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In this paper, a complete covariant quantization of generalized electrodynamics is shown through the

path integral approach. To this goal, we first studied the Hamiltonian structure of the system following

Dirac’s methodology and, then, we followed the Faddeev-Senjanovic procedure to obtain the transition

amplitude. The complete propagators (Schwinger-Dyson-Fradkin equations) of the correct gauge fixation

and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an explicit calcu-

lation of one-loop approximations of all Green’s functions and a discussion about the obtained results are

presented.
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I. INTRODUCTION

The results that have been obtained for known quantum
field theories using available theoretical tools are very im-
pressive: the agreement of the QED4 with experiments, the
predictions of the standard model and the QCD4, and so
many others. A point that warrants comment is the effec-
tiveness of such theories up to a determined energy scale.
Usually, a physics problem involves widely separated en-
ergy scales; this allows us to study the low-energy dynamics
independently of the details of the high-energy interactions.
The main idea is to identify those parameters that are very
large (small) compared to the relevant energy scale of the
physical system and let them go to infinity (zero). This
provides a sensible approximation to the problem, which
can always be improved by taking into account the correc-
tions induced by the neglected energy scales as small per-
turbations. Effective theories constitute the appropriate
theoretical tools to describe low-energy physics, where
low is defined with respect to some energy scale. This
idea of effective theories was proposed by Weinberg [1].

The set of higher-order theories belongs to such effective
theories. As it is known, the majority of physical systems
described by Lagrangians depends, at most, on first-order
derivatives. However, with the first development in formal
aspects of higher-order derivative Lagrangians in classical
mechanics by Ostrogradski [2], a new field of research was
opened.

This branch of higher-order derivative theories becomes
very interesting, due to the fact that these additional terms
are constructed in such a way so as to preserve the original
symmetries of the problem. As a remark, it is important to
say that this kind of theory has been shown to be a powerful

method for consistent regularization of the ultraviolet di-
vergences of gauge-invariant and supersymmetric theories
[3]. Also, the use of higher derivative terms becomes an
interesting regulator, by the fact that it improves the con-
vergence of the Feynman diagrams [4].
More examples of systems treated with higher-order

Lagrangians that we can mention are: the study of the
problem of color confinement on the infrared sector of
QCD4 [5], the attempts to solve the problem of the renor-
malization of the gravitational field [6], and a generaliza-
tion of Utiyma’s theory to second-order theories [7].
Although all these works improve the use of higher-order
terms, the ones that most contributed to show the effective-
ness of such terms in field theory were the contributions of
Bopp [8] and Podolsky and Schwed [9], where they pro-
posed a generalization of the Maxwell electromagnetic
field. They wanted to get rid of the infinities of the theory,
such as the electron self-energy (r�1 singularity) and the
vacuum polarization current present in the Maxwell theory.
The modification suggested by Podolsky and Schwed han-
dles these unsolved problems and, also, gives a positive
definite energy in the electrostatic case; also, as shown
by Frenkel [10], it gives the correct expression for the
self-force of charged particles. In [7], it was shown that
the Podolsky Lagrangian is the only possible generaliza-
tion of Maxwell electrodynamics that preserves invariance
under Uð1Þ.
On the theoretical and the experimental framework,

efforts have been made to determine an upper-bound value
for the mass of the photon [11], the existence of a massive
sector being a prediction of generalized electrodynamics.
Along this line of thought, we believe that a way to set
limits over the Podolsky parameter will be to study the
Podolsky photons interacting with standard model parti-
cles and compare the obtained results with high-energy
experiments. This idea and other purposes led Podolsky
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and some of his students to study the interaction of
electrons with the Podolsky photons, which they called
generalized quantum electrodynamics (GQED4) [12].
Among the points dealt with in their thesis, the most
interesting was the calculation of the electron self-energy
at a one-loop approximation. They expected that the con-
tribution of massive photons would lead to a finite result;
nevertheless, in the end, they found, as in the usual QED4,
a divergent expression. Analyzing, now, their thesis re-
sults, we found a mistake in their treatment of the theory,
i.e., the choice of the usual Lorenz gauge condition.
However, this analysis was only possible due to the con-
tribution of Galvão and Pimentel [13], which gives the
first consistent quantization to the Podolsky theory, where
Dirac Hamiltonian formalism [14] was used with the
correct choice of gauge condition, which they called the
generalized Lorenz gauge condition. Also, they showed
that, different from the usual Lorenz condition, the gen-
eralized one fulfills all the requirements for a good choice
of gauge condition on the context of the Podolsky theory.
Indeed, one of the aims of this paper is to quantize the
GQED4, now, in the generalized Lorenz gauge condition.
The Podolsky electrodynamics, by itself, takes account of
several classical problems of Maxwell’s theory, and it
should be expected that the addition of the Podolsky
term into the QED4 Lagrangian with an appropriate gauge
choice should give rise to interesting results.

Based on all these facts pointed out above, we can
conclude that higher-order theories deserve a deeper in-
vestigation. Therefore, this paper is intended to give a
correct and transparent quantization of the GQED4 and
the interaction of electrons with the Podolsky photons in
four-dimensional space-time. To improve our understand-
ing of the features of the GQED4, we proceeded to calcu-
late the radiative corrections of Green’s functions. The
main results of the paper will be closed formulas to
the complete propagators and the vertex function by func-
tional methods (for an excellent review, see [15]), and it
turns out that, with the correct gauge choice, the electron
and vertex self-energy functions are finite at the e2-order
approximation.

The work is organized as follows. In Sec. II, we present a
brief study of canonical structure of the theory and, then,
construct the transition amplitude by the Faddeev-
Senjanovic procedure [16], which we believe is the most
appropriate for our interests. In Sec. III, we introduce the
generating functional, which will generate all the Green’s
functions, the photon and electron propagators, and the
vertex function; also, through it, we will derive the gener-
alized Ward-Fradkin-Takahashi identities in Sec. IV. In
Sec. V, we evaluate and discuss the self-energy functions
of the theory at the e2-order approximation. In order to
avoid an awful reading, we place most of the calculation in
the Appendices, and some useful identities, as well. Our
remarks are given in Sec. VI.

II. TRANSITION AMPLITUDE

To construct the transition amplitude, we must first do a
constraint analysis. Hence, before using the Faddeev-
Senjanovic procedure, we will present a short study, show-
ing the main points of the Hamiltonian structure of the
GQED4: the evaluation of canonical momenta, followed by
the determination of first- and second-class constraints,
and, at last, the choice of an appropriate set of gauge
conditions. However, it will be necessary to use the
Faddeev-Popov-DeWitt method to get a covariant expres-
sion for the transition amplitude. Thus, we start with the
Lagrangian density of the GQED4, defined by1

L ¼ i

2
ð �c @̂ c � �c @̂

 
c Þ �m �c c þ e �c Â c

� 1

4
F��F

�� þ a2

2
@�F

��@�F��; (1)

which, at the classical level, is invariant under the local
gauge transformations

c 0ðxÞ¼ei�ðxÞc ðxÞ; A0�ðxÞ¼A�ðxÞþ1

e
@��ðxÞ: (2)

In the Lagrangian (1), we used the following definitions:

the field-strength tensor F�� � @�A� � @�A�, and Ô �
��O

�. The Lagrangian L preserves all symmetries of the

usual QED. The Euler-Lagrange equations following from
the Hamiltonian principle with the corresponding bound-
ary conditions are

ði@̂þeÂ�mÞc ¼0; ð1þa2hÞ@�F��¼e �c��c : (3)

The canonical momenta, �� and ��, conjugate to A� and
��, respectively, where �� � @0A� are considered as in-
dependent variables, defined [13], and given by

�� � @L
@��

� @0
@L

@ð@0��Þ � 2@k
@L

@ð@k��Þ
¼ F�0 � a2½	�k@k@�F

0� � @0@�F
���; (4)

�� � @L
@ð@0��Þ ¼ a2½	�0@�F

0� � @�F
���: (5)

The canonical momenta associated with the fermion fields
c and �c are

pA � @L
@ð@0 �c AÞ

¼ i

2
ð�0c ÞA; (6)

�p A � @L
@ð@0c AÞ ¼

i

2
ð �c�0ÞA: (7)

From the above momentum expressions, we shall study
the constraint structure of the theory following Dirac’s

1We shall adopt, here, the metric convention 	�� ¼
diagðþ;�;�;�Þ; the Greek and Latin indices runs from 0 to
3 and 1 to 3, respectively, and the spinorial indices are repre-
sented by capital Latin letters.
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approach to singular systems [14]. From Eqs. (4)–(7) and
the linear independence of the constraints [14], it is pos-
sible to obtain the following set of first-class constraints:

�1 � �0 � 0; �2 � �0 � @k�
k � 0;

�3 � @k�
k þ e �c�0c � 0;

(8)

and a set of second-class ones,


A � pA � i

2
ð�0c ÞA � 0;

�
A � �pA � i

2
ð �c�0ÞA � 0;

(9)

where � represents the fact that Eqs. (8) and (9) are weak
equations, according to Dirac’s procedure. The constraint
analysis presented here is justified by the Faddeev-
Senjanovic procedure to get the transition amplitude
[16]. This point will become clear below.

The transition amplitude in the Hamiltonian form is
written in the following way:

Z ¼
Z

D� exp

�
i
Z

d4x½��ð@0A�Þ þ��ð@0��Þ

� ð@0c Þ �p� ð@0 �c Þp�HC�
�
; (10)

where the canonical Hamiltonian HC is given by

HC ¼ �0�
0 þ �j�

j þ�l�
l

2a2
þ�l@

l�0 þ�l@kF
lk

� i

2
�c�j@

,
jc þm �c c � e �c Â c þ 1

4
FkjF

kj

þ 1

2
ð�j � @jA0Þ2 � a2

2
ð@j�j � @j@

jA0Þ2: (11)

The integration measure is defined by

D� ¼ D��D��D��DA�D �cDcD �pDp�ð�lÞ
� detkf�a;�bgBk detkf
A; �
BgBk�1=2; (12)

where � ¼ f�;�; 
; �
g, and the functionals � are the
gauge conditions that fix the first-class constraints. Here,
we will use the generalized radiation gauge condition

�1 � �0 � 0; �2 � A0 � 0;

�3 � ð1þ a2hÞ@kAk � 0;
(13)

which, as it is shown in [13], is an appropriate set of
noncovariant gauge conditions for the first-class con-
straints (8). We notice that the determinant associated
with the second-class constraints, detkf
A; �
BgBk, does
not contain field variables, and so it can be absorbed in a
normalization constant; we also show that the determinant
between the first-class constraints (8) and the gauge-fixing
conditions (13) has the form

detkf��;��gBk ¼ �ð1þ a2r2Þr2: (14)

Therefore, through the following manipulations—combin-
ing Eqs. (12) and (14), substituting them into (10), and also
carrying out momenta integrals and field variables—we
find the following expression for the transition amplitude:

Z ¼
Z

DA�D �cDc detk � ð1þ a2r2Þr2k

� �½ð1þ a2hÞ@kAk� exp
�
i
Z

d4xL
�
: (15)

Although Eq. (15) is correct, the noncovariant form is not
good for calculation purposes. However, we can use the
ansatz of Faddeev-Popov-DeWitt [17] to achieve the de-
sired covariant form for the transition amplitude. Then,
choosing the generalized Lorenz gauge condition [13]

�½A� ¼ ð1þ a2hÞ@�A� ¼ 0; (16)

we finally obtain a expression for the covariant vacuum-
vacuum transition amplitude:

Z¼
Z
DA�D �cDc detk�ð1þa2hÞhk

� exp

�
i
Z
d4x

�
�c ði@̂�mþeÂÞc �1

4
F��F

��

þa2

2
@�F��@�F

��� 1

2�
fð1þa2hÞ@�A�g2

��
: (17)

In this covariant gauge choice, we see that the Faddeev-
Popov-DeWitt determinant does not contain field variables
(the ghosts decouple from the gauge fields), and so, it can
be absorbed into a normalization constant.

III. SCHWINGER-DYSON-FRADKIN EQUATIONS

There are a lot of ways to extract the physical content of
quantum field models, but the most elegant one is from the
Green’s functions using functional derivatives, which is a
natural way to obtain such functions. The method of
functional derivatives, which has been largely used by
Schwinger, among others [18,19], uses a generating func-
tional from which all of Green’s functions can be obtained
by functional differentiation. These equations are also
known as Schwinger-Dyson-Fradkin equations (SDFEs),
and the motivation to construct the SDFEs is the non-
perturbative information that is provided for the theory.
However, if we regard these equations only as a source of
obtaining formal expansions in powers of the coupling
constant, we shall obtain nothing new in comparison with
perturbation theory. The problem of finding an effective
method of solving those equations not based on perturba-
tion theory is, at present, still far from any sort of satisfac-
tory solution.
In the present section, we will derive these relations

for the photon and electron fields, and also for the
vertex function. The first step is to define the generating
functional
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Z ½	; �	; J�� ¼
Z

D�ðc ; �c ; A�Þ exp½iSeff�; (18)

with the effective action given by

Seff ¼
Z

d4x

�
�c ði@̂�mþ eÂÞc � 1

4
F��F

��

þ a2

2
@�F��@�F

�� � 1

2�
fð1þ a2hÞ@�A�g2

þ �c	þ �	c þ A�J�

�
; (19)

where �	,	, and J� are the sources (auxiliary mathematical

devices) for the fermion c , the antifermion �c , and the
gauge A� fields, respectively. Let us stress that the com-

ponents of fermionic fields ð �c ; c Þ and their sources ð	; �	Þ
are elements of the Grassmann algebra, and that A� and its

source J� are c-numbers. From the generating functional

(18), all the physical quantities of the theory can be ob-
tained. Whenever possible, we will discuss the meaning of
expressions ofGQED4 and also its points of equivalence or
inequivalence with the known results of QED4.

A. Schwinger-Dyson-Fradkin equation
for the photon propagator

We will derive and discuss, here, the properties of the
complete expression of the gauge-field propagator in inter-
action with electrons. First, to obtain the corresponding
photon SDFE, we need to solve the following equation:

0 ¼
�
�Seff

�A�ðxÞ
��������ð�=�i	Þ;�ð�=�i �	Þ;ð�=�iJ�ÞþJ

�ðxÞ
�
Z½	; �	; J��;

(20)

which, after evaluating the first term, can be written as

�J�ðxÞ ¼
�
h	�� �

�
1� 1

�
ð1þ a2hÞ

�
@�@�

�

� ð1þ a2hÞ �W

�J�ðxÞ þ ie
�W

�	ðxÞ�
� �W

� �	ðxÞ
þ ie

�

�	ðxÞ
�
�� �W

� �	ðxÞ
�
: (21)

The last equation represents the compact form of the non-
perturbative equivalent to the Podolsky field equation,
subject to an external source J�. The functionalW present

in (21) is the generating functional for the connected
Green’s functions W½	; �	; J��, which is defined by

W½	; �	; J�� ¼ �i lnZ½	; �	; J��. We also introduce the

generating functional for one-particle irreducible (1PI)
Green’s functions �½ �c ; c ; A�� through the Legendre trans-
formation

�½ �c ;c ;A��¼W½	; �	;J���
Z
d4xð �c	þ �	c þA�J�Þ:

(22)

From the above definitions, we obtain expressions for
ð �c ; c ; A�Þ in terms of ð	; �	; J�Þ, and vice versa, being

given by

A�¼ 1

i

�W

�J�
; c ¼ 1

i

�W

� �	
; �c ¼�1

i

�W

�	
; (23)

J� ¼ � ��

�A� ; 	 ¼ � ��

� �c
; �	 ¼ ��

�c
: (24)

Assuming the case that the fermionic sources are null,
Eq. (21) is written as

��

�A�ðxÞ ¼
�
T�� þ 1

�
ð1þ a2hÞL��

�
ð1þ a2hÞhA�ðxÞ

þ ie
�

�	AðxÞ
�
�� �W

� �	ðxÞ
�
; (25)

where we have used the following set of projectors:

T�� þ L�� ¼ 	��; L�� ¼ @�@�

h
: (26)

From identifying

S ðx; yÞ � i
�2W½	; �	; J��
�	ðyÞ� �	ðxÞ

��������c¼ �c¼0
(27)

as the complete electron propagator in an external field A�,

which satisfies the following functional relation,

i
Z

d4zSBCðx; zÞ �2�

�c CðyÞ� �c DðzÞ
¼ �BD�ðx� yÞ; (28)

we can express (25) as

��

�A�ðxÞ ¼
�
T�� þ 1

�
ð1þ a2hÞL��

�
ð1þ a2hÞhA�ðxÞ

þ eTr½��Sðx; xÞ�: (29)

Now, differentiating (29) with respect to A�ðyÞ and setting
J�ðxÞ ¼ 0, yields

�2�

�A�ðyÞ�A�ðxÞ ¼
�
T�� þ 1

�
ð1þ a2hÞL��

�

�hð1þ a2hÞ�ðx� yÞ

� ieTr

�
�� �

�A�ðyÞ
�

�2�

�c ðxÞ� �c ðxÞ
��1�

:

(30)

The second term on the right-hand side of (30) can be
evaluated immediately, giving a simple expression

�

�A�ðyÞ
�

�2�

�c ðxÞ� �c ðxÞ
��1 ¼ e

Z
d4ud4wSðu; xÞ

� ��ðw; u; yÞSðx; wÞ; (31)
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where we take into account the definition (27) and have
introduced the complete electron-photon vertex function

e��ðx; y; zÞ � �3�

�A�ðzÞ�c ðyÞ� �c ðxÞ
��������A¼c¼ �c¼0

: (32)

Similar to the fermionic case (28), the second derivative of
�½ �c ; c ; A��, with respect to A�ðxÞ, generates the inverse

of the photon propagator D��ðx� yÞ. From this fact, and

substituting (30) into (31), then follows the SDFE for the
inverse of the complete photon propagator:

D�1
��ðx� yÞ ¼ ���ðx; yÞ þ

�
T�� þ 1

�
ð1þ a2hÞL��

�

� ð1þ a2hÞh�ðx� yÞ; (33)

where the functional ��� is known as the photon self-

energy function, and is defined as

���ðx; yÞ ¼ �ie2
Z

d4ud4wTr½Sðu; xÞ��Sðx; wÞ
� ��ðw; u; xÞ�: (34)

The ð�1Þ factor comes from the fermionic loop in the usual
way. The ��� tensor describes the interaction of a photon

with the electron-positron field, and this interaction con-
sists of the creation and annihilation of virtual pairs.
Equation (34) in momentum representation assumes the
form

���ðkÞ ¼ � ie2

ð2�Þ4
Z

d4pTr½SðpÞ��Sðp� kÞ
� ��ðp; k;p� kÞ�: (35)

From expression (33), we can compute the gauge-field
propagator in a perturbative way, order-by-order, in the
coupling constant e. An explicit calculation, analysis, and
discussion at the lowest order of radiative correction of the
Green’s functions will be presented in Sec. V. Indeed, since
the bosonic 1PI function and the complete photon propa-
gator satisfy the identity ��ðkÞD�ðkÞ ¼ �i	�

�, it is

possible to find the following solution to the complete
photon propagator:

iD��ðkÞ¼
	��� k�k�

k2

k2½�ðkÞþð1�a2k2Þ�þ
�

k2ð1�a2k2Þ2
k�k�

k2
;

(36)

where � is called scalar polarization, which is introduced
due to the Lorentz invariance of���, and has the structure

���ðkÞ � ð�	��k
2 þ k�k�Þ�ðkÞ: (37)

It should be noted that Eq. (36) shows that the �ðkÞ
function is related to the transverse pole of the
photon propagator in momentum representation. The

diagrammatic representation of the SDFE for the photon
propagator (36) is shown in Fig. 1.
The photon propagator at the lowest order in perturba-

tion theory, i.e., taking �ðkÞ ¼ 0 in (36), can be conven-
iently written as

iD��ðkÞ ¼
�
	�� � ð1� �Þ k�k�

k2

�
1

k2

�
�
	�� � ð1� �Þ k�k�

k2 � 1
a2

�
1

k2 � 1
a2

þ ð1� 2�Þ k�k�

k2ðk2 � 1
a2
Þ �

k�k�

ðk2 � 1
a2
Þ2 : (38)

As it can be seen in (38), the beauty of this expression is the
appearance of the second term on the right-hand side,
which originated from the Podolsky term and the general-
ized Lorenz condition. Note that this term has a massive
pole, m2 ¼ a�2, which leads to a cancellation of the IR
divergences that are present in the first term, the Maxwell’s
term. Furthermore, the separation of massless (usually
QED4) and massive modes in the propagator expression
(38) in general gauge � is owing to the linearity of fields in
the gauge terms of the Lagrangian (1). By the relation
between the Podolsky parameter and the mass of photons,
it is possible to set a bound value for the photon mass, once
we evaluate the parameter a [11,20].

B. Schwinger-Dyson-Fradkin equation
for the fermionic propagator

In what follows in this subsection, we present the deri-
vation of an integral expression to the complete the elec-
tron propagator S. We also introduce the mass operatorM,
which contains all the radiative corrections to the motion of
the electron (in the same sense as the polarization operator
� for photons). We guide the derivation of the SDFE for S
in the same way as presented in the last subsection for the
photon propagator. We recall that the functional equation

0 ¼
�
�Seff

� �c ðxÞ
��������ð�=�i	Þ;�ð�=�i �	Þ;ð�=�iJ�Þ�	ðxÞ

�
Z½	; �	; J��

¼ 	ðxÞZþ i

�
i@̂�m� ie�� �

�J�ðxÞ
�

�Z
� �	ðxÞ ; (39)

which is equivalent to the Dirac equation in the presence of
external sources, will define a relation between S and M.
Now, differentiating (39) with respect to 	ðyÞ and taking
the fermionic sources going to zero, one gets

FIG. 1. The SDFE for the photon propagator.
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i�ðx� yÞ ¼
�
i@̂�mþ eÂðxÞ � ie�� �

�J�ðxÞ
�
Sðx; yÞ;

(40)

where we have used the definition (27) for S.
Equation (40) defines the nonperturbative connected two-
point fermionic Green’s functions.

By means of a functional derivative identity, together
with (24) and (31), and also taking the source J� going to

zero, the last term of (40) reads

�

�J�ðxÞSðx; y;AÞ ¼ e
Z

d4ud4zd4wD��ðx� uÞSðx; wÞ
� ��ðw; z;uÞSðz; yÞ: (41)

Also, note that the electromagnetic potential A presented in
the fourth term of (40) vanishes in the absence of an
external source; that is, A�ðx; J� ¼ 0Þ ¼ 0. Combining

this fact with (41), Eq. (40) is rewritten as

i�ðx� yÞ ¼ ði��@� �mÞSðx; yÞ �
Z

d4z�ðx; zÞSðz; yÞ;
(42)

where the electron self-energy operator � introduced
above is defined by the following relation:

�ðx� yÞ ¼ ie2��
Z

d4ud4wSðx; wÞD��ðu� xÞ
� ��ðw; y; uÞ; (43)

which, in momentum representation, is written as

�ðpÞ ¼ ie2

ð2�Þ4 �
�
Z

d4kSðp� kÞD��ðkÞ��ðp; k;p� kÞ:
(44)

If we denote conveniently �Sðx; y;AÞ ¼R
d4z�ðx; zÞSðz; y;AÞ, then we can rewrite Eq. (42) in the

following suitable form:

ði��@� �m� �ÞSðx; yÞ ¼ i�ðx� yÞ: (45)

Moreover, introducing the so-called mass operator M,

M ðx; yÞ ¼ m�ðx� yÞ þ�ðx; yÞ; (46)

into (45), we find that the complete electron propagator in
momentum representation assumes the form

S ðpÞ ¼ i

��p� �MðpÞ ¼
i

��p� �m� �ðpÞ ; (47)

which states the relation between the electron propagator
and the mass operator. The SDFE corresponding to the
electron propagator is presented in Fig. 2. Equations (45)
and (47) show that the electron propagator is the Green’s
function for an equation similar to the Dirac equation
ðp̂�m��Þc ¼ 0, but differing from the latter by the

addition to the bare mass m of the quantity �. For this
reason, M is called the mass operator.
In a similar way to the operator �, we can say that the

operator � describes the interaction of the electron with its
own electromagnetic field. This interaction consists of the
emission and absorption of virtual photons.

C. Schwinger-Dyson-Fradkin equation for the vertex

As it is already known [21], it is impossible to construct
for QED4 a closed integral equation that expresses the
vertex function � in terms of S and D and that, together
with Eqs. (36) and (47), would give us a complete system
of equations determining the Green’s functions.
Nevertheless, it is possible to find a relation connecting
the vertex function � with S and D [22]; however, differ-
ent from other Green’s functions, this relation contains
only skeleton graphs [19], i.e., connected graphs. But, for
our purposes here, it is enough to consider this kind of
approximation, due to the fact that, here, we have only
interest in the e2-order calculation. Thus, recalling that the
vertex function is formally obtained from

e��ðx; y; zÞ ¼ �½Sðx; y;AÞ��1
�AðzÞ ; (48)

with S�1 being the inverse of the fermionic propagator
(47), the vertex function can be also decomposed as

��ðx; y; zÞ ¼ �i���ðx� yÞ�ðy� zÞ þ��ðx; y; zÞ; (49)

where �� is denoted as the vertex part of the graphs. The

vertex function can be expressed in momentum space in
terms of a new unknown quantity, the electron-positron
kernel K, by means of an integral equation [22]

��ðp; p0; kÞ ¼ �i���ðpþ p0 � kÞ

þ
Z d4q

ð2�Þ4 ½iSðp
0 þ qÞ��ðqþ p0; pþ qÞ

� iSðpþ qÞ�Kðpþ q; p0 þ q; qÞ; (50)

where p0 and p are, respectively, the momenta of the
emerging and incident electrons, while k ¼ p� p0 is the
transferred momentum. K consists of graphs with two
external electron and two external positron lines. Well,
we have obtained, here, a closed integral equation for the
vertex function; however, for practical calculations we did
not accomplish much, because �� is expressed in terms of

an unknown quantity—the kernel K. We shall write down
the complete kernel K as a sum over skeleton graphs,
which in first order yields [22]

FIG. 2. The SDFE for the electron propagator.

R. BUFALO, B.M. PIMENTEL, AND G. E. R. ZAMBRANO PHYSICAL REVIEW D 83, 045007 (2011)

045007-6



iKðp; p0; kÞ ¼ ðieÞ2��ðp; p� kÞD��ðkÞ��ðp0 � k; p0Þ:
(51)

Therefore, from (51), we find that the skeleton equation
for the vertex function (49) written in the Fourier repre-
sentation is given by

��ðp;p0;kÞ¼�i���ðp�p0 �kÞþ e2

ð2�Þ4
Z
d4qiSðp0 �qÞ

���ðp�q;p0 �q;kÞiSðp�qÞ
���ðp;p�q;qÞiD��ðqÞ��ðp0;p0 �k;kÞ:

(52)

Figure 3 shows the vertex function. It is important to
emphasize, here, that the operators�,�, and� introduced
above are functional of the Green’s functions S,D, and �,
which means that the self-energy functions are coupled,
and one of the Green’s functions depends on the other ones
of lower order. Hence, we clearly see that this tower of
equations is related.

IV. WARD-FRADKIN-TAKAHASHI IDENTITIES

As it is well known, the generalized Ward-Fradkin-
Takahashi (WFT) identities are, in general, identities
among Green’s functions following from the existence of
a symmetry. The goal of this section is to derive these
gauge identities for GQED4. First, we will show the WFT
identity satisfied by the 1PI gauge function, which leads to
the transverse character of the operator���. Next, we will

derive the relation between the vertex function and the
inverse of the complete electron propagator, which is
known as the mainWFT identity. At last, wewill reproduce
the main WFT identity in the k! 0 limit (null transferred
momentum). The derivation of these identities is formally
given as follows: starting from the generating functional
(18) and performing the infinitesimal transformations

c 0ðxÞ ¼ c ðxÞ þ i�ðxÞc ðxÞ;

A0�ðxÞ ¼ A�ðxÞ þ 1

e
@��ðxÞ;

(53)

and noticing that neither gauge-fixing term nor the source
terms are invariant under these transformations, we find
that the generating functional Z½	; �	; J�� satisfies the
following equation of motion:

�
i
h

e�
ð1þ a2hÞ2@� �

�J�ðxÞ � �	
�

� �	ðxÞ
þ 	

�

�	ðxÞ �
1

e
@�J

�

�
Z ¼ 0: (54)

The next step in deriving the WFT identities is to express
(54) in terms of the connected Green’s functions
W½	; �	; J�� as

� h

e�
ð1þ a2hÞ2@� �W

�J�ðxÞ � i �	
�W

� �	ðxÞ
þ i	

�W

�	ðxÞ �
1

e
@�J

� ¼ 0: (55)

Finally, one can obtain the main quantum equation of
motion for the theory by writing (55) into an expression
for the 1PI-generating functional �ð �c ; c ; A�Þ through

(22). Thus, one has the general equation

� h

e�
ð1þ a2hÞ2@�A�ðxÞ � i

��

�c ðxÞ c ðxÞ

þ i
��

� �c ðxÞ
�c ðxÞ þ 1

e
@�

��

�A�ðxÞ ¼ 0: (56)

From Eq. (56), it is possible to derive all WFT identities.
Thus, the first identity comes by applying the functional
derivative of A�ðyÞ in Eq. (56) at A� ¼ c ¼ �c ¼ 0,

@��
��ðx; yÞ �h

�
ð1þ a2hÞ2@��ðx� yÞ ¼ 0; (57)

which, together with Eq. (33), implies that

k��
��ðkÞ ¼ 0; (58)

which shows the transverse character of the operator���.
Now, the main gauge WFT identity follows by taking the
derivatives of Eq. (56) with respect to c ðyÞ and �c ðzÞ at
A� ¼ c ¼ �c ¼ 0, which in momentum space takes the

form

k�~�
�ðp; p0; k ¼ p� p0Þ

¼ ið2�Þ4½S�1ðpÞ � S�1ðp� p0Þ�; (59)

with S�1 being the inverse of the complete electron propa-
gator (47).
Although the local gauge invariance at the classical level

has been broken in the quantum theory through the gauge-
fixing procedure and the source terms, the main WFT
identity (59) holds, inheriting its essence, without which
the renormalizability cannot be guaranteed.
In the limit of null transferred momentum, i.e., k! 0,

Eq. (59) leads to a relation

i~��ðp; p; 0Þ ¼ ð2�Þ4 @

@p�

S�1ðpÞ; (60)

from this limit, it also follows that

FIG. 3. The SDFE for the vertex function.
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~� �ðp; p; 0Þ ¼ � @

@p�

�ðpÞ: (61)

Both relations, Eqs. (60) and (61), hold in the same way
that they do for QED4.

V. RADIATIVE CORRECTIONS
OF THE SECOND ORDER

In the preceding sections, we have derived integral
equations for the Green’s functions, the electron and pho-
ton propagators, and the vertex function for the GQED4.
Now, we will investigate the corrections to these functions
in the first nonvanishing order of perturbation theory. The
expression for the operator��� at e

2 order does not differ

from that of the QED4. This divergent result implies, in the
same way as for the QED4 [21], the renormalization of the
electronic charge e and the introduction of the renormal-
ization constant Z3 in the GQED4. Although the electron
self-energy function� and the vertex part� in e2 order are
different from the usual corrections for the QED4, due to
the presence of the Podolsky terms in the free photon
propagator D�� (38), the structure of divergences at this

order, by power counting, remains the same as in the
QED4, linearly and logarithmically divergent. At first
glance, this fact seems to lead to infinity results for the
other two self-energy functions of the GQED4 at e

2 order;
thus, an explicit calculation of � and � expressions be-
comes necessary. These calculations are also necessary to
verify whether the main WFT identity (59) is still satisfied
at this order.

In order to use the dimensional regularization procedure,
the Lagrangian must have the right dimension (of internal
loops); then, it is necessary to introduce the t’ Hooft mass
�. Thus, also considering the case of � ¼ 1, we have

Leff ¼ i

2
�c @̂
,
c �m �c c � e�4�d �c Â c � 1

4
F��F

��

þ a2

2
@�F

��@�F
�
� � 1

2
½ð1þ a2hÞ@�A��2: (62)

In the next two subsections, we shall compute the � and
the � functions. We will show that both functions, � and
�, can be separated into two distinct contributions, the
well-known contribution from the QED4 and a new one
that we will call the Podolsky contribution. However, we
can observe by power counting that the Podolsky sector
presents a divergent share with the QED sector; thus, we
expect that they may cancel out the divergence of the
GQED4. Now, we proceed to an explicit evaluation of the
electron self-energy and the vertex part.

A. Electron self-energy

We begin by investigating the second-order electron
self-energy function. This quantity corresponds to the dia-
gram shown in Fig. 4.

In accordance with Eq. (44), the self-energy function �
can be written as

�ð2ÞðpÞ � �QEDðpÞ þ �PodðpÞ; (63)

where

�QEDðpÞ ¼ i�4�d Z ddk

ð2�Þd
1

k2
�� ðp̂� k̂þmÞ
½ðp� kÞ2 �m2���;

(64)

and

�PodðpÞ ¼ �i�4�d Z ddk

ð2�Þd �
� ðp̂� k̂þmÞ
½ðp� kÞ2 �m2��

�

� 1

ðk2 � 1
a2
Þ
�
	�� þ

�
1

k2
� 1

k2 � 1
a2

�
k�k�

�
: (65)

The separation of �ð2Þ in two contributions is only made
possible by the linear structure of the free photon propa-
gator (38). First, the regularized QED4 contribution for the
electron self-energy is given by [21]

�QEDðpÞ ¼ 1

8�2

1

�
ðp̂� 4mÞ þ�QED FiniteðpÞ; (66)

with

�QED FiniteðpÞ ¼ � 1

16�2
½p̂ð�þ 1Þ � 2mð2�þ 1Þ�

� 1

8�2

Z 1

0
dz½p̂ð1� zÞ � 2m�

� ln

��������
ð1� zÞzp2 �m2z

4��2

��������; (67)

where � ¼ 4� d is the dimensional-regularization
parameter.
Now, to evaluate the Podolsky contribution �Pod (65), it

is suitable to write it as

�PodðpÞ ¼
X3
�¼1

�ð�ÞPodðpÞ; (68)

so that the quantities �ðiÞPod are defined by

�ð1ÞPodðpÞ � �i�4�d Z ddk

ð2�Þd
��ðp̂� k̂þmÞ��

½ðp� kÞ2 �m2�
1

ðk2 � 1
a2
Þ ;

(69)

FIG. 4. Electron self-energy diagram.

R. BUFALO, B.M. PIMENTEL, AND G. E. R. ZAMBRANO PHYSICAL REVIEW D 83, 045007 (2011)

045007-8



�ð2ÞPodðpÞ � �i�4�d Z ddk

ð2�Þd
k̂ðp̂� k̂þmÞk̂
½ðp� kÞ2 �m2�

� 1

k2ðk2 � 1
a2
Þ ; (70)

�ð3ÞPodðpÞ � i�4�d Z ddk

ð2�Þd
k̂ðp̂� k̂þmÞk̂
½ðp� kÞ2 �m2�

1

ðk2 � 1
a2
Þ2 :

(71)

We are going now to calculate the expressions of �ðiÞPod,
Eqs. (69)–(71). To solve conveniently the momentum in-
tegration, we will use the Feynman parametrization and the
dimensional regularization. Using both procedures in
Eq. (69), one can put it in the form

�ð1ÞPodðpÞ ¼ i�4�d Z 1

0
dz

Z ddk

ð2�Þd
��ðk̂� p̂�mÞ��

½ðk� pzÞ2 þ b2�2 ;
(72)

where b2 ¼ ð1� zÞðzp2 � 1
a2
Þ �m2z. Introducing the

change of variables k! k� pz, we obtain

�ð1ÞPodðpÞ ¼ �i�4�d Z 1

0
dz��½ð1� zÞp̂þm���

�
Z ddk

ð2�Þd
1

½k2 þ b2�2 : (73)

The k integration is carried out by using the identity (A1),
so that (73) reads

�ð1ÞPodðpÞ ¼ ð�1Þd=2
�4�d

ð4�Þd=2 �
�
2� d

2

�

�
Z 1

0
dz��½ð1� zÞp̂þm���½b2�ðd=2Þ�2: (74)

Now, expanding (74) around d ¼ 4, we find that

�ð1ÞPodðpÞ ¼
�!0
� 1

�

1

8�2
ðp̂� 4mÞ þ�ð1ÞPod FiniteðpÞ; (75)

where

�ð1ÞPod FiniteðpÞ ¼
1

16�2
½p̂ð1þ �Þ � 2mð1þ 2�Þ�

þ 1

8�2

Z 1

0
dz½p̂ð1� zÞ � 2m�

� ln

��������
ð1� zÞðzp2 � 1

a2
Þ �m2z

4��2

��������: (76)

We can evaluate the other terms in a similar way; however,
to avoid an extensive calculus, we present here only the
results, leaving the explicit calculation of these quantities
and other extensive expressions in Appendix B. The eval-
uated expressions of them are

�ð2ÞPodðpÞ ¼
1

�

1

8�2
ðm� p̂Þ þ�ð2ÞPod FiniteðpÞ; (77)

�ð3ÞPodðpÞ ¼ �
1

�

1

8�2
ðm� p̂Þ þ�ð3ÞPod FiniteðpÞ; (78)

with the finite parts given by (B4) and (B8), respectively.
Indeed, by combining the results of Eqs. (75), (77), and

(78) into Eq. (68), it follows that the regularized contribu-
tion of the Podolsky sector for the electron self-energy
function is given by

�PodðpÞ ¼ � 1

8�2

1

�
ðp̂� 4mÞ þ �Pod FiniteðpÞ; (79)

where �Pod Finite is given by (B9).
Therefore, it finally follows from a rearrangement of

Eqs. (66) and (79) that the electron self-energy function
(63), at e2 order, has the following expression:

�ð2ÞðpÞ ¼ 1

8�2

Z 1

0
dz½ð1� zÞp̂� 2m� ln

��������
ð1� zÞzp2 �m2z� 1

a2
ð1� zÞ

ð1� zÞzp2 �m2z

��������
þ 1

16�2

Z 1

0
dx

Z 1�x

0
dy½2m� ð1þ 3yÞp̂�A1ðp; x; yÞ þ 1

16�2

Z 1

0
dx

Z 1�x

0
dy½ð1� yÞp̂þm�p2y2A2ðp; x; yÞ;

(80)

with the quantities A1 and A2 defined as

A 1ðp; x; yÞ � ln

��������
ð1� yÞyp2 �m2y� 1

a2
ð1� yÞ

ð1� yÞyp2 �m2y� x
a2

��������;

A2ðp; x; yÞ � 1

ð1� yÞyp2 �m2y� x
a2

� 1

ð1� yÞðyp2 � 1
a2
Þ �m2y

:

Equation (80) shows that the electron self-energy function
�ð2Þ, at e2 order, does not depend on �, and that it is also
free of divergences, which do not occur in such ordinary
QED4 as Eq. (66). This last feature is an interesting prop-
erty of the theory. It seems that the Podolsky term in the
Lagrangian (62) acts like a natural regulator of the theory,
due to its massive character. Nevertheless, a better analysis
shows that the Podolsky term is not the only one respon-
sible for the finiteness of the electron self-energy in
e2 order; the choice of the generalized Lorenz gauge
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condition (16) is also closely related to the finite result
(80). Hence, we can conclude that the choice of the usual
Lorenz condition for the GQED4 leads to the divergent
result for the self-energy of the electron evaluated in the
thesis advised by Podolsky [12].

B. Vertex correction

We now turn to the calculation of the vertex part
��ðp0; p;q ¼ p� p0Þ � ��ðp0; pÞ (52), where, as usual,
p0 and p are, respectively, the momenta of the emerging
and incident electrons, while q ¼ p� p0 is the momentum
of the incident photon. The diagram that corresponds to
this quantity is shown in Fig. 5.

In the same way that it occurs in Eq. (63) for the electron
self-energy function �, the vertex part (51) also shows the
splitting of its expression into two distinct contributions:

��ð2Þðp0; pÞ ¼ �
�
QEDðp0; pÞ þ�

�
Podðp0; pÞ: (81)

One contribution comes from the QED4,

��
QEDðp0; pÞ ¼ �i�4�d Z ddk

ð2�Þd �
� p̂0 � k̂þm

ðp0 � kÞ2 �m2

�� � p̂� k̂þm

ðp� kÞ2 �m2
��

1

k2
; (82)

and another one from the Podolsky sector,

��
Podðp0; pÞ ¼ i�4�d Z ddk

ð2�Þd �
� p̂0 � k̂þm

ðp0 � kÞ2 �m2

� �� p̂� k̂þm

ðp� kÞ2 �m2
�� 1

k2 � 1
a2

�
�
	�� þ

�
1

k2
� 1

k2 � 1
a2

�
k�k�

�
: (83)

The regularized QED4 contribution (82) for the vertex part
is known as [21]

�
�
QEDðp0; pÞ ¼

1

�

1

8�2
�� þ�

�
QED Finiteðp0; pÞ; (84)

with �
�
QED Finiteðp0; pÞ given by

�
�
QED Finiteðp0; pÞ

¼ � 1

16�2

Z 1

0
dx

Z 1�x

0
dy

��ðx; y; p̂0; p̂Þ
�2

� 1

8�2
��

�
1þ �

2
þ

Z 1

0
dx

Z 1�x

0
dy ln

��������
�2

4��2

��������
�
;

(85)

where we have introduced the functions

� �ðp0; p; x; yÞ ¼ 6ð1� x� yÞp̂0��p̂þ 2mq�½��; ��� � 4ð1� x� yþ 3xyÞp:p0�� þ 2m2�� þ 2xð1� xÞ��p̂2

þ 2yð1� yÞðp̂0Þ2�� � 4yð1� yÞp̂0ðp0Þ� � 4xð1� xÞp̂p� � 4ð1� x� y� xyÞ½p̂0p� þ p̂ðp0Þ��
(86)

and

�2 ¼ xp2ð1� xÞ þ yp02ð1� yÞ � 2xypp0 �m2ðxþ yÞ
(87)

to simplify the notation of integrals.

Again, as it has happened with the Podolsky contribution
for the electron self-energy function �Pod, the vertex part
��

Pod (83) can also be written as three terms,

��
Podðp0; pÞ ¼

X3
�¼1

��ð�Þ
Pod ðp0; pÞ; (88)

where we have defined each term in the following way:

��ð1Þ
Pod ðp0; pÞ � i�4�d Z ddk

ð2�Þd �
� p̂0 � k̂þm

ðp0 � kÞ2 �m2
�� p̂� k̂þm

ðp� kÞ2 �m2
��

1

k2 � 1
a2

; (89)

�
�ð2Þ
Pod ðp0; pÞ � i�4�d Z ddk

ð2�Þd k̂
p̂0 � k̂þm

ðp0 � kÞ2 �m2
�� p̂� k̂þm

ðp� kÞ2 �m2
k̂

1

k2ðk2 � 1
a2
Þ ; (90)

FIG. 5. Vertex part diagram.
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��ð3Þ
Pod ðp0; pÞ � �i�4�d Z ddk

ð2�Þd k̂
p̂0 � k̂þm

ðp0 � kÞ2 �m2
�� p̂� k̂þm

ðp� kÞ2 �m2
k̂

1

ðk2 � 1
a2
Þ2 : (91)

To evaluate such integrals, we will proceed as we pre-
sented in the last subsection for the electron self-energy
function �Pod. In this subsection, we will only calculate
one term, Eq. (89), and present the results for the others,
Eqs. (90) and (91), leaving the calculation of the last two
terms in Appendix C. Also, we exhibit there some exten-
sive expressions that appear throughout this subsection.
Hence, recalling the Feynman parametrization, Eq. (89)
can be expressed as

��ð1Þ
Pod ðp0; pÞ ¼ 2i�4�d Z 1

0
dx

Z 1�x

0
dy

Z ddk

ð2�Þd

� N�ðk; p0; p; x; yÞ
½k2 þ �2 � 1

a2
ð1� x� yÞ�3 ; (92)

where we have replaced k by k� xp� yp0 and defined the
function

N�ðk; p0; p; x; yÞ � �½ð1� yÞp̂0 � k̂� xp̂þm�
� ��½ð1� xÞp̂� k̂� yp̂0 þm��

for convenience.
We now attend to the k integration of (92). Using the

properties of the Dirac matrices (A8) to separate the differ-
ent k terms in the numerator and performing the momen-
tum integration with the aid of Eqs. (A1) and (A2), we find
that

��ð1Þ
Pod ðp0; pÞ ¼ �

ð�1Þd=2
2

�4�d

ð4�Þd=2 ð2� dÞ2���

�
2� d

2

�Z
d&

1

½�2 � 1
a2
ð1� x� yÞ�2�ðd=2Þ

� ð�1Þd=2 �4�d

ð4�Þd=2 ð2� dÞ�
�
3� d

2

�Z
d&

M�ðp0; p; x; yÞ
½�2 � 1

a2
ð1� x� yÞ�3�ðd=2Þ

� ð�1Þd=2 �4�d

ð4�Þd=2 �
�
3� d

2

�Z
d&

��ðx; y; p̂0; p̂Þ
½�2 � 1

a2
ð1� x� yÞ�3�ðd=2Þ ; (93)

with

M�ðp0; p; x; yÞ ¼ ½ð1� yÞp̂0 � xp̂�m�
� ��½ð1� xÞp̂� yp̂0 �m�; (94)

��ðx;y;p̂0;p̂Þ¼4½ð1�yÞp0�xp�½ð1�xÞp�yp0���

�2½ð1�yÞp̂0�xp̂�m�½ð1�xÞp̂�yp̂0���

�2��½ð1�yÞp̂0�xp̂�½ð1�xÞp̂�yp̂0�m�;
(95)

and the measure

Z
d& �

Z 1

0
dx

Z 1�x

0
dy: (96)

Equation (93), expanded around d ¼ 4, gives the following
expression:

�
�ð1Þ
Pod ðp0; pÞ ¼ �

1

�

1

8�2
�� þ�

�ð1Þ
Pod Finiteðp0; pÞ; (97)

with

��ð1Þ
Pod Finiteðp0; pÞ

¼ 1

16�2

Z
d&

��ðp0; p; x; yÞ
½�2 � 1

a2
ð1� x� yÞ�

þ 1

8�2
��

�
1þ �

2
þ

Z
d& ln

��������
�2 � 1

a2
ð1� x� yÞ
4��2

��������
�
:

(98)

The evaluated expressions for�
�ð2Þ
Pod ðp0; pÞ and��ð3Þ

Pod ðp0; pÞ
are (see Appendix C)

�
�ð2Þ
Pod ðp0; pÞ ¼ �

1

�

1

8�2
�� þ�

�ð2Þ
Pod Finiteðp0; pÞ; (99)

��ð3Þ
Pod ðp0; pÞ ¼

1

�

1

8�2
�� þ��ð3Þ

Pod Finiteðp0; pÞ; (100)

where the finite parts are given by (C4) and (C8),
respectively.
Therefore, when Eqs. (97), (99), and (100) are com-

bined, we determine the regularized expression for the
Podolsky contribution to the vertex part ��

Pod (88):

��
Podðp0; pÞ ¼ �

1

�

1

8�2
�� þ��

Pod Finiteðp0; pÞ; (101)

where ��
Pod Finite is given by Eq. (C9).
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Substituting the results of Eqs. (84) and (101) into the definition (81), we obtain that the vertex part �� at e2 order has
the following expression:

��ð2Þðp0; pÞ ¼ 1

8�2
��

Z
d& ln

��������
�2 � 1

a2
ð1� x� yÞ
�2

��������þ
3

8�2
��

Z
d� ln

��������
�2 � 1

a2
z

�2 � 1
a2
ð1� x� yÞ

��������
þ 1

16�2

Z
d&��ðp0; p; x; yÞ

�
1

�2 � 1
a2
ð1� x� yÞ �

1

�2

�
þ 1

16�2

Z
d��1ðx; y; p̂0; p̂Þ���2ðx; y; p̂0; p̂Þ

�
�

1

½�2 � 1
a2
ð1� x� yÞ�2 �

1

½�2 � 1
a2
z�2

�
þ 1

8�2

Z
d�

�
�1ðx; y; p̂0; p̂Þ�� þ ���2ðx; y; p̂0; p̂Þ

� 1

4
�

�
3 ðx; y; p̂0; p̂Þ þ

1

2
ðp̂0 �mÞ��ðp̂�mÞ

��
1

�2 � 1
a2
z
� 1

�2 � 1
a2
ð1� x� yÞ

�
; (102)

where we have defined the functions �1, �2, and �
�
3 as

� 1ðx; y; p̂0; p̂Þ ¼ ðxp̂þ yp̂0Þ½ð1� yÞp̂0 � xp̂þm�;
(103)

� 2ðx; y; p̂0; p̂Þ ¼ ½ð1� xÞp̂� yp̂0 þm�ðxp̂þ yp̂0Þ;
(104)

�
�
3 ðx;y;p̂0;p̂Þ¼�2��½ð1�yÞp̂0 �xp̂�ðp̂�mÞ

þ4½ð1�yÞp0�xp�½ð1�xÞp�yp0���

�2ðp̂0 �mÞ½ð1�xÞp̂�yp̂0���; (105)

and the measure

Z
d� �

Z 1

0
dx

Z 1�x

0
dy

Z 1�x�y

0
dz; (106)

to simplify the notation of integrals, as we have done with
the functions � and �.

As stated in the beginning of this section, we have shown
that both radiative corrections, the electron self-energy
and the vertex part, are finite at e2 order. Equation (102)
indicates the independence of the vertex part with the
t’ Hooft mass �, and, again, as it has happened with the
electron self-energy function, the finiteness of�� is due to
the Podolsky term plus the choice of the generalized
Lorenz gauge condition. Another important point is that
the finiteness of the vertex part �� and the electron self-
energy function � implies that the main WFT identity (59)
is still satisfied at e2 order.

VI. REMARKS AND CONCLUSIONS

In this paper, the effects of the Podolsky term in the
quantum theory of electron and photon interactions were
analyzed. After a constraint analysis, the covariant transi-
tion amplitude was derived with the aid of the Faddeev-
Popov-DeWitt ansatz in the generalized Lorenz gauge
condition. The choice of this gauge is of great importance
to the obtained results. Then, we proceeded by deriving the
SDFE of the theory by functional methods, and three
Green’s functions have been determined: the photon D��

and electron S propagators and the vertex function ��,

Eqs. (36), (47), and (52), respectively. Through these func-
tions, we introduced the self-energy functions that contain
the radiative corrections in all orders in perturbation theory:
the polarization tensor���, the mass operatorM, and the

vertex part ��, respectively. However, modifications of

these expressions compared to the ones for QED4 were
observed only in the mass operator and the vertex part,
resulting from the contributions of the Podolsky electro-
dynamics. Although such modifications are presented in all
Green’s functions, only the photon propagator (38) presents
changes at tree level. Moreover, the most interesting feature
of this expression is the fact that we could separate the usual
contribution for theQED4 in a general gauge� from the one
that arises from the Podolsky theory, and that the IR diver-
gences presented in the QED4 terms are suppressed by the
massive terms of the Podolsky contribution.
The derivation of WFT identities was also presented.

The first identity (57) showed that the transverse character
of the polarization tensor ��� is also preserved in the

GQED4 as in the QED4. Immediately, we found the main
WFT identity that relates the 1PI vertex function and the
complete electron propagator. The main WFT identity (59)
is responsible for holding the essence of the gauge sym-
metry in quantum level, without which the renormalizabil-
ity of the theory cannot be guaranteed.
The last part of the article was devoted to the analysis of

what the Podolsky contribution brings to the quantum
theory at e2 order in perturbation theory. At this order of
approximation, we verified that the photon self-energy
function is divergent, showing that, if we claim the renor-
malization theory, the electronic charge needs to be renor-
malized. Now, for the other two corrections, interesting
features appeared, and the free photon propagator performs
an important role in this analysis, giving origin to a split-
ting of the correction functions in two distinct contribu-
tions: one from the usual QED4 and another from the
Podolsky theory. This splitting makes it possible to study
each contribution independently. Thus, since the QED4

contribution is well-known in the literature, our task here
was to calculate the Podolsky contribution to the electron
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self-energy function and to the vertex part. And, the ob-
tained expressions for the Podolsky contribution �Pod and
��

Pod, Eqs. (79) and (101), respectively, present the same

divergent terms of the QED4, Eqs. (66) and (84), but with
oppositive signs, showing, then, that at e2 order the � and
�� functions are finite. Although, here, we restrict our-
selves to the case of � ¼ 1, these results can be general-
ized. It is possible to show that, for � � 1, the divergences
associated with the electron self-energy function and the
vertex part of the QED4 are also canceled by the Podolsky
contribution. And, as an immediate consequence of the
finiteness of � and ��, we verified that the main WFT
identity (59) keeps being satisfied.

As a final comment, the Podolsky parameter a, which
appears in all the expressions evaluated here as a free
parameter (as the inverse of the photon mass), can have its
range of values limited through applications of the Podolsky
theory. For example, we can evaluate now the physical
quantity �uðp0Þ��uðpÞ that is related to the form factors
F1ðq2Þ andF2ðq2Þ of electric charge e, and to the anomalous
magneticmoment of the electron, respectively.We expect to
set a bound limit to the Podolsky parameter a through the
use of precise experimental data from the electronmagnetic
moment, by calculating the form factor F2ðq2Þ for the
GQED4. This study is now under development. We can
also express the quantum theory in a more formal and
constructive method, through dispersion relations [23],
which can give more transparent results and, also, a direct
evaluation of electron anomalous momentum. Another
interesting issue is the study of the gauge properties of the
propagators for the GQED4, constructing and analyzing
the Landau-Khalatnikov-Fradkin transformation [24] for
the theory. As mentioned before, a renormalization process
for the photonpropagator is necessary, due to the divergence
present in the self-energy; although the divergence is the
same as that of theQED4, the renormalization constant and,
also, the running coupling constant may differ from the
results for the QED4 due to the poles from the photon
propagator expression (38).

Going beyond T ¼ 0, we can study the GQED4 at finite
temperature and derive all the thermodynamical quantities
of the theory, including the energy-density distribution.
And, following the idea of a recent study of the Podolsky
electromagnetism at finite temperature [20], where a bound
value was set to the Podolsky parameter a through the
energy distribution using the cosmic microwave back-
ground radiation temperature, we can also use the cosmic
microwave background radiation temperature to set a value
to a through the thermodynamical quantities of theGQED4.
These issues and others will be further elaborated, the
subject of deeper investigations, and reported elsewhere.
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APPENDIX A: d-DIMENSIONAL IDENTITIES

As we made use of dimensional regularization in the
evaluation of the radiative correction expressions, we
present here some useful d-dimensional identities associ-
ated with integrals, properties of gamma functions, and
Dirac matrices.

1. Integration in d dimensions

The useful results of integrals that appear throughout the
paper are

Z ddk

ð2�Þd
1

ðk2 �m2Þ� ¼
ið�1Þd=2
ð4�Þd=2

�ð�� d
2Þ

�ð�Þ½�m2���ðd=2Þ ;
(A1)

Z ddk

ð2�Þd
k�k�

ðk2 �m2Þ� ¼
ið�1Þd=2
2ð4�Þd=2

	���ð�� 1� d
2Þ

�ð�Þ½�m2���1�d=2 ;
(A2)

Z ddk

ð2�Þd
k�k�kk�

ðk2�m2Þ�¼
ið�1Þd=2
4ð4�Þ�d=2�

�
��2�d

2

�

�½	��	�þ	��	�þ	��	��
�ð�Þ½�m2���2�ðd=2Þ :

(A3)

2. The gamma function

An important property of the gamma function, with
small �, is given by the following relation:

�ð�nþ �Þ ¼ ð�1Þ
n

n!

�
1

�
þ c 1ðnþ 1Þ þOð�Þ

�
; (A4)

where

c 1ðnþ 1Þ ¼ 1þ 1

2
þ . . . . . .þ 1

n
� �; (A5)

and � is the Euler-Mascheroni constant. We needed the
formulae

z�ðzÞ ¼ �ðzþ 1Þ; X�ð�=2Þ ’ 1� �

2
lnX; (A6)

as well.

3. Dirac matrices

The algebra of Dirac matrices in d dimensions is

f��; ��g ¼ 2	��; (A7)

where 	�� is the metric tensor in d-dimensional
Minkowski space (with signature þ�� . . . ), so that
��
� ¼ d; hence,
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���� ¼ d;

���� ¼ ð2� dÞ��;

������ ¼ 2ð���� � ����Þ þ d����;

�������� ¼ ð2� dÞ2��;

�������� ¼ ½2d� ð2� dÞ2���;

������	� ¼ 2ð�	���� � �����	 þ �����	Þ
� d�����	: (A8)

In addition,

Trðodd no. of �matricesÞ ¼ 0;

TrI ¼ fðdÞ; Tr��� ¼ fðdÞ	�;

Tr������	 ¼ fðdÞ½	�	�	 � 	�	�	 þ 			���;
(A9)

where fðdÞ is an arbitrary well-behaved function, with
fð4Þ ¼ 4.

APPENDIX B: CALCULUS OF �ð2ÞPodðpÞAND �ð3ÞPodðpÞ
In order to evaluate the terms �ð2ÞPod and �ð3ÞPod, we will

follow the same steps presented in the calculation of �ð1ÞPod
in Subsec. VA. First, we recall the Feynman parametriza-
tion and the dimensional regularization. Thus, from (70),
we obtain

�ð2ÞPodðpÞ ¼ �2i�4�d Z d&
Z ddk

ð2�Þd

� ðk̂þ p̂yÞm½ð1� yÞp̂� k̂þm�ðk̂þ p̂yÞ
½k2 þ b2x�3

;

(B1)

where we have changed k! k� py, introduced b2x ¼
ð1� yÞyp2 �m2 þ x 1

a2
, and used Eq. (96) for the measure

d&. Since the integral of the odd powers of k in the
numerator is zero, it is enough to evaluate the contribution
of even powers. Then, carrying out the k integration,
Eq. (B1) is written as

�ð2ÞPodðpÞ ¼
ð�1Þd=2�4�d

2ð4�Þd=2 �

�
2� d

2

�Z
d&f½2ð1� yÞ

� ð1þ yÞd�p̂þmdg½b2x�ðd=2Þ�2

þ ð�1Þd=2 �4�d

ð4�Þd=2 �
�
3� d

2

�

�
Z

d&½ð1� yÞp̂þm�m2y2½b2x�ðd=2Þ�3: (B2)

Indeed, expanding (B2) for d! 4, we find that�ð2ÞPod can be
expressed as

�ð2ÞPodðpÞ ¼
1

�

1

8�2
ðm� p̂Þ þ �ð2ÞPod FiniteðpÞ; (B3)

where

�ð2ÞPod FiniteðpÞ ¼
1

16�2

��
�þ 2

3

�
p̂�

�
�þ 1

2

�
m

�

þ 1

16�2

Z
d&

�½ð1� yÞp̂þm�p2y2

b2x

� ½2m� ð1þ 3yÞp̂� ln
��������

b2x
4��2

��������
�
: (B4)

The term�ð3ÞPod (71) is evaluated following the same steps as

in the previous ones through the Feynman parametrization
and the dimensional regularization, and also replacing k!
k� pz:

�ð3ÞPodðpÞ ¼ 2i�4�d Z d&
Z ddk

ð2�Þd

� ðk̂þ p̂yÞ½ð1� yÞp̂� k̂þm�ðk̂þ p̂yÞ
½k2 þ b2�3 ;

(B5)

where b2 ¼ ð1� yÞðyp2 � 1
a2
Þ �m2y, as we have defined

in Subsec. VA. Carrying out the momentum integration
now, we find for (B5) the expression

�ð3ÞPodðpÞ ¼ ð�1Þðd=2Þ�1
�4�d

2ð4�Þd=2 �
�
2� d

2

�Z
d&f½2ð1� yÞ

� ð1þ yÞd�p̂þmdg½b2�ðd=2Þ�2

� ð�1Þd=2 �4�d

ð4�Þd=2 �
�
3� d

2

�

�
Z

d&½ð1� yÞp̂þm�p2y2½b2�ðd=2Þ�3; (B6)

which in the limit d! 4 is written as

�ð3ÞPodðpÞ ¼ �
1

�

1

8�2
ðm� p̂Þ þ�ð3ÞPod Finite; (B7)

with

�ð3ÞPod FiniteðpÞ ¼
1

16�2

��
�þ 1

2

�
m�

�
�þ 2

3

�
p̂

�

� 1

16�2

Z
d&

�½ð1� yÞp̂þm�p2y2

b2

� ½2m� ð1þ 3yÞp̂� ln
��������

b2

4��2

��������
�
: (B8)
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Therefore, from the results of Eqs. (76), (B4), and (B8) we obtain the following expression of the finite part of the
Podolsky contribution �Pod Finite:

�Pod Finite ¼ 1

16�2
½ð�þ 1Þp̂� 2mð2�þ 1Þ� þ 1

16�2

Z
d&

�
½2m� ð1þ 3yÞp̂� ln

��������
ð1� yÞðyp2 � 1

a2
Þ � ym2

ð1� yÞyp2 � x
a2
� ym2

��������
þ p̂½ð1� yÞp̂þm�p̂y2

�
1

ð1� yÞðyp2 � 1
a2
Þ � ym2

� 1

ð1� yÞyp2 � x
a2
� ym2

��

þ 1

8�2

Z 1

0
dz½ð1� zÞp̂� 2m� ln

��������
ð1� zÞðzp2 � 1

a2
Þ � zm2

4��2

��������: (B9)

APPENDIX C: CALCULUS OF �ð2Þ�Pod ðp0; pÞ
AND �ð3Þ�Pod ðp0; pÞ

In the same way as we did in Subsec. VB, we will

proceed here into the calculation of the terms �
�ð2Þ
Pod and

�
�ð3Þ
Pod of the Podolsky contribution to the vertex part at e2

order. Now, recalling the Feynman parametrization and the
dimensional regularization, Eq. (90) is expressed as

�
�ð2Þ
Pod ðp0; pÞ ¼ 3i�4�dð4�Þd=2

Z
d�

Z ddk

ð2�Þd

� O�ðk; p0; p; x; yÞ
½k2 þ�2 � 1

a2
z�4 ; (C1)

where we have replaced k by k� xp� yp0 and defined
conveniently the function

O �ðk; p0; p; x; yÞ ¼ ðk̂� xp̂� yp̂0Þ½ð1� yÞp̂0 � k̂� xp̂

þm���½ð1� xÞp̂� k̂� yp̂0

þm���ðk̂� xp̂� yp̂0Þ:

After a manipulation of � matrices in (C1) and evaluating
the momentum integration, one gets

�
�ð2Þ
Pod ðp0; pÞ ¼ �

ð�1Þd=2
4

�4�d

ð4�Þd=2 ðd
2 þ 2dÞ���

�
2� d

2

�Z
d�

1

½�2 � 1
a2
z�2�ðd=2Þ � ð�1Þ

d=2 �4�d

ð4�Þd=2 �
�
4� d

2

�

�
Z

d�
�1ðx; y; p̂0; p̂Þ���2ðx; y; p̂0; p̂Þ

½�2 � 1
a2
z�4�ðd=2Þ þ ð�1Þ

d=2

2

�4�d

ð4�Þd=2 �
�
3� d

2

�Z
d�

1

½�2 � 1
a2
z�3�ðd=2Þ

� ½d�1ðx; y; p̂0; p̂Þ�� þ d���2ðx; y; p̂0; p̂Þ ��
�
3 ðx; y; p̂0; p̂Þ � ð2� dÞðp̂0 �mÞ��ðp̂�mÞ�; (C2)

where we have defined the functions �1, �2, and �
�
3 and the measure d� in (105) and (106), respectively.

Now, Eq. (C2) in the limit d! 4 assumes the form

�
�ð2Þ
Pod ðp0; pÞ ¼ �

1

�

1

8�2
�� þ�

�ð2Þ
Pod Finiteðp0; pÞ; (C3)

with

�
�ð2Þ
Pod Finiteðp0; pÞ ¼

1

16�2
��

�
5

6
þ �þ 6

Z
d� ln

��������
�2 � 1

a2
z

4��2

��������
�
� 1

16�2

Z
d�

�1ðx; y; p̂0; p̂Þ���2ðx; y; p̂0; p̂Þ
½�2 � 1

a2
z�2

þ 1

8�2

Z
d�

1

½�2 � 1
a2
z�
�
�1ðx; y; p̂0; p̂Þ�� þ ���2ðx; y; p̂0; p̂Þ

� 1

4
��

3 ðx; y; p̂0; p̂Þ þ
1

2
ðp̂0 �mÞ��ðp̂�mÞ

�
: (C4)
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Following the same steps as before, we find for �
�ð3Þ
Pod ðp0; pÞ, Eq. (91), the following expression:

�
�ð3Þ
Pod ðp0; pÞ ¼ �3i�4�d Z d�

Z ddk

ð2�Þd
O�ðk; p0; p; x; yÞ

½k2 þ�2 � 1
a2
ð1� x� yÞ�4 : (C5)

Now, when we evaluate the momentum integration in (C5), we get

�
�ð3Þ
Pod ðp0; pÞ ¼

ð�1Þd=2
4

�4�d

ð4�Þ�ðd=2Þ ðd
2 þ 2dÞ���

�
2� d

2

�Z
d�

1

½�2 � 1
a2
ð1� x� yÞ�2�ðd=2Þ þ ð�1Þ

d=2 �4�d

ð4�Þd=2 �
�
4� d

2

�

�
Z

d�
�1ðx; y; p̂0; p̂Þ���2ðx; y; p̂0; p̂Þ
½�2 � 1

a2
ð1� x� yÞ�4�ðd=2Þ �

ð�1Þd=2
2

�4�d

ð4�Þd=2 �
�
3� d

2

�Z
d�

1

½�2 � 1
a2
ð1� x� yÞ�3�ðd=2Þ

� ½d�1ðx; y; p̂0; p̂Þ�� þ d���2ðx; y; p̂0; p̂Þ ��
�
3 ðx; y; p̂0; p̂Þ � ð2� dÞðp̂0 �mÞ��ðp̂�mÞ�; (C6)

which in the limit d! 4 is expressed as

��ð3Þ
Pod ðp0; pÞ ¼

1

�

1

8�2
�� þ��ð3Þ

Pod Finiteðp0; pÞ; (C7)

with the finite part written as

��ð3Þ
Pod Finiteðp0; pÞ ¼ �

1

16�2
��

�
5

6
þ �þ 6

Z
d� ln

��������
�2 � 1

a2
ð1� x� yÞ
4��2
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After a rearrangement of Eqs. (98), (C4), and (C8), we find that the expression of the finite part of the Podolsky
contribution �

�
Pod Finite is written as follows:
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