞðxÞ nearly cancel. Whether this
occurs or not depends on the particular system of equations
and on the particular unknown variables, but potentially
this feature can make numerical simulations less efficient.
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