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We discuss the phase structure of dense matter, in particular, the nature of the transition between

hadronic and quark matter. Calculations within a Ginzburg-Landau approach show that the axial anomaly

can induce a critical point in this transition region. This is possible because in three-flavor quark matter

with instanton effects a chiral condensate can be added to the color-flavor locked phase without changing

the symmetries of the ground state. In (massless) two-flavor quark matter such a critical point is not

possible since the corresponding color superconductor (2SC) does not break chiral symmetry. We study

the effects of a nonzero but finite strange quark mass which interpolates between these two cases. Since at

ultrahigh density the first reaction of the color-flavor locked phase to a nonzero strange quark mass is to

develop a kaon condensate, we extend previous Ginzburg-Landau studies by including such a condensate.

We discuss the fate of the critical point systematically and show that the continuity between hadronic and

quark matter can be disrupted by the onset of a kaon condensate. Moreover, we identify the mass terms in

the Ginzburg-Landau potential which are needed for the 2SC phase to occur in the phase diagram.
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I. INTRODUCTION

Cold, strongly interacting matter appears as ordinary
nuclear matter at small baryon chemical potential and as
color-flavor locked (CFL) quark matter [1,2] at sufficiently
large baryon chemical potential. The former is an obser-
vational fact while the latter follows theoretically from
first-principle calculations within perturbative QCD.
Since QCD is asymptotically free [3,4] these calculations
are valid at asymptotically large chemical potential. How
matter evolves from nuclear matter to CFL quark matter,
i.e., which phases and phase transitions it passes in be-
tween, is an unsolved problem. This problem is of theo-
retical relevance since it addresses a poorly understood
territory of the QCD phase diagram. It is also of phenome-
nological relevance since the interior of compact stars
contains such ‘‘in-between’’ matter, i.e., matter neither
well described by low-density nuclear physics nor by
ultrahigh-density perturbation theory (for an introduction
to dense matter in compact stars see Ref. [5]).

From the symmetries of ordinary nuclear (not hyper-
nuclear) matter and the CFL phase it is clear that there
must be at least one true phase transition between these
two phases. However, since CFL breaks chiral symmetry
it is very similar to hadronic matter and in principle
allows for the intriguing possibility of a quark-hadron
continuity [6]. In other words, if hadronic matter is
‘‘prepared’’ by a series of appropriate phase transitions,
including onsets of hyperonic matter and subsequent
transitions to hyperon superfluids, it can become indis-

tinguishable from CFL quark matter [7]. Whether these
transitions happen, in particular, whether they happen
before deconfinement sets in, depends on the value of
the constituent strange quark mass and the details of the
baryonic interactions.
We may also think of the quark-hadron transition by

starting from the high-density limit. Upon going down in
density, the effect of the strange quark mass becomes more
important, imposing a stress on the symmetric pairing
pattern of CFL. Systematic studies at high densities show
that CFL reacts on this stress first by developing a kaon
condensate [8], followed by an anisotropic phase with a
kaon supercurrent [9–11], and then possibly a crystalline
phase [12–14]. Also pairing patterns which do not break
chiral symmetry may arise, such as the 2SC phase [15] or
spin-one color superconductors [16–18]. Only if such a
phase does not appear before confinement sets in, is a
smooth quark-hadron crossover possible.
The problem of the quark-hadron continuity can thus be

thought of in the following illustrative way. Start from low
(high) density and go up (down) in density and determine
all phases on the way, say at zero temperature and for the
moment ignoring the deconfinement (confinement) transi-
tion. Although we currently do not have the theoretical
tools to determine all these phases in detail, this will in
principle lead to two sequences of phases. One describes
strongly interacting hadronic matter between ordinary nu-
clear matter at low density and some phase at very high
density, the other describes quark matter between CFL at
ultrahigh density and some phase at lower density. Now we
would like to put these two sequences together to obtain
the true QCD phase diagram at small temperatures. We
know that they fit smoothly if we glue them together at the
point of the CFL phase in the quark matter part and the
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point of the hyperon superfluid phase described in Ref. [7]
in the hadronic part.

In this paper we address this problem in a very simplified
fashion. Our first simplification is the use of a Ginzburg-
Landau free energy as in Refs. [19,20], see also
Refs. [21–26]; for recent discussions of the quark-hadron
transition in a Nambu–Jona-Lasinio (NJL) model see
Refs. [27–29]. Within the Ginzburg-Landau approach we
will not be able to make firm predictions for QCD. The
benefit is, however, that our study is model independent
and systematic since the free energy is based on the under-
lying symmetries and we can, in principle, determine and
classify all phases in the parameter space of the Ginzburg-
Landau coefficients. The order parameters we use are the
chiral condensate and the diquark condensate. Our
‘‘nuclear matter’’ is thus mimicked simply by a nonvanish-
ing chiral condensate, and we cannot account for the
various phase transitions which potentially ‘‘prepare’’ had-
ronic matter for the quark-hadron crossover. The onset of a
CFL diquark condensate is a very crude version of these
transitions. After this onset has happened, the question is
whether the chiral condensate can approach zero smoothly,
i.e., without causing an additional phase transition. For the
case of a vanishing strange quark mass this is possible, and
the Ginzburg-Landau parameter space where this is real-
ized has been determined in Refs. [19,20]. In particular, it
can only be realized in the presence of a term that violates
the Uð1ÞA symmetry and thus is an effect of the axial
anomaly (other effects of the anomaly in high-density
QCD are discussed for instance in Refs. [30,31]). Only
then do the CFL phase without and the CFL phase with
chiral condensate have the same residual symmetry. As a
consequence, the Uð1ÞA-violating term—which couples
chiral and diquark condensates—induces a critical point
in the Ginzburg-Landau phase diagram where a first-order
phase transition line ends. The Ginzburg-Landau study
also shows that for infinite strange quark mass, i.e., in
two-flavor quark matter, there is always a true phase tran-
sition from the phase where both chiral and diquark con-
densates are nonzero to the phase where only the diquark
condensate is nonvanishing.

We know that the real world is somewhere in between,
i.e., the strange quark mass is neither negligibly small nor
approximately infinite in the region of intermediate den-
sities we are interested in. Therefore, in this paper we
extend the previous Ginzburg-Landau studies by including
a nonzero but finite strange quark mass. The first obvious
consequence is the appearance of additional terms in the
Ginzburg-Landau free energy. Additionally, we take into
account meson condensation in CFL. Since CFL breaks
chiral symmetry, there is an octet of Goldstone modes, just
as in the hadronic phase. At high density an effective
theory for these modes, based on the symmetries of CFL,
can be derived [8], and it can be shown that the masses of
the Goldstone modes are inversely ordered compared to the

ordinary mesons in hadronic matter [32]. The high-density
effective theory suggests that the neutral kaons form a Bose
condensate in the presence of a nonzero strange quark mass
[8]. The resulting phase has been termed CFL-K0 (see for
instance Refs. [33–35] for properties of CFL-K0 computed
from the high-density effective theory and Refs. [36–39]
for calculations within a NJL model). It is thus natural to
include kaon condensation into the Ginzburg-Landau
calculation. We note, however, that at lower densities the
meson masses may receive large instanton corrections
[31]. More formally speaking, at ultrahigh densities, where
instanton effects are suppressed, the meson masses squared
are quadratic in the quark masses since a linear term in the
masses is forbidden by theUð1ÞA symmetry. When a linear,
Uð1ÞA-violating term is allowed at lower densities, the
masses—and thus also their ordering—are subject to po-
tentially large corrections and it is unclear which of the
mesons form a Bose condensate. Therefore, our choice of
a kaon condensate is inspired by the high-density results,
but in principle other meson condensates should also be
considered.
Our paper is organized as follows. In Sec. II we set up

the Ginzburg-Landau potential, including mass terms
and kaon condensate. Then we first evaluate the potential
in the limit case of vanishing kaon condensate. This is done
in Sec. III. The purpose of this section is to explain the
Ginzburg-Landau phase diagram in terms of the symme-
tries of the various phases and in the presence of a mass-
induced linear term in the chiral potential. We build on the
phase diagrams obtained in this section when we include
the effect of a kaon condensate in Sec. IV. In Sec. V we
discuss the appearance of the 2SC phase due to mass
corrections in the Ginzburg-Landau potential before we
give our conclusions in Sec. VI.

II. GINZBURG-LANDAU POTENTIAL

We are interested in a Ginzburg-Landau potential for the
chiral and diquark condensates, including a neutral kaon
condensate and corrections from the strange quark mass,
based on Refs. [19,20]. The final result of this section is
Eq. (36), and the following pages are devoted to the
derivation of this equation.

A. Symmetries and order parameters

We shall consider a Ginzburg-Landau free energy of the
form

� ¼ �� þ�d þ��d; (1)

with a chiral part �� depending only on the chiral con-
densate �, a diquark part depending only on the diquark
condensates dL and dR (which in turn depend on the
kaon condensate), and an interaction part ��d which
couples � with dL and dR. In terms of left- and
right-handed quark fields qL and qR we have

h �q�Riq�Lji / �ji and hq�LiCq�Lji / ����A�ijB½dyL�AB,
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hq�RiCq�Rji / ���A�ijB½dyR�AB, with flavor indices i, j, B,

color indices �, �, A, and the charge conjugation matrix
C ¼ i�2�0. Since we consider a three-flavor system, �,
dL, and dR are 3� 3 matrices. The quark fields transform
under the symmetry group

G � SUð3Þc � SUð3ÞL � SUð3ÞR �Uð1ÞB �Uð1ÞA (2)

as

qL ! ei�Be�i�AVLUqL;

qR ! ei�Bei�AVRUqR;
(3)

where ðVL; VRÞ 2 SUð3ÞL � SUð3ÞR is a chiral transfor-
mation, U 2 SUð3Þc is a color gauge transformation,
ei�B 2 Uð1ÞB is a transformation associated with baryon
number conservation, and ei�A 2 Uð1ÞA is an axial trans-
formation. In terms of left- and right-handed Uð1Þ trans-
formations we have qL ! ei�LqL, qR ! ei�RqR, hence the
vector and axial Uð1Þ transformations in Eq. (3) follow
from �B ¼ ð�R þ �LÞ=2, �A ¼ ð�R � �LÞ=2. Eventually,
our potential will not be invariant under the full group G.
The chiral group SUð3ÞL � SUð3ÞR and the axial Uð1ÞA
become approximate symmetries after including the ef-
fects of a small strange quark mass and the QCD axial
anomaly, respectively.

The transformation properties of the order parameters
under G are

� ! e�2i�AVL�Vy
R; (4)

and

dL ! e�2i�Be2i�AVLdLU
T;

dR ! e�2i�Be�2i�AVRdRU
T:

(5)

The mass terms are generated by the field

M ¼
mu 0 0
0 md 0
0 0 ms

0
@

1
A; (6)

which transforms under G in the same way as the chiral
field �,

M ! e�2i�AVLMVy
R: (7)

Although we shall write down the Ginzburg-Landau terms
with general quark masses mu, md, ms, we shall later
neglect the up and down quark masses and only keep the
strange quark mass.

Our ansatz for the order parameters is as follows. The
chiral field is

� ¼
�u 0 0
0 �d 0
0 0 �s

0
@

1
A: (8)

We shall derive the potential � within this general ansatz,
but later set for simplicity �u ¼ �d ¼ �s. Different values
for each quark flavor are more realistic in the presence of a

strange quark mass and a kaon condensate. However, this
would introduce additional independent parameters into
our potential, making a systematic evaluation very compli-
cated. Therefore, we shall use the symmetric case as a
simplification.
For the diquark condensate we use the ansatz

dL ¼ dyR ¼ d
1 0 0
0 cosð�=2Þ i sinð�=2Þ
0 i sinð�=2Þ cosð�=2Þ

0
@

1
A; (9)

where � is the kaon condensate. For � ¼ 0 we recover
the pure CFL order parameter dL ¼ dR ¼ diagðd; d; dÞ.
A nonzero � introduces a relative rotation between left-
and right-handed diquarks. We have chosen a neutral
kaon condensate which is the most likely possibility at
high densities but, as explained in the Introduction, at
intermediate densities there could also be other meson
condensates.
As a comparison, note that the chiral field in the high-

density effective theory of CFL [8] is

� ¼ ei�a�a=f	 ; (10)

with the meson fields �a, the Gell-Mann matrices �a, and
the (CFL version of the) pion decay constant f	. Ignoring
all meson fields other than the neutral kaon, we set all �a’s
to zero except for �6 and �7. Without loss of generality we
can also set �7 ¼ 0. Then, our condensate � is the vacuum
expectation value of �6=f	, and the chiral field is written in
terms of the diquark condensates as

� ¼ dLd
y
R

d2
¼

1 0 0
0 cos� i sin�
0 i sin� cos�

0
@

1
A: (11)

While dL and dR are gauge variant quantities, � is gauge
invariant. Therefore, our ansatz (9) is one of infinitely
many choices for dL and dR—all related by gauge trans-
formations—which lead to Eq. (11). The chiral field trans-
forms under G as

dLd
y
R ! e4i�AVLdLd

y
RV

y
R: (12)

This is the same transformation property as the ordinary
chiral field �, except for the transformations under Uð1ÞA.
This difference reflects the fact that in CFL the mesons are
composed of four quarks, not two.

B. Chiral potential

We can now derive the explicit form of the potential �.
For the chiral part �� we collect all terms up to fourth
combined order inM and � with at most one power in the
mass field M. The terms of OðM0Þ which are invariant
under G are
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Tr½�y�� ¼ �2
u þ �2

d þ �2
s ; (13a)

ðTr½�y��Þ2 ¼ ð�2
u þ �2

d þ �2
sÞ2; (13b)

Tr½ð�y�Þ2� ¼ �4
u þ �4

d þ �4
s : (13c)

If we do not require the potential to be invariant under
Uð1ÞA, we have the additional term [40]

det�þ H:c: / �abc�ijk�ai�bj�ck þ H:c: ¼ 12�u�d�s;

(14)

which, because of

det� ! e�6i�A det�; (15)

is only invariant under the discrete subgroup ZAð6Þ �
Uð1ÞA, as expected from the anomaly. Microscopically,
det� accounts for an effective six-point instanton vertex
which converts three left-handed quarks into three right-
handed quarks, thus violating axial charge conservation by
an amount 2Nf ¼ 6.

The terms of order OðM1Þ arise from replacing one
chiral field � by the mass field M in each of the above
OðM0Þ terms. We obtain

Tr½M�y� þ H:c: ¼ 2ðmu�u þmd�d þms�sÞ;
(16a)

Tr½M�y�Tr½�y�� þ H:c: ¼ 2ðmu�u þmd�d

þms�sÞð�2
u þ �2

d þ �2
sÞ;
(16b)

Tr½M��y�� þ H:c: ¼ 2ðmu�
3
u þmd�

3
d þms�

3
sÞ;
(16c)

and the anomalous term becomes

�abc�ijkMai�bj�ck þ H:c:

¼ 4ð�u�dms þ �u�smd þ �d�smuÞ: (17)

We can now add the contributions (13), (14), (16), and (17),
each coming with a separate prefactor, to obtain the chiral
potential. Approximatingmu ’ md ’ 0 and setting for sim-
plicity �u ¼ �d ¼ �s � �, we can write the potential as

�� ¼ a0ms�þ a1 þmsa2
2

�2 þ c1 þmsc2
3

�3 þ b

4
�4:

(18)

In the given approximation,ms gives rise to a linear term in
� and yields corrections to the quadratic and cubic terms.
Because of the linear term, the chiral condensate cannot
vanish exactly in the ground state. Instead of a vacuum
phase with � ¼ 0 there will be a phase with very small �
where chiral symmetry is approximately restored and
which is continuously connected to the chirally broken
phase in which � has a sizable value. This is the most
obvious consequence of the mass term. Because of the
coupling of chiral and diquark condensates, to be discussed

in Sec. II D, we shall find other, less obvious, effects of the
linear term for our phase diagram. These effects are dis-
cussed in Sec. III.

C. Diquark potential and comparison
to high-density effective theory

For the diquark potential�d we also start from the terms
up to Oðd4Þ, first without mass insertions. Within our
CFL-K0 ansatz they simply yield the structures d2 and d4

since the kaon condensate always drops out,

Tr½dLdyL� ¼ Tr½dRdyR� ¼ 3d2; (19a)

ðTr½dLdyL�Þ2 ¼ ðTr½dRdyR�Þ2 ¼ Tr½dLdyL�Tr½dRdyR�
¼ 3Tr½ðdLdyLÞ2� ¼ 3Tr½ðdRdyRÞ2�
¼ 3Tr½dRdyLdLdyR� ¼ 9d4: (19b)

All these terms are invariant under the full group G. There
is no such term as detdL;R since this term would not only

break Uð1ÞA but also baryon number conservation which
must not be explicitly broken. To include the effect of

quark masses, we need to replace dLd
y
R by M. From

Eqs. (19) the only possible term (except for a term constant
in dL, dR which we can omit) is

Tr ½dyLMdR� þ H:c: ¼ 2d2½mu þ ðmd þmsÞ cos��: (20)

This term is invariant under ZAð6Þ � Uð1ÞA and thus is
allowed in the presence of the anomaly. OtherOðM1Þ terms

arise from replacing one chiral field dLd
y
R in the Oðd6Þ

terms. They all yield the same structure and are invariant
under ZAð6Þ,

3ðTr½dyLMdRd
y
RdR� þ H:c:Þ

¼ 3ðTr½dyLMdRd
y
LdL� þ H:c:Þ

¼ Tr½dyLMdR�Tr½dyRdR� þ H:c:

¼ Tr½dyLMdR�Tr½dyLdL� þ H:c:

¼ 6d4½mu þ ðmd þmsÞ cos��: (21)

So far the only structure we have produced for the kaon
condensate is cos�. If we were to stop here, the minimi-
zation of �d would not allow for nontrivial condensates.
This would be in contradiction to high-density calcula-
tions. Therefore we need to include at least one extra
term with nontrivial structure in �. To find this term it is
useful to briefly discuss the Lagrangian of the high-density
effective theory,

Leff ¼ f2	
4

Tr½r0�r0�
y � v2

	@i�@i�
y�

þ BTr½M�y þMy��

þ af2	
2

detM Tr½M�1ð�þ �yÞ�; (22)

where weak-coupling calculations give the following val-
ues for the constants [8,31,32]:
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f2	 ¼ 21� 8 ln2

18


2
q

2	2
; v2

	 ¼ 1

3
; a¼ 3�2

	2f2	
;

B¼ c

�
3

ffiffiffi
2

p
	

g
�


2
q

2	2

�
2
�
8	2

g2

�
6 �9

QCD


12
q

:

(23)

Here, 
q is the quark chemical potential, � the super-

conducting gap parameter, c ’ 0:155, g the strong-
coupling constant, and �QCD the QCD scale factor. The

term linear in M with prefactor B corresponds to the term
in Eq. (20) and breaks Uð1ÞA. An important contribution to
the effective Lagrangian is given by promoting the time
derivatives to covariant derivatives,

r0� � @0�þ i½A;��; A � �MMy

2
q

: (24)

Including only neutral kaons, i.e., using the chiral field
from Eq. (11), the tree-level potential Vð�Þ ¼ �Leff be-
comes [after subtracting the ‘‘vacuum’’ contribution
Vð� ¼ 0Þ]

Vð�Þ ¼ � f2	
2

2sin2�þ f2	m

2
K0ð1� cos�Þ; (25)

with the effective kaon mass squared

m2
K0 � 2Bðmd þmsÞ

f2	
þ amuðms þmdÞ: (26)

The kaon mass squared receives an instanton contribution
linear in the quark masses [31,41] and a contribution
quadratic in the quark masses. In the weak-coupling limit
at very high densities, 
q � �QCD, the instanton contri-

bution is negligible and Uð1ÞA is effectively restored. In
this case the term M�1 detM becomes dominant, resulting
in the inverse meson mass ordering [32]. We do not include
a term of OðM2Þ in our Ginzburg-Landau potential, but
nevertheless assume the kaon to be the most likely meson
to condense.

The covariant derivative (24) gives rise to the term /
sin2� which contains the effective kaon chemical potential


 � m2
s �m2

d

2
q

: (27)

This term is crucial for kaon condensation to occur. One
can see this for instance by expanding Vð�Þ for small �,
say up to order�4 to reproduce the potential of an ordinary
�4 model. The resulting �2 term becomes negative only
for
>mK0 in which case a nonzero value of�minimizes
the potential. We thus conclude that the critical strange
quark mass for the onset of kaon condensation scales at

high density as ms �m1=3
u �2=3.

From Eq. (24) we see that the term / 
2 in the potential
is formally of order M4. Nevertheless, it can become
comparable to the M2 terms [8], and therefore we need to
include this term in our potential,

Tr½½MMy; dLd
y
R�½MyM;dRd

y
L��

¼ �2d4ðm2
d �m2

sÞ2sin2�: (28)

Alternatively, we may write the diquark field as

dL ¼ dyR ¼ d
1 0 0
0 cosð�=2Þ iei
t sinð�=2Þ
0 ie�i
t sinð�=2Þ cosð�=2Þ

0
@

1
A;
(29)

including the effective kaon chemical potential 
. Then,
the time derivative term,

� Tr½@0ðdLdyRÞ@0ðdRdyLÞ� ¼ �2
2d4sin2�; (30)

produces the structure of Eq. (28). This way of introducing
a meson chemical potential in the time dependence of the
condensate is done for instance in the context of meson
condensation in nuclear matter [42–44].
Strictly speaking, in the spirit of the Ginzburg-Landau

expansion it is not consistent to keep one OðM4Þ term and
drop all OðM2Þ terms. Guided by the high-density results
we need to assume that the particular Ginzburg-Landau
coefficient in front of the term (28) is large enough to
compensate for the suppression due to the quark mass.
We can now collect all terms in Eqs. (19)–(21) and (28)

and set mu ’ md ’ 0 to write the diquark potential as

�d ¼ �1 þ �2ms cos�

2
d2

þ �1 þ �2ms cos��
2sin2�

4
d4; (31)

where we have written the prefactor of the term (28) as
2,
reminiscent of the effective kaon chemical potential (27) of
the effective theory.

D. Interaction potential

For the interaction potential ��d, the term of lowest
order in the order parameters is

Tr ½dRdyL�� þ H:c: ¼ 2d2½�u þ ð�d þ �sÞ cos��: (32)

This term is anomalous since it is not invariant under
Uð1ÞA. Without kaon condensate it has already been con-
sidered in Refs. [19,20]. We see that, in contrast to the pure
diquark terms, the kaon condensate appears even in the
absence of a strange quark mass. Including one more
power in � yields the following terms which are invariant
under the full symmetry group G:

Tr½dLdyL þ dRd
y
R�Tr½�y��

¼ 6Tr½dLdyL��y� ¼ 6Tr½dRdyR��y�
¼ 6d2ð�2

u þ �2
d þ �2

sÞ; (33a)

det�Tr½dLdyR��1� þ H:c:

¼ 2d2½�d�s þ �uð�d þ �sÞ cos��: (33b)

We include mass terms up to OðM1Þ which arise
from replacing a chiral field � in the above expressions
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(obviously, replacing a field dLd
y
R in these terms does not

yield interaction terms),

Tr½dLdyL þ dRd
y
R�Tr½My�� þ H:c:

¼ 6ðTr½dLdyLM�y� þ H:c:Þ
¼ 12d2ðmu�u þmd�d þms�sÞ; (34a)

�abc�ijkMai�bjðdLdyRÞck þ H:c:

¼ 2d2fmd�s þms�d þ ½muð�d þ �sÞ
þ �uðmd þmsÞ� cos�g: (34b)

Estimates of the prefactor of the d2�2 term suggest this
contribution to be negligible [19,20]. We shall thus focus
only on the d2� terms, as it was done for the three-flavor
case in Refs. [19,20]. Then, collecting the terms in
Eqs. (32) and (32), and again setting mu ’ md ’ 0, �u ¼
�d ¼ �s � �, the most general form of the interaction
potential can be written as

��d ¼ �
�
�
1þ 2 cos�

3
þmsð�1 þ �2 cos�Þ

�
d2�:

(35)

For � ¼ ms ¼ 0 we recover the interaction term ��d2�
from Refs. [19,20].

E. Full potential

We can now put the contributions (18), (31), and (35)
together to obtain the full Ginzburg-Landau potential, in-
cluding mass corrections and the meson condensate in the
approximations discussed above,

� ¼ a0ms�þ a1 þmsa2
2

�2 þ c1 þmsc2
3

�3

þ b

4
�4 þ �1 þ �2ms cos�

2
d2

þ �1 þ �2ms cos��
2sin2�

4
d4

�
�
�
1þ 2 cos�

3
þmsð�1 þ �2 cos�Þ

�
d2�: (36)

In the remainder of this paper we discuss and evaluate this
potential, i.e., we shall solve the stationarity equations for
the three order parameters �, d, and �,

@�

@�
¼ @�

@d
¼ @�

@�
¼ 0; (37)

in order to determine the ground state in the given parame-
ter space. As written in Eq. (36) there are 14 independent
parameters. This is too unwieldy for a systematic study and
therefore we shall work in several limit cases in the sub-
sequent sections. In the next section we start with the case
of a vanishing kaon condensate.

III. MASS EFFECT WITHOUT
MESON CONDENSATE

For the vanishing kaon condensate, � ¼ 0, all mass
terms except for the linear � term are simply numerical
corrections to the Ginzburg-Landau parameters. We thus
absorb these mass terms into new overall prefactors. This
reduces the number of independent parameters and does
not change the results qualitatively (we do not attempt do
determine the complete quantitative effect of the strange
quark mass in the full parameter space). Then we can write
the potential (36) as

�ð�;dÞ¼a0�þa

2
�2�c

3
�3þb

4
�4þ�

2
d2þ�

4
d4��d2�:

(38)

The minus signs in front of the cubic term �3 and the
interaction term d2� are conventions which imply c, � > 0
[20]. We also assume b, �> 0which ensures the bounded-
ness of the free energy. The other parameters a0, a, � shall
be varied without further constraints. For notational con-
venience we have absorbed the factorms into the definition
of a0. Without this linear term, the potential (38) has been
discussed in Refs. [19,20], where the phase structure in the
ða; �Þ plane has been given. We shall discuss the phase
structure in the three-dimensional parameter space
ða0; a; �Þ and present cuts through this space for fixed
values of a0, such that we reproduce the known results
for the special case a0 ¼ 0. We shall see that several
analytical arguments used in the massless case regarding
phase transitions and critical points can also be used re-
peatedly for the more complicated cases. For the complete
evaluation of the phase diagram, however, we need to
employ numerical calculations.
Without kaon condensate there are two stationarity

equations,

0 ¼ @�

@�
¼ a0 þ a�� c�2 þ b�3 � �d2; (39a)

0 ¼ @�

@d
¼ �dþ �d3 � 2�d�: (39b)

For the determination of the ground state it is useful to also
consider the second derivatives. The Hessian matrix of
�ðd;�Þ is

H ¼
@2�
@�2

@2�
@�@d

@2�
@d@�

@2�
@d2

 !

¼ a� 2c�þ 3b�2 �2�d
�2�d �þ 3�d2 � 2��

� �
: (40)

For a solution of Eqs. (37) to be a local minimum, the
Hessian, evaluated at this solution, must have positive
eigenvalues. If the potential is bounded from below—
which is guaranteed by b, �> 0—the solution of
Eqs. (37) with the lowest free energy yields the ground
state, i.e., the global minimum, unambiguously. In other
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words, if we find a stationary point of the potential with a
negative eigenvalue of its Hessian, then we must also have
found another stationary point with lower free energy.
Since the potential is bounded from below, the stationary
point with the lowest free energy must have a positive
definite Hessian. Consequently, the second derivatives are
strictly speaking not necessary for a stability check. We
shall see below, however, that they yield a useful alterna-
tive method to determine the phase transition lines, some of
which can be computed in a relatively simple way by using
the eigenvalues of the Hessian.

Employing the terminology of Refs. [19,20], we distin-
guish the following phases:

NG phase: � � 0; d ¼ 0; (41a)

COE phase: � � 0; d � 0: (41b)

In the Nambu-Goldstone (NG) phase there is a chiral
condensate but no diquark condensate, while the coexis-
tence (COE) phase is a color superconductor in the CFL
phase with a nonvanishing chiral condensate. One might
distinguish two more cases. First, both condensates may
vanish. This was termed the normal (NOR) phase in
Ref. [19,20]. Clearly, in the presence of the linear �
term, we cannot have two vanishing condensates, as we
see from Eq. (39a). Only for a0 ¼ 0 this case occurs. It thus
appears as a special case of the NG phase and is realized on
the a0 ¼ 0 plane in our three-dimensional ða0; a; �Þ phase
space. In all other cuts for fixed a0 there can only be an
approximate NOR phase with a small but nonzero value of
�. A similar discussion applies to the phase with nonzero
diquark condensate but vanishing chiral condensate, i.e., a
‘‘pure’’ CFL phase. With Eq. (39a) and � ¼ 0, the diquark
condensate becomes

d2 ¼ a0
�
: (42)

Since we require d2 > 0, a CFL phase is possible for
a0 > 0. Then, Eq. (39b) yields a constraint for the
parameters,

� ¼ �a0
�

�
: (43)

For a given a0, this is simply a straight line in the ða;�Þ
plane where � vanishes. This line is of no particular
interest and we obtain it as a limit case of the COE phase.
Therefore, we can restrict ourselves to the two phases
given in Eq. (39). First, we shall discuss them separately
in order to determine first-order phase transitions and
critical points within the respective phase. Then we com-
pare the free energies of the phases to obtain the phase
diagram.

A. NG phase

In the NG phase, Eq. (39b) is automatically fulfilled, and
Eq. (39a) yields a cubic equation for �,

0 ¼ a0 þ a�� c�2 þ b�3: (44)

The general solution of this equation is lengthy and not
very interesting. Throughout the paper, the determination
of the phase structure requires solving cubic equations and
inserting these solutions into the free energy. This is best
done on a computer and hence we do not attempt to derive
all details of the phase structure analytically. Many features
of the phase diagram, however, can be obtained in a simple
way and understood on the basis of symmetry arguments as
we explain in the following.
By defining

� � �� c

3b
; (45)

we can write the potential of the NG phase as

�NGð�Þ ¼ �0 þ a�0�þ
ac
2
�2 þ b

4
�4; (46)

such that the cubic term has been eliminated. We have
abbreviated

�0 � a0c

3b
þ ac2

18b2
� c4

108b3
; (47a)

a�0 � a0 þ ac

3b
� 2c3

27b2
; (47b)

ac � a� c2

3b
: (47c)

The cubic equation (44) then simplifies to

0 ¼ a�0 þ ac�þ b�3: (48)

The phase structure within the NG phase is now deter-
mined by the signs of the linear and quadratic terms in
the potential. Therefore, we need to determine the lines
a�0 ¼ 0, ac ¼ 0. Their intersection represents a critical

point at which a first-order phase transition line ends.
This is explained for a general potential of the form (46)
in Fig. 1. In the left panel of Fig. 2 we specify the location
of the critical line and the critical point of the NG phase
in the ða; a0Þ plane (the NG phase is obviously independent
of �).
In the case of the NG phase, the stability criterion from

the Hessian (40) is very simple. The positivity of its
eigenvalues is equivalent to the conditions

a > 2c�� 3b�2; � > 2��: (49)

The curve � ¼ 2��ðaÞ in the ða;�Þ plane with �ðaÞ being
the solution to the cubic equation (44) will turn out to
coincide with the second-order phase transition lines be-
tween the NG and COE phases, as we demonstrate in
Fig. 5. (The first condition, apart from being a crosscheck
for the stability of the NG phase, is of no further interest
to us.)
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B. COE phase

For the COE phase we use Eq. (39b) to write the diquark
condensate as a function of the chiral condensate,

d2ð�Þ ¼ 2��� �

�
: (50)

[In the numerical evaluation, one has to use this relation
to check whether for a given solution �, the diquark

condensate is real, d2 > 0.] Inserting this into the potential
(38) yields

�COE½�; d2ð�Þ� ¼ � �2

4�
þ ða0 þ ��Þ�þ a�

2
�2

� c

3
�3 þ b

4
�4; (51)

where we have used the notation from Ref. [20],

�� � ��

�
; a� � a� 2�2

�
: (52)

We can now proceed as for the NG phase. With the new
variable � from Eq. (45) we can write the potential as

�COEð�Þ ¼ a0c

3b
þ�c þ ða0 þ ��

cÞ�þ a�c
2
�2 þ b

4
�4;

(53)

where all a0’s are written explicitly. A nonzero a0 gives
additional contributions to the constant and linear terms in
�. All other terms are identical to the massless case [20]
(remember that we have absorbed the mass terms in the
overall coefficients unless they have produced new struc-
tures in the order parameters),

�c � � �2

4�
þ ��c

3b
þ a�c2

18b2
� c4

108b3
; (54a)

��
c � �� þ a�c

3b
� 2c3

27b2
; (54b)

a�c � a� � c2

3b
: (54c)

The stationarity equation is thus

0 ¼ a0 þ ��
c þ a�c�þ b�3: (55)

c2

3b

2c2

9b

a  = 0
0
*27b2

c 3

27b
2c3

2

a 0

a 
 =

 0
c

a

22γ
β

+
3b
c2

γ
a  +    = 0c*
0

a 
 =

 0
c*

2c2

9b

22γ
β

27b2
c3

a0 γ
β+( )

27b2
c3

a0 γ
β + 2c γ

3b( )

+ c
b0a3

a

α

FIG. 2. Left panel: The first-order phase transition line (thick solid line) and critical point in the ða; a0Þ plane within the NG phase is
shown, see Fig. 1 for a general explanation. The plot shows the coordinates of the critical point and of the intersections of the lines
a�0 ¼ 0, ac ¼ 0 with the coordinate axes, derived from Eq. (46). Since the NG phase is given by the chiral potential �� only, the

coordinates depend on the Ginzburg-Landau coefficients b and c, and not on �, �, and �. In the three-dimensional ða0; a; �Þ diagram,
the critical point thus becomes a critical line parallel to the �-axis where a first-order phase transition surface ends. Right panel: The
analogous scenario for the COE phase in the ða; �Þ plane (note different vertical axes of the two plots), derived from the potential (53)
is shown. This critical point in the COE phase is present only due to instanton effects and vanishes from the phase diagram for � ¼ 0,
leaving behind a first-order line which does not end.

linear term = 0

qu
ad

ra
tic

 te
rm

 =
 0

 

FIG. 1. An illustration of the appearance of a critical point for
a free energy with a linear, quadratic, and positive quartic term in
the order parameter, such as in Eqs. (46) and (53), is shown. The
coefficients in front of the linear and the quadratic term change
their sign across the two straight lines. For a negative quadratic
term there is a first-order phase transition, indicated by the thick
solid line. This line ends at the critical point at which both linear
and quadratic terms vanish. Across the dashed lines there is no
phase transition. This implies that one can smoothly connect two
nontrivial minima of the potential by ‘‘going around’’ the first-
order line. In our context, these two phases are the NG phase and
the (approximate) NOR phase or the COE phase and the (ap-
proximate) CFL phase. For these two cases, the location of the
critical line and the critical point in the Ginzburg-Landau phase
diagram are shown in the left and right panels of Fig. 2.
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Again we can determine the transition line for the first-
order transition within the COE phase and the correspond-
ing critical point. We show the coordinates of this line in
the right panel of Fig. 2. It is obvious that the critical
point is a consequence of the anomaly: if the anomalous
term vanishes, � ¼ 0, the critical point disappears from
the phase diagram because its � coordinate goes to�1 or

þ1, depending on the sign of c3

27b2
þ a0 (while its a

coordinate remains finite). We also see that a negative a0
shifts, for a given anomaly coefficient � the critical point
towards larger values of � while keeping the a coordinate
fixed. Remember that for both plots in Fig. 2 we only know
that the respective phases are a stationary point of the
potential, and we have not yet determined the global
minimum. And indeed, for negative a0 with sufficiently
large modulus, the � coordinate of the critical point is
shifted into region where the NG phase, not the COE
phase, is the ground state, i.e., the critical point has dis-
appeared. We demonstrate this scenario in the next sub-
section in Fig. 5.

C. Ginzburg-Landau phase diagram, symmetries,
and conjectured QCD phase diagram

The next step is to compare the free energies of the NG
and COE phases. We start with the case a0 ¼ 0 in order to
reproduce the results from Refs. [19,20]. We refer the
reader to Appendix A of Ref. [20] for an analytical
derivation of some of the phase transition lines. The
results without and with the anomalous term are shown
in Fig. 3.

Since we have set the linear term in the chiral potential
to zero, there is a NOR phase in both scenarios of the
figure, where the chiral condensate vanishes exactly. If we
switch off the anomaly, � ¼ 0, the interaction term / d2�
vanishes. Since this is the only interaction term in our
approximation, the chiral and diquark parts of the free
energy decouple, resulting in a very simple phase diagram
(left panel). In this phase diagram COE and CFL phases are
separated by a first-order line which does not end at a
critical point (vertical solid line). This is a consequence
of the global symmetries of the two phases. As indicated in
the figure, the symmetries of COE and CFL are different
without the anomaly. In other words, adding a chiral con-
densate to the CFL phase changes the (discrete) symme-
tries of the phase. This can be seen from the transformation
properties of the order parameters in Eqs. (4) and (5).
The chiral condensate � ¼ diagð�;�;�Þ and the CFL
diquark condensate spontaneously break the chiral group
SUð3ÞL � SUð3ÞR down to the vector subgroup of simul-
taneous left- and right-handed rotations SUð3ÞV . From
Eq. (4) we see that any chiral condensate is also invariant
under Uð1ÞB transformations and under transformations of
an axial subgroup ZAð2Þ. However, this ZAð2Þ is contained
in Uð1ÞB. To see this it is helpful to consider the group
Uð1ÞL �Uð1ÞR as a topological space, in this case a torus,
on which the discrete subgroups are sets of discrete points.
We show this geometric picture in Fig. 4 which illustrates
and facilitates the discussion of the discrete subgroups, in
particular, since we switch repeatedly between the bases of
left- and right-handed rotations vs axial and vector rota-
tions, which can be confusing without this illustration.

NG
SU 3 V x U 1 B

COE
SU 3 V x Z 2

NOR
SU 3 L x SU 3 R x U 1 B x U 1 A

CFL
SU 3 V x ZL 2 x ZR 2

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.05

0.00

0.05

0.10

0.15

a

NG
SU 3 V x U 1 B

COE
SU 3 V x Z 2

NOR
SU 3 L x SU 3 R x U 1 B x ZA 6

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.05

0.00

0.05

0.10

0.15

a

FIG. 3. Phase diagrams in the ða; �Þ plane without strange quark mass effects and without meson condensation, without (left panel)
and with (right panel) anomalous effects are shown. First-order phase transition lines are solid, second-order lines are dashed. For each
phase we have indicated its global symmetries. They explain why the first-order phase transition line does not (left) and does (right)
end at a critical point (see text and Fig. 4 for detailed explanations). The vertical (first-order) phase transition line separating NG from
NOR (left and right) and COE from CFL (left) is located at a ¼ 2c2=ð9bÞ. For the coordinates of the critical point (right) see right
panel of Fig. 2. We have set the Ginzburg-Landau parameters to b ¼ 1:2, c ¼ 0:5, � ¼ 1:6 for both plots, and � ¼ 0 (left), � ¼ 0:1
(right). This particular choice is completely irrelevant for the topology of the left plot. For the right plot, one slightly different topology
can be obtained in a different class of parameter values, where the phase transition between NG and COE is of first order along a
certain piece of the transition line, see right panel of Fig. 2 in Ref. [20]. We translate the scenarios shown here into possible topologies
of the QCD phase diagram in Fig. 6.
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In contrast to the chiral condensate, the diquark con-
densates dL, dR break Uð1ÞB spontaneously. Hence, there
must be a true phase transition separating the NG and NOR
phases from the COE and CFL phases. This statement is
independent of the anomaly. The anomaly becomes im-
portant for the difference between COE and CFL phases. In
the absence of instanton effects, the diquark condensates
are invariant under independent sign flips of left- and right-
handed quark fields, ZLð2Þ � ZRð2Þ. This discrete group is
broken by the chiral condensate; therefore, the COE phase,
containing both order parameters, is only invariant under
the common subgroup ofUð1ÞB and ZLð2Þ � ZRð2Þ. This is
the group of simultaneous sign flips, Zð2Þ. As a result,
without axial anomaly COE and CFL have different resid-
ual symmetry groups, see the first row of the table in Fig. 4.

The anomaly reduces the axial symmetry Uð1ÞA of the
potential to ZAð6Þ, see Eq. (15). The group Uð1ÞB � ZAð6Þ
is represented in the first panel of the second row in Fig. 4.
The anomaly does not affect the residual group of the NG
phase. However, the residual group of the CFL phase is
reduced since only Zð2Þ � ZLð2Þ � ZRð2Þ, not the entire
group ZLð2Þ � ZRð2Þ, is a subgroup of Uð1ÞB � ZAð6Þ, as
can be seen geometrically in Fig. 4. Therefore, if instanton
effects are taken into account, CFL is invariant only under
the group of simultaneous sign flips Zð2Þ. Now the addition
of the chiral condensate does not further reduce this group,
and the residual groups of COE and CFL become identical,
see second row of Fig. 4. This allows for a smooth cross-
over between these two phases, and thus the first-order
line between COE and (approximate) CFL can end at a
critical point.

This expectation from symmetry arguments is borne out
in the Ginzburg-Landau phase diagram, see the right panel
of Fig. 3. This diagram will serve as a basis for our
extensions in the following.
One might ask why the straight line of the first-order

phase transition in the COE phase terminates at the inter-
section with the second-order line and then continues as a
nontrivial, nonstraight, curve. From the right panel of
Fig. 2 one could have expected the straight first-order
line to be present wherever the a0 þ ��

c ¼ 0 line lives in
the COE region. The reason for this behavior is the condi-
tion d2 > 0. In terms of the schematic potentials of Fig. 1,
the first-order line separates two nontrivial minima. Here,
for positive �, the second minimum is forbidden since it
would imply d2 < 0. Consequently, upon crossing the line
a0 þ ��

c ¼ 0 the ground state remains in the same local
minimum although, if one had ignored the condition
d2 > 0, there would have be a second local minimum
with lower free energy.
Let us now switch on the effect of the linear term in �,

induced by a nonzero strange quark mass. The chiral group

SUð3ÞL � SUð3ÞR is now only approximate, which allows

for a smooth crossover between the NG and (approximate)

NOR phases, see the left panel of Fig. 2. More precisely,

within our ansatz M ¼ diagð0; 0; msÞ we leave part of the

chiral group intact, namely, the SUð2ÞL � SUð2ÞR associ-

ated with the u and d quarks. On the other hand, our ansatz

� ¼ diagð�;�;�Þ includes chiral condensates for the u
and d quarks and thus one might think that � does break

the chiral symmetry in the u, d sector spontaneously.

However, as one can see for instance from Eq. (16), once

anomaly
with

anomaly
without

COE CFLΩ NG

αR

αL

α  =
 0

A

α  = πA

α  = −πA

0

2π

2π

  α  = 2π

α  = 0

B

B

α  = 0B

FIG. 4 (color online). Diagram (left): The topological space of Uð1ÞL �Uð1ÞR with generators �L, �R 2 ½0; 2	� is shown. Opposite
sides of the square have to be identified (in particular, all four corners of the square correspond to the unit element). The resulting torus
can also be parametrized by �B ¼ ð�R þ �LÞ=2 2 ½0; 2	� and �A ¼ ð�R � �LÞ=2 2 ½�	;	�. Table (right): The symmetries of the
free energy � and the NG, COE, and CFL phases without and with axial anomaly are shown. Thick (red) lines and points indicate
group elements under which the free energy and the respective phases are invariant. For instance, in the first row, the points for the
COE phase are obtained as the common subset of the points of the NG and CFL phases (and all sets of points are subsets of the points
for�). Only with anomaly, i.e., only after restricting the symmetry of� from Uð1ÞL �Uð1ÞR to Uð1ÞB � ZAð6Þ, are the symmetries of
COE and CFL identical, allowing for a smooth crossover between these two phases.
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we have set �u ¼ �d ¼ �s it makes no difference (up to a
numerical prefactor which is unimportant for our purpose)
whether we set mu ¼ md ¼ 0 or not. Therefore, although
we consider the simplified situation of vanishing u and d
quark masses, the NG and NOR phases are no longer
distinguished by symmetry in the presence of a nonzero
ms. As a consequence, we expect the first-order line be-
tween NG and NOR in the a0 ¼ 0 plane to become a first-
order surface in the three-dimensional ða0; a; �Þ phase

diagram which ends at a critical line at a0 ¼ � c3

27b2
. In

other words, if we plot phase diagrams in the ða; �Þ plane
for fixed values of a0, this first-order line should be absent

for all a0 <� c3

27b2
. The numerical evaluation confirms

this expectation, see Fig. 5. Besides the phase transition
lines we have also plotted the curve � ¼ 2��ðaÞ [thin
(red) dashed line], where �ðaÞ is given by the real solution
of Eq. (44). This curve is obtained from the stability
criterion of the NG phase, see Eq. (49). The main purpose
of this curve is to provide a semianalytical form of the
second-order phase transition lines. In Fig. 5 they have

been obtained independently by directly comparing the

free energies of the different phases.
Besides the disappearance of the critical line between

NG and approximate NOR phases (and deformations of the

transition lines which do not change the topology of the
phase diagram and thus are not very interesting for our

purpose) there is one more topological change upon vary-

ing a0. Namely, we see that for sufficiently small values of
a0 the first-order line within the COE phase disappears and

the phase diagram in the ða; �Þ plane consists of a sole

second-order transition separating NG and COE phases.
More precisely, upon decreasing a0 the critical point

moves toward larger values of � while its a coordinate
remains fixed. Interestingly, at the same value of a0 where
the first-order line between NG and approximate NOR

phases disappears, the critical point sits on the � ¼ 0
axis. We can see this analytically from Fig. 2. Then,

upon further decreasing a0, it approaches the phase tran-

sition line between NG and COE phases and disappears for
values of a0 below some critical value for which we do not
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FIG. 5 (color online). Ginzburg-Landau phase diagrams in the ða; �Þ plane with quark mass effect in the chiral potential (without
meson condensation) are shown. Solid lines are first-order phase transitions, thick (black) dashed lines are second-order phase
transitions. We have chosen various values of the linear coefficient a0 of the chiral condensate and fixed all other parameters as in the
right panel of Fig. 3 (in particular, � ¼ 0:1). The parameter a0 is given in units of c3

27b2
because for a0 <� c3

27b2
the critical line which

separates NG and approximate NOR phases vanishes and there is a crossover between these two phases. The thin (red) dashed line is
the curve � ¼ 2��ðaÞwith �ðaÞ given by the solutions of the cubic equation (44). This curve is obtained from the stability criterion of
the NG phase and coincides with all second-order phase transition lines.
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have an analytic expression. We have thus found two
different ways to make the critical point disappear: switch-
ing off the anomaly removes the critical point but leaves
the first-order critical line, while going to (possibly un-
physically) small values of a0 removes the critical point
and the critical line.

It is interesting to speculate how the Ginzburg-Landau
results translate into the QCD phase diagram. For a precise
translation our simple approach is, of course, not sufficient.
First, the Ginzburg-Landau potential is an expansion in the
order parameters and thus cannot account for the complete
potential; the expansion is expected to fail far away from
second-order phase transitions where fluctuations of the
phase of the order parameter can become more important
than fluctuations of the magnitude of the order parameter.
We have also neglected gauge field fluctuations which in
fact drive the transition from a color superconducting to the
normal phase first order [25,45]. Second, even if we as-
sume the Ginzburg-Landau approximation to be valid for
all temperatures and densities of interest, we would need
the dependence of the Ginzburg-Landau coefficients on the
baryon chemical potential 
B and temperature T. This
dependence is not known within full QCD, since the rele-
vant regions of the phase diagram involve strong-coupling
effects, and lattice calculations are inapplicable due to the
sign problem at finite 
B. We may still conjecture a trans-
lation from the Ginzburg-Landau phase diagrams to QCD,
see Fig. 6. In this figure, the left and middle panel corre-
spond to the situation without strange quark mass, and thus
to the Ginzburg-Landau diagrams in Fig. 3.

For the interpretation of our Ginzburg-Landau results
with strange quark mass, it is helpful to think of the QCD
ð
B; TÞ plane to be a complicated surface in our ða0; a; �Þ
parameter space. We know from lattice calculations that, at


B ¼ 0, the transition from the chirally broken to the
chirally (approximately) symmetric phase is a smooth
crossover [47]. Therefore, the temperature axis must not
intersect the critical surface between NG and (approxi-
mate) NOR phases. This critical surface may then manifest
itself as a critical line between NG and approximate NOR
phases which ends at a critical point, see the right panel of
Fig. 6. Another logical possibility is the absence of this line
[48], which would, for instance, be realized if the whole

ð
B; TÞ surface were located ‘‘behind’’ the a0 ¼ � c3

27b2

plane.
For the critical point at low T and large 
B our analysis

with finite strange quark mass has opened up a third
possibly topology. Without mass, the point may, although
always present in the Ginzburg-Landau phase diagram, be
either outside the ð
B; TÞ plane (formally, one can think of
the point being located at negative T) or within the ð
B; TÞ
plane. With mass effect we have seen that the critical line
that ends at this critical point may be absent in the
Ginzburg-Landau phase diagram. Thus, if the ð
B; TÞ sur-
face is located at sufficiently negative a0, there is no first-
order transition within the COE phase.

IV. INCLUDING MESON CONDENSATION

We can now extend the results from the previous section
by allowing for a nonzero kaon condensate�. In principle,
this requires us to consider several additional independent
Ginzburg-Landau parameters as we can see from the full
potential (36). In this potential, the parameters �2, �2, 


2,
and �2 become relevant when we allow for nontrivial
values of �. All of these parameters correspond to
mass terms and one might, as a first approximation, neglect
these terms. However, then the only nontrivial structure
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Lapprox. Z  (2) x Z  (2)R

U(1)B

Z  (2) x Z  (2)
chiral x U(1)

RL
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U(1) B

B
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NOR
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NG

COE
CFL

B

NOR
T

CFL CFL

NG

NOR

B

Lapprox. Z  (2) x Z  (2)R

approx. chiral

COE

nonzero quark masses, instantonszero quark masses, instantons zero quark masses, no instantons

FIG. 6 (color online). Conjectured translations of the Ginzburg-Landau phase diagrams to the QCD phase diagram in the ð
B; TÞ
plane [46] are shown. We have indicated the global symmetries which are broken in the various transitions. Left panel: zero quark
masses, no instanton effects, corresponding to the left panel in Fig. 3. Middle panel: zero quark masses, nonzero instanton effects. In
this case the CFL and COE phases are no longer distinguished by symmetry and thus allow for a smooth crossover. Whether the critical
point is indeed present in the QCD phase diagram cannot be decided from the Ginzburg-Landau study; the T ¼ 0 axis may or may not
intersect with the first-order line in the COE phase in the right panel of Fig. 3. Here we show the case where it does not. Right panel:
nonzero quark masses, nonzero instanton effects, see Fig. 5. Here we know from lattice QCD that the first-order phase transition
between NG and (approximate) NOR does not reach the 
B ¼ 0 axis.

ANDREAS SCHMITT, STEPHAN STETINA, AND MOTOI TACHIBANA PHYSICAL REVIEW D 83, 045008 (2011)

045008-12



involving � is the unsuppressed d2� cos� term, and there
would be no kaon condensation at all (in principle, there
could be a condensate at the fixed value of � ¼ 	).
Therefore, we have to keep the 
2sin2� term in order to
match our potential to the high-density effective theory, see
the discussion in Sec. II C, but for simplicity neglect the
terms proportional to �2, �2, and �2. We have checked
numerically that the inclusion of these terms can indeed
make a difference to the topology of the phase diagrams
with kaon condensate. We shall come back to this issue in
the discussion at the end of Sec. V.

Within this approximation, the only additional parame-
ter compared to the previous section is 
2, and our poten-
tial becomes

�ð�; d;�Þ ¼ a0�þ a

2
�2 � c

3
�3 þ b

4
�4 þ �

2
d2

þ ��
2sin2�

4
d4 � �

1þ 2 cos�

3
d2�:

(56)

A comparison with the potential of the high-energy effec-
tive theory (25) shows that one can consider the interaction
term d2� cos� as an effective, dynamical mass term for
the kaon. The boundedness of the potential requires the d4

term to be positive, which yields an upper bound for 
2,


2 <�: (57)

The stationarity equations (37) are

0 ¼ @�

@�
¼ a0 þ a�� c�2 þ b�3 � �

1þ 2 cos�

3
d2;

(58a)

0 ¼ @�

@d
¼ �dþ ð��
2sin2�Þd3 � 2�

1þ 2 cos�

3
d�;

(58b)

0 ¼ @�

@�
¼ d2 sin�

�
2�

3
��
2

2
d2 cos�

�
: (58c)

We distinguish the following phases:

NG phase: � � 0; d ¼ 0; (59a)

COE phase: � � 0; d � 0; � ¼ 0; (59b)

COE-K0 phase: � � 0; d;� � 0: (59c)

The first two phases are the same as in the previous section.
Note that � only appears in the potential when d is non-
zero. This is clear since without diquark condensation there
are no kaons to condense. Therefore, the NG phase does
not depend on �, and we have not specified its values in
Eq. (59a). The value of� distinguishes between the phases
with nonzero CFL order parameter, COE and COE-K0.
Again, as discussed for the case without meson condensate
below Eq. (39), the NOR and pure CFL/CFL-K0 phases are
obtained as special cases from the NG and COE/COE-K0

phases. They only exist in a two-dimensional subspace of

the three-dimensional ða0; a; �Þ parameter space and thus
shall not be further discussed in the following.

A. COE-K0 phase

In order to compute the phase structure in the presence
of a kaon condensate, we need to compute the free energies
of the three phases (57). The results for the NG and COE
phases can be taken from the previous section. Thus we
only have to discuss the COE-K0 phase. It is convenient to
express � and d as functions of �. Solving Eq. (58c) for
cos� and inserting the result into Eq. (58b) yields

cos�ð�Þ ¼ 4��

3
2d2ð�Þ ; (60a)

d2ð�Þ ¼ 2��� 3�

3ð��
2Þ : (60b)

These expressions can be inserted into Eq. (58a) to obtain
an equation for�. Equivalently, we can insert them into the
potential (56) and then minimize it with respect to �. The
potential becomes

�COE-K0½�;dð�Þ;�ð�Þ�

¼ � �2

4ð��
2Þ þ ða0 þ ��

Þ�þ a�


2
�2 � c

3
�3 þ b

4
�4;

(61)

where

��

 � ��

3ð��
2Þ ; a�
 � a� 2�2

9

�
1

��
2
þ 4


2

�
:

(62)

We see that the potential of the COE-K0 phase has the
same structure as the one of the COE phase (51), with
modified coefficients ��


, a
�

. We may thus proceed anal-

ogously to determine the critical point within the COE-K0

phase. With the variable � ¼ �� c=ð3bÞ from Eq. (45) we
obtain the potential

�COE-K0ð�Þ ¼ a0c

3b
þ�c;
þða0þ��

c;
Þ�þ
a�c;

2

�2þb

4
�4;

(63)

with

�c;
 � � �2

4ð��
2Þ þ
��

c

3b
þ a�
c2

18b2
� c4

108b3
; (64a)

��
c;
 � ��


 þ a�
c
3b

� 2c3

27b2
; (64b)

a�c;
 � a�
 � c2

3b
; (64c)

in complete analogy to Eq. (53) and resulting in the sta-
tionarity equation

0 ¼ a0 þ ��
c;
 þ a�c;
�þ b�3: (65)
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After solving this equation, one has to insert the
real solution(s) back into Eqs. (58) to check whether
d2ð�Þ> 0 and �1< cos�ð�Þ< 1. If one or both of these
conditions are violated, the given solution for � has to be
discarded.

Since the cubic equation has the same structure as for the
COE phase, we obtain an analogous first-order line as
shown in the right panel of Fig. 2. From a0 þ ��

c;
 ¼
a�c;
 ¼ 0 we can compute the location of the critical point.

Its coordinates turn out to be

aCOE-K0 ¼ c2

3b
þ 2�2

9

�
1

��
2
þ 4


2

�
;

�COE-K0 ¼ � 3ð��
2Þ
�

�
a0 þ c3

27b2

�
:

(66)

We can compare this to the critical point in the COE
phase whose coordinates are read off from the right panel
of Fig. 2,

aCOE ¼ c2

3b
þ 2�2

�
; �COE ¼ ��

�

�
a0 þ c3

27b2

�
: (67)

Before we turn to the phase diagram we can give a semi-
analytical expression for the phase transition line between
the COE and COE-K0 phases. Since this phase transition
will turn out to be of second order, we consider nonzero,
but very small values of �, i.e., we approach the second-
order phase transition from within the COE-K0 phase.
Hence, we can divide Eq. (58c) by sin� and then set
cos� ¼ 1 to get a simple relation between � and d. With
the help of Eq. (60b), we eliminate d from this relation and
obtain the value of � at the phase boundary between COE
and COE-K0,

� ¼ 3�

2�


2

3
2 � 2�
: (68)

Using the relation between � and � from Eq. (45) we insert
this into the stationarity equation (65) which then only
contains the Ginzburg-Landau parameters. One obtains a
cubic equation for � which has a very lengthy, but analyti-
cal, solution �ðaÞ for the second-order phase transition line
between the COE and COE-K0 phases.

Our next goal is to compute the phase diagram including
meson condensation. It is useful to start with the following
two questions.

(i) What is the fate of the critical point in the ða;�Þ
phase diagram in the presence of kaon condensation?
We have seen above that a first-order line ending at a
critical point is possible in the COE and in the
COE-K0 phase. More precisely, there is a ‘‘would-
be’’ critical point with coordinates given in Eq. (67)
which, if the COE phase is the ground state at this
point, is a true critical point, and there is a would-be
critical point with coordinates given in Eq. (66)
which, if the COE-K0 phase is the ground state at

this point, is a true critical point. This leaves us with
four logical possibilities. There may be no critical
point at all when both would-be critical points are
covered by the ‘‘wrong’’ phases; there might be one
critical point, either in the COE or COE-K0 phase; or
both would-be critical points are realized if they are
covered by the ‘‘right’’ phases. This classification is
very useful since the information about the critical
points determines, to a large extent, the topology of
the entire phase diagram.

(ii) Is there a region in the parameter space (here
we mean all parameters except for a and �) for
which the COE phase is completely replaced by
the COE-K0 phase in the ða; �Þ plane? This question
is interesting in view of the quark-hadron continuity.
Recall that the existence of the anomaly-induced
critical point opens up the possibility to go, at least
at zero temperature, smoothly from the COE phase
to the highest-density phase, the (approximate) CFL
phase. If we now introduce a meson-condensed
phase we might introduce an additional phase tran-
sition, separating the COE from the COE-K0 phase.
This phase transition cannot end at a critical point
because the kaon condensate breaks strangeness
conservation Uð1ÞS which is an exact symmetry of
QCD, i.e., the CFL phases with and without kaon
condensation have distinct residual symmetry
groups. Only if we take into account the weak
interaction which breaks flavor conservation, can
this line end at a critical point. Another way of
saying this is that through weak interactions the
Goldstone mode associated with kaon condensation
receives a small mass which has been estimated to
be of the order of 50 keV [49]. Here we do not
consider such small Uð1ÞS-breaking terms and thus
whenever both COE and COE-K0 phases are
present in the phase diagram, they are separated
by a true phase transition. Such an additional phase
transition could be avoided if the COE phase is
completely replaced by the COE-K0 phase.

B. Critical point(s) with meson condensate

In the following we shall always use fixed values for the
parameters b, c, and � with respect to which the results are
insensitive. (We do not have a rigorous proof for that but
we have made several numerical checks which suggest
that a variation of b, c, and � does not change our main
conclusions.) To answer question (i) we thus determine for
each value of the parameter set ða0; 
; �Þ the number of
critical points in the ða; �Þ plane. To this end, we compute
the ground state at the twowould-be critical points (66) and
(67) and check whether the COE-K0 phase is the ground
state at point (66) and whether the COE phase is the ground
state at point (67). The result is presented in Fig. 7 in the
ða0; 
Þ plane for two values of �.
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The most obvious observation is that for large 
 it is
more likely to find the critical point in the kaon-condensed
phase. The reason is simply that with increasing 
 the
kaon-condensed phase covers more and more space in the
phase diagram which supports our interpretation of
 as an
effective chemical potential. For sufficiently small values
of a0 there is no critical point at all (except for very large
values of
, just below its maximum value, for which there
is a critical point in the COE-K0 phase). The reason is the
same as already discussed for the COE phase in the lower
right panel of Fig. 5: both points (66) and (67) are in a
region where the NG phase is the ground state, and thus
they are not realized. Figure 7 shows that the region
without critical points is shifted to smaller values of a0
for increasing instanton effects, parametrized by �. We
also see that with a decreasing instanton effect, it becomes
more likely to find the critical point in the meson-
condensed phase.

The regions with a critical point in the COE phase are
not separated from the regions with a critical point in the
COE-K0 phase by a one-dimensional line. We rather find a
two-dimensional region in the ða0; 
Þ space where our
numerical algorithm finds two critical points, one in each
phase. However, a closer look reveals that in this region
(dark grey in Fig. 7) the point (66) seems to lie exactly on
top of the phase transition line between COE and COE-K0.
In other words, moving within the dark grey areas, the
critical point seems to ‘‘drag’’ the second-order phase
transition line which is attached to it. Figure 7 also shows
that this two-dimensional region is ‘‘squeezed’’ to a point

in two instances. The first instance is at
 ¼ ð23�Þ1=2, a0 ¼
� c3

27b2
. From Eqs. (66) and (67) we see that for these

parameter values the two potential critical points coincide
and sit at � ¼ 0, i.e., on the a axis. On the other hand,

Eq. (68) shows that for 
 ¼ ð23�Þ1=2 the phase transition

line between COE and COE-K0 is identical with the a axis
because in this case � can only be finite if � ¼ 0.
Consequently, both points (66) and (67) coincide and lie
on the phase separation line. Now, keeping 
 fixed and
varying a0 will keep both points together but move them
away from the a axis, while the phase transition line
remains unchanged. Hence, depending on which direction
in a0 one takes, a critical point will appear either in the
COE (smaller a0) or the COE-K0 (larger a0) phase. The
second instance is at positive a0, and the scenario is
quite different here. Now the two points (66) and (67) do
not coincide. Nevertheless, for the given parameters

(for � ¼ 0:1 we read off 
 ’ 0:25�1=2, a0 ’ 0:85 c3

27b2
)

both points lie on the second-order phase transition line
between COE and COE-K0, and again varying the parame-
ters by an arbitrarily small amount creates a critical point in
one or the other phase. In contrast to the first instance this is
a purely numerical observation.

C. Phase diagrams with meson condensate

The four qualitatively different scenarios obtained from
Fig. 7 are represented in the four panels of Fig. 8, corre-
sponding to the marked points in the right panel of Fig. 7.
We have checked that our phase transition lines between
COE and COE-K0 in Fig. 8, which are obtained by a brute-
force comparison of the free energies, are reproduced by
the curves �ðaÞ discussed below Eq. (68). Together with
the thin dashed lines in Fig. 5 which reproduce the phase
transition lines between the COE and NG phases, this
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FIG. 7 (color online). The classification of parameter regions in the ða0; 
Þ plane for two different values of � according to the
number of critical points (CP) in the ða; �Þ plane is shown. Recall that a0 is the coefficient of the linear term in the chiral condensate,
induced by the strange quark mass, 
 is the effective kaon chemical potential (bounded from above by 
 ¼ �1=2 beyond which our
Ginzburg-Landau potential becomes unstable), and � parametrizes the strength of instanton effects. The plots show four qualitatively
different cases each of which is represented by a diagram in Fig. 8, corresponding to the four marked points in the right panel. In the
dark grey regions there are, according to our numerical algorithm, two critical points. However, the corresponding phase diagrams
show that one of them seems to lie on top of the phase transition line between COE and COE-K0, see upper right panel of Fig. 8.
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means that we have a relatively simple, semianalytical
form for all second-order lines.

The first three panels (upper left and right, lower left)
show the phase diagram for increasing 
 and all other
parameters fixed. Not surprisingly, the COE-K0 phase
covers more and more phase space with increasing 
.
More interestingly, for all values of 
 that are allowed in
our approximation, a finite region of the COE phase with-
out meson condensation survives. Here we have increased

 up to 90% of its upper limit, but we have checked that
this conclusion remains valid for all allowed values of 
.
This seems to answer the above question (ii) with no, and
meson condensation always appears to induce an addi-
tional phase transition line which does not end at a critical
point. We have checked, however, that this statement de-
pends on our approximation. Taking into account addi-
tional terms, for instance the ones proportional to �2, �2,
�2 in Eq. (36), it is possible to find regions in the parameter
space where the COE-K0 phase completely eliminates the
COE phase from the phase diagram.

The lower left panel shows that for large 
 the COE
phase survives in two disconnected regions. From the
translation of the ða; �Þ plane into the QCD phase diagram,

as discussed in Fig. 6, we can expect the T ¼ 0 axis to pass
through the larger of these two regions, on the left-hand
side of the first-order transition. The smaller strip on the
right-hand side can be expected to be passed upon heating
up the CFL phase, in agreement with NJL model calcu-
lations [38]. In both regions it is interesting to check
whether a less symmetric color-superconducting phase
than CFL becomes favorable. We discuss this possibility
in the next section where we include the 2SC phase in our
calculation.
The upper right panel is representative for all points in

the dark grey area in Fig. 7. Although our numerical
algorithm shows that the COE-K0 phase is the ground state
at point (66), this appears not to be a critical point since
there is no first-order line attached to it. Numerically we
find that the second-order phase transition between COE
and COE-K0 in the vicinity of this point is very strong, i.e.,
the kaon condensate� develops a sizable nonzero value on
a much smaller parameter region than it does further away
from this point. This can be seen in Fig. 9 where we plot the
order parameters �, d, and � as a function of a for three
fixed values of �, as indicated in the upper right panel of
Fig. 8. The middle panel of Fig. 9 shows the behavior close
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FIG. 8 (color online). Four Ginzburg-Landau phase diagrams including strange quark mass effects and kaon condensation, according
to the potential (56), are shown. The parameters b, c, �, and � are chosen as in Fig. 5, while a0 and 
 are given in each panel and
correspond to the marked points in the right panel of Fig. 7. The (red) arrows in the upper right panel indicate the � values for which
the order parameters are plotted in Fig. 9 as functions of a.

ANDREAS SCHMITT, STEPHAN STETINA, AND MOTOI TACHIBANA PHYSICAL REVIEW D 83, 045008 (2011)

045008-16



to the point (66). We see that the curves for� and d are also
not smooth around this point.

The curves for the order parameters also illustrate the
first-order transition at large, but still negative, � (right
panel) and its smooth version at small � (left panel).
Translated to the QCD phase diagram, we can think of
the latter, if present at all, as being closer to zero tempera-
ture as the former. In the case of the first-order transition,
here taking place in the COE phase, both � and d are
affected significantly. After the transition, the chiral con-
densate goes to zero for large a. This is as expected
because the phase at large a corresponds to the (approxi-
mate) CFL-K0 phase. For the crossover, here taking place
in the CFL-K0 phase, we see that the diquark and meson
condensates are not much affected, only the chiral conden-
sate decreases smoothly but drastically. The location of this
crossover is given by the continuation of the critical line,
see Fig. 1.

We can rephrase the main conclusion from Fig. 9 in the
following concise way. There are basically two transitions:
in the first, the chiral condensate goes to approximately
zero; this is either a first-order transition or a crossover
since the symmetry which gets restored is only approxi-
mate in the presence of the axial anomaly. The second is
the onset of kaon condensation which is always of second
order since the broken symmetry is exact (neglecting weak
interactions). The transitions appear at two separate points
in the left as well as in the right panel (and in different
orders, comparing left with right). In the middle panel, they
appear approximately at the same value of a, which seems
to be the reason for the interesting, nonsmooth, behavior in
this case.

V. UNDER WHICH CONDITIONS DOES
THE 2SC PHASE APPEAR?

So far our choice of the color-superconducting
phases was inspired by high-density arguments. We have

considered the CFL phase, which is present at asymptoti-
cally large densities, and the kaon-condensed CFL phase,
which is the first adjustment of the CFL phase to the effect
of a small strange quark mass within a weak-coupling
approach. Our calculation, however, intends to shed light
on the phase structure at moderate densities where less
symmetric phases may appear, as discussed in the intro-
duction. In this section we take into account one of these
phases, namely, the 2SC phase. In the 2SC phase, all
strange quarks as well as all quarks of one color, say
blue, remain unpaired, i.e., Cooper pairs are made of red
up/green down and green up/red down quarks. At weak-
coupling and parametrically small strange quark mass the
2SC phase has larger free energy than either CFL or
unpaired quark matter [50]. Phenomenological models
such as the NJL model suggest that this may no longer
be true at large coupling [51,52], and the 2SC phase (or
variants thereof) may cover a region in the phase diagram
between the low-density chirally broken phase and CFL.
The appearance of the 2SC phase would clearly interrupt a
possible quark-hadron continuity since 2SC does not break
chiral symmetry and thus true phase transitions would be
unavoidable between hadronic matter and 2SC and be-
tween 2SC and CFL. Building on NJL model calculations
with Uð1ÞA-breaking terms [27,53], it has been argued that
the 2SC phase indeed covers the potential anomaly-
induced critical point for a wide region in the NJL parame-
ter space [28].1

To get an idea about the possibility of a 2SC phase in our
general Ginzburg-Landau formalism, we discuss the 2SC
phase in the simplest possible way. We shall not attempt to
study the whole phase space with 2SC and meson-
condensed CFL. This would require the use of several
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FIG. 9 (color online). Order parameters �, d, and� for three values of � as functions of a, corresponding to the phase diagram in the
upper right panel of Fig. 8. As a normalization for the chiral and diquark condensates we have chosen their maximal values in the
selected section of the ða; �Þ phase diagram. These values �max and dmax are assumed in the lower left corner, i.e., at ða; �Þ ¼
ð0;�0:13Þ. The meson condensate is normalized by its maximum value 	. Left (right) panel: the onset of kaon condensation and
crossover (first-order phase transition) to a phase where the approximate ZLð2Þ � ZRð2Þ symmetry is restored happen at different
values for a is shown. Middle panel: these two transitions happen simultaneously.

1After completing this work, we have learned that in a new
version (v2) of Ref. [28] an appendix containing a discussion of
the 2SC phase in a Ginzburg-Landau approach, with some
overlap to this section of our work, has been added.
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additional Ginzburg-Landau parameters. Without meson
condensation we shall be able, however, to make some
general statements about the phase diagram including 2SC.
On a qualitative level, we give some arguments about the
addition of meson condensation at the end of this section.
We also do not attempt to account for electric and color
neutrality and beta equilibrium. These conditions are cru-
cial for the appearance of non-CFL color superconductors
since they impose constraints on the Fermi momenta of the
various quark species. So far our phase diagrams have
included only the CFL and CFL-K0 phases, and are thus
not expected to be affected much by these constraints
because the symmetric CFL pairing pattern ensures, at
least at T ¼ 0, that the number density of all quark species
is the same. For the phase diagrams including the 2SC
phase, to be discussed in this section, the neutrality con-
straint is more important. In our general Ginzburg-Landau
approach, however, the electric (or any other) charge can-
not be defined. This is only possible if an explicit depen-
dence of the Ginzburg-Landau parameters on the chemical
potentials is assumed [21], for instance using results from
perturbative QCD or a phenomenological model. Here
we keep the parameters general and determine their
range where the 2SC phase appears in the phase diagram.
Neutrality and beta equilibrium can then be expected to
yield relations between the parameters and thus define an
‘‘allowed’’ (neutral and beta-equilibrated) subspace of the
full parameter space.

Without meson condensate, the CFL order parameter is
simply dL ¼ dR ¼ diagðd; d; dÞ, which is obtained from
the more general order parameter (9) by setting� ¼ 0. For
the 2SC phase, the order parameter is dL ¼ dR ¼
diagð0; 0; dÞ which describes the pairing of only up and
down quarks of two colors. In order to compare the free
energies of 2SC and CFL we need to go back to the general
Ginzburg-Landau terms. We shall, for simplicity, keep our
assumption � ¼ diagð�;�;�Þ in both 2SC and CFL. As
an alternative ansatz, accounting for the broken flavor
symmetry, one might use the ansatz � ¼ diagð�;�; 0Þ
for the 2SC phase. In this case, the potential becomes
trivial because the d2� term that couples chiral and diquark
condensates vanishes, and we have checked numerically
that the 2SC phase appears nowhere in the phase diagram.
For a more complete study one would have to include
the d2�2 interaction term and/or allow for independent
chiral condensates� ¼ diagð�u; �d; �sÞ. Here we proceed
with the symmetric ansatz for � and show that the 2SC
phase appears in certain regions of the parameter space in
accordance with physical expectations and with NJL
studies.
Within this ansatz, the chiral part of the potential ��

can be taken directly from Sec. II and is the same for CFL
and 2SC. With the help of Eqs. (19)–(21), we write the
general form of the diquark part as

�d ¼ �1 ðTr½dLdyL� þ Tr½dRdyR�Þ þ �2 ðTr½dyLMdR� þ H:c:Þ þ �1fðTr½dLdyL�Þ2 þ ðTr½dRdyR�Þ2g þ �2 Tr½dLdyL�Tr½dRdyR�
þ �3fTr½ðdLdyLÞ2� þ Tr½ðdRdyRÞ2�g þ �4 Tr½dRdyLdLdyR� þ �5 ðTr½dyLMdRd

y
RdR� þ H:c:Þ

þ �6 ðTr½dyRMdLd
y
LdL� þ H:c:Þ þ �7 ðTr½dyLMdR�Tr½dyRdR� þ H:c:Þ þ �8 ðTr½dyLMdR�Tr½dyLdL� þ H:c:Þ; (69)

where we have assumed the coefficients in front of
terms that are related by an exchange of L and R to be
identical. Here, �1 and �2 are the coefficients for the d2

terms without and with mass insertion, and �1; . . . ; �4 and
�5; . . . ; �8 are the coefficients for the d4 terms without
and with mass insertions. For the d2� interaction terms
(we neglect again the d2�2 terms) we obtain from
Eqs. (32) and (32)

��d ¼ �1ðTr½dRdyL�� þ H:c:Þ
þ �2ðTr½dLdyL þ dRd

y
R�Tr½My�� þ H:c:Þ

þ �3ðTr½dLdyLM�� þ H:c:Þ
þ �4½�abc�ijkMai�bjðdLdyRÞck þ H:c:�; (70)

with �1 and �2; . . . ; �4 being the coefficients for the terms
without and with mass insertions. After performing the
traces we can write the 2SC and CFL potentials as

�CFL ¼ �� þ ð�1 þ �2msÞd2 þ ð�CFL
1 þ �CFL

2 msÞd4
þ ð�1 þ �CFL

2 msÞd2�; (71a)

�2SC ¼ �� þ
�
�1

3
þ �2ms

�
d2 þ ð�2SC

1 þ �2SC
2 msÞd4

þ
�
�1

3
þ �2SC

2 ms

�
d2�; (71b)

with �� given in Eq. (18). We see that for the d2 and d2�
terms we know the ratio of the coefficients between 2SC
and CFL for the mass-independent terms. Without mass
corrections we can thus simply use 1=3 of the coefficient
of the CFL phase to obtain the corresponding term for
the 2SC phase. Including a small mass term then corre-
sponds to a small correction to this 1=3. (In this spirit,
it is irrelevant that we also know the ratio between the
coefficients of the msd

2 terms.) Such a statement is not
possible for the d4 terms where, in general, we need
independent parameters even for the mass-independent
terms. Therefore, the overall coefficient in front of the d4
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term in the 2SC phase must be taken as a new parameter
and cannot be expressed in terms of a single coefficient of
the CFL phase. As a result, we can write the free energies
in the following convenient way:

�CFLð�;dÞ ¼ a0�þ a

2
�2 � c

3
�3 þ b

4
�4 þ�

2
d2

þ�

4
d4 ��d2�; (72a)

�2SCð�;dÞ ¼ a0�þ a

2
�2 � c

3
�3 þ b

4
�4 þ�

2

�
1

3
þ ~�ms

�
d2

þ
~�

4
d4 ��

�
1

3
þ ~�ms

�
d2�; (72b)

where � � �1 þ �2ms, � � �CFL
1 þ �CFL

2 ms, � � �1 þ
�CFL
2 ms in order to reproduce the potential from Eq. (38).

The new coefficients ~�, ~�, ~� depend on the parameters in
Eq. (69) in an obvious, but irrelevant, way.

We can now proceed analogously to the previous sec-
tions and determine the ground state of the system. Nowwe
need to compare the NG, COE(CFL), and COE(2SC)
phases, where COE(CFL) is the phase with coexisting
chiral condensate � and diquark condensate in the CFL
pattern (this phase was simply termed COE in the previous
sections), and COE(2SC) is the phase where � coexists
with the diquark condensate in the 2SC pattern. The main
question is under which conditions and where in the phase
diagram the 2SC phase appears. The results of our numeri-
cal evaluation are summarized in the following observa-
tions and in Fig. 10.

(i) Our conclusions are insensitive to the value of ~�.

Note that ~� is the only new coefficient in the 2SC

potential that enters to leading order. It could thus
have potentially complicated our results. We have

checked, however, that variation of ~� does not
change any of the following statements and the
topology of the phase diagrams shown in Fig. 10.

For this figure, we have thus simply chosen ~� ¼ �.
(ii) If we neglect the mass corrections to the d2 and d2�

terms, i.e., ~� ¼ ~� ¼ 0, there is no 2SC phase in our
ða; �Þ phase diagram for all values of a0. In other
words, the mass effect through the linear term in the
chiral potential / a0 is not sufficient to trigger the
2SC phase. More mass corrections are needed.

(iii) As soon as mass corrections ~�< 0 or ~� > 0 or both
are switched on, there is at least one region in the
ða; �Þ phase diagram for all a0 where the 2SC
phase is the ground state. (It is a numerical obser-
vation that only the given signs of ~�, ~� yield the
results shown in Fig. 10; different signs, i.e., ~�> 0
and/or ~� < 0 require sufficiently large positive val-
ues of a0 for the 2SC phase to appear.) The 2SC
phase appears in the expected regions of the phase
diagram, separating the NG phase from the CFL
phase. This is shown in Fig. 10 for two different
values of a0 < 0. Increasing ja0j for negative a0
increases the area which is covered by the 2SC
phase.

(iv) The phase transition from COE(CFL) to COE(2SC)
is of first-order. This is clear since two of the gap
parameters must change discontinuously in the
transition from dL ¼ dR ¼ diagðd; d; dÞ to dL ¼
dR ¼ diagð0; 0; dÞ. Additionally, our numerical

a0 0.5
c3

27 b2

COE CFL

COE 2SC

COE 2SC

NG

0.00 0.05 0.10 0.15

0.10

0.05

0.00

0.05

0.10

a

a0 1.8
c3

27 b2

COE CFL

COE 2SC NG

0.00 0.05 0.10 0.15

0.10

0.05

0.00

0.05

0.10

a

FIG. 10. Ginzburg-Landau phase diagrams including the 2SC phase for two different values of a0 (one should think of increasing the
strange quark mass from left to right) and all other parameters fixed as in Fig. 5 are shown. The 2SC phase occurs after including mass
corrections according to the potentials (70), for these plots we have chosen �~�ms ¼ ~�ms ¼ 0:05. As a function of increasing ja0j
(a0 < 0) the 2SC phase first appears on the left-hand side of the phase transition between NG and COE, then additionally in a
disconnected region on the right-hand side (left panel), before the two regions merge for sufficiently large ja0j (right panel). COE
(CFL) denotes the phase with nonzero chiral condensate and diquark condensate in the CFL phase (denoted simply COE in all previous
plots), COE(2SC) denotes the phase with nonzero chiral condensate and diquark condensate in the 2SC phase. Had we not taken into
account the 2SC phase, the (second-order) transition between COE and NG would have been between the shown COE(CFL)/COE
(2SC) and COE(2SC)/NG transitions, see upper and lower right panels of Fig. 5. In this sense, the 2SC phase extends the color-
superconducting area.
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results show that the chiral condensate is discon-
tinuous at this transition.

It is an interesting question whether meson condensation
can prevent the 2SC phase from appearing. Comparing
Figs. 8 and 10, the answer seems to be no because the
COE-K0 phase does not reach areas close to the transition
to the NG phase, and this is exactly where the 2SC phase
lives. However, we have to remember that in our discussion
of kaon condensation we have neglected all mass terms
except for a0 and the one associated with the kaon chemi-
cal potential. The omitted terms are exactly the ones that
are needed to obtain the 2SC phase. Hence, we would have
to redo our analysis, including 2SC and kaon condensation
and taking into account the mass corrections for the d2 and
d2� terms in the potential (36). This would introduce more
independent parameters and without further constraints a
systematic study would be very unwieldy. Therefore, we
have only done some numerical calculations with selected
parameters. These calculations show that if we take for
instance one of the phase diagrams in Fig. 10, there is a
range of parameters for the mass corrections where the
kaon-condensed phase does expel the 2SC phase.
However, the 2SC phase is only expelled completely
from the ða; �Þ phase diagram if the mass corrections /
�2, �2, �1, �2 in Eq. (36) are of the order of or larger than
the Oðm0

sÞ terms. In this case, our Ginzburg-Landau ex-
pansion becomes unreliable since we have neglected mass
terms of higher order (except for the term / 
2 which is
suggested to be relevant from high-density arguments, as
explained). If we keep the mass corrections much smaller
than theOðm0

sÞ terms, the 2SC phase, if it is preferred over
the CFL phase in some region of the phase diagram, also
appears to be favored (in a smaller region) over the
CFL-K0 phase.

VI. SUMMARYAND OUTLOOK

We have studied phases of dense matter in a Ginzburg-
Landau approach. Previous Ginzburg-Landau studies have
shown that the axial anomaly may induce a high-density
critical point in the QCD phase diagram, possibly leading
to a smooth crossover between hadronic matter and color-
flavor locked quark matter. We have explained in detail that
the existence of this critical point is a consequence of the
(discrete) symmetry of the CFL phase which—in the pres-
ence of the axial anomaly—is not changed by adding a
chiral condensate. Our main goal has been to extend the
previous studies by including a strange quark mass. We
have discussed several different, although related, mass
effects.

First, the strange quark mass introduces a term linear in
the chiral condensate �, say a0�, which allows for a
smooth crossover between the phases of broken and (ap-
proximately) restored chiral symmetry. This effect is most
relevant for the high-temperature, low-density phase of
QCD where there is indeed such a crossover between the

hadronic phase and the quark-gluon plasma, as we know
from lattice calculations. We have shown that the term a0�
is also relevant for the high-density critical point. The
reason is the anomalous interaction term that couples the
chiral to the diquark condensate d, say �d2�. For suffi-
ciently large values of ja0j (a0 < 0) the first-order phase
transition line which, for nonzero �, ends at the high-
density critical point disappears. As a result the transition
between the ordinary chirally broken phase and the CFL
phase is smooth everywhere.
Second, a nonzero strange quark mass is expected to

induce less symmetric color-superconducting phases. In
high-density calculations, the CFL-K0 phase is the first
phase that appears after going down in density from the
asymptotically dense CFL region. We have introduced a
kaon condensate as a relative rotation of left- and right-
handed diquark condensates and have adjusted the
Ginzburg-Landau potential to match the essential terms
of the high-density effective theory. We have identified
the region in the parameter space where the critical point
has moved from the CFL into the CFL-K0 phase and have
determined the location of both possible critical points in
the presence of a strange quark mass. In addition to a shift
of the critical point, the kaon condensate introduces a true
phase transition because it breaks strangeness conservation
spontaneously which is an exact symmetry in QCD.
Third, we have discussed a more radical reaction of the

system to a nonzero strange quark mass, namely, the
appearance of the 2SC phase. In previous studies in the
Ginzburg-Landau approach, it has been shown that for an
infinitely large strange quark mass there cannot be a high-
density critical point. The reason is that the 2SC phase does
not break chiral symmetry and thus there must be a true
phase transition between the 2SC phase with and without
coexisting chiral condensate. Since we have included a
nonzero, but finite, strange quark mass, we could study
the competition between the 2SC and CFL phases under
the influence of a nonzero chiral condensate. We have
shown that the mass term a0� is not sufficient to favor
the 2SC phase in any part of the phase diagram. Additional
mass terms, which we have neglected in our discussion of
the meson condensate, are necessary for the 2SC phase to
appear between unpaired quark matter and the CFL phase.
In a conjectured translation to the QCD phase diagram it
seems that the 2SC phase appears ‘‘first’’ (i.e., for the
smallest values of these mass terms) at low temperature.
As a consequence, the smooth crossover at zero tempera-
ture between hadronic and quark matter would be dis-
rupted by true phase transitions. The appearance of
the 2SC phase is in agreement with recent NJL model
calculations.
There are several possible extensions of our work. We

have studied the competition between 2SC and CFL sys-
tematically, but have only briefly discussed the competition
between 2SC and CFL-K0. For a more complete analysis it
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would be helpful to first find some constraints for the
additional Ginzburg-Landau parameters. The potential
proliferation of parameters has also led us to a simplified,
flavor-symmetric ansatz for the chiral condensate. One
should check in further studies how our results change
with a more realistic ansatz. It would also be interesting
to consider different meson condensates and possibly their
coexistence. This is important since we do not know the
masses of the CFL mesons at intermediate densities, and
it may well be a different meson than the kaon which
condenses in this regime. Furthermore, one should also
take into account the requirement of electric and color
neutrality. This was not an issue in our calculations with
the CFL phase since this phase is automatically neutral
(and a neutral kaon condensate does not change this). In the
2SC phase, however, the numbers of up, down, and strange
quarks are not identical, and the existence and details of
this phase (as for any non-CFL color superconductor)
depend strongly on the neutrality constraint.

More generally speaking, the model-independent
Ginzburg-Landau approach, including possible extensions

in the future, is helpful to gain insight into the QCD
phase diagram at low temperature and large, but not
asymptotically large, densities. Like NJL model calcula-
tions, however, it is far from being conclusive for the
actual, full QCD situation. Therefore, it is important to
also pursue other approaches such as improvements of
perturbative calculations [54] or studies of dense matter
in the astrophysical context and comparing properties of
phases of dense (quark) matter with data from compact
stars [55–57].
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[6] T. Schäfer and F. Wilczek, Phys. Rev. Lett. 82, 3956

(1999).
[7] M.G. Alford, J. Berges, and K. Rajagopal, Nucl. Phys.

B558, 219 (1999).
[8] P. F. Bedaque and T. Schäfer, Nucl. Phys. A697, 802
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