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Analytical solutions of Maxwell equations around a black hole immersed in an external uniform

magnetic field in the background of the Kehagias-Sfetsos (KS) asymptotically flat black hole solution of

Hořava-Lifshitz gravity have been found. The influence of a magnetic field on the effective potential of the

radial motion of a charged test particle around a black hole immersed in an external magnetic field in

Hořava-Lifshitz gravity has been investigated by using the Hamilton-Jacobi method. An exact analytical

solution for dependence of the minimal radius of the circular orbits rmc from KS parameter ! for motion

of a test particle around a spherical symmetric black hole in Hořava-Lifshitz gravity has been derived. The

critical values of the particle’s angular momentum for captured particles by a black hole in Hořava-

Lifshitz gravity have been obtained numerically. The comparison of the obtained numerical results with

the astrophysical observational data on the radii of the innermost stable circular orbits gives us the

estimation of the parameter as ! ’ 3:6 � 10�24 cm�2.
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I. INTRODUCTION

Recently, Petr Hořava suggested a new candidate quan-
tum field theory of gravity with a dynamical critical ex-
ponent equal to z ¼ 3 in the UV (ultraviolet). This theory
is a nonrelativistic power-counting renormalizable theory
in four dimensions, which admits the Lifshitz scale-
invariance in time and space that reduces to Einstein’s
general relativity at large scales [1,2]. The Hořava theory
has received a great deal of attention, and since its for-
mulation various properties and characteristics have been
extensively analyzed, ranging from formal developments
[3], cosmology [4], dark energy [5], dark matter [6], and
spherically symmetric or axial symmetric solutions [7].

In the paper [8], the possibility of observationally testing
Hořava gravity at the scale of the Solar System, by con-
sidering the classical tests of general relativity (perihelion
precession of the planet Mercury, deflection of light by the
Sun, and the radar echo delay) for the Kehagias-Sfetsos
(KS) asymptotically flat black hole solution of Hořava-
Lifshitz gravity has been considered. The stability of
the Einstein static universe by considering linear homoge-
neous perturbations in the context of an infrared (IR)
modification of Hořava gravity has been studied in [9].
Potentially observable properties of black holes in the
deformed Hořava-Lifshitz gravity with Minkowski vac-
uum: the gravitational lensing and quasinormal modes
have been studied in [10]. The authors of the paper [11]
derived the full set of equations of motion, and then
obtained spherically symmetric solutions for the UV-
completed theory of Einstein proposed by Hořava.

Black hole solutions and the full spectrum of spherically
symmetric solutions in the five-dimensional nonproject-
able Hořava-Lifshitz type gravity theories have been re-
cently studied in [12]. Geodesic stability and the spectrum
of entropy/area for a black hole in Hořava-Lifshitz gravity
via quasinormal modes approach are analyzed in [13].
Particle geodesics around a Kehagias-Sfetsos black hole
in Hořava-Lifshitz gravity are also investigated by authors
of the paper [14]. Recently observational constraints on
Hořava-Lifshitz gravity have been found from the cosmo-
logical data [15]. Authors of the paper [16] have found all
spherical black hole solutions for two, four, and six deriva-
tive terms in the presence of a Cotton tensor.
This paper is organized as follows. We look for exact

solutions of vacuumMaxwell equations in spacetime of the
black hole immersed in a uniform magnetic field in IR-
modified Hořava-Lifshitz gravity in Sec. II. In our recent
paper [17], an exact analytical solution for dependence of
the radius of the innermost stable circular orbits (ISCO)
rISCO from brane tension for motion of a test particle around
a black hole in the braneworld has been analyzed.We extend
it to the motion of charged particles around a black hole
immersed in a uniform magnetic field in Hořava-Lifshitz
gravity using the Hamilton-Jacobi method in Sec. III. We
obtain the effective potential for a charged test particlewith a
specific angular momentum, orbiting around the black hole,
as a function of the external magnetic field, and the IR-
modified parameter in Hořava-Lifshitz gravity. In Sec. IV,
we find the exact expression for dependence of a minimal
radius of circular orbit from the parameter !, which is
responsible for the IR-modified term in the Hořava-
Lifshitz action, for the test particle moving in the equatorial
plane of the black hole (when the external magnetic field is
neglected for the simplicity of calculations). Then we
present the numerical results of the capture cross section
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of the slowly moving test particles by the black hole in
Hořava-Lifshitz gravity. The concluding remarks are given
in Sec. V.

We use a system of units in which c ¼ G ¼ 1, a space-
like signature ð�;þ;þ;þÞ and a spherical coordinate
system ðt; r; �; ’Þ. Greek indices are taken to run from 0
to 3. We will indicate vectors with bold symbols (e.g., B).

II. BLACK HOLE IMMERSED IN A UNIFORM
MAGNETIC FIELD

The static and spherical symmetric spacetime metric
of the black hole with mass M in Hořava-Lifshitz gravity
takes form (see e.g, [8–10])

ds2 ¼�e2�ðrÞdt2þe2�ðrÞdr2þ r2d�2þ r2sin2�d’2; (1)

where the metric functions � and � depend on the radial
coordinate r only.

We consider the Kehagias and Sfetsos asymptotically
flat solution [18], given by

e2�ðrÞ ¼ e�2�ðrÞ ¼ 1þ!r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð!2r3 þ 4!MÞ

q
: (2)

A Killing vector ��, being an infinitesimal generator of
an isometry, satisfies to the equation

��;� þ ��;� ¼ 0; (3)

which can be used in order to rewrite the equation

��;�;� � ��;�;� ¼ ���R����; (4)

which defines the Riemann curvature tensor R���� in

the form

��;�
;� ¼ ��R��

�� ¼ R�
��

�: (5)

For spacetime of the KS black hole, the right-hand
side of Eq. (5) can be expressed as R�

��
� ¼ ��, and

consequently the Maxwell equations as

F��
;� ¼ �2C0ð��;�

;� � ��Þ ¼ 0; (6)

where �� ¼ f0; 0; 0; 6M2=!r6g is just the first order ap-
proximation in !�1 of the relation R�

��
� (see [18]), and

neglecting the time component�t which can be explained as
follows. If one considers the electrical neutrality of the source

4	Q ¼ 0 ¼ 1

2

I
F���dS��;

where �dS�� is the element of a 2-surface, and evaluate the

value of the integral through the spherical surface at the
asymptotic infinity (r ! 1, !r2 ! 1), one can obtain
that the time component of the potential will vanish identi-
cally (see, for more details [19]). Taking into the account the
Lorentz gauge, the electromagnetic field tensor F�� can be

selected as

F�� ¼ C0ð��;� � ��;� þ 2f��Þ
¼ �2C0ð��;� þ a�;� � a�;�Þ: (7)

Here, C0 is constant and 4-potential a�, being responsible
for the KS parameter !, can be found from the
equationha� ¼ ��.
Finally, one can express the electromagnetic potential as

a sum of two contributions

A� ¼ ~A� þ a�; (8)

where ~A� is the potential being proportional to the Killing

vectors. To find the solution for ~A�, we exploit the exis-
tence in this spacetime of a timelike Killing vector ��

ðtÞ and
spacelike one ��

ð’Þ being responsible for stationarity and

axial symmetry of geometry, such that they satisfy the
Killing Eq. (3) and consequently the wavelike equations
(in vacuum spacetime) h�� ¼ 0, which gives a right to

write the solution of vacuum Maxwell equationsh ~A� ¼ 0

for the vector potential ~A� of the electromagnetic field in

the Lorentz gauge in the simple form ~A� ¼ C1�
�
ðtÞ þ

C2�
�
ð’Þ [20]. The constant C2 ¼ B=2, where the gravita-

tional source is immersed in the uniform magnetic field B
being parallel to its axis of rotation. The value of the
remaining constant C1 will vanish, which can be easily
shown from the asymptotic properties of spacetime (1) at
the infinity (see e.g., our preceding papers [17,19] for the
details of typical calculations).
The second part a� of the total vector potential of the

electromagnetic field is produced by the presence of the KS
parameter ! and has the following solution:

a� ¼ B

2

�
0; 0; 0;

3M2

10!r4

�
:

Finally, the 4-vector potential A� of the electromagnetic
field will take a form

A0¼A1¼A2¼0; A3¼1

2
Br2sin2�

�
1þ 3M2

10!r4

�
: (9)

The orthonormal components of the electromagnetic
fields measured by a fixed observer with the four-
velocity components ðu�Þobs � expð��Þf1; 0; 0; 0g;
ðu�Þobs � � expð�Þf1; 0; 0; 0g are given by expressions

Br̂ ¼ B

�
1þ 3M2

10!r4

�
cos�; (10)

B�̂ ¼ e�ðrÞB
�
1� 6M2

10!r4

�
sin�; (11)

which depend on the lapse function of the metric (1).
In the limit of flat spacetime, i.e. for !r2 ! 1 and

2M=r ! 0, expressions (10) and (11) give

lim
!r2!1;2M=r!0

Br̂ ¼ B cos�; (12)

lim
!r2!1;2M=r!0

B�̂ ¼ B sin�: (13)

As expected, expressions (12) and (13) coincide with
the solutions for the homogeneous magnetic field in the
Newtonian spacetime.
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III. MOTION OF THE CHARGED PARTICLES
AROUND A BLACK HOLE

It is very important to study in detail the motion of
charged particles around a black hole in Hořava-Lifshitz
gravity immersed in a uniform magnetic field given by a
4-vector potential (9), with the aim to find astrophysical
evidence for the existence of the KS parameter !.

We shall study the motion of the charged test particles
around a black hole in Hořava-Lifshitz gravity using the
Hamilton-Jacobi equation

g�


�
@S

@x�
þ eA�

��
@S

@x

þ eA


�
¼ �m2; (14)

where e andm are the charge and the mass of a test particle,
respectively. Since t and ’ are the Killing variables, one
can write the action in the form

S ¼ �EtþL’þ Sr�ðr; �Þ; (15)

where the conserved quantities E and L are the energy
and the angular momentum of a test particle at infinity.
Substituting it into Eq. (14), one can get the equation for
the inseparable part of the action

�m2 ¼ �e2�ðrÞE2 þ e2�ðrÞ
�
@Sr�
@r

�
2 þ 1

r2

�
@Sr�
@�

�
2

þ 1

r2sin2�

�
Lþ eB

2
r2
�
1þ 3M2

10!r4

�
sin2�

�
2
: (16)

One can easily separate variables in this equation in
the equatorial plane � ¼ 	=2 and obtain the equation for
radial motion

�
dr

ds

�
2 ¼ E2 � VeffðL; r; �; !Þ; (17)

where s is the proper time along the trajectory of a particle
and

VeffðL;r;�;!Þ¼
�
1þ!r2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð!2r3þ4!MÞ

q �

�
��
L
r
þ
�
r

2M
þ 3M3

10 ~!r3

�
�

�
2þ1

�
(18)

can be interpreted as an effective potential of the radial
motion, where the dimensionless parameter ~! ¼ !M2

is introduced. Here, we have changed E ! E=m and
L ! L=m. The effective potential besides the energy, the
angular momentum, the KS parameter ! and the radius of
the motion also depends on the dimensionless parameter
� ¼ eBM=m which characterizes the relative influence of a
uniform magnetic field on the motion of the charged parti-
cles. In Fig. 1, the radial dependence of the effective poten-
tial of the radial motion of the charged particle around a
black hole for the different values of the dimensionless
parameter ~! ¼ !M2 and magnetic parameter � are shown.
One can easily see that orbits of the particles become more
unstable with the increasing of the parameter �. (Similar
results have been obtained in our previous paper [19].) The
influence of the dimensionless parameter ~! is sufficient near
the black hole; as it is seen from the figure, the potential
carries the repulsive character. It means that the particle
coming from infinity and passing by the source will not be
captured; it will be reflected and will go to infinity again.
The orbits start to be only parabolic or hyperbolic and no
more circular or elliptical orbits exist with decreasing the
dimensionless parameter ~!, i.e. captured particles by the
central object are going to leave the black hole.

FIG. 1 (color online). Radial dependence of the effective potential of the radial motion of the charged particle around a black hole
immersed in a uniform magnetic field in Hořava-Lifshitz gravity. In the left graph, the effective potential of the radial motion of the
charged particle around a black hole has been shown for the different values of the dimensionless parameter ~!; the values of the
momentumL=mM ¼ 4:3 and the magnetic parameter � ¼ 0:03 are fixed. For comparison, we have also plotted this dependence in the
case of the Schwarzschild black hole, corresponding to ~! � 1. In the right graph, the effective potential of the radial motion of the
charged particle around a black hole has been shown for the different values of the magnetic parameter �; the values of the momentum
L=mM ¼ 4:3 and the dimensionless parameter ~! ¼ 1 are fixed.
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IV. CIRCULAR ORBITS AROUND A BLACK HOLE
IN HORı́AVA-LIFSHITZ GRAVITY

In order to find solution for the ISCO radius of rISCO, we
assume that the external magnetic field is absent.

The expression (17) can now be written as

�
dr

ds

�
2¼fðrÞ

¼E2�
�
1þ!r2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð!2r3þ4!MÞ

q ��
L2

r2
þ1

�
:

(19)

Using Eq. (19) and the condition of occurrence of circular
orbits fðrÞ ¼ 0, f0ðrÞ ¼ 0, one can easily find expressions
for energy E and angular momentum L of a circular orbit
of radius rc, which are given as

E 2 ¼
�
1þM� r3ð�� 1Þ!

3M� r�

�
ð1� r2!ð�� 1ÞÞ; (20)

L 2 ¼ r2
M�!r3ð�� 1Þ

3M� r�
; (21)

where notation � ¼ ð1þ 4M=r3!Þ1=2 has been used.
Figure 2 shows the radial dependence of both the energy

FIG. 2 (color online). Radial dependence of energy (left graph) and angular momentum (right graph) of the circular orbits around a
black hole in Hořava-Lifshitz gravity for the different values of the dimensionless parameter ~!. For comparison, we have also plotted
this dependence in the case of the Schwarzschild black hole, corresponding to ~! � 1.

FIG. 3 (color online). Dependence of the radius of the horizon
and rmc from the ~!.

FIG. 4 (color online). Dependence of the ISCO radius from
the ~!.
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and the angular momenta of the test particle moving on
circular orbits in the equatorial plane. One can easily see
that circular orbits corresponding to constant value of the
energy and momentum of the test particle shift to the
central object with the decreasing of the parameter ~!.

For the existing circular orbits, the expression for angu-
lar momentum (21) of the test particle requires, in particu-
lar, that r�� 3M � 0. Consequently, one can easily find
the minimum radius for circular orbits ~rmc ¼ rmc=M:

~r mc ¼
8<
:

3 ~!
ð��2 ~!2Þ1=3 þ ð��2 ~!2Þ1=3

~! ; ~!< 2
ffiffi
3

p
9

2
ffiffiffi
3

p
cos

�
1
3 arccos

�
� 2

ffiffi
3

p
9

1
~!

��
; ~! � 2

ffiffi
3

p
9

(22)

where � ¼ ð4 ~!4 � 27 ~!6Þ1=2. The obtained Eq. (22) is the
original one.

As it was expected in the limiting case when ~! � 1,
i.e. when metric (1) coincides with the well-known
Schwarzschild metric, one can easily obtain the known
result for the minimal radius of circular orbits around the
Schwarzschild black hole as ~rmc ¼ 3.

In Fig. 3, the dependence of both radii of the horizon and
rmc from the dimensionless parameter ~! are shown. In the

case of ! � 2
ffiffiffi
3

p
=9, the decreasing of the KS parameter ~!

forces the minimum radii of the circular orbits rmc to shift

to the central object. In the case of !< 2
ffiffiffi
3

p
=9, there is no

lower limit for rmc, which means that circular orbits can be
present near the black hole.

The minimum radius for a stable circular orbit will occur
at the point of inflexion of the function fðrÞ, or in other
words where the supplement conditions fðrÞ ¼ f0ðrÞ ¼ 0
with the relation f00ðrÞ � 0 are satisfied. The numerical
results for the values of ISCO radii for the different values
of the parameter ~! in the case of ~! � 0:5 are given in
Table I (the second line). From the results, one can easily
get in the limit of Schwarzschild spacetime !r2 ! 1 the
standard value for ISCO radius as rISCO ¼ 6M.

Next, we will consider the capture cross section of
slowly moving test particles by a black hole in Hořava-
Lifshitz gravity. (Slow motion means that E ’ 1 at the
infinity.) The critical value of the particle’s angular mo-
mentum,Lcr, hinges upon the existence of a multipole root
of the function fðrÞ in (19) [21]. We give the numerical
results for L2

cr in Table I (the third line).
In the limiting case, i.e. when ~! � 1 the value of the

critical angular momentum isL ¼ 4, which coincides with
critical angular momentum for particle capture cross sec-
tion for the Schwarzschild black hole [22]. As a particle
having the critical angular momentum travels from infinity
toward the black hole in Hořava-Lifshitz gravity, it spirals
into an unstable circular orbit.

V. CONCLUSION

Constraints for the KS parameter from the Solar System
tests were found as ð5:660� 3:1Þ � 10�26 cm�2 [8].
The similar constraints for the parameter ! ’ 1:25 �
10�25 cm�2 have been found from the quantum interfer-
ence effects [23]. In Fig. 4, the dependence of the rISCO
from the dimensionless KS parameter ~! is shown. From
the figure, one can see that in the presence of the parameter
~!, ISCO shifts to the central black hole. One can easily
compare the obtained numerical results with observational
data for ISCO radius for some candidates of rotating black
holes [24]. One can obtain the lower value for the parame-
ter as ! ’ 3:6 � 10�24 cm�2.
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