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The existence of a finite basis of algebraically independent one-loop integrals has underpinned

important developments in the computation of one-loop amplitudes in field theories and gauge theories,

in particular. We give an explicit construction reducing integrals with massless propagators to a finite basis

for planar integrals at two loops, both to all orders in the dimensional regulator �, and also when all

integrals are truncated to Oð�Þ. We show how to reorganize integration-by-parts equations to obtain

elements of the first basis efficiently, and how to use Gram determinants to obtain additional linear

relations reducing this all-orders basis to the second one. The techniques we present should apply to

nonplanar integrals, to integrals with massive propagators, and beyond two loops as well.
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I. INTRODUCTION

The computation of higher-order corrections to ampli-
tudes in gauge theories is important to the experimental
program at particle colliders. Recent years have witnessed
dramatic advances in technologies for computing one-loop
amplitudes, critical to the program of next-to-leading order
calculations for collider physics.

Important advances have also been made in computa-
tions of amplitudes beyond one loop. The computation of
two-loop amplitudes relies in part on the ability to compute
two-loop integrals, which has seen remarkable progress in
the last decade. Several technologies [1] played a role in
these advances, most notably the Mellin-Barnes approach
to computing integrals pioneered by Smirnov [2] and
Tausk [3], and later automated by Czakon [4]. Smirnov
and Smirnov have recently introduced an alternative auto-
mated strategy for resolving singularities [5]. Anastasiou
et al. have developed another method [6] of integral evalu-
ation combining sector decomposition [7] with contour
deformation [8]. These technologies have played a key
role in higher-loop calculations in the N ¼ 4 supersym-
metric gauge theory [9,10].

The computation of amplitudes has also made use of
techniques for reducing arbitrary tensor integrals to a basis
set of scalar master integrals. In calculations performed to
date, the reductions have relied on integration by parts
(IBP) [11] to construct linear equations relating the various
integrals, and on Gaussian elimination in the form of the
Laporta algorithm [12] to solve them. The solution deter-
mines a set of master integrals, and gives expressions for
the remaining integrals in terms of them. This reduction
approach has been automated in Anastasiou and
Lazopoulos’s AIR program [13], in Smirnov’s FIRE program
[14], and more recently, in Studerus’s REDUZE program

[15], as well as various private computer codes. We should
note that the existence of a method, such as the Mellin-
Barnes approach, for evaluating loop integrals directly
means that a reduction to master integrals is not, strictly
speaking, necessary for a Feynman-diagram calculation. It
greatly reduces the complexity and difficulty of such cal-
culations, however. In order to use master integrals in such
calculations, one needs the explicit forms of the reduction
equations.
Recent years have also witnessed the development and

elaboration of a new set of technologies, so-called on-shell
methods [16–22], for computing amplitudes. These rely
only on knowledge gleaned from physical states. The
unitarity method, one of the tools in this approach, deter-
mines the rational coefficients of loop integrals in terms of
products of tree amplitudes corresponding to cutting
propagators in the loop amplitude. (These coefficients are
rational in spinor variables.)
It is possible to determine the set of loop integrals that

contribute to a given process during the computation of their
coefficients, and most of the higher-loop computations
to date have proceeded in this manner. In the most power-
ful form of the unitarity method, generalized unitarity
[17,23–25], one cuts an amplitude into more than two
pieces; indeed, in ‘‘maximal unitarity,’’ one cuts as many
propagators as possible in a given contribution, thereby
reducing any higher-loop amplitude to a product of basic
tree amplitudes. The power of this technique is greatly
enhanced by an a priori knowledge of a basis of integrals,
as it then becomes possible to design the cuts in a general
way.
Knowledge of a basis, in contrast, is essential to devel-

oping an automated numerical implementation, which
several groups are currently pursuing at one loop [26].
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The required basis has been known for a long time at one
loop. The four-dimensional one dates back to the work of
Melrose [27]. It is worth noting that the reduction equa-
tions themselves are not required when using generalized
unitarity, because the method avoids the need for reduc-
tions of integrals with nontrivial numerators. We only need
to know the set of algebraically independent master inte-
grals. Baikov’s work [28] suggests an interesting connec-
tion between integration by parts and maximal unitarity.

Smirnov and Petukhov [29] have recently shown that the
integral basis resulting from integration by parts is finite. In
this paper, we give an explicit reduction to a finite set of
integrals for planar integrals at two loops. There are two
different kinds of bases we will consider. One requires
algebraic independence to all orders in the dimensional
regulator � (a ‘‘D-dimensional basis’’), while the other
requires algebraic independence for integrals truncated to
Oð�0Þ (a ‘‘regulated four-dimensional basis’’). The latter
contains fewer integrals and is the relevant basis for the
computation of amplitudes for numerical applications. We
shall show how to limit the set of planar integrals that enter
into a general two-loop computation and will discuss the
reductions of some of these integrals. We leave the com-
plete enumeration of basis integrals, as well as proofs of
their algebraic independence, to future work.

The approach we will pursue here makes use of a chosen
subset of IBP equations, designed to avoid the introduction
of unwanted integrals with doubled propagators, as well
as supplementary Gram-determinant equations to take ad-
vantage of additional reductions possible when the loop
integrals are performed in a truncated expansion about four
dimensions rather than in arbitrary dimension (that is, to
all orders in the � expansion). The approach we describe
should also apply to nonplanar integrals, and beyond
two loops as well. We use the Mellin-Barnes approach
[4,5,30,31] to cross-check our equations, along with an-
other technique for evaluating general higher-loop inte-
grals, sector decomposition [7,31].

We will not discuss the analytic evaluation of the master
integrals. Integrals involving a single dimensionless ratio
of invariants may be expressed in terms of harmonic poly-
logarithms introduced by Vermaseren and Remiddi [32], or
alternatively in terms of the generalized polylogarithms of
Goncharov [33]; some integrals involving two dimension-
less ratios can be expressed in terms of a two-dimensional
generalization of harmonic polylogarithms introduced by
Gehrmann and Remiddi [34]; for examples, see Ref. [35].
The four-mass double box was computed by Ussyukina
and Davydychev [36,37]. It is plausible that the complete
set of two-loop basis integrals with massless internal lines
can be expressed in terms of generalized polylogarithms,
but this remains to be proven.

In Sec. II, we review the basis of one-loop integrals with
massless propagators in order to illustrate the two different
bases, and to give a simple example of the use of Gram-

determinant equations. In Sec. III, we show how to reduce
two-loop tensor and scalar integrals of sufficiently high
multiplicity (again with massless propagators), thereby
providing a constructive demonstration of the existence
of a finite basis. We also describe how to obtain a compact
set of equations relating only integrals relevant to ampli-
tudes, avoiding the introduction of integrals with doubled
propagators. In Sec. V, we discuss the massless double box
in detail. In Sec. VI, we apply these techniques to double-
box integrals with different patterns of external masses. In
Sec. VII, we apply the techniques to the pentabox integral.
In Sec. VIII, we give one example of the reduction of a six-
point integral, the double pentagon. In Sec. IX, we present
a heuristic explanation of some of our results using gener-
alized unitarity. We summarize in a concluding section.

II. REDUCTION OF ONE-LOOP INTEGRALS

As a warm-up exercise, let us review integral bases at
one loop along with their derivation. Throughout the paper,
we will take the external momenta to be strictly four-
dimensional. They may be massless, or massive (represent-
ing, for example, sums of massless momenta in the original
amplitude). In addition, we will take all vectors contracted
with the loop momentum to be strictly four-dimensional
as well. These vectors might be momenta or polarization
vectors. All internal lines are taken to be massless.
In an n-point one-loop amplitude in gauge theory, we

start with integrals with up to n external legs, and up to n
powers of the loop momentum in the numerator. (In a
gravitational theory, we would start with up to 2n powers
of the loop momentum. Up to questions regarding ultra-
violet divergences, their treatment follows the same ap-
proach as the gauge-theory tensor integrals.) These powers
are contracted with external momenta, external polariza-
tion vectors, or external currents. We shall denote the scalar
integral by In,

InðK1; . . . ;KnÞ� In½1�

��i
Z dD‘

ð2�ÞD
1

‘2ð‘�K1Þ2ð‘�K12Þ2 ���ð‘�K1���ðn�1ÞÞ2
:

(2.1)

In this equation, Kj���l ¼ Kj þ � � � þ Kl. We denote inte-

grals with a function of ‘ inserted in the numerator as
follows:

In½P ð‘Þ� � �i
Z dD‘

ð2�ÞD

� P ð‘Þ
‘2ð‘� K1Þ2ð‘� K12Þ2 � � � ð‘� K1���ðn�1ÞÞ2

;

(2.2)

where the momentum arguments are left implicit.
Let us begin with high-multiplicity integrals, with

five or more external legs. Consider a generic tensor
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integral1 In½‘ � v1‘ � v2 � � � ‘ � vn�. We shall make use of
Gram determinants,

G
p1; . . . ; pl

q1; . . . ; ql

� �
� det

i;j2l�l
ð2pi � qjÞ; (2.3)

Gðp1; . . . ; plÞ � G
p1; . . . ; pl

p1; . . . ; pl

� �
; (2.4)

which have the useful property that they vanish if either the
fpjg or the {qjg are linearly dependent. Using these objects,
we can expand each of the four-dimensional vectors vj in a

basis of four chosen external momenta b1, b2, b3, b4,

v� ¼ 1

Gðb1; b2; b3; b4Þ
�
G

v; b2; b3; b4
b1; b2; b3; b4

� �
b
�
1

þG
b1; v; b3; b4
b1; b2; b3; b4

� �
b�2 þG

b1; b2; v; b4
b1; b2; b3; b4

� �
b�3

þG
b1; b2; b3; v

b1; b2; b3; b4

� �
b
�
4

�
: (2.5)

This leads us to consider integrals with numerator inser-
tions where all of the vj are equal to one of the bi. At one

loop, these factors are all reducible, because we can rewrite
any dot product as a difference of denominators, for ex-
ample,

‘ � b1 ¼ 1
2½ð‘� KÞ2 � ð‘� K � b1Þ2 þ ðK þ b1Þ2 � K2�:

(2.6)

The first two terms lead to integrals with fewer propagators
and fewer powers of ‘ in the numerator, while the last two
lead to integrals with fewer powers of ‘,

In½ð‘ � vÞn� ! In�1½ð‘ � vÞn�1� � In½ð‘ � vÞn�1�: (2.7)

Repeating this procedure for the daughter integrals (with a
new basis element instead of b1 where required) ultimately
leads to integrals In with n � 4 or with trivial numerators.

As it is well known [27,38–40], we can also reduce four-
or fewer-point integrals with nontrivial numerators, by
relying on Lorentz invariance to reexpress them in terms

of integrals where the nontrivial numerators involve only
external momenta. [We could alternatively introduce addi-
tional basis vectors up to contributions from Oð�Þ numer-
ators.] For the purposes of studying reductions, it therefore
suffices to take v to be one of the external momenta even
though the latter do not suffice to provide a basis. At higher
loops, not all integrals can be reduced this way, because not
all numerators can be written as differences of propagator
denominators as in Eq. (2.6). Many integrals with irreduc-
ible numerators can nonetheless be simplified using
IBP technology as implemented (for example) in the
Anastasiou-Lazopoulos AIR code [13], in Smirnov’s FIRE

package [14], or in Studerus’s REDUZE package [15], leav-
ing a smaller set of master integrals.
We must next reduce the five- or higher-point integrals

with trivial numerators (‘‘scalar’’ integrals). While the
reductions above hold independent of the dimensionality
of the loop integration, the same is not true of all of the
reductions we must consider here. We must distinguish
between an integral basis to all orders in the dimensional
regularization parameter �, and one which holds only
through order Oð�0Þ. The latter may contain fewer inte-
grals than the former, because it is possible for linear
combinations of integrals to be nonzero but of Oð�Þ. At
one loop, this is indeed what happens, with the scalar
pentagon integral required in an all-orders basis while
being reducible to Oð�0Þ [41].
Let first consider the reduction of six- or higher-point

integrals, which can be done to all orders in �. Because the
external momenta are four-dimensional, we have

G
‘; 1; 2; 3; 4

5; 1; 2; 3; 4

� �
¼ 0; (2.8)

where we have used the labels of the external momenta to
represent the momenta themselves. Accordingly,

In

�
G

‘; 1; 2; 3; 4

5; 1; 2; 3; 4

� ��
¼ 0; ðn � 6Þ: (2.9)

If we now expand the Gram determinant,

G
‘; 1; 2; 3; 4

5; 1; 2; 3; 4

� �
¼ �‘2G

1; 2; 3; 4

5; 2; 3; 4

� �
þ ð‘� K1Þ2G 1; 2; 3; 4

5; K12; 3; 4

� �
� ð‘� K12Þ2G 1; 2; 3; 4

5; 1; K23; 4

� �
þ ð‘� K123Þ2G 1; 2; 3; 4

5; 1; 2; K34

� �

þ ð‘� K1234Þ2G 1; 2; 3; 4

1; 2; 3; K45

� �
� ð‘� K12345Þ2G 1; 2; 3; 4

1; 2; 3; 4

� �
� K2

1G
1; 2; 3; 4

5; K12; 3; 4

� �
þ K2

12G
1; 2; 3; 4

5; 1; K23; 4

� �

� K2
123G

1; 2; 3; 4

5; 1; 2; K34

� �
� K2

1234G
1; 2; 3; 4

1; 2; 3; K45

� �
þ K2

12345G
1; 2; 3; 4

1; 2; 3; 4

� �
; (2.10)

we obtain an equation relating the n-point integral to six (n� 1)-point integrals,

1While this numerator does not have free indices, they could be exhibited by differentiating with respect to the vj, so in a slight abuse
of language, we will refer to the integral as a tensor integral.
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InðK1; . . . ; KnÞ ¼ c1In�1ðKn1; K2; . . . ; Kn�1Þ þ c2In�1ðK12; K3; . . . ; KnÞ þ c3In�1ðK1; K23; K4; . . . ; KnÞ
þ c4In�1ðK1; K2; K34; K5; . . . ; KnÞ þ c5In�1ðK1; . . . ; K45; . . . ; KnÞ þ c6In�1ðK1; . . . ; K56; . . . ; KnÞ;

(2.11)

where

c0 ¼ �K2
1G

1; 2; 3; 4

5; K12; 3; 4

� �
þ K2

12G
1; 2; 3; 4

5; 1; K23; 4

� �
� K2

123G
1; 2; 3; 4

5; 1; 2; K34

� �
� K2

1234G
1; 2; 3; 4

1; 2; 3; K45

� �
þ K2

12345G
1; 2; 3; 4

1; 2; 3; 4

� �
;

c1 ¼ 1

c0
G

1; 2; 3; 4

5; 2; 3; 4

� �
; c2 ¼ � 1

c0
G

1; 2; 3; 4

5; K12; 3; 4

� �
; c3 ¼ 1

c0
G

1; 2; 3; 4

5; 1; K23; 4

� �
;

c4 ¼ � 1

c0
G

1; 2; 3; 4

5; 1; 2; K34

� �
; c5 ¼ � 1

c0
G

1; 2; 3; 4

1; 2; 3; K45

� �
; c6 ¼ 1

c0
G

1; 2; 3; 4

1; 2; 3; 4

� �
: (2.12)

One can check numerically that the coefficient c0 does
not vanish for generic momenta, and hence the ci are well-
defined.

In D dimensions, as mentioned above, pentagon inte-
grals are needed as independent basis elements. When
expanding about D ¼ 4� 2� dimensions, however, only
the Oð�Þ terms are independent, so that the integral
can be eliminated from the basis. We can derive the re-
quired equation by considering the Gram determinant
Gð‘; 1; 2; 3; 4Þ. The Gram determinant itself is of Oð�Þ,
because it can avoid vanishing only when the � compo-
nents of ‘ appear in place of ‘. This leads us to consider
the integral,

I5½Gð‘; 1; 2; 3; 4Þ�: (2.13)

One might worry that the Gram determinant can end up
multiplying divergent terms in the integrand, yielding
terms which are overall still of Oð�0Þ or even divergent.

However, all divergences of the integral arise from regions
where ‘ is soft, or collinear to one of the external legs. In
these regions, the Gram determinant vanishes. Because the
divergences are logarithmic at D ¼ 4, any vanishing of the
integrand suffices to eliminate the divergences. (At one
loop, this in fact follows directly from the dependence of
the integral only on the �-dimensional components of ‘,
but that will not necessarily be manifestly true for similar
integrals we shall consider in the two-loop case.)
Furthermore, the integral is ultraviolet-finite by power
counting. Accordingly, the integral itself is also of Oð�Þ,

I5½Gð‘; 1; 2; 3; 4Þ� ¼ Oð�Þ: (2.14)

We can use this to obtain a useful equation for the pentagon
integral by expanding the Gram determinant, and reex-
pressing dot products of the loop momenta in terms of
differences of denominators,

Gð‘; 1; 2; 3; 4Þ ¼ d0 þ d1‘
2 þ d2ð‘� K1Þ2 þ d3ð‘� K12Þ2 þ d4ð‘� K123Þ2 þ d5ð‘� K1234Þ2

� ‘2G
1; 2; 3; 4

‘; 2; 3; 4

� �
þ ð‘� K1Þ2G 1; 2; 3; 4

‘; K12; 3; 4

� �
� ð‘� K12Þ2G 1; 2; 3; 4

‘; 1; K23; 4

� �

þ ð‘� K123Þ2G 1; 2; 3; 4

‘; 1; 2; K34

� �
� ð‘� K1234Þ2G 1; 2; 3; 4

‘; 1; 2; 3

� �
; (2.15)

where

(a) (b) (c) (d)

FIG. 1. The basis of scalar integrals: (a) box, (b) triangle, (c) bubble, and (d) tadpole. Each corner can have one or more external
momenta emerging from it. The tadpole integral (d) vanishes when all internal propagators are massless.

JANUSZ GLUZA, KRZYSZTOF KAJDA, AND DAVID A. KOSOWER PHYSICAL REVIEW D 83, 045012 (2011)

045012-4



d0 ¼ �ðK2
1Þ2G

K12; 3; 4

K12; 3; 4

� �
þ 2K2

1K
2
12G

K12; 3; 4

1; K23; 4

� �
� ðK2

12Þ2G
1; K23; 4

1; K23; 4

� �
� 2K2

1K
2
123G

K12; 3; 4

1; 2; K34

� �

þ 2K2
12K

2
123G

1; K23; 4

1; 2; K34

� �
� ðK2

123Þ2G
1; 2; K34

1; 2; K34

� �
þ 2K2

1K
2
1234G

K12; 3; 4

1; 2; 3

� �
� 2K2

12K
2
1234G

1; K23; 4

1; 2; 3

� �

þ 2K2
123K

2
1234G

1; 2; K34

1; 2; 3

� �
� ðK2

1234Þ2G
1; 2; 3

1; 2; 3

� �
;

d1 ¼ 2G
1; 2; 3; 4

1; 2; 3; 4

� �
� K2

1G
K12; 3; 4

2; 3; 4

� �
þ K2

12G
1; K23; 4

2; 3; 4

� �
� K2

123G
1; 2; K34

2; 3; 4

� �
þ K2

1234G
1; 2; 3

2; 3; 4

� �
;

d2 ¼ K2
1G

K12; 3; 4

K12; 3; 4

� �
� K2

12G
K12; 3; 4

1; K23; 4

� �
þ K2

123G
K12; 3; 4

1; 2; K34

� �
� K2

1234G
K12; 3; 4

1; 2; 3

� �
;

d3 ¼ �K2
1G

K12; 3; 4

1; K23; 4

� �
þ K2

12G
1; K23; 4

1; K23; 4

� �
� K2

123G
1; K23; 4

1; 2; K34

� �
þ K2

1234G
1; K23; 4

1; 2; 3

� �
;

d4 ¼ K2
1G

K12; 3; 4

1; 2; K34

� �
� K2

12G
1; K23; 4

1; 2; K34

� �
þ K2

123G
1; 2; K34

1; 2; K34

� �
� K2

1234G
1; 2; K34

1; 2; 3

� �
;

d5 ¼ �K2
1G

K12; 3; 4

1; 2; 3

� �
þ K2

12G
1; K23; 4

1; 2; 3

� �
� K2

123G
1; 2; K34

1; 2; 3

� �
þ K2

1234G
1; 2; 3

1; 2; 3

� �
:

(2.16)

The integrals of the terms on the last two lines of Eq. (2.15) will vanish, as they correspond to box integrals with "ð‘; . . .Þ in
the numerator. The integral of the d0 term is simply a pentagon, and the integrals of the d1;...;5 terms are box integrals. These
reductions and relations yield the well-known basis shown in Fig. 1.

Our aim is to extend these considerations to two-loop integrals. We will also introduce a new technique for reducing
integrals with irreducible numerators to the set of master integrals, based on rewriting the system of IBP equations. We
delineate the finite universal basis, while leaving a complete and detailed enumeration of it to future work.

III. REDUCTION OF PLANAR TWO-LOOP INTEGRALS

A. The integrals

We turn now to our main object of study, the planar two-loop integrals. We can organize the different integral skeletons
we obtain, representing only the propagators, into five classes. Three classes, depicted in Fig. 2, arise from attaching
external legs to the nontrivial two-loop vacuum diagram shown in Fig. 3. We obtain planar integrals by attaching external
legs to one or two of the internal lines, and possibly to its vertices. Were we to attach external legs to the third internal line
as well (here, the middle line), we would obtain nonplanar integrals. This gives rise to three of the five types of two-loop
planar integrals; the remaining types are simply products of one-loop integrals. We label the integrals according to the
number of external legs attached to each of the vacuum diagram’s internal lines, denoting the absence of lines attached to
vertices by stars. The three types of integrals are

Pn1;n2 ¼ ð�iÞ2
Z dD‘1

ð2�ÞD
dD‘2
ð2�ÞD

1

‘21ð‘1 � K1Þ2 � � � ð‘1 � K1���n1Þ2ð‘1 þ ‘2 þ Kn1þn2þ2Þ2

� 1

‘22ð‘2 � Kn1þn2þ1Þ2 � � � ð‘2 � Kðn1þ2Þ���ðn1þn2þ1ÞÞ2
;

P	
n1;n2 ¼ ð�iÞ2

Z dD‘1
ð2�ÞD

dD‘2
ð2�ÞD

� 1

‘21ð‘1 � K1Þ2 � � � ð‘1 � K1���n1Þ2ð‘1 þ ‘2Þ2‘22ð‘2 � Kn1þn2þ1Þ2 � � � ð‘2 � Kðn1þ2Þ���ðn1þn2þ1ÞÞ2
;

P		
n1;n2 ¼ ð�iÞ2

Z dD‘1
ð2�ÞD

dD‘2
ð2�ÞD

1

‘21ð‘1 � K1Þ2 � � � ð‘1 � K1���n1Þ2ð‘1 þ ‘2Þ2‘22ð‘2 � Kn1þn2Þ2 � � � ð‘2 � Kðn1þ1Þ���ðn1þn2ÞÞ2
;

(3.1)

along with products of two one-loop integrals shown in Fig. 4,
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In1;n2 ¼ð�iÞ2
Z dD‘1
ð2�ÞD

dD‘2
ð2�ÞD

� 1

‘21ð‘1�K1Þ2 ���ð‘1�K1���n1Þ2

� 1

‘22ð‘2�Kn1þn2þ1Þ2 ���ð‘2�Kðn1þ2Þ���ðn1þn2þ1ÞÞ2
;

I	n1;n2 ¼ð�iÞ2
Z dD‘1
ð2�ÞD

dD‘2
ð2�ÞD

1

‘21ð‘1�K1Þ2 ���ð‘1�K1���n1Þ2

� 1

‘22ð‘2�Kn1þn2Þ2 ���ð‘2�Kðn1þ1Þ���ðn1þn2ÞÞ2
;

(3.2)

so that Pn1;n2 is an ðn1 þ n2 þ 2Þ-point integral, P	
n1;n2 and

In1;n2 are ðn1 þ n2 þ 1Þ-point integrals, and P		
n1;n2 and I

	
n1;n2

are ðn1 þ n2Þ-point integrals. Without loss of generality,
we may take n1 � n2.

In our discussion below, we will focus on the Pn1;n2

integrals. Similar arguments typically apply to the P	;		
n1;n2 .

We may also observe that

P	
n1;n2ðK1; . . . ; Kn1þn2þ1Þ ¼ Pn1;n2ðK1; . . . ; Kn1þn2þ1; 0Þ;
P		
n1;n2ðK1; . . . ; Kn1þn2Þ ¼ P	

n1;n2ðK1; . . . ; Kn1 ; 0;

Kn1þ1; . . . ; Kn1þn2Þ: (3.3)

so that the values of P	 and P		 are known in terms of P.
Nonetheless, their different branch cut structures strongly
suggest that the former are algebraically independent of
the latter. In explicit examples in Secs. V, VI, VII, and VIII,
we examine P		 integrals.

These integrals will arise in the leading-color contribu-
tions to two-loop QCD amplitudes, including amplitudes
for production of electroweak bosons or other particles
coupled to quarks. Just as in the one-loop case, all internal

lines will be massless, but the external legs of the integrals
can correspond to sums of external momenta, and hence
can be either massless or massive. Each of the vertices can
come with a power of the corresponding loop momentum,
and each of the three-point internal vertices in P\;	;		 can
also comewith a power of either ‘1 or ‘2, so that we should
consider tensor integrals with up to ðn1 þ 2Þ powers of
‘1 along with n2 powers of ‘2, or alternatively up to
ðn1 þ 1; n2 þ 1Þ or ðn1; n2 þ 2Þ powers of the two loop
momenta ð‘1; ‘2Þ.

B. Reduction of High-Multiplicity integrals with
Non-Trivial numerators

We begin our discussion of integral reduction at two
loops by considering tensor integrals with n1 � 4,
Pn1;n2½‘ � v1‘ � v2 � � � ‘ � vn�, where each ‘ can be either

‘1 or ‘2. We can use the expansion of Eq. (2.5), with the
external momenta b1; . . . ; b4 chosen amongst the first n1
momenta. This leads us to consider integrals with numer-
ators containing factors of ‘1 � Kj, where 1 � j � n1. As

in the one-loop case, these numerators are reducible,

‘1 � Kj ¼ 1

2
½ð‘1 � K1���ðj�1ÞÞ2 � ð‘1 � K1���jÞ2

þ K2
1���j � K2

1���ðj�1Þ�: (3.4)

The first two terms lead to integrals with smaller indices
(Pn1�1;n2 , P

	
n1�1;n2

, or one of Pn1;n1�1 and P	
n1;n1�1 in the

case n1 ¼ n2) and simpler tensors, while the last two lead
to integrals with simpler tensors. Repeating this procedure,
including application to ‘2, leads to tensor integrals Pn1;n2

with n1 � 4 and n2 < 4, or integrals with general ðn1; n2Þ
but with trivial numerators.

FIG. 3. The nontrivial two-loop vacuum diagram.

(a) (b)

(c)

FIG. 2. The three basic types of two-loop planar integrals,
labeled by the number of legs attached to each leg of the vacuum
diagram: (a) Pn1;n2 , (b) P

	
n1;n2 , (c) P

		
n1 ;n2 .

(a) (b)

FIG. 4. Two-loop integrals which are products of one-loop
integrals, labeled by the number of legs attached to each leg of
the vacuum diagram: (a) In1 ;n2 , (b) I

	
n1 ;n2 .
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C. Reduction of High-Multiplicity integrals with
trivial numerators

Once we have eliminated high-multiplicity tensor inte-
grals, or equivalently those with nontrivial polynomials in
‘1;2 in the numerator, we must consider integrals with

trivial numerators but arbitrary number of external legs.
To reduce Pn1;n2 integrals with n1 � 5, we can make use of

the same Gram determinant as in the one-loop case,

G
‘1; 1; 2; 3; 4

5; 1; 2; 3; 4

� �
¼ 0: (3.5)

We will obtain the reduction,

Pn1;n2ðK1; . . . ; Kn1þn2þ2Þ
¼ c1Pn1�1;n2ðK2; . . . ; Kðn1þn2þ2Þ1Þ

þ c2Pn1�1;n2ðK12; K3; . . . ; Kn1þn2þ2Þ
þ c3Pn1�1;n2ðK1; K23; K4; . . . ; Kn1þn2þ2Þ
þ c4Pn1�1;n2ðK1; K2; K34; K5; . . . ; Kn1þn2þ2Þ
þ c5Pn1�1;n2ðK1; . . . ; K45; . . . ; Kn1þn2þ2Þ
þ c6Pn1�1;n2ðK1; . . . ; K56; . . . ; Kn1þn2þ2Þ; (3.6)

where the coefficients ci are given in Eq. (2.12), the same
ones as in the one-loop reduction. This reduction involves
only propagators dependent solely on ‘1. [In the case

n1 ¼ n2, Pn1�1;n2ðfKign11 ; fKjgn1þn2þ1
n1þ2 Þ is given by the

flipped integral Pn2;n1�1ðfKjgn1þ2
n1þn2þ1; fKig1n1Þ.] This reduces

the set of scalar integrals to Pn1;n2 with n2 � n1 � 4. This

means we have a finite (if large) set of integrals in terms of
which we can express any planar two-loop integral, and
hence any planar two-loop amplitude.

This reduction generalizes both to nonplanar and to
higher-loop integrals. The details are in some cases more
intricate, but at two loops, we can reduce all integrals with
more than 11 propagators. We can see this using a variety
of Gram determinant equations similar to Eq. (3.5).

There is another, more general, way of looking at this
question. Let us label the momenta in the two-loop vacuum
diagram of Fig. 3 by ‘1, ‘2, and ‘3. They are not indepen-
dent, because ‘1 þ ‘2 þ ‘3 ¼ 0, but can be treated sym-
metrically. There can at most be 11 independent invariants
ti involving the loop momenta, namely, the three squares of
the loop momenta,

‘21; ‘22; ‘23; (3.7)

and eight invariants built out of loop momenta, of the form

‘j � ki; (3.8)

where four ki are selected out of the external momenta.
Because the external momenta are strictly four-
dimensional, we can express all remaining ones, and hence
all invariants involving them, in terms of these four. We can
choose the invariants to be all manifestly reducible. If we

have more than eight external lines attached to the lines in
the vacuum diagram (that is, excluding legs attached di-
rectly to the vertices in it), then there are more than 11
propagators with denominators di, and accordingly we can
write down nontrivial equations,

0 ¼ di �
X
j

cjtj (3.9)

for denominators beyond the 11th. Inserting this equation
into the integrand allows us to reduce the integrals with
more than 11 propagators to simpler integrals, at arbitrary
D or equivalently to all orders in �. (This assumes that the
coefficient of the original integral is nonzero, which the
earlier discussion demonstrates for the two-loop case.)

D. Integration by parts without doubled propagators

The reductions discussed in the previous subsections
show that all required integrals for a planar n-point two-
loop amplitude can be written in terms of the P4;4 integral

with a trivial numerator; P4;n2<4 integrals with trivial

numerators or numerators dependent only on ‘2; and
Pn1<4;n2�n1 integrals with trivial numerators or numerators

dependent on either or both of the loop momenta. Of
course, some numerators can still be written as a difference
of denominators, as in Eq. (3.4). The corresponding inte-
grals can then be reduced. The remaining irreducible in-
tegrals, for n1 þ n2 � 5, are those with irreducible
numerators, which cannot be written in such a way. For
example, in P4;3, ‘2 � K1 would be an irreducible numera-

tor. (Some integrals with n1 þ n2 � 4 require a more
specialized analysis, just as at one loop, and for the most
part we shall not consider them in the present article.)
To reduce these integrals, where possible, we will em-

ploy the IBP technique first introduced long ago by
Chetyrkin and Tkachov [11], and refined into a general-
purpose algorithm by Laporta [12].
The IBP technique as outlined by Laporta, and as im-

plemented in AIR [13], FIRE [14], and REDUZE [15], relies
on writing down all possible equations from introducing a
differentiation inside the integrand,

Pn1;n2

�
@

@‘�j
v�

�
¼ �

Z dD‘1
ð2�ÞD

dD‘2
ð2�ÞD

@

@‘�j

v�

Dð‘1; ‘2; fKigÞ
¼ 0; (3.10)

whereDð‘1; ‘2; fKigÞ is the denominator found in Eq. (3.1).
The simplest choices for v� are the set of external mo-
menta, along with the two loop momenta. The use of
dimensional regularization ensures that there is no bound-
ary term in this equation.
With these choices, however, the resulting equations

involve not only the integrals of interest (as well as simpler
planar integrals), but also integrals with doubled propaga-
tors. These arise from derivatives hitting the denominators
of the integrals. Moreover, such integrals can have worse
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infrared singularities, so that their use results in the appear-
ance of additional inverse powers of � in coefficients. This,
in turn, would require them to be known (either analyti-
cally or numerically) to higher orders in �. These integrals
do not arise directly in the computation of gauge-theory
amplitudes, and usually we do not wish to introduce them
at the stage of solving these equations. In all cases studied
to date, it has been possible to eliminate such integrals (at a
cost of retaining some integrals with nontrivial numera-
tors), and it seems plausible that this holds true generally.
Their elimination requires the consideration of very large
systems of equations, performed using the Laporta algo-
rithm. In addition to the considerable computational com-
plexity of these systems, which has made it difficult to
proceed in explicit examples beyond four-point integrals, it
is also far from clear how to characterize these systems in
the general case.

For this reason, we seek to simplify the equations we
obtain by eliminating unwanted integrals, those with
doubled propagators, from the very start. We will do so
by making special choices of the v� vectors in Eq. (3.10).
For example, we could choose vectors whose dot product
with the numerator resulting from differentiating any
propagator vanishes,

v � ð‘� KÞ ¼ 0: (3.11)

As these expressions are the coefficients of the doubled
propagators, this vanishing will ensure that doubled propa-
gators are absent. We can construct such vectors using
Gram determinants; defining

G
�; b1; b2; b3; b4
d1; d2; d3; d4; d5

� �
� @

@w�

G
w; b1; b2; b3; b4
d1; d2; d3; d4; d5

� �
; (3.12)

vectors v of the form

v� ¼ G
�; ‘1; ‘2; 6; 7; 8

‘2; ‘1; 1; 2; 3; 4

� �
(3.13)

will have the desired property with respect to propagators
depending only on ‘2. For example, the IBP equation,

P4;3½@2 � v� ¼ 0 (3.14)

(where @j ¼ @=@‘j), will be free of doubled propagators.

Because ‘1;2 are D-dimensional vectors, Gram determi-

nants like that in Eq. (3.13) give the most general solution
to Eq. (3.11).

However, this solution is not general enough for our
purposes. The problem is that while the constraint (3.11)
is sufficient, it is not necessary. It is in general too strong a
constraint, and in practice we would miss equations if we
insisted on it. The weaker constraint, that

v � ð‘� KÞ / ð‘� KÞ2; (3.15)

suffices to remove the doubled propagator as well. This
constraint can be expressed as the requirement that there be
no remainder upon synthetic division of v � ð‘� KÞ by the
propagator denominator ð‘� KÞ2. We must impose this
constraint for every propagator. For an integral with nd
propagators, that is with a denominator in the form

W�1
n � Ynd

j¼1

dj ¼
Ynd
j¼1

ð�j1‘1 þ �j2‘2 � KjÞ2; (3.16)

we must impose the nd equations

Rem
½v1 � @

@‘1
þ v2 � @

@‘2
�ð�j1‘1 þ �j2‘2 � KjÞ2

ð�j1‘1 þ �j2‘2 � KjÞ2
¼ 0;

(3.17)

or equivalently,

Rem
½�j1v1 þ �j2v2� � ð�j1‘1 þ �j2‘2 � KjÞ

ð�j1‘1 þ �j2‘2 � KjÞ2
¼ 0;

(3.18)

where Rem denotes the remainder on synthetic division
(using either ‘i as a variable). (In these equations, the �j

will be 
1 or 0.) These equations are for vectors v1;2 built

out of the loop momenta, external momenta, and dot
products thereof. We will discuss how to find the general
solution to these equations in the next section. (By con-
vention, we order the denominators as follows: first, those
depending only on the first loop momentum; then, those
depending only on the second loop momentum; and finally,
those depending on both loop momenta.)
Before trying to solve the equations, let us try to char-

acterize the solutions better. These have several general
properties that will be helpful in finding and using these
vectors. For example, if we have a pair of vectors,

fvð0Þ
1 ; vð0Þ

2 g that satisfy Eq. (3.17), then any multiple of the

pair is also a solution. In particular, multiplying by any
Lorentz invariant involving either of the two loop momenta
gives us a solution.
Not all these additional solutions are useful, however.

We can divide these Lorentz invariants into two types:
the reducible ones, expressible as a linear combination of
propagator denominators and external invariants, and irre-
ducible ones whose dependence on the loop momenta
cannot be expressed using propagator denominators.
While multiplying by an invariant of the former type
does yield a solution to the constraints (3.17), it is not a
useful solution, because it does not yield an independent
equation for the integrals of irreducible numerators. To see
this, let us write out the resulting IBP equations. The
original equation is
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I½@1 � ðv1WÞ þ @2 � ðv2WÞ� ¼ 0: (3.19)

Multiplying the vectors by a factor f gives a sum of two
terms,

I½fð@1 � ðv1WÞþ @2 � ðv2WÞÞ�þ I½Wðv1 � @1fþv2 �@2fÞ�
¼ 0: (3.20)

The first term contains reduced integrals (that is, with
fewer propagators) and terms proportional to the original
equation. What about the second term? If f is reducible,
its derivative can be written as a linear combination of
the derivatives of the denominators in W. Because of
Eq. (3.18), the sum in parenthesis is strictly reducible,
that is reducible without adding any terms proportional to
external invariants. The second term in Eq. (3.20) thus
contributes only reduced integrals. Accordingly, only irre-
ducible factors f can give rise to new IBP equations.

Indeed, the solution itself will not be useful if both of the
vectors v1 and v2 are reducible; we will therefore restrict
attention to solutions in which at least one is irreducible,
that is, at least one term in one of the pair v1;2 is irreduc-

ible. Note that not all independent vectors will lead to
independent IBP equations; but because the independence
of the IBP equations can depend on whether the dimen-
sional regulator � is taken to zero or not, we leave that
assessment to a later stage.

It is possible to find even weaker constraints that remove
double propagators, by adding a ‘‘total derivative,’’ that is a
function which integrates to zero, to the right-hand side of
Eq. (3.15). We will not consider such right-hand sides. In
the examples we consider below, they are not necessary,
though we know of no general proof.

Integration-by-parts equations can be supplemented
with Lorentz-invariance equations [34], using operators
built out of derivatives with respect to external momenta.
In general, these are not independent of the complete tower
of IBP equations [42]; because we will be able to generate
the complete tower of IBP equations, we do not need to
consider Lorentz-invariance equations.

As mentioned in the introduction, for generalized uni-
tarity, we only need to know the basis integrals, that is the
set of integrals left independent by the full set of IBP
equations. In order to find this set, we could of course
solve for the IBP-generating vectors analytically, and then
construct the set of IBP equations analytically as well.
However, it suffices to solve for these vectors for a
randomly-chosen (‘‘generic’’) numerical configuration of
external momenta. For higher-point integrals, or integrals
with many massive external legs, this can greatly reduce
the complexity of the calculation, and, in particular, the
memory required to solve for the IBP-generating vectors.

E. Additional Identities to Oð�Þ
The integration-by-parts identities give relations be-

tween different integrals that are valid for arbitrary dimen-

sion D, or equivalently, to all orders in the dimensional
regulator �. However, in practical calculations at a given
order in perturbation theory we are interested in computing
terms only throughOð�0Þ, and we are quite willing to drop
terms of Oð�Þ or higher. Additional relations between
integrals, even if they are only valid through Oð�0Þ, are
for these practical purposes just as good as relations that
hold to all orders in �. The reduction of the one-loop
pentagon integral, as we reviewed in Sec. II, is exactly
this kind of relation. In general, we can write down several
forms of integrands leading to integrals of Oð�Þ, built of
Gram determinants or products thereof,

Gð‘1; b1; b2; b3; b4ÞGð‘2; b01; b02; b03; b04Þ;

G
‘1; b1; b2; b3; b4
‘2; b

0
1; b

0
2; b

0
3; b

0
4

 !
;

G
‘1; ‘2; b1; b2; b3
‘1; ‘2; b

00
1 ; b

00
2 ; b

00
3

 !
;

G
‘1; ‘2; b1; b2; b3; b4
‘1; ‘2; b

0
1; b

0
2; b

0
3; b

0
4

 !
; (3.21)

where the momenta attached to the first loop (through
which ‘1 flows) are contained either within the set
fb1; b2; b3g or within the set fb001 ; b002 ; b003 g, and the momenta

attached to the second loop are contained within the other
of the two sets. These Gram determinants all vanish when
either loop momentum approaches a potential (on-shell)
collinear or soft configuration, thereby removing the cor-
responding divergences from the integral, and rendering
it finite. In addition, the Gram determinants vanish when
both loop momenta are four-dimensional, so that the in-
tegrals are of Oð�Þ. We can also write down differences of
expressions yielding finite integrals which will again van-
ish when both loop momenta are four-dimensional, so that
the resulting integrals are again of Oð�Þ,

G
‘1; b1; b2; b3
‘1; b4; b5; b6

� �
G

‘2; b
0
1; b

0
2; b

0
3

‘2; b
0
4; b

0
5; b

0
6

 !

�G
‘1; b1; b2; b3
‘2; b

0
4; b

0
5; b

0
6

 !
G

‘2; b
0
1; b

0
2; b

0
3

‘1; b4; b5; b6

� �
; (3.22)

where the legs attached to the first loop are all represented
amongst the bi, and the legs attached to the second loop,
amongst the b0i. (For P	 and P		 integrals, k1 must also be
amongst the b0i, and kn amongst the bi; for P

		, kn1þ1 must

be amongst the bi, and kn1 amongst the b0i.)
Not all of these determinants will necessarily lead to

useful equations reducing the basis. We can also consider
integrals with numerators containing a product of one of
these Gram determinants and other irreducible factors, as
long as the integrals are ultraviolet-finite (which can be
determined by power counting). As is true for the
IBP-generating vectors, we can also generate additional
identities for a randomly-chosen configuration of external

TOWARDS A BASIS FOR PLANAR TWO-LOOP INTEGRALS PHYSICAL REVIEW D 83, 045012 (2011)

045012-9



momenta; this will be sufficient to identify the integrals
that are independent throughOð�0Þ. Typically, we will first
solve all D-dimensional IBP equations, and use the solu-
tions of those equations (in analytical or numerical form)
to reduce the integrals obtained from inserting Gram
determinants into the numerator; this will provide addi-
tional identities to Oð�0Þ between the independent master
integrals.

We can write down additional Gram determinants be-
yond those given in Eq. (3.21),

G
‘1; ‘2; b1; b2; b3
‘1; b

0
1; b

0
2; b

0
3; b

0
4

 !
; G

‘1; ‘2; b1; b2; b3
‘2; b

0
1; b

0
2; b

0
3; b

0
4

 !
; (3.23)

where all momenta attached to the second loop (with loop
momentum ‘2) are represented amongst fb1; b2; b3g in the
first case, and similarly for the momenta attached to the
first loop in the second case. However, these determinants
give rise to integrands which are in fact total derivatives,
and hence the corresponding integrals vanish identically.
To see this, consider the following vector:

G
�; ‘1; ‘2; b1; b2; b3
‘1; ‘2; b

0
1; b

0
2; b

0
3; b

0
4

 !
; (3.24)

where all momenta attached to loop in which ‘2 flows are
in fb1;2;3g. The vector’s dot product with the derivative of

any propagator with respect to ‘2 will vanish so that only
the derivative of the Gram determinant itself can enter any
equation; but that derivative is proportional to the first
determinant in Eq. (3.23). Accordingly, we do not need
to consider the forms in Eq. (3.23) if we have already
solved the IBP equations. If we include additional irreduc-
ible prefactors, we will again either obtain an expression
proportional to the determinants in Eq. (3.23) or to linear
combinations of them and the last determinant in
Eq. (3.21). Equations similar to those considered in this
section were obtained for six-point integrals by Cachazo,
Spradlin, and Volovich [10] using leading singularities.

IV. IBP-GENERATING VECTORS

In order to find the general form of vectors leading to
IBP equations free of doubled propagators, we must find
the general solution to the set of Eqs. (3.18). We begin by
rewriting them in a somewhat more convenient form,

½�j1v1 þ �j2v2� � ð�j1‘1 þ �j2‘2 � KjÞ
þ ujð�j1‘1 þ �j2‘2 � KjÞ2 ¼ 0; (4.1)

where uj is a polynomial in the various independent

Lorentz invariants of the loop and external momenta.
Because the different propagator denominators are inde-
pendent (the integrals for which this is not true we have
already treated in Secs. III B and III C), this equation must
hold for each of the nd propagators independently.

Let us also write a general form for the v
�
i ,

v�
i ¼ cð‘1Þi ‘�1 þ cð‘2Þi ‘�2 þ X

b2B

cðbÞi b�; (4.2)

where the sum runs over a set of nB—up to four—basis
vectors for the external momenta. (There would be four
basis vectors for integrals with five or more external legs,
and n� 1 vectors for integrals with fewer.) Each of the

coefficients cðxÞi is again a polynomial in the various inde-
pendent Lorentz invariants.
We consider as independent variables only invariants

that are independent with respect to the loop momenta.
That is, ‘21 and ‘

2
2 are independent, as are each of these with

respect to ‘1 � k1, and a given invariant of the external
momenta, say k1 � k2. However, different invariants of
external momenta are not independent, which is to say
their ratio should be treated as a constant parameter. Let
us pick the one independent invariant to be s12¼ðk1þk2Þ2,
and define the ratios,

�ij ¼
sij
s12

; �i���j ¼
si���j
s12

; �i ¼ m2
i

s12
; (4.3)

in order to express the remaining invariants in terms of
s12. (For certain integrals with fewer than four external
legs, we should pick a different invariant.) We will term

these quantities parameters. Each of the coefficients cðxÞi

would have an expression in terms of the invariants,

V ¼ f‘21; ‘1 � ‘2; ‘22; f‘1 � bgb2B; f‘2 � bgb2B; s12g: (4.4)

We treat these invariants as the basic symbols or variables
out of which we build the solutions. For example, coeffi-
cients of engineering dimension two could be expressed as
follows:

cðpÞi ¼ cðpÞi;1 s12 þ
X
b2B

cðpÞi;b1‘1 � bþ X
b2B

cðpÞi;b2‘2 � bþ cðpÞi;2 ‘
2
1

þ cðpÞi;3 ‘1 � ‘2 þ cðpÞi;4 ‘
2
2:

The coefficients cðpÞi;j of each term are rational functions of

the parameters �i���j and �i. (In order to distinguish the

different dimensions to which we will refer below, we refer
to the engineering or energy dimension of ‘i and b as such,
dropping the ‘‘engineering’’ qualifier only when context
makes it unnecessary.)
Our discussion generalizes in a straightforward way

both to higher loops and to nonplanar integrals. At higher
loops, we will have a vector vl for each loop; the expansion
(4.2) will have a sum over all loop momenta; and the set of
variables V in Eq. (4.4) will include all squares of loop
momenta, all dot products of loop momenta with each
other, and all dot products of the loop momenta with the
basis vectors in B. In general, some dot products of loop
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momenta with other loop momenta will be irreducible, but
this does not change the derivation of the equations. For
nonplanar integrals at two loops, we will have more than a
single equation involving two different vectors. (This will
anyway be true at higher loops.) The general approach to
solving the equations we now outline will also carry over,
though the specific procedure that solves the equations
most efficiently in these more general settings remains to
be investigated. Internal masses will introduce additional
parameters in Eq. (4.3) while leaving the basic invariants
(4.4) and the general structure unchanged.

Without loss of generality, we consider only solutions
v1;2 of homogeneous engineering dimension. We could in

principle proceed by writing down a general form for
coefficients of a given engineering dimension, starting
with dimension zero, and proceeding by increments of
two. Plugging in these general forms into Eq. (4.2), and
requiring that the coefficient of each monomial in the basic
variables (4.4) vanish independently, we would obtain the
solutions of the given dimension.

This method of solution works quite well for finding
solutions of low dimension, but becomes very memory-
intensive for higher dimensions. Furthermore, it does not
allow us to determine when we have found the complete
independent basis set of solutions, namely, the set of
solutions v1;2 to Eq. (4.2) in terms of which all others

can written as linear combinations, with coefficients that
are polynomials in the basic variables (4.4) and rational in
the parameters (4.3).

As a reminder, we are interested only in solutions for
which at least one coefficient in eitherv1 orv2 is irreducible
with respect to the set of denominators. Let us denote the
operation of removing terms proportional to a propagator
denominators (that is, reducing by the set of propagator
denominators) by the operator Irred. It leaves behind only
the irreducible part of an expression. (This operation ismost
naturally implemented using a Gröbner basis for the propa-
gator denominators, but as these are all linear in the basic
variables (4.4), the use of such a basis is not essential.) We
defer a precise definition to later in this section.

We can assemble the set of equations Eq. (4.1) into a
single matrix equation. To do, first assemble the various
coefficients using the relabeling,

�ð‘1; 1Þ ¼ 1;

�ð‘2; 1Þ ¼ 2;

�ðj; 1Þ ¼ jþ 2; j 2 f1; . . . ; nBg;
�ð‘1; 2Þ ¼ nB þ 3;

�ð‘2; 2Þ ¼ nB þ 4;

�ðj; 2Þ ¼ nB þ jþ 4; j 2 f1; . . . ; nBg; (4.5)

and the definitions,

~c�ðq;iÞ ¼ cðqÞi ; q 2 f‘1; ‘2g [ B; i 2 f1; 2g;
~c2nBþ4þj ¼ uj; j 2 f1; . . . ; ndg: (4.6)

Treating the coefficients ~c as a row vector,2 define

E�ðq;iÞ;j ¼ q � @idj; E2nBþ4þj;j ¼ �dj: (4.7)

E is a ð2nB þ 4þ ndÞ � nd-dimensional matrix; the num-
ber of rows we will label nr. Each column corresponds
to Eq. (4.1) for a different propagator. We then have the
following matrix equation:

~cE ¼ 0: (4.8)

Mathematicians call each solution to this equation a sy-
zygy of E.
In intermediate stages, we may need to solve not only

homogeneous equations such as this, but also inhomoge-
neous equations,

~cE ¼ f; (4.9)

where the row vector f is independent of ~c though it may
depend on other parameters.
Both of these equations are linear polynomial diophan-

tine equations. In the adiatretofluous language of mathe-
maticians, the former is an equation for the syzygies of the
ideal submodule of Qðf�i���j; �igÞ½V�nd generated by the

rows of E,

Syz ðhe1; . . . ; eniÞ: (4.10)

More precisely, we seek a linearly-independent basis for
the irreducible elements of the syzygy module,

Syz ðhe1; . . . ; eniÞ=SyzRedðhe1; . . . ; eniÞ; (4.11)

where the Red subscript denotes the reducible subspace
with respect to Irred. In this language, it is basically a
textbook problem, though there are aspects which require
a bit more work than a textbook solution.
The solution relies on the use of Gröbner bases [43]. The

reader may find an explanation of the varied uses of
Gröbner bases, as well as algorithms for their construction,
and the required background material, in several textbooks
[44,45]. Of these, we shall primarily make use of that
Adams and Loustaunau [44]. Sturmfels gave a brief over-
view of Gröbner bases [46], and Lin et al. [47] also provide
a nice introduction to Gröbner bases of modules from a
physicist’s point of view. Gröbner bases have been studied
for use in integral reductions by Smirnov and Smirnov

2Row vectors provide a more natural interpretation, as this
choice also leads to treating the derivatives of the equation with
respect to this vector’s entries as row vectors, which in turn leads
to a more natural implementation in a symbolic algebra language
such as MATHEMATICA.
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[48], and have been used by Smirnov in FIRE [14], as well
as in other studies of integral reductions [49].

Our review here will mention only the minimal material
needed for the description of the solution. Gröbner bases,
amongst other uses, provide a certain generalization of
linearly-independent bases to nonlinear multivariate poly-
nomials. The basic setting is that of polynomials in a set of
symbols. In our context, the symbols are those in the set V
(4.4); the coefficients are arbitrary rational functions of the
�i���j and �i, forming the field Qðf�i���j; �igÞ in mathema-

ticians’ language. We will need to consider vectors or
tuples of polynomials as well as polynomials themselves.

The basic machinery requires us to choose an ordering
of the terms built out of the basic symbols, as well as of
tuples of terms. There are various ways of doing this, of
which a lexicographic ordering is conceptually the sim-
plest. While the choice of ordering will not change the
space of solutions we find, the efficiency of the (standard)
algorithms we employ will depend greatly on this choice.
We choose the so-called degree-reverse lexicographic or-
der (DRL or grevlex) for the basic symbols, and a term-
over-position (ToP) ordering for tuples of polynomials.
A generic term in a polynomial built out of the symbols
xi has the form

cxp � cxp1

1 � � � xpn
n ; (4.12)

while a generic n-tuple of polynomials is a sum of terms
of the form

cv � cxvev ¼ cxp1

1 � � � xpn
n ev; (4.13)

when the unit basis tuples are the set fejg. The DRL order-

ing for polynomial terms starts with a basic ordering of
the symbols xn; . . . ; x1 and orders xp before xq (denoted
xp � xq) if and only if,

X
i

pi <
X
i

qi or
X
i

pi ¼
X
i

qi

and the rightmost non-zero entry in p-q is positive:

(4.14)

The ToP ordering orders tuples containing a lone mono-
mial as follows:

v � u, xv � xu or xv ¼ xu and ev � eu: (4.15)

(The basis vectors ej are ordered by their first nonzero

component.) The leading monomial of a polynomial (or
tuple) P, denoted lmðPÞ, is the monomial v which is last in
the ordering, v � v0 for all monomials v0 in P (stripped of
any coefficient c).

With an ordering chosen, we can define a polynomial
reduction algorithm, essentially a repeated synthetic divi-
sion with respect to a basis set B of polynomials (or tuples),
yielding a set of coefficients c, and a remainder r,

p!B r; (4.16)

where

p ¼ X
b2B

cbbþ r: (4.17)

The coefficients are again polynomials in the basic sym-
bols, and the remainder is a polynomial (or tuple of poly-
nomials if p is a tuple). At each stage of the synthetic
division, a polynomial is divisible by a selected divisor iff
its leading monomial is divisible by the divisor’s leading
monomial. For the purposes of synthetic division, we can
treat nd-dimensional tuples of polynomials by taking their
dot product with an nd-tuple of dummy or ‘‘tag’’ variables
ðt1; . . . ; tndÞ, and then performing ordinary synthetic divi-

sion with the set of variables extended to include the tag
variables ti. The ToP/DRL ordering is then given by a DRL
ordering, with the tag variables ordered before the other
variables. One must ensure that other algorithms used
maintain the linearity in these tag variables. At the end of
a calculation, the tuples can be recovered by differentiating
with respect to them.
In general, the reduction coefficients cb in Eq. (4.17) are

not universally defined; they depend not only on the order-
ing chosen for monomials, but also on the order in which
the polynomials are taken during synthetic division. Only
if the set B of polynomials is a Gröbner basis will the
reduction coefficients be independent of the order in which
the polynomials are taken.
Let us write out the method of solution we have used,

reverting to physicists’ language, and postponing until the
next section an explicit example, that of the massless
double box. We use the Buchberger algorithm to compute
the required Gröbner bases, though more sophisticated
algorithms [50] are available and would be worth inves-
tigating. Using the algorithm, we compute the Gröbner
basis of the set of rows of E, treated as nd-tuples. We
assemble the elements of the basis, again nd-tuples, into
a matrix G. The number of rows is determined by the
number of tuples ng in the Gröbner basis, which may be

smaller, equal to, or larger than the number of original
vectors nr (which is equal to 2nB þ nd þ 4 in the case of
E). In addition to the basis itself, we will need the cofactor
matrix C, which expresses the basis elements in terms of
the original vectors,

G ¼ CE: (4.18)

It may be computed as a by-product of Buchberger’s
algorithm (or other algorithms) for computing the
Gröbner basis. Because G is a Gröbner basis, we may
also express each original vector as a linear combination
of the basis vectors; this defines another matrix Q,
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E ¼ QG: (4.19)

In order to find the syzygies of E, we must first write
down those of G. The syzygies of the latter—that is,
ng-tuples s such that sG ¼ 0—can be constructed as de-

scribed in the textbooks [44,45]. The construction starts
with the S-polynomial of two rows or basis nd-tuples gi;j,

Spðgi; gjÞ ¼
lcmðlmðgiÞ; lmðgjÞÞ

lmðgiÞ gi

� lcmðlmðgiÞ; lmðgjÞÞ
lmðgjÞ gj; (4.20)

where lcm denotes the least common multiple, with the
added definition that lcmðei; ejÞ � 0 if i � j. (The factors

in front of gi;j are then pure polynomial terms, with the

basis vectors e canceling out.) The S-polynomial also plays
a central role in the Buchberger algorithm itself. By con-
struction, this S-polynomial can be completely reduced
over the Gröbner basis,

Spðgi; gjÞ ¼
Xng
k¼1

hijk gk: (4.21)

Each syzygy or linear relation between the ng Gröbner

basis elements can be represented by an ng-tuple, with

basis elements �1; . . . ;�ng ,

�kG ¼ gk: (4.22)

We can define a basic syzygy or linear relation,

ŝij ¼
lcmðlmðgiÞ; lmðgjÞÞ

lmðgiÞ �i �
lcmðlmðgiÞ; lmðgjÞÞ

lmðgjÞ �j

� Xng
k¼1

hijk �k: (4.23)

The complete set of syzygies of G is then generated by
the set

fŝijj1 � i < j � ngg: (4.24)

These syzygies, treated as row vectors, can again be as-
sembled into a matrix S. With S in hand, the rows of SC are
syzygies of E. In addition, because we must have

E ¼ QG ¼ QCE; (4.25)

then ðI �QCÞE ¼ 0, where I is the identity matrix. The
rows of I �QC are thus also syzygies of E. We extend SC
to add these rows. In our application, these turn out to be
relevant only in some variants of the solution algorithms
described below.

Not all syzygies, that is rows of S, are linearly indepen-
dent. Indeed, there are typically dozens or even hundreds
of syzygies. The set of syzygies can be reduced in a variety

of ways, of which the two principal ones we use are
polynomial reduction and numerically-assisted row reduc-
tion. Furthermore, as discussed earlier, we are interested
only in rows of SC which are independent after reduction
with respect to the propagator denominators, and this
allows for additional reductions in number. For this pur-
pose, we use the Irred operator described earlier. We define
it as the polynomial reduction (element-by-element) with
respect to a Gröbner basis GD of the propagator denomi-
nators, built over the symbols in V (here using a plain
lexicographic ordering),

p!GD
Irredp: (4.26)

We apply polynomial reduction to the rows of S, treated as
nd-tuples, using a special ordering of the underlying vari-
ables, called the Schreyer ordering [44,51]. It is defined by

xpei � yqej , lmðxpgiÞ � lmðyqgjÞ or

lmðxpgjÞ ¼ lmðyqgjÞ and j < i: (4.27)

It is useful because the syzygy generators (4.24) form a
Gröbner basis with respect to this ordering. When reducing
syzygies, we start with those of lowest engineering dimen-
sion, removing those which reduce to zero (and hence are
linear combinations of other syzygies), and proceed incre-
mentally in the engineering dimension.
To find the set of fully-independent solutions modulo

reducibility, we can proceed as follows to convert it to a
linear algebra problem. We form the irreducible part of the
solutions,

Sirred ¼ IrredS; (4.28)

and convert them into ‘‘tagged’’ polynomials using tag
variables as described earlier. We now construct a vector
space, in which each coordinate corresponds to a different
monomial, and where each monomial that may appear in
any of the tagged polynomials, or in any product of an
irreducible polynomial times a tagged polynomial, is as-
signed a coordinate. Each tagged polynomial P (that is,
each solution s) may then be mapped to a vector VecðsÞ,
whose entries are rational functions of the �ij and the �i.

Independence can then be determined by linear algebra
(e.g. row reduction). We can check it numerically, by
evaluating the solution for a given numerical choice of
external momenta. For a given solution s, we also need
to generate the vectors corresponding to multiples of s by
a factor x built out of the variables in V. We can do this
either by mapping the multiple, VecðxsÞ, or by multiplying
VecðsÞ by the appropriate matrix. After removing linearly-
dependent solutions, we usually end up with only a handful
of independent syzygies, which we assemble into a
matrix �S.
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The general solution to Eq. (4.8) can then be written as
follows:

~c ¼ ðp1 . . .pnsÞ �S; (4.29)

where ns is the number of independent solutions, that is the
rows of �S, and where each pi is an arbitrary polynomial in
the variables in V. Because the Gröbner basis is finite, and
of finite engineering dimension, the complete set of solu-
tions is generated by a finite and finite-dimensional set, and
any effectively-reducible integral will be reduced by an
IBP equation built using one of the basis elements (with a
possible irreducible prefactor determined by the dimension
of the numerator in the integral).

In order to solve inhomogeneous equations such as
Eq. (4.9), which will arise in some of the variants of the
solution algorithm presented below, we must first reduce
the right-hand side f over the Gröbner basis of E,

f ¼ qfGþ rf: (4.30)

If rf is nonvanishing, the equation has no solution. In our

context, rf will typically have one or more free coefficients

pi (arbitrary polynomials), and we will need to impose
additional constraints on them to ensure that rf becomes

reducible over G. (It is not necessary to make it vanish
strictly.) We can do so by solving the homogeneous
equation,

rf � ~gG ¼ 0; (4.31)

where ~g is an ng-tuple of dummy coefficients. The solution

will express the free coefficients pi in rf in terms of a more

constrained set p0
i. The expression in terms of p0

i will now
be reducible over G. Once we have solved this subsidiary
equation (or if rf vanishes to begin with), a particular

solution to the inhomogeneous equation is given by

~c ¼ qfC; (4.32)

because then qfCE ¼ qfG ¼ f. In our solutions of inho-

mogeneous equations, we will not be interested in the
general solution, but it can be obtained by adding an
arbitrary solution to the corresponding homogeneous equa-
tion with f set to zero (obtained following the steps dis-
cussed above).

A. A simple algorithm

The steps described in the previous section can be
summarized in a simple algorithm (Algorithm I), which
starts as input with a matrix E as in the form (4.8):

(1) Compute the Gröbner basis G and the cofactor
matrix C for the set of nd-tuples given by the rows
of E.

(2) Build the set of syzygies S of G using Eq. (4.23).
(3) Reduce the set of syzygies by synthetic division

with respect to previous retained syzygies, discard-
ing those with no remainder. It is best to proceed

incrementally in the syzygies’ engineering
dimension.

(4) Construct the matrix Q which expresses E in terms
of G.

(5) Construct the set of solutions, SC along with
I �QC.

(6) Reduce to a set of independent solutions with
respect to reduction by the set of propagator
denominators.

This algorithm works nicely and quickly for simple
cases, such as the massless double box discussed in more
detail in the next section. However, it suffers from very
memory-intensive (and slow) intermediate stages for more
complicated cases such as the four-mass double box or the
pentabox, when the number of � and � parameters grows.
There is room for improvement, because a great deal of
unnecessary information (pertaining to fully-reducible so-
lutions to the equations) is computed in intermediate
stages.

B. An improved algorithm

For these reasons, we use a somewhat more involved
procedure. The greater complexity of the procedure is
balanced by simpler execution at each stage. The basic
idea is to split up the solution into several stages. We can
split the matrix E and the desired coefficients ~c into
reducible and irreducible parts,

Eirred ¼ IrredE; ~cirred ¼ Irred ~c;

Ered ¼ E� Eirred; ~cred ¼ ~c� ~cirred:
(4.33)

At the first stage, we solve the homogeneous set of irre-
ducible equations,

~cirredEirred ¼ 0: (4.34)

The full equation can then be rewritten as follows:

~credE ¼ �~cirredEred; (4.35)

which is an inhomogeneous equation for ~cred in terms of
the (now-known) irreducible polynomials ~cirred. It turns out
to be better to solve these equations in two stages: first,
only the rows of E arising from propagators involving only
‘1 or ‘2, but not both, and then adding in the full set of
equations in a second stage.
In order to solve the inhomogeneous equations, we write

out an auxiliary set of equations which impose reducibility
on each of the coefficients ~cred,

~c� ¼ Xnd
j¼1

~c�;jð�j1‘1 þ �j2‘2 � KjÞ2: (4.36)

The sum could also be taken over the Gröbner basis
elements used to define the Irred operator. There are
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advantages and disadvantages to simply adding these equa-
tions as auxiliary equations, with additional unknowns ~c�;j,

as opposed to substituting these expansions into the inho-
mogeneous Eqs. (4.35), and both the memory usage and the
time required for solving can depend sensitively on this
choice. In the examples we have considered, it appears
better not to substitute in the first of the two stages of
solving the inhomogeneous equations, and better to sub-
stitute in the second stage.

At the first stage, we select the columns in Eq. (4.35)
corresponding to propagators involving either ‘1 or ‘2, but
not both; in the planar case, this means all but the last
column. Call the solutions of these equations ~cII�. At the
second stage, we split the ~c�,

~c � ¼ ~cII� þ �~cred� ; (4.37)

and solve Eq. (4.35) for �~cred, with all but the last column
of the right-hand side replaced by zero, and with an addi-
tional reducibility constraint of the form (4.36) imposed
on �~cred.

The strategy for solving the inhomogeneous Eqs. (4.9)
can be summarized in the following algorithm
(Algorithm II),:

(1) Compute the Gröbner basis G of the rows of E (it is
sufficient to compute a partial Gröbner basis limited
to the maximal engineering dimension found in the
right-hand side f), along with the cofactor matrix C.

(2) Reduce the right-hand side f over G, yield coeffi-
cients qf and a remainder rf.

(3) If the remainder rf of this reduction does not vanish

identically, solve the equation rf � ~gG ¼ 0 with

dummy coefficients ~g using Algorithm I (in prac-
tice, it is best to impose an engineering dimension
limit in the intermediate steps of Algorithm I, and
increment it until the solution converges to a stable
one).

(4) If a dimension-limited Gröbner basis was computed
in step 1, and rf was not identically zero at step 3,

extend the Gröbner basis to the new (typically
larger) maximal engineering dimension in the con-
strained form of f. Rather than starting from scratch,
one can start from the original Gröbner basis G, in
which case the full cofactor matrix will be given
by the product of the new and old matrices,
Cf ¼ C2C1.

(5) The solution is then qfC.

The improved strategy for solving the original Eq. (4.8)
can then be summarized in the following algorithm
(Algorithm III):

(1) Compute solutions to Eq. (4.34) using Algorithm I.

(2) Solve the rows in the inhomogeneous Eq. (4.35)
corresponding to propagators containing a lone
loop momentum, for the reducible terms ~cred, along
with the constraint Eqs. (4.36) expressing reducibil-
ity, using Algorithm II.

(3) Write each coefficient ~cred as a sum of this solution,
and another coefficient �~cred, as in Eq. (4.37). Solve
the inhomogeneous equation corresponding to the
propagator containing both loop momenta, along
with constraint equations of step 2 with their right-
hand sides set to zero, using Algorithm II (here it is
better to substitute the reducibility constraint
Eqs. (4.36) back into the inhomogeneous equations).

(4) Reduce to a set of independent solutions with re-
spect to reduction by the set of propagator
denominators.

V. THE MASSLESS DOUBLE BOX

As an example of how to apply the ideas presented in the
previous section, let us examine the planar double box,
P		
2;2, with all external legs taken to be massless. The

integral is shown in Fig. 5. The D-dimensional reductions
were worked out several years ago for the integral with all
external masses vanishing, using AIR [13]. The same re-
ductions have been worked out (though not reported ex-
plicitly) for configurations with one external mass [34].
The three- and four-mass cases have not been worked out
previously. We discuss the massive cases in the next
section.
As described in the previous section, we start by looking

for vectors v�
1;2 that give rise to IBP equations free of

doubled propagators. For the double box, we choose
k1;2;4 as basis momenta, so the general form (4.2) becomes

v
�
i ¼ cð‘1Þi ‘

�
1 þ cð‘2Þi ‘

�
2 þ cð1Þi k

�
1 þ cð2Þi k

�
2 þ cð4Þi k

�
4 ;

(5.1)

where each of the coefficients cðpÞ is itself a function of
Lorentz invariants in V, which here we can take to be the
following set:

V22 ¼ f‘21; ‘1 � ‘2; ‘22; ‘1 � k1; ‘1 � k2; ‘1 � k4; ‘2 � k1; ‘2 � k3; ‘2 � k4; s12g: (5.2)

FIG. 5. The double box P		
2;2.
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The other dot products of the loop momenta can be expressed in terms of these via momentum conservation, and the other
independent invariant is treated as a multiple of s12, s14 ¼ �14s12. There are two irreducible numerators, ‘1 � k4 and ‘2 � k1.

The matrix E of Eq. (4.7) then takes the form,

E¼ 8

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

‘21 �k1 � ‘1 þ ‘21 �k1 � ‘1 � k2 � ‘1 þ ‘21 0

‘1 � ‘2 �k1 � ‘2 þ ‘1 � ‘2 k3 � ‘2 þ k4 � ‘2 þ ‘1 � ‘2 0

k1 � ‘1 k1 � ‘1 k1 � ‘1 � s12=2 0

k2 � ‘1 k2 � ‘1 � s12=2 k2 � ‘1 � s12=2 0

k4 � ‘1 k4 � ‘1 ��14s12=2 k4 � ‘1 þ s12=2 0

0 0 0 ‘1 � ‘2
0 0 0 ‘22

0 0 0 k1 � ‘2
0 0 0 �k1 � ‘2 � k3 � ‘2 � k4 � ‘2
0 0 0 k4 � ‘2

‘21=4 0 0 0

0 ‘21=4� k1 � ‘1=2 0 0

0 0 ‘21=4þ s12=4� k1 � ‘1=2� k2 � ‘1=2 0

0 0 0 ‘22=4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 ‘21 þ ‘1 � ‘2
0 0 ‘1 � ‘2 þ ‘22

0 0 k1 � ‘1 þ k1 � ‘2
0 0 k2 � ‘1 � k1 � ‘2 � k3 � ‘2 � k4 � ‘2
0 0 k4 � ‘1 þ k4 � ‘2

�k4 � ‘1 þ ‘1 � ‘2 k1 � ‘1 þ k2 � ‘1 þ ‘1 � ‘2 ‘21 þ ‘1 � ‘2
�k4 � ‘2 þ ‘22 �k3 � ‘2 � k4 � ‘2 þ ‘22 ‘1 � ‘2 þ ‘22

k1 � ‘2 ��14s12=2 k1 � ‘2 þ s12=2 k1 � ‘1 þ k1 � ‘2
ð1þ�14Þs12=2� k1 � ‘2 � k3 � ‘2 � k4 � ‘2 s12=2� k1 � ‘2 � k3 � ‘2 � k4 � ‘2 k2 � ‘1 � k1 � ‘2 � k3 � ‘2 � k4 � ‘2

k4 � ‘2 k4 � ‘2 � s12=2 k4 � ‘1 þ k4 � ‘2
0 0 0

0 0 0

0 0 0

0 0 0

�k4 � ‘2=2þ ‘22=4 0 0

0 ‘22=4þ s12=4� k3 � ‘2=2� k4 � ‘2=2 0

0 0 ‘21=4þ ‘1 � ‘2=2þ ‘22=4

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

(5.3)
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while the vector ~c is

~c ¼ ðcð‘1Þ1 cð‘2Þ1 cð1Þ1 cð2Þ1 cð4Þ1 cð‘1Þ2 cð‘2Þ2 cð1Þ2 cð2Þ2 cð4Þ2 u1���7Þ: (5.4)

The left-most three columns correspond to equations for
the left-hand loop, the following three columns correspond
to equations for the right-hand loop, and the last column
corresponds to an equation for the common propagator.

The propagator denominators are

‘21; ð‘1 � k1Þ2; ð‘1 � K12Þ2; ‘22;

ð‘2 � k4Þ2; ð‘2 � K34Þ2; ð‘1 þ ‘2Þ2: (5.5)

Reducibility of an expression may be determined by re-
ducing over a Gröbner basis of these denominators, which
using a plain lexical ordering, is

‘1 � ‘2; ‘22; k4 � ‘2; k3 � ‘2 � s12=2; ‘
2
1; k2 � ‘1 � s12=2; k1 � ‘1:

(5.6)

The Irred operator gives the remainder after this reduction;
for example,

Irredða1‘21þa2‘1 �‘2þa3‘
2
2þa4‘1 �k1þa5‘1 �k2

þa6‘1 �k4þa7‘2 �k1þa8‘2 �k3þa9‘2 �k4þa10s12=2Þ
¼ða5þa8þa10Þs12=2þa6k4 �‘1þa7k1 �‘2: (5.7)

When using Algorithm I from the previous section to
solve Eq. (4.8), we first obtain a Gröbner basis for the
seven-tuples making up the rows of E. There are 50 tuples
in this basis, which in turn give rise to 167 syzygies, which
we can represent as 17-tuples. Polynomial reduction and
removal of completely-reducible syzygies [with respect to
the basis in Eq. (5.6)] leaves us with 119 syzygies of the
Gröbner basis. These in turn give rise to 101 solutions of
Eq. (4.8), of which three are independent. The matrix I-QC
gives no additional solutions (which can be understood on
dimensional grounds here).
There is one solution whose coefficients are of engineer-

ing dimension two,

v1;1 ¼ �2ðk4 � ‘1 þ ‘21Þk�1 � ‘21k
�
2 þ ð2k1 � ‘1 � ‘21Þk�4 þ ð4k1 � ‘1 þ 2k2 � ‘1 þ 2k4 � ‘1 � s12Þ‘�1 ;

v1;2 ¼ 2ð‘22 � k4 � ‘2Þk�1 þ ‘22k
�
2 þ ð2k1 � ‘2 þ ‘22Þk�4 þ ð2k3 � ‘2 � 2k1 � ‘2 � s12Þ‘�2 ;

(5.8)

and two solutions with coefficients of engineering dimension four,

v2;1 ¼ ð�4k2 � ‘1k4 � ‘1 � 4k3 � ‘2‘21 þ 4k4 � ‘1‘21 � 4k4 � ‘2‘21 � 4‘21‘1 � ‘2 � 2‘21‘
2
2 � 2�14‘

2
1s12Þk�1

þ ð4k1 � ‘1k4 � ‘1 � 2k1 � ‘1‘21 � 2k2 � ‘1‘21 � 4k3 � ‘2‘21 � 4k4 � ‘2‘21 � 4‘21‘1 � ‘2 � 2‘21‘
2
2 þ 2‘21s12 � 2�14‘

2
1s12Þk�2

þ ð�4k1 � ‘1‘21 � 4k2 � ‘1‘21 þ 2ð‘21Þ2 þ 2‘21s12Þk�4 þ ð4k1 � ‘1k2 � ‘1 þ 4ðk2 � ‘1Þ2 þ 8k1 � ‘1k3 � ‘2 þ 8k2 � ‘1k3 � ‘2
þ 8k2 � ‘1k4 � ‘1 þ 8k1 � ‘1k4 � ‘2 þ 8k2 � ‘1k4 � ‘2 � 4k4 � ‘1‘21 þ 8k1 � ‘1‘1 � ‘2 þ 8k2 � ‘1‘1 � ‘2 þ 4k1 � ‘1‘22
þ 4k2 � ‘1‘22 � 4k1 � ‘1s12 � 6k2 � ‘1s12 � 4k3 � ‘2s12 � 2k4 � ‘1s12 � 4k4 � ‘2s12 þ ‘21s12 þ 2�14‘

2
1s12

� 4‘1 � ‘2s12 � 2‘22s12 þ 2s212Þ‘�1 ;
v2;2 ¼ ð4k1 � ‘2k4 � ‘1 þ 4k3 � ‘2k4 � ‘1 þ 4k4 � ‘1k4 � ‘2 � 4k4 � ‘2‘1 � ‘2 þ 4k3 � ‘2‘22 � 4k4 � ‘1‘22 þ 6‘1 � ‘2‘22

þ 4ð‘22Þ2 � 2‘1 � ‘2s12 � 2�14‘1 � ‘2s12 � 2‘22s12Þk�1 þ ð4k1 � ‘2k4 � ‘1 � 4k4 � ‘2‘1 � ‘2 þ 2k1 � ‘1‘22 þ 2k2 � ‘1‘22
þ 4k3 � ‘2‘22 þ 6‘1 � ‘2‘22 þ 4ð‘22Þ2 � 2�14‘1 � ‘2s12 � 2‘22s12Þk�2 þ ð4k1 � ‘1‘22 þ 4k2 � ‘1‘22 þ 4‘1 � ‘2‘22
þ 2ð‘22Þ2 � 2‘22s12Þk�4 þ ð�4k3 � ‘2k4 � ‘2 � 4ðk4 � ‘2Þ2 þ 2k3 � ‘2‘22 þ 2k4 � ‘2‘22 þ 2k1 � ‘2s12 � 2�14k3 � ‘2s12
� 2�14k4 � ‘2s12 þ ‘22s12 þ 2�14‘

2
2s12Þ‘�1 þ ð4k1 � ‘1k1 � ‘2 þ 4k1 � ‘2k2 � ‘1 þ 4k1 � ‘1k3 � ‘2 þ 4k2 � ‘1k3 � ‘2

þ 8ðk3 � ‘2Þ2 þ 8k1 � ‘2k4 � ‘1 þ 8k3 � ‘2k4 � ‘2 þ 8k3 � ‘2‘1 � ‘2 � 2k1 � ‘1‘22 � 2k2 � ‘1‘22 þ 8k3 � ‘2‘22
þ 4k4 � ‘2‘22 � 2k1 � ‘1s12 � 2�14k1 � ‘1s12 � 2k2 � ‘1s12 � 2�14k2 � ‘1s12 � 8k3 � ‘2s12 þ 2k4 � ‘1s12
� 4k4 � ‘2s12 � 6‘1 � ‘2s12 � 4�14‘1 � ‘2s12 � 2‘22s12 þ 2s212Þ‘�2 ; (5.9)

and
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v3;1 ¼
�
�4k1 � ‘2‘21 �

2k1 � ‘2‘21
�14

� 2ð‘21Þ2 �
ð‘21Þ2
�14

� 4‘21‘1 � ‘2 �
2‘21‘1 � ‘2

�14

� 2k2 � ‘1‘22 �
‘21‘

2
2

�14

þ �14‘
2
1s12

� 2‘1 � ‘2s12 � 2�14‘1 � ‘2s12Þk�1 þ ð4k1 � ‘2k4 � ‘1 � 2k1 � ‘2‘21 �
2k1 � ‘2‘21

�14

þ 2k3 � ‘2‘21 þ 2k4 � ‘2‘21

� 2ð‘21Þ2 �
ð‘21Þ2
�14

� 4‘21‘1 � ‘2 �
2‘21‘1 � ‘2

�14

þ 2k1 � ‘1‘22 � 2‘21‘
2
2 �

‘21‘
2
2

�14

þ �14‘
2
1s12 � 2�14‘1 � ‘2s12Þk�2

þ ð�4k1 � ‘2k2 � ‘1 þ 2k1 � ‘2‘21 þ 2k3 � ‘2‘21 þ 2k4 � ‘2‘21 þ 2‘1 � ‘2s12Þk�4 þ ð8k1 � ‘1k1 � ‘2
þ 4k1 � ‘1k1 � ‘2

�14

þ 4k1 � ‘2k2 � ‘1 þ 4k1 � ‘2k2 � ‘1
�14

� 4k2 � ‘1k3 � ‘2 � 4k1 � ‘2k4 � ‘1 � 4k3 � ‘2k4 � ‘1

� 4k2 � ‘1k4 � ‘2 � 4k4 � ‘1k4 � ‘2 þ 4k1 � ‘1‘21 þ
2k1 � ‘1‘21

�14

þ 4k2 � ‘1‘21 þ
2k2 � ‘1‘21

�14

þ 8k1 � ‘1‘1 � ‘2

þ 4k1 � ‘1‘1 � ‘2
�14

þ 8k2 � ‘1‘1 � ‘2 þ 4k2 � ‘1‘1 � ‘2
�14

þ 2k1 � ‘1‘22
�14

þ 4k2 � ‘1‘22 þ
2k2 � ‘1‘22

�14

� 2�14k1 � ‘1s12

� 4k1 � ‘2s12 � 2k1 � ‘2s12
�14

� 2�14k2 � ‘1s12 þ 2k3 � ‘2s12 þ 2�14k3 � ‘2s12 þ 2k4 � ‘2s12

þ 2�14k4 � ‘2s12 � 2‘21s12 �
‘21s12
�14

� 2‘1 � ‘2s12
�14

þ 4�14‘1 � ‘2s12 � ‘22s12 �
‘22s12
�14

þ �14s
2
12

�
‘
�
1

þ ð2k1 � ‘1s12 þ 2�14k1 � ‘1s12 þ 2�14k2 � ‘1s12 � 2k4 � ‘1s12 � 2‘21s12 � 2�14‘
2
1s12Þ‘�2 ;

v3;2 ¼
�
�4k4 � ‘2‘21 �

2k4 � ‘2‘21
�14

� 8k4 � ‘2‘1 � ‘2 � 4k4 � ‘2‘1 � ‘2
�14

þ 6k1 � ‘2‘22 þ
2k1 � ‘2‘22

�14

þ 2k3 � ‘2‘22

� 2k4 � ‘2‘22 �
2k4 � ‘2‘22

�14

þ 4‘21‘
2
2 þ

2‘21‘
2
2

�14

þ 8‘1 � ‘2‘22 þ
4‘1 � ‘2‘22

�14

þ 2ð‘22Þ2 þ
2ð‘22Þ2
�14

� 2‘22s12 � 3�14‘
2
2s12

�
k
�
1

þ
�
4k1 � ‘2k4 � ‘2 þ 4k1 � ‘2‘22 þ

2k1 � ‘2‘22
�14

� 2k3 � ‘2‘22 � 2k4 � ‘2‘22 þ 2‘21‘
2
2 þ

‘21‘
2
2

�14

þ 4‘1 � ‘2‘22 þ
2‘1 � ‘2‘22

�14

þ 2ð‘22Þ2 þ
ð‘22Þ2
�14

� 3�14‘
2
2s12Þk�2 þ ð4ðk1 � ‘2Þ2 þ 4k1 � ‘2k3 � ‘2 þ 4k1 � ‘2k4 � ‘2

þ 4k1 � ‘2‘21 þ
2k1 � ‘2‘21

�14

þ 8k1 � ‘2‘1 � ‘2 þ 4k1 � ‘2‘1 � ‘2
�14

þ 2k1 � ‘2‘22 þ
2k1 � ‘2‘22

�14

� 2k3 � ‘2‘22

� 2k4 � ‘2‘22 þ 2‘21‘
2
2 þ

‘21‘
2
2

�14

þ 4‘1 � ‘2‘22 þ
2‘1 � ‘2‘22

�14

þ 2ð‘22Þ2 þ
ð‘22Þ2
�14

þ 2‘22s12

�
k
�
4

þ
�
�4ðk1 � ‘2Þ2 þ 4k1 � ‘2k3 � ‘2

�14

� 4ðk3 � ‘2Þ2 þ 4k1 � ‘2k4 � ‘2 þ 4k1 � ‘2k4 � ‘2
�14

� 4k3 � ‘2k4 � ‘2 � 4k1 � ‘2‘21

� 2k1 � ‘2‘21
�14

þ 4k3 � ‘2‘21 þ
2k3 � ‘2‘21

�14

� 8k1 � ‘2‘1 � ‘2 � 4k1 � ‘2‘1 � ‘2
�14

þ 8k3 � ‘2‘1 � ‘2 þ 4k3 � ‘2‘1 � ‘2
�14

� 2k1 � ‘2‘22
�14

þ 4k3 � ‘2‘22 þ
2k3 � ‘2‘22

�14

� 2k1 � ‘2s12 � 2k1 � ‘2s12
�14

þ 2k3 � ‘2s12 � 2�14k3 � ‘2s12

� 2�14k4 � ‘2s12 � 2‘21s12 �
‘21s12
�14

� 4‘1 � ‘2s12 � 2‘1 � ‘2s12
�14

� 3‘22s12 �
‘22s12
�14

� 2�14‘
2
2s12 þ �14s

2
12

�
‘
�
2 :

(5.10)

The algorithms described in the previous section are not
guaranteed to yield the solutions in the simplest possible
form; it can happen that linear combinations of solutions
can be factored to yield a solution of lower engineering
dimension. In this case, however, the solutions do appear to
be close to the ‘‘simplest’’ possible ones.

Were we to use Algorithm III, we would start by solving
the equation for the irreducible part of E. Here, the
Gröbner basis has 12 vectors, giving rise to five syzygies,
and three solutions to Eq. (4.34)—one with coefficients of
engineering dimension two, the other two with coefficients
of engineering dimension four. At the second stage, we
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have 103 basis tuples in the Gröbner basis (limited to
engineering dimension six) for E augmented by the auxil-
iary Eqs. (4.36) imposing reducibility. We find that that the
right-hand side of Eq. (4.35) can be decomposed over this
basis, so that rf in Eq. (4.30) vanishes. There are again

three solutions to the equations. At the third stage, we
include the last column of E, corresponding to the propa-
gator involving both loop momenta; this yields 125 tuples
in the Gröbner basis, the right-hand side again reduces over
this basis, and we end up with the three solutions prefig-
ured by the solutions to the irreducible equations. In more
complex integrals, the third stage will often impose addi-
tional constraints on the free polynomials obtained at the
first stage, leading to fewer solutions, or more solutions
with coefficients of higher engineering dimension.

The two algorithms are not guaranteed to produce the
same solutions, and even for the massless double box, they
do not. The solutions will however span the same space,
and yield the same solutions to the IBP equations for the
integrals of interest. In this case, they do produce the same
number of solutions of each engineering dimension, and
the solutions are equivalent—the solutions produced by
Algorithm I can be written as linear combinations of those
produced by Algorithm III and vice versa.

With the IBP-generating vectors of Eqs. (5.8) and (5.9),
we can now construct IBP equations,

0 ¼ P		
2;2

�
@

@‘�1
pv

�
i;1 þ

@

@‘�2
pv

�
i;2

�
; (5.11)

where p is an irreducible polynomial in the symbols in V22.
These equations will relate various nominally-irreducible
P		
2;2 to integrals with fewer propagators, but by construc-

tion will involve no undesired integrals. In practice, we do
not need all three solutions; the first two suffice to produce
all possible IBP equations.
The first solution (5.8) leads to the following equation:

0¼ 2P		
2;2½k1 �‘2�ðk1;k2;k3;k4Þ�2P		

2;2½k4 �‘1�ðk1;k2;k3;k4Þ
þP	

2;1½1�ðk1;k2;k3;k4Þ�2P	
2;1½1�ðk3;k4;k1;k2Þ

þP	
2;1½1�ðk4;k3;k2;k1Þ�P		

2;1½1�ðk1;k2;K34Þ
þP		

2;1½1�ðk4;k3;K12Þ: (5.12)

If we make use of the symmetries of the reduced integrals
P	
2;1 and P		

2;1, or reduce these latter integrals in turn, this

equation simplifies to

P		
2;2½k1 � ‘2�ðk1; k2; k3; k4Þ ¼ P		

2;2½k4 � ‘1�ðk1; k2; k3; k4Þ:
(5.13)

For the all-massless double box, this equation is also a
direct consequence of the symmetries of the integral, but
the analogous statement is no longer true for double boxes
with external masses.
We can also use these vectors to derive equations for

double boxes with more complicated numerator insertions,
of powers or products of the basic irreducible numerators.
As discussed earlier, we can do so by multiplying the
vector by powers of invariants, which still yields a solution
to the equations requiring that the IBP be free of doubled
propagators.
In a gauge theory, 22 irreducible double boxes can arise:

P		
2;2½1�; P		

2;2½k1 � ‘2�; P		
2;2½ðk1 � ‘2Þ2�; P		

2;2½ðk1 � ‘2Þ3�; P		
2;2½k4 � ‘1�; P		

2;2½ðk1 � ‘2Þðk4 � ‘1Þ�;
P		
2;2½ðk1 � ‘2Þ2ðk4 � ‘1Þ�; P		

2;2½ðk1 � ‘2Þ3ðk4 � ‘1Þ�; P		
2;2½ðk4 � ‘1Þ2�; P		

2;2½ðk1 � ‘2Þðk4 � ‘1Þ2�;
P		
2;2½ðk1 � ‘2Þ2ðk4 � ‘1Þ2�; P		

2;2½ðk1 � ‘2Þ3ðk4 � ‘1Þ2�; P		
2;2½ðk4 � ‘1Þ3�; P		

2;2½ðk1 � ‘2Þðk4 � ‘1Þ3�;
P		
2;2½ðk1 � ‘2Þ2ðk4 � ‘1Þ3�; P		

2;2½ðk1 � ‘2Þ3ðk4 � ‘1Þ3�; P		
2;2½ðk4 � ‘1Þ4�; P		

2;2½ðk1 � ‘2Þðk4 � ‘1Þ4�;
P		
2;2½ðk1 � ‘2Þ2ðk4 � ‘1Þ4�; P		

2;2½ðk1 � ‘2Þ4�; P		
2;2½ðk1 � ‘2Þ4ðk4 � ‘1Þ�; P		

2;2½ðk1 � ‘2Þ4ðk4 � ‘1Þ2�;

(5.14)

where we have omitted the momentum arguments k1, k2,
k3, k4 for brevity. In a gravitational theory, higher powers
of the irreducible numerators may occur.

Two of the three IBP-generating vector pairs suffice to
generate all possible IBP equations for these integrals (the
third pair yields only linear combinations of the same
equations). If we require that the coefficients be nonvan-
ishing in the limit � ! 0, we find 19 equations; we can
obtain an additional equation by relaxing this constraint.
This allows us to eliminate 20 of the 22 integrals, solving

for them in terms of integrals with fewer propagators and
two irreducible master integrals, for example,

P		
2;2½1� and P		

2;2½k1 � ‘2�: (5.15)

This reduction is the same as previously obtained with AIR

[13] (and presumably by others). Even though the coeffi-
cients may be of order �, the solutions do not involve
singular coefficients for the double-box master integrals.
(Because we do not fully reduce the simpler integrals, we
cannot determine whether that is also true for them.) We do
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not need to study the full set of 22 integrals; a minimal
set that reduces fully with the same two IBP-generating
vectors is

fP		
2;2½1�; P		

2;2½k1 � ‘2�; P		
2;2½ðk1 � ‘2Þ2�; P		

2;2½k4 � ‘1�;
P		
2;2½k1 � ‘2k4 � ‘1�; P		

2;2½ðk4 � ‘1Þ2�g: (5.16)

In addition to the IBP Eq. (5.12) or (5.13), we have three
additional equations for this set, arising from the first IBP-
generating vector pair with prefactors k4 � ‘1 or k2 � ‘2, and
from the second IBP-generating vector pair with no
prefactor.

The form of such minimal sets will in general depend on
the dimensionality of the solution vectors; simplifying the
IBP-generating vector pairs by taking linear combinations
can in general lead to simpler minimal sets of effectively-
reducible integrals.

The above reductions hold to all orders in the dimen-
sional regulator �. We can also ask whether additional
relations appear when we drop terms of Oð�Þ in the inte-
grals. For the double box, there is only one Gram determi-
nant which can lead to such a relation,

Gð‘1; ‘2; 1; 2; 4Þ; (5.17)

and one linear combination,

Gð‘1; 1; 2; 4ÞGð‘2; 1; 2; 4Þ �G2 ‘1; 1; 2; 4

‘2; 1; 2; 4

� �
: (5.18)

When we use the IBP equations to reduce

P		
2;2½Gð‘1; ‘2; 1; 2; 4Þ�; (5.19)

however, we find that the two irreducible master integrals
(5.15) both appear with coefficients ofOð�Þ, and hence the
Gram determinant fails to produce a useful relation. (More
precisely, it provides only a relation for the divergent terms
in the two integrals, but not for their finite terms.) The same
is true for the combination of Eq. (5.18). This strongly
suggests that both integrals (5.15) that are independent to
all orders in � remain linearly independent when truncated
toOð�0Þ. (It does not provide a complete proof because we
have not proven that the expressions (5.17) and (5.18) give
all possible relations of this type.)

VI. MASSIVE DOUBLE BOXES

In this section, we survey the IBP-generating vectors for
double boxes with some of the external legs taken to be
massive. There is one possible configuration of masses if
one external leg is massive, as is also true if three or four
external legs are massive. With two massive external legs,
there are three possible inequivalent integrals: both mas-
sive legs adjacent and attached to the same loop (‘‘short
side’’ or 2ms); the massive legs attached to diagonally-
opposite corners (’diagonal’ or 2md); or massive legs
adjacent but attached to different loops (‘‘long side’’ or

2ml). The one- and two-mass double boxes are shown in
Fig. 6.
We can use the same basis momenta and hence same

form (5.1) and the same basic symbols (5.2) as in the
massless case. Following the procedure outlined in
Sec. IV, we find three IBP-generating vectors for the one-
mass double box (we take leg 1 to be the massive one),
once again one with coefficients of engineering dimension
two, and two with coefficients of engineering dimension
four. It again suffices to use the first two vectors to generate
all possible IBP equations; there are again 20 equations for
the 22 nominally-irreducible integrals, giving rise to two
irreducible master integrals, say,

P		
2;2½1� and P		

2;2½k1 � ‘2�: (6.1)

The set of integrals in Eq. (5.16) is again a minimal set that
can be reduced. We will not display the IBP-generating
vectors explicitly, but they are given in a companion
MATHEMATICA file.

For the long-side two-mass double box, we take legs 1
and 4 to be massive, and now find five IBP-generating
vectors, all with coefficients of engineering dimension
four. There are again 20 equations for the 22 nominally-
irreducible integrals, which we can derive using three of
the five pairs of vectors. We can again pick the integrals in
Eq. (6.1) as irreducible masters.
For the diagonal two-mass double box, we take legs 1 and

3 to be massive, and use Algorithm III to find three IBP-
generating vectors, with the same dimensions as the mass-
less and one-mass cases. Once again, we need to use only
two vector pairs to generate all required equations, and can
take the integrals in Eq. (6.1) as irreducible masters.
When we examine the short-side two-mass double box

(taking legs 1 and 2 to be massive), we find our first
surprise. Here we find four IBP-generating vectors, all of

(a) (b)

(c) (d)

FIG. 6. Double boxes with external masses, with the massive
legs indicated by doubled lines: (a) one-mass, (b) short-side two-
mass, (c) diagonal two-mass, and (d) long-side two-mass.
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engineering dimension four; but we find only 19 equations
for the 22 original integrals (for which we need three of the
four vector pairs), leaving us with three irreducible master
integrals,

P		
2;2½1�; P		

2;2½k1 � ‘2�; and P		
2;2½k4 � ‘1�: (6.2)

The three- and four-mass double boxes lead to very
complicated analytic expressions in intermediate stages;
it is much faster (and sufficient for the unitarity approach,
as discussed earlier), to compute the IBP-generating
vectors for a fixed numerical configuration of external
momenta. We have chosen to do so; we find five IBP-
generating vectors for the three-mass case (three with
coefficients of dimension four, and two with coefficients
of dimension six), and four vector pairs for the four-mass
case (two each of dimensions four and six). In line with the
result for the short-side two-mass double box, we find three
master integrals for the three-mass case [which we can take
to be those in Eq. (6.2)]. For the four-mass case, we find
that we need four master integrals, which we can take to be

P		
2;2½1�; P		

2;2½k1 � ‘2�; P		
2;2½k4 � ‘1�;

and P		
2;2½k1 � ‘2k4 � ‘1�:

(6.3)

In all cases, there are no additional equations that arise
from truncation to Oð�Þ.

VII. THE PENTABOX

Our next example is one of the three basic topologies
that arise in five-point computations: the pentabox P		

3;2,

shown in Fig. 7. Here, we choose k1;2;3;5 as basis momenta,

so the general form (4.2) becomes

v�
i ¼ cð‘1Þi ‘�1 þ cð‘2Þi ‘�2 þ cð1Þi k�1 þ cð2Þi k�2 þ cð3Þi k�3

þ cð5Þi k�5 ; (7.1)

where again each of the coefficients cðpÞ is a function of
Lorentz invariants in the set of symbols V32,

V32 ¼ f‘21; ‘1 � ‘2; ‘22; ‘1 � k1; ‘1 � k2; ‘1 � k3; ‘1 � k5;
‘2 � k1; ‘2 � k2; ‘2 � k4; ‘2 � k5; s12g: (7.2)

For this integral, we have constructed vectors both ana-
lytically and numerically; the numerical construction is
much less memory-consuming. In both cases, the algo-
rithms yield six IBP-generating vectors with coefficients
of engineering dimension four, and three vectors with
coefficients of dimension six. Their forms are too lengthy
to display in the text, but are provided in the companion
MATHEMATICA file. There are 76 nominally-irreducible

integrals in a gauge theory, involving powers of the three
irreducible numerators,

k1 � ‘2; k2 � ‘2; k5 � ‘1: (7.3)

It suffices to use the six vector pairs of dimension four to
generate all possible equations for these integrals. We find
73 such equations, leaving us with three truly-irreducible
master integrals, which we can choose to be

P		
3;2½1�; P		

3;2½k1 � ‘2�; P		
3;2½k5 � ‘1�: (7.4)

Examples of these reduction equations are

P		
3;2½k2 �‘2�¼�ð�15�2�23þ�23�34þ2�45þ�15�45��34�45Þs12

4ð�15��23þ�45Þ P		
3;2½1��

ð1þ�15��23��34Þ
�15��23þ�45

P		
3;2½k1 �‘2�

þsimpler integrals;

P		
3;2½k1 �‘2k2 �‘2�¼�15

�
1þ�15��34��45��15�45þ�23�45þ�34�45

8ð1�2�Þð1��34��45Þ
þ �ð1þ�15��23��34Þ
8ð1�2�Þð�15��23þ�45Þð1��34��45Þð�15ð1��45Þþð�45��23Þð2��34�2�45ÞÞ

�
s212P

		
3;2½1�

þ
�
�ð�15þ2�15�23�2�2

23��23�34��15�45þ2�23�45þ�34�45Þ
2ð1�2�Þð�15��23þ�45Þ

�2þ2�15�3�34��15�34þ�2
34�2�45�2�15�45þ�23�45þ2�34�45

2ð1�2�Þð1��34��45Þ
�
s12P

		
3;2½k1 �‘2�

�ð1þ2�Þð1þ�15��23��34Þð1þ�23��45Þ
4ð1�2�Þð1��34��45Þ s12P

		
3;2½k5 �‘1�þsimpler integrals: (7.5)

FIG. 7. The pentabox P		
3;2.
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These master integrals are independent when considered
to all orders in �. Unlike the case of the double box,
however, here we can find two linear relations between
them, so long as we truncate at Oð�0Þ. These two relations
arise from considering the following two integrals:

P		
3;2

�
G

‘1;1;2;3;5

‘2;1;2;3;5

� ��
and P		

3;2

�
k5 � ‘1G ‘1;1;2;3;5

‘2;1;2;3;5

� ��
(7.6)

both of which are of Oð�Þ, as discussed in Sec. III E.
Setting the two to zero, and using the reductions obtained
from integration by parts, we find two equations relating
the masters in Eq. (7.4). We can use these, for example, to
eliminate the two integrals with nontrivial numerators in
favor of P		

3;2½1�,

P		
3;2½k5 � ‘1� ¼

�15�34�45s12
��15 þ �23 � �23�34 þ �15�45 þ �34�45

P		
3;2½1� þ simpler integralsþOð�Þ;

P		
3;2½k1 � ‘2� ¼

�15ð�15ð1� �45Þ2 þ �34ð1� �45Þ�45 � �23ð1� �45 � �34ð1þ �45ÞÞÞ
4ð1� �34 � �45Þð�15 � �23 þ �23�34 � �15�45 � �34�45Þ s12P

		
3;2½1�

þ simpler integralsþOð�Þ:

(7.7)

The other Gram determinants of the form suggested in
Sec. III E do not yield independent equations, but could
be used instead to obtain equivalent equations. The longer
denominators in these expressions may develop poles at
exceptional values of the kinematics; these are presumably
spurious and are softened by the behavior of the various
integrals in those limits, but we have not checked this.
(Other denominators vanish in nonadjacent collinear lim-
its, for example 1� �34 � �45 ! 0 in the collinear limit
k3 k k5; these are presumably spurious as well.)

One may wonder whether the IBP equations are even
required for reduction of the truncated integrals, given the
seemingly-stronger equations arising from Gram determi-
nants. However, this strength is illusory: if we use only
Gram determinant equations [including the IBP-like ones
built from Gram determinants of the form given in
Eq. (3.23)], we find only 24 equations for 29 of the 35
integrals with numerators of dimension eight or less. (The
IBP-like determinants provide two of these equations.)
This would leave five seemingly-irreducible integrals as
masters; of course, using the IBP equations, we could then
reduce all of these to the scalar integral P		

3;2½1�. If we

consider the complete set of 76 integrals, we see another
problem with using Gram-determinant equations alone: 20
of the integrals (those with four powers of ‘2) are ultravio-
let divergent, which prevents us from using these equations
to simplify them. In addition, even amongst the ultraviolet-
finite integrals, we are left with five master integrals (there
are 51 equations in total that we could derive).

VIII. A SIX-POINT EXAMPLE

Wewill consider one example of a six-point integral, the
so-called double pentagon P		

3;3, shown in Fig. 8. In contrast

to the pentabox P		
3;2 considered in the previous section, we

find that this integral can be reduced to simpler integrals
entirely using Gram-determinant equations alone. Indeed,
not only can integrals with nontrivial numerators be

reduced, but the scalar integral itself, P		
3;3½1�, can also be

expressed in terms of simpler integrals (pentaboxes and
products of one-loop pentagons, themselves reducible) via
algebraic identities. We do not even need those Gram
determinants equivalent to IBP equations to perform these
reductions.
The double pentagon has two irreducible numerators,

which we can pick to be k6 � ‘1 and k1 � ‘2. There are thus
33 formally-irreducible integrals that arise in a gauge
theory. The first thing to notice is that they are all
ultraviolet-finite, so one of the obstructions that existed
in the pentabox case to use of Gram-determinant equations
alone for a complete reduction is absent here. There are 15
integrals of engineering dimension eight or less; exclude
P		
3;3½ðk6 � ‘1Þ4� and P		

3;3½ðk1 � ‘2Þ4� and examine the re-

maining 13 integrals. We can find 13 independent equa-
tions for them by starting with the following identities:

O ð�Þ ¼ P		
3;3

�
pG

‘1; 1; 2; 3; 6

‘2; 1; 2; 3; 6

� ��
; (8.1)

with prefactors p ¼ 1, k1 � ‘2, ðk1 � ‘2Þ2, k6 � ‘1, ðk6 � ‘1Þ2,
k1 � ‘2k6 � ‘1;

O ð�Þ ¼ P		
3;3

�
pG

‘1; ‘2; 1; 2; 3

‘1; ‘2; 4; 5; 6

� ��
; (8.2)

with prefactors p ¼ 1, k1 � ‘2, ðk1 � ‘2Þ2, k6 � ‘1, ðk6 � ‘1Þ2;
and

FIG. 8. The double pentagon P		
3;3.
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Oð�Þ ¼ P		
3;3

�
G

‘1; ‘2; 1; 2; 4

‘1; ‘2; 3; 5; 6

� ��
and

Oð�Þ ¼ P		
3;3

�
G

‘1; ‘2; 1; 2; 5

‘1; ‘2; 3; 4; 6

� ��
: (8.3)

Similarly, if we examine the full set of 33 formally-
irreducible integrals, we find 33 independent equations.

IX. CONNECTIONTOGENERALIZEDUNITARITY

In this section, we use generalized unitarity to give a
heuristic explanation for the structure of the results pre-
sented in previous sections. We begin, as in Sec. II, with a
discussion at one loop.

In basic unitarity at one loop, we examine the branch cut
of amplitudes channel by channel. In each channel, the
branch is a phase-space integral over a product of tree
amplitudes. In the present paper, we are focused on loop
integrals rather than complete amplitudes, so the equiva-
lent statement—dating back to the Cutkosky rules [52] of
the 1960s—is the expression of the branch cut in terms of
phase-space integrals of scalar tree diagrams. The ordinary
cut may be obtained by cutting two propagators, that is
replacing the propagators by positive-energy delta func-
tions which put the intermediate state on shell,

i

ð‘� KÞ2 þ i"
! 2��ðþÞðð‘� KÞ2Þ: (9.1)

[The ðþÞ superscript indicates the restriction to positive
energies.] There is nothing stopping us, however, from
cutting more than two propagators, and this is the idea
behind generalized unitarity. The solutions to the delta
function constraints will in general then be complex, and
so the delta functions must be understood in a more general
sense, as contour integrals with the contours chosen to
encircle the common solutions to the constraint equations.
The idea of generalized unitarity was first applied as a
practical tool for computation of amplitudes by Bern,
Dixon, and one of the authors [23]. It was later combined
with the use of complex momenta to give a general alge-
braic solution to finding the coefficients of box integrals
[17], and used to derive a general and numerically-
applicable technique for triangle and bubble integrals by
Forde [19].

If one cuts as many propagators as possible, one arrives
at maximal unitarity, as used, for example, in Refs. [25,53].
In old-fashioned language, this is equivalent to looking for
‘‘leading singularities,’’ discussed in a modern incarnation
in Ref. [54].

But how many propagators can we cut? If we examine a
one-loop amplitude with all external momenta taken to be
massive (so that infrared singularities are tamed), we can
take the dimensional regulator � to zero, and perform the
integrals in four dimensions. (Ignore the ultraviolet-
divergent bubble in this discussion.) Each delta function

will impose one constraint; because we have four compo-
nents, we can have up to four delta functions. Attempting
to impose additional delta functions will in general yield
no solutions. (More precisely, because we will have more
delta functions than integrals, the result will itself be a
delta function rather than an ordinary function.) This, in
turn, implies that functions with additional propagators
may be determined in terms of functions with up to four
propagators, as there are no additional degrees of freedom.
In this case, all pentagons or higher-point integrals are
reducible to sums of boxes and lower-point integrals.
The generalization of this observation to higher loops is

straightforward. At each loop order, we have an additional
four components. We can thus cut an additional four
propagators. When considering infrared- and ultraviolet-
finite integrals, then, we expect that only those with up to
four propagators per loop momentum will be algebraically
independent. At two loops, this means that integrals with
more than eight propagators, or more than four propagators
involving a single loop momentum, will be reducible into
simpler integrals.
Of course, the integrals of interest are in general infrared

divergent. While the loop momentum is formally
D-dimensional, so long as we keep the external momenta
in four dimensions, the additional components � can only
appear at one loop as �2, on which we can impose one
additional delta function. Thus when considering one-loop
integrals to all orders in �, the pentagon integral must be
taken as an additional independent integral, while higher-
point integrals remain reducible. Now, the algebraic inde-
pendence of the pentagon only manifests itself at Oð�Þ;
terms through Oð�0Þ are reducible to sums of boxes. This
reducibility is not manifest in our heuristic discussion; but
it suggests the conjecture that the reducibility of integrals
to Oð�0Þ follows the pattern of massive reductions.
What happens at two loops? We now have two loop

momenta, and correspondingly two �-dimensional vectors,
�1 and �2. These can now appear in integrals in the form
of three independent quantities, �2

1, �
2
2, and �1 ��2. We

could impose additional delta functions on each, corre-
sponding to cutting three additional propagators. For
two-loop diagrams, we therefore expect any integral with
more than 11 propagators, or more than five propagators
involving a lone loop momentum, to be reducible to all
orders in �. This is exactly what we found in Sec. III.
Different propagators lead to different branch points (or

branch surfaces, for the many-complex-variables functions
we are considering). Accordingly, the algebraic indepen-
dence of uncut propagators is clear. The algebraic inde-
pendence of nontrivial numerators is less clear, as one
might imagine algebraic relations between them. (Indeed,
there are clearly algebraic relations between different
powers of numerators, as seen in reduction equations
elsewhere in the literature or in previous sections.)
Heuristically, we do at least expect an upper bound,
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# irreducible non-trivial numerator integrals

� 11� #propagators: (9.2)

This bound is respected by the explicit results in previous
sections.

The question of algebraic independence when truncating
integrals toOð�Þ is more subtle. If we adopt the conjecture
above suggested by one-loop results, it would imply that
only truncated integrals with up to eight propagators (and
up to four involving each loop momentum) are algebrai-
cally independent. This is in agreement with the reducibil-
ity of the double pentagon P		

3;3 discussed in Sec. VIII. We

might be further tempted to conjecture that the number of
independent integrals with nontrivial numerators is limited
to eight less the number of propagators. This would imply
that there are no independent pentaboxes with irreducible
numerators, which is in fact true. Thus the bound is re-
spected by the pentabox results discussed in Sec. VII, and
also by the results for some double boxes, but it is violated
for the short-side two-mass double box, as well as for
double boxes with three or four external masses. The
precise manner in which the heuristic picture breaks
down remains to be clarified.

X. CONCLUSIONS

Knowledge of an integral basis plays an important role
in modern unitarity calculations. In this paper, we have
given an outline of a basis for planar integrals (with mass-
less propagators) at two loops. We distinguish two kinds of
bases: the first, a set of integrals which are linearly inde-
pendent to all orders in the dimensional regulator �; the
second, in which linear independence is required only
through Oð�0Þ.

Smirnov and Petukhov [29] have recently shown that the
integral basis resulting from integration by parts is finite.
We have delineated an explicit finite set of integrals which
contains a minimal basis, and given an explicit procedure
reducing an arbitrary planar two-loop gauge-theory inte-
gral to an element of this set. The set contains only inte-
grals with four or fewer external legs attached to each line
in the vacuum graph. All irreducible numerators, whose
number depends on the external legs, are allowed in this
finite set of integrals. The final basis contain only a subset
of these integrals.

In order to reduce the set further, we then introduced an
approach to generating integration-by-parts equations
which involve only integrals in the desired set, along
with simpler integrals (with propagators omitted), and
avoiding integrals which are not ordinary Feynman inte-
grals. For each of the integrals in the above set, one can
solve for these vectors, and then determine the set of
independent master integrals that make up the first,
D-dimensional, basis. Unlike the situation at one loop,

the reductions, and more importantly, the number of inde-
pendent integrals, depend on the masses of the external
legs. We gave a few examples of this type of calculation,
but leave a complete study of the integrals to future work.
We also introduced a special set of numerators, built

using Gram determinants, which provide equations that
yield identities for integrals truncated to Oð�0Þ. These
equations reduce the D-dimensional set of independent
master integrals to a smaller set making up the second,
‘‘regulated four-dimensional’’ basis.
The general arguments as well as the notion of IBP-

generating vectors and additional Oð�Þ identities general-
ize to nonplanar integrals as well as to higher-loop inte-
grals. We also expect them to generalize from the massless
propagators considered here to integrals with massive
propagators. It would also be interesting to explore the
analog of the Oð�Þ identities for integrals in two- and
three-dimensional field theories. We gave a heuristic argu-
ment for understanding the basis in terms of generalized
unitarity; it would be interesting if it could be developed
further to a complementary derivation for the reduction of
integrals with formally-irreducible numerators to an inde-
pendent set of master integrals.
The defining Eqs. (4.8) for the IBP-generating vectors

can also be thought of as defining a ‘‘surface’’ or variety in
the space whose coordinates are given by the different
monomials in V (4.4). It would be interesting to explore
its connection with the Grassmannians [55] introduced in
recent explorations of integral coefficients in the N ¼ 4
theory. The integral basis appropriate for the N ¼ 4
theory should presumably make manifest (up to infrared
divergences) its extended symmetries (conformal and dual
conformal symmetries [37,56]), and may make natural use
of twistorial integrands such as those discussed in
Ref. [57].
Our approach to solving the required Eqs. (4.1) for the

IBP-generating made use of Gröbner bases, and, in par-
ticular, the standard Buchberger algorithm [43,44] for
computing them. The present implementation of the algo-
rithm (coded in MATHEMATICA) performs well for simple
cases like the double box, but slows down and requires
large memory in its intermediate stages for integrals with
more legs or many massive legs. It would be worthwhile
exploring the use of more modern algorithms, such as those
of Faugère [50] for computing the required Gröbner bases.
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