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Separate regions in space are generally entangled, even in the vacuum state. It is known that this

entanglement can be swapped to separated Unruh-DeWitt detectors, i.e., that the vacuum can serve as a

source of entanglement. Here, we demonstrate that, in the presence of curvature, the amount of

entanglement that Unruh-DeWitt detectors can extract from the vacuum can be increased.
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I. INTRODUCTION

Two Unruh-DeWitt detectors that interact with a quan-
tum field in the vacuum state have access to a renewable
source of entanglement [1–5], namely, by swapping entan-
glement from the quantum field. In this context, it was
recently shown [6] that, in an expanding space-time, the
entanglement of the vacuum decreases significantly due to
the effects of the Gibbons-Hawking temperature [7]. While
this example showed that gravity is able to act as a deco-
hering agent, we will here show that gravity can also act to
enhance entanglement-related phenomena. Namely, we
will show that a weak gravitational field, such as that
caused by a planet, can enhance the extraction of entangle-
ment from the vacuum.

This article is organized as follows. In Sec. II we review
the extraction of entanglement with Unruh-DeWitt detec-
tors in Minkowski space-time. In Sec. III we review the
Newtonian limit of general relativity, and in Sec. IV we
look at Unruh-DeWitt detectors in the presence of weak
gravity. Then, in Sec. V we compute the first-order correc-
tion to the propagator on the perturbed background. In
Sec. VI we calculate explicitly the entanglement between
the two detectors near a spherically symmetric star. In
Sec. VII, we propose extensions.

We work with the natural units ℏ ¼ c ¼ G ¼ 1 and the
Minkowski metric ��� ¼ diagð�1; 1; 1; 1Þ. We denote the

coordinate time by x0 ¼ t while the proper time is denoted
by �. Wherever necessary to avoid ambiguity, we will
denote operators O or states jc i which live in the Hilbert

space H ðjÞ of the j’th subsystem by a superscript (j);

for example, OðjÞ and jc ðjÞi. Orders in perturbation theory
will be denoted by a subscript (j), as in, e.g., P ¼ Pð0Þ þ
Pð1Þ þOð�2Þ. We work in the interaction picture.

II. VACUUM ENTANGLEMENT

Let us first briefly review vacuum entanglement with
Unruh-DeWitt detectors [1,2,6]. To begin, let us denote

the overall Hilbert space by H ¼ H ð1Þ �H ð2Þ �H ð3Þ,

where the first two Hilbert spaces belong to two Unruh-
DeWitt detectors and where the third Hilbert space is that
of a quantum massless scalar field. The total Hamiltonian
H of the system with respect to the coordinate time t is

H ¼ HF þHD þHint

HF ¼ 1

2

Z
d3x½�2ðxÞ þ ðr�ðxÞÞ2�

HD ¼ X2
j¼1

½ðEg þ�EÞjeðjÞiheðjÞj þ EgjgðjÞihgðjÞj�
d�jðtÞ
dt

HintðtÞ ¼
X2
j¼1

�j�ð�jðtÞÞðjeðjÞihgðjÞjei�E�jðtÞ

þ jgðjÞiheðjÞje�i�E�jðtÞÞ�ðxjð�jðtÞÞÞ
d�jðtÞ
dt

; (1)

whereHF is the Hamiltonian of a free massless scalar field,
HD is the Hamiltonian of the two detectors, HintðtÞ is the
interaction Hamiltonian [8] in the interaction picture, �j is

the coupling constant of the j’th detector (j 2 f1; 2g),
�ðxjð�jÞÞ is the field at the point of the j’th detector, and

mðjÞð�jÞ :¼ ðjeðjÞihgðjÞjei�E�j þ jgðjÞiheðjÞje�i�E�jÞ is the

monopole matrix of the j’th detector. The function �ð�jÞ
will be used to describe the continuous switching on and
off of the detectors and �j is the proper time of the j’th

detector.
Let us first consider the special case where �1ðtÞ ¼

�2ðtÞ ¼ �ðtÞ such that the evolution operator U ¼
Te�i

R
dtHintðtÞ acting on states takes the form

U ¼ T exp

�
�i

Z
d�½�1�ð�Þmð1Þð�Þ�ðx1ð�ÞÞ

þ �2�ð�Þmð2Þð�Þ�ðx2ð�ÞÞ�
�
: (2)

We assume that the initial state of the system is j0gð1Þgð2Þi.
After the unitary evolution of the total system, we trace out
the field and obtain at Oð�2Þ [1,6]
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	ð1;2Þ
f ¼ Trð3ÞðUj0gð1Þgð2Þih0gð1Þgð2ÞjUyÞ

¼
0 0 0 X
0 P1 Y 0
0 Y� P2 0
0 0 0 1� P1 � P2

0
BBB@

1
CCCAþOð�4Þ; (3)

in the basis jeð1Þeð2Þi, jeð1Þgð2Þi, jgð1Þeð2Þi, and jgð1Þgð2Þi. The
matrix elements Pj, X, and Y read

Pj ¼ �2
j

Z 1

�1
d�

Z 1

�1
d�0�ð�Þ�ð�0Þ

� e�i�Eð���0Þ �Dðxjð�Þ; xjð�0ÞÞ; (4)

X ¼ ��1�2

Z 1

�1
d�

Z �

�1
d�0�ð�Þ�ð�0Þ

� ei�Eð�þ�0Þ � ðDðx1ð�Þ; x2ð�0ÞÞ þDðx2ð�Þ; x1ð�0ÞÞÞ;
(5)

Y ¼ �1�2

Z 1

�1
d�

Z 1

�1
d�0�ð�Þ�ð�0Þ

� e�i�Eð���0Þ �Dðx1ð�Þ; x2ð�0ÞÞ; (6)

whereDðx; yÞ ¼ h0j�ðxÞ�ðyÞj0i. To measure the entangle-

ment of 	ð1;2Þ
f , we use the negativity [9] which gives

N ¼ maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP1 � P2Þ2 þ 4jXj2

q
� P1 � P2; 0Þ þOð�4Þ:

(7)

In order to obtain more explicit results, let us consider, for
example, the case where the detectors are inertial and
separated by a constant proper distance Lp in Minkowski

space-time, in which case x0j ð�Þ ¼ �. Let us also assume

that �1 ¼ �2 ¼ � such that in Minkowski space we have
P1 ¼ P2 ¼ P andN ¼ 2maxðjXj � PÞ þOð�4Þ. For sim-
plicity we choose the switching functions to be Gaussian

�ð�Þ ¼ e��2=ð2
2Þ, where 
 is the detector on-time. This
also means that 1=
 is the energy uncertainty due to the
detector switching and if Lp=
 > 1, the world lines of the

two detectors are essentially spacelike while they are on.
In Eq. (7), following the terminology of [3], we will call

X the exchange term and Pj the local noise term. This is

because X can be interpreted as describing the exchange of
virtual quanta between the two detectors, and Pj can be

interpreted as describing the detection of virtual quanta by
detector j. In order to allow the introduction of gravity
(which will enter mostly through the propagator), it will be
useful to view Pj and X as functions of the propagator. To

this end, let us already ensure that the time ordering is
respected. For X this is straightforward since the time
integrations respect time ordering by construction.
We can still simplify X by using the variable change
s ¼ �� �0 and u ¼ �þ �0 such that we have

X ¼ ��2e�
2�E2



ffiffiffiffi
�

p Z 1

0
dse�s2=ð4
2Þ � ðGð ~x1; ~x2; sÞ

þGð ~x2; ~x1; sÞÞ; (8)

where Gðx; yÞ ¼ h0jT�ðxÞ�ðyÞj0i ¼ Gð ~x; ~y; x0 � y0Þ is
Feynman propagator [10]. For Pj, we introduce a conve-

nient change of variables for the double integral over the
ð�; �0Þ plane [11], making u ¼ �, s ¼ �� �0 in the lower
half-plane �0 < � and u ¼ �0, s ¼ �0 � � in the upper half-
plane � < �0. Then, Pj becomes

Pj ¼ 2�2

ffiffiffiffi
�

p <
�Z 1

0
dse�s2=ð4
2Þ�i�EsGð ~xj; ~xj; sÞ

�
: (9)

In Minkowski space-time we use the Boulware vacuum
such that the propagator is given by

Gðx; yÞ ¼ �1

4�2½ðx0 � y0Þ2 � j ~x� ~yj2 � i�� ; (10)

where lim�!0þ is implicit. Using Eq. (10) in Eqs. (9) and
(8) we obtain the local noise and the exchange term in
Minkowski space-time [6],

P ¼ �2

4�
ðe��E2
2 � �E

ffiffiffiffi
�

p

erfcð�E
ÞÞ; (11)

X ¼ �2
i

4Lp

ffiffiffiffi
�

p e��E2
2�L2
p=4


2
erfc

��iLp

2


�
; (12)

where Lp ¼ j ~x1 � ~x2j and erfcðxÞ ¼ 1� erfðxÞ.
Below, we will study the behavior of these parameters

and the negativity numerically, in particular, also in the
case with gravity. Here, let us note that, in an interesting
regime, these equations are tractable analytically. It is the
regime where on one hand �E
 � 1, i.e., where the
energy gap is large compared to the energy uncertainty
1=
 that comes with a detector on-time of effective dura-
tion 
. It is also the regime where on the other hand also
Lp=
 � 1, i.e., where the detectors are too far from

another to causally communicate while on. In this regime,

we have P � �2e��E2
2

8��E2
2 and jXj � �2
2e��E2
2

2�L2
p

.

From these expressions we see that to get a nonvanishing

negativity, 
�E must be at least as large as 
�E>
Lp

2
 .

However, we also see that 
�E should not be chosen too
large. This is because as 
�E ! 1, the negativity N
vanishes—which had to be expected because as 
�E
increases the Gaussian switching function becomes more
and more adiabatic, and this implies that the final state
returns to the ground state of the free theory that we started
with, which is not entangled. To optimize the negativity,

we set @N
@�Eopt

¼ 0, which yields �Eopt � Lp

2
2 ð1þ 2
2=L2
pÞ.

The resulting negativity is then Nopt � 4�2
4e
�L2p=4


2

�L4
p

.
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III. NEWTONIAN LIMIT

Let us now briefly review the Newtonian limit of general
relativity; see, e.g., [12]. In this limit we can write the
metric as g�� ¼ ��� þ h�� where jh��j � 1. Note that

under a small change of coordinates x� ! x� þ �� the
term h�� has a gauge transformation h�� ! h�� �
@��� � @���. Let us define the quantity �h�� :¼ h�� �
���h��=2. To simplify the Einstein equation, we choose to
work in the Lorentz gauge in which �h��

;� ¼ 0. In this

gauge, the linearized Einstein equation reads @�@
� �h�� ¼

�16�T��. In the Newtonian limit the gravitational field is
too weak to produce velocities near the speed of light, thus
only the T00 component of the stress-energy tensor con-
tributes significantly and we can make the approximation
@�@

� � r2. This means that the Einstein equation can be
approximated as @�@

� �h00 � r2 �h00 � �16�	. From this
we conclude that the dominant component of �h�� is �h00,
such that in terms of h�� we have h00 ¼ hii ¼ �h00=2.
Thus, the line element takes the form

ds2 ¼ �ð1� �h00=2Þdt2 þ ð1þ �h00=2Þðdx2 þ dy2 þ dz2Þ:
(13)

Now, assume we have a compact object, say, a star of
dark matter that does not interact with the quantum field
and is of radius Ro and of constant density 	 ¼
3M=ð4�R3

oÞ. We solve r2 �h00 � �16�	 with the usual

boundary conditions �h00ðj~rj ! 1Þ ¼ 0, @
�h00ð ~rÞ
@r ðr ¼ 0Þ ¼ 0

and with the continuity conditions �h00ðj~rj ! Ro � �Þ ¼
�h00ðj~rj ! Ro þ �Þ, @ �h00

@r ðj~rj ! Ro � �Þ ¼ @ �h00

@r ðj~rj ! Ro þ
�Þ in the limit � ! 0. This gives

�h 00ð ~rÞ ¼
8><
>:

2M
Ro

�
3� j~rj2

R2
o

�
when j~rj< Ro;

4M
j~rj when j~rj> Ro

; (14)

so to have jh��j � 1 we require M=Ro � 1.

IV. DETECTORSON THECURVED BACKGROUND

Let us now consider the two Unruh-DeWitt detectors on
the background of the weak gravitational field. We assume
that the two detectors and the center of the star are all on
the same axis. Therefore, detector 1 is located at a fixed
distance r1 from the center of the star, and similarly
detector 2 is located at r2 ¼ r1 þ L from the center of
the star. This means that their proper times do not coincide
�1ðtÞ � �2ðtÞ, so we may write the evolution operator as

U ¼ T exp

�
�i

Z
d�1�

�
�ð�1Þmð1Þð�1Þ�ðx1ð�1ÞÞ

þ �ð�2ð�1ÞÞmð2Þð�2ð�1ÞÞ�ðx2ð�2ð�1ÞÞÞ d�2ð�1Þd�1

��
;

(15)

and using Eq. (13) we have

�2ð�1Þ ¼ �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �h00ðr2Þ=2
1� �h00ðr1Þ=2

s

¼ �1

�
1�

�h00ðr2Þ
4

þ
�h00ðr1Þ
4

þOð½ �h00�2Þ
�
: (16)

To simplify our analysis we want to avoid this blueshift
effect. To do this, we assume that the two detectors are
close enough such that their internal clocks have the same
speed at first order in perturbation theory. This will be so if
j �h00ðr2Þ=4� �h00ðr1Þ=4j & Oð½ �h00ðr2Þ�2Þ, which for detec-
tors outside the star gives L & 16M. Under that assump-
tion, we have �2 ¼ �1ð1þOð½ �h00�2ÞÞ such that one can
easily verify that Eqs. (4) and (5) still hold up to Oð½ �h00�2Þ.
We assume that the detectors are pointlike and that their

quantum position uncertainties �X are much smaller than
their separation: �X � L. This means that the detectors,
possessing some mass m, have quantum momentum
fluctuations obeying m�v � 1=L � 1=ð16MÞ. These
fluctuations cause a Doppler broadening of the energy
gap �E and in order to be able to neglect this effect we
must require �v � 1. We thus arrive at the requirement
that the mass of the detectors obeym � 1=ð16MÞ. In other
words, we must have ðSchwarzschild radius of starÞ=
ðCompton wavelength of a detectorÞ � 1, which clearly
always holds.
In Eq. (7), we are therefore left with two types of first-

order contributions to the exchange term X and the local
noise term Pj, namely Pj ¼ Pð0Þ þ ~Pjð1Þ þ Pjð1Þ and

X ¼ Xð0Þ þ ~Xð1Þ þ Xð1Þ. Here, the ~Xð1Þ and ~Pjð1Þ are due

to the time dilation caused by the star. We denote by Xð1Þ
and Pjð1Þ the contributions that arise from the modifica-

tion of the propagator on the curved background. We will
calculate the perturbative expansion of the propagator
Gðx; yÞ ¼ Gð0Þðx; yÞ þGð1Þðx; yÞ in the next section. We

note here already that since it is widely believed that the
Boulware-type vacuum is the right vacuum for a quantum
field in a Newtonian gravitational potential [13,14], we can
use Eq. (10) for Gð0Þðx; yÞ. This means that we can already

evaluate the contributions ~Xð1Þ and ~Pjð1Þ. First, we note that

xjð�jÞ ¼
�

�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �h00ðrjÞ=2

q ; ~rj

�
: (17)

Thus, when L & 16M we have, using Eq. (10),

Gð0Þðj ~x1ð�Þ � ~x2ð�0Þj; x01ð�Þ � x02ð�0ÞÞ
¼ ð1� �h00ðr1Þ=2ÞGð0ÞðLpð1� �h00ðr1Þ=2Þ; �� �0Þ

þOð½ �h00�2Þ; (18)

where

Lp :¼
Z r1þL

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �h00ðrÞ=2

q
dr � Lð1þ �h00ðr1Þ=4Þ (19)
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is the proper distance between the two detectors. Hence,
when we put this back in Eqs. (9) and (8) we have the first-
order corrections

~P jð1Þ ¼ �
�h00ðrjÞ
2

Pð0Þ (20)

~X ð1Þ ¼ �
�h00ðr1Þ
2

�
Xð0Þ þ Lp

@Xð0Þ
@Lp

�
; (21)

where the 0th order terms are given by Eqs. (11) and (12).

V. CORRECTION TO THE PROPAGATOR

In this section we compute the first-order correction to
the propagator on the perturbed background. The first steps
of our calculation can be found in [13]. To focus on the
correction caused by gravity, we now assume that the field
is minimally coupled to curvature and to the matter that
composes the star. Under these assumptions, the propaga-
tor is a Green’s function of the Klein-Gordon operator

hxGðx; yÞ ¼ iðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffi�gðxÞp ; (22)

where hxfðxÞ ¼ 1ffiffiffiffiffi�g
p @�½ ffiffiffiffiffiffiffi�g

p
g��@�fðxÞ�. The first-order

correction to g is g ¼ �1� h�� ¼ �1� �h00. Using
Gðx; yÞ ¼ Gð0Þðx; yÞ þGð1Þðx; yÞ we have

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h��

p @�½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h��

p ð��� � h��Þ � @�ðGð0Þðx; yÞ

þGð1Þðx; yÞÞ� ¼ iðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h��

p : (23)

Expanding everything to first order only and using the fact
that Gð0Þðx; yÞ solves the 0th order equation, we obtain

� h��@�@�Gð0Þðx; yÞ þhð0ÞxGð1Þðx; yÞ
� @�h

��@�Gð0Þðx; yÞ þ @�ðh��=2Þ���@�Gð0Þðx; yÞ
¼ �iðx; yÞh��=2; (24)

where we used hð0Þx :¼ ���@�@�. Using again the fact

that iðx; yÞ ¼ hð0ÞxGð0Þðx; yÞwe can simplify the previous

equation,

hð0ÞxGð1Þðx; yÞ ¼ @� �h��@�Gð0Þðx; yÞ þ �h��@�@�Gð0Þðx; yÞ
¼ �h��@�@�Gð0Þðx; yÞ
¼ �h00ðxÞ@2

x0
Gð0Þðx; yÞ; (25)

where we used the fact that we are in the Lorentz gauge and
that in the Newtonian limit �h00 is the dominant component
of �h��. Note that since the space-time we consider is static
and asymptotically flat, the propagator Gðx; yÞ can be seen
as the analytic continuation of the unique Green’s function
on the positive definite section [13]. Since this holds order
by order in perturbation theory, at first-order perturbation
we can use Gð0Þ as the inverse of hð0Þ such that

Gð1Þðx; yÞ ¼ �i
Z

d4zGð0Þðx; zÞ �h00ðzÞ@2z0Gð0Þðz; yÞ: (26)

This equation gives us explicitly the first-order correction
to the propagator. It is clear from this equation that the
entire space-time perturbation will modify the propagator,
and the most significant contribution will come from the
patch of space-time near x and y. We now insert Gð0Þðx; yÞ
in Eq. (26) and, using the fact that �h00ðxÞ is independent of
time, we obtain

Gð1Þðx; yÞ ¼ �i

16�4

Z
dz0d3z �h00ð~zÞ

�
�

8ð~zþ sÞ2
ð~z� z1Þ3ð~z� z2Þ3ð~z� zoÞð~zþ zoÞ

� 2

ð~z� z1Þ2ð~z� z2Þ2ð~z� zoÞð~zþ zoÞ
�
; (27)

where we use the definitions Zx :¼ j ~x� ~zj, Zy :¼ j ~y� ~zj,
s :¼ x0 � y0, ~z :¼ z0 � x0, zo :¼ X þ i�, z1 :¼
�sþ Y þ i�, and z2 :¼ �s� Y � i�. We can then per-
form the z0 integration with the residue theorem. We
choose a closed contour in the upper half of the
complex plane and the upper part of the contour is equal
to zero because the integrand vanishes sufficiently rapidly
as z0 ¼ Rei�jR!1. We thus have

Gð1Þðx;yÞ¼ 1

8�3

Z
d3z �h00ð~zÞ

�
8ðzoþ sÞ2

ðzo� z1Þ3ðzo� z2Þ32zo
þ4

d2

d~z2

� ð~zþ sÞ2
ð~z� z2Þ2ð~z� zoÞð~zþ zoÞ

�

�
��������~z¼z1

� 2

ðzo� z1Þ2ðzo� z2Þ22zo
� d

d~z

�
2

ð~z� z2Þ2ð~z� zoÞð~zþ zoÞ
���������~z¼z1

�

¼ 1

8�3

Z
d3z �h00ðj~zjÞ

�
�
3ðs2þZxZyÞðZxþZyÞþZ3

xþZ3
y

ðZxZyþ i�Þðs2�½ZxþZyþ i��2Þ3
�
: (28)

Using the above equation we may now evaluate Pjð1Þ and
Xð1Þ. For Pjð1Þ, we have Zx ¼ Zy ¼ Z, such that the

correction to the propagator can be greatly simplified
with a simple change of variables:

Gð1Þð ~x; ~x; sÞ ¼ 1

2r�2

Z 1

0
dRR �h00ðRÞ

�
Z rþR

jr�Rj
dv

3s2 þ 4v2

ðs2 � 4v2 � i�Þ3 ; (29)

where r is the distance between ~x and the center of the star
and s ¼ x0 � y0. The v integral can be performed analyti-
cally. Note that Eqs. (9) and (8) were derived for detectors
in Minkowski space-time, where x0ð�Þ ¼ y0ð�Þ ¼ �. The
effect of the time dilation in the corrected propagator is a
second-order term which we neglect since we are only
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interested in the first-order effect. In other words, the
corrected propagator in terms of proper time can be ex-
panded as

Gð1Þð ~x; ~x; sð1þ �h00ðr1Þ=4ÞÞ

¼ Gð1Þð ~x; ~x; sÞ þ s �h00ðr1Þ
4

@

@s
Gð1Þð ~x; ~x; sÞ þOð½ �h00�3Þ;

(30)

and to be consistent with our current first-order
expansion we neglect the second term. We can thus use
Eqs. (9) and (8) with the first-order correction of the
propagator and with no time dilation, that is, x0ð�Þ ¼
y0ð�Þ ¼ �. For the same reason, we can also use at this
order Lp ¼ L. Therefore, we can put Eq. (29) in

Eq. (9) and we obtain the first-order correction to the local
noise Pjð1Þ:

Pjð1Þ ¼ �2

ffiffiffiffi
�

p
�2rj

<
�Z 1

0
dse�s2=ð4
2Þ�i�Es

Z 1

0
dR

� R �h00ðRÞ
��

ln

�
2ðrj þ RÞ þ ðs� i�Þ
2ðrj þ RÞ � ðs� i�Þ

�

� ln

�
2jrj � Rj þ ðs� i�Þ
2jrj � Rj � ðs� i�Þ

��
1

4ðs� i�Þ3

� 2ðrj þ RÞð2ðrj þ RÞ2 � s2Þ
ðs� i�Þ2ð4ðrj þ RÞ2 � ðs� i�Þ2Þ2

þ 2jrj � Rjð2ðrj � RÞ2 � s2Þ
ðs� i�Þ2ð4ðrj � RÞ2 � ðs� i�Þ2Þ2

��
: (31)

Similarly, for the exchange term Xð1Þ, we put Eq. (28)

in Eq. (8) and we then use a simple change of variables
to obtain

Xð1Þ ¼ ��2

ffiffiffiffi
�

p
e�
2�E2

2�2r1

Z 1

0
dse�s2=ð4
2Þ

�
Z 1

0
dRR �h00ðRÞ

Z r1þR

jr1�Rj
dv1v1

�
�
3ðs2 þ v1v2Þðv1 þ v2Þ þ v3

1 þ v3
2

ðv1v2 þ i�Þðs2 � ½v1 þ v2 þ i��2Þ3
�
; (32)

where v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1ð1þ Lp

r1
Þ þ Lpðr1 þ Lp � R2

r1
Þ

q
. The s inte-

gration can be performed analytically, such that we are left
with a relatively simple expression for Xð1Þ which in-

volves only two integrations:

Xð1Þ ¼ �2

ffiffiffiffi
�

p
e�
2�E2

2�2r1

Z 1

0
dRR �h00ðRÞ

Z r1þR

jr1�Rj
dv1

� 1

16ðv2 þ i�Þ
4

�
i�erfc

��iðv1 þ v2Þ
2


�
� e�ðv1þv2ÞÞ2=ð4
2Þ½2
2 � ðv1 þ v2Þ2�
� 2

ffiffiffiffi
�

p

ðv1 þ v2Þ

�
: (33)

VI. NEGATIVITY ON THE PERTURBED
BACKGROUND

We now have all the tools to compute explicitly the
corrected negativity. Using the �h00ðj~rjÞ of Eq. (14) in
Eqs. (31) and (33), we can find Pjð1Þ and Xð1Þ by nu-

merically evaluating the remaining integrals. ~Pjð1Þ and ~Xð1Þ
can then be evaluated exactly using Eqs. (20) and (21) such
that we arrive at the full noise term Pj ¼ Pð0Þ þ ~Pjð1Þ þ
Pjð1Þ and the full exchange term X ¼ Xð0Þ þ ~Xð1Þ þ Xð1Þ
using Eqs. (11) and (12) for the 0th order terms. This
allows us to compute the negativity between the two
detectors using Eq. (7). Note that even if we could find
the approximate behavior of X and Pj as a function of the

different parameters this would not be sufficient for our
analysis. Indeed, we need to know exactly which one of X
or Pj is greater to evaluate the negativity and conclude

whether or not gravity increased the extractable entangle-
ment of the vacuum. It is thus for this reason that a
numerical analysis is required.
Numerical evaluations indicate that jXj linearly in-

creases with the strength of the gravitational potential
M=Ro of the star while Pj linearly decreases with M=Ro.

Therefore, the negativity N linearly increases with the
strength of the gravitational field M=Ro. Note that the
linear dependence on M=Ro is simply due to the fact that
we used perturbation theory and kept only the first-order
term. In other words, the linear dependence did not need
numerical evaluation. However, the sign of the linear de-
pendence did need numerical evaluation. In a similar fash-
ion, numerical evaluation of jXj and Pj indicate that the

correction to the negativityN decreases roughly like Ro=r1
as r1=Ro ! 1 but remains positive, see Fig. 1. Note that

FIG. 1 (color online). N0 ¼ 8�2N=�2 as a function of r1=Ro.
Here 
�E ¼ 0:00674, Ro�E ¼ 1, and M=Ro ¼ 0:001. The
upper (red) curve corresponds to Lp=
 ¼ 1:409 and the

lower (blue) curve to Lp=
 ¼ 1:484. The upper and lower

dashed lines are the asymptotes r1=Ro ! 1. The parameters
fLp=
;
�E;Ro�Eg were chosen to display two regimes in

which entanglement enhancement and entanglement creation
occur, respectively.
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since M=Ro is the amplitude of the perturbation it is
appropriate to chose its value to be as small as 0.001.
Moreover, in Fig. 1 the two curves correspond to different
choices of parameter Lp=
: the choice Lp=
 ¼ 1:409was

made to exhibit an example where the negativity N is
nonzero even without the gravitational field. We therefore
see entanglement enhancement by gravity but not entan-
glement creation. The choice Lp=
 ¼ 1:484 was made to

exhibit an example where N ¼ 0 and jXj � P in the ab-
sence of the gravitational field. We therefore see not
only entanglement enhancement by gravity here but also
entanglement creation by gravity. Also the choice of
Ro�E ¼ 1 was made to allow one to display both entan-
glement enhancement and creation regimes. We remark
that it implies the exchange of virtual particles of typical
wavelength of the order of the radius of the star. Other
choices of parameters are possible but generally only
display entanglement enhancement. Furthermore, note
that the negativity’s dependence on �E
 is essentially
unchanged by the gravitational field as one can see
in Fig. 2.

As we previously mentioned this effect scales linearly
with the strength of the gravitational field M=r1, so for
detectors with 
 � 1=�E and 
 * Lp we have for the

Earth Nð1Þ & 10�9Nð0Þ, while for the Sun we have

Nð1Þ & 10�6Nð0Þ. Since entanglement swapping from the

entanglement Nð0Þ of the vacuum has still not been ob-

served, we expect that observing Nð1Þ will be very difficult.
Nevertheless, it should be interesting to see if this effect

can be modeled in a quantum field analog such as a linear
ion trap [15].

VII. OUTLOOK

Our calculations depended on the assumption that the
vacuum of the quantum field is described by the Boulware
vacuum. If we had considered two Unruh-DeWitt detectors
near a black hole in an Unruh or a Kruskal vacuum [8], the
Hawking temperature seen by both detectors would have
increased the local noise significantly such that the entan-
glement between both detectors should be degraded, not
enhanced. It should be interesting to investigate in detail to
what extent entanglement extraction by detectors near
black holes and stars is affected by the properties of the
corresponding vacuum states.
In this context, it should also be interesting to investigate

whether one can effectively model a black hole by using a
confining potential, for instance, on a shell. Indeed, a
trapping potential can have horizons, so it may be possible
to have a nontrivial vacuum in which particle production
occurs because of the potential. Such an analysis could
show the Hawking effect and its various open questions in
a new light.
Since we observed that the exchange term jXj increases

because of the gravitational field, it is tempting to speculate
on the Casimir-Polder force near a constant density star.
Indeed, the exchange term and the Casimir-Polder force
have essentially the same interpretation, that is they are the
result of a continuous exchange of virtual particles. We
therefore conjecture that Casimir or Casimir-Polder forces
can slightly increase in a weak gravitational field. Let us
recall, however, that the main contribution to this effect
stems from the exchange of virtual photons whose wave-
length is of the order of the spatial separation of the two
objects. In our calculations, we assumed that the separation
of the detectors is small compared to the radius of the star.
However, in the regimes considered in Fig. 1, we had that
Ro�E ¼ 1, i.e., that the virtual photons are of the wave-
length of the radius of the star. This means that we are here
in the near-field regime, where the Casimir effect reduces
to the van der Waal’s effect.
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FIG. 2 (color online). N0 ¼ 8�2N=�2 as a function of 
�E.
Here �ERo ¼ 1, r1=Ro ¼ 1:1, and M=Ro ¼ 0:001. The upper
(red) curve corresponds to Lp=
 ¼ 1:409 and the lower (blue)

curve to Lp=
 ¼ 1:484. The upper and lower dashed lines are

the asymptotes r1=Ro ! 1.
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