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It has been known for several decades that Einstein’s field equations, when projected onto a null

surface, exhibit a structure very similar to the nonrelativistic Navier-Stokes equation. I show that this

result arises quite naturally when gravitational dynamics is viewed as an emergent phenomenon.

Extremizing the spacetime entropy density associated with the null surfaces leads to a set of equations

which, when viewed in the local inertial frame, becomes identical to the Navier-Stokes equation. This is in

contrast to the usual description of the Damour-Navier-Stokes equation in a general coordinate system, in

which there appears a Lie derivative rather than a convective derivative. I discuss this difference, its

importance, and why it is more appropriate to view the equation in a local inertial frame. The viscous force

on fluid, arising from the gradient of the viscous stress-tensor, involves the second derivatives of the metric

and does not vanish in the local inertial frame, while the viscous stress-tensor itself vanishes so that

inertial observers detect no dissipation. We thus provide an entropy extremization principle that leads to

the Damour-Navier-Stokes equation, which makes the hydrodynamical analogy with gravity completely

natural and obvious. Several implications of these results are discussed.

DOI: 10.1103/PhysRevD.83.044048 PACS numbers: 04.70.Dy

I. GRAVITYAS AN EMERGENT PHENOMENON

Large amounts of theoretical evidence suggest that grav-
ity could be an emergent phenomenon like gas dynamics or
elasticity, with the gravitational field equations having the
same status as, say, the equations of gas/fluid dynamics [1].
They seem to describe the thermodynamic limit of the
statistical mechanics of (as yet unknown) atoms of space-
time or, equivalently, the hydrodynamic (long wavelength)
limit of a suitably defined ‘‘fluid’’ system.

A very direct argument in favor of this paradigm is the
validity of the principle of equipartition which allows one
to use the classical field equations, along with the expres-
sion for Davies-Unruh temperature [2], to determine the
number density of microscopic degrees of freedom [3].
One finds that any null surface in the spacetime is endowed
with a number density of microscopic degrees of freedom
(‘‘atoms of spacetime’’) which depends on the structure of
the gravitational theory. In the simplest context of
Einstein’s theory, this density is a constant (equal to one
degree of freedom per Planck area), while, in a generic
Lanczos-Lovelock model, it is proportional to Pabcd ¼
@L=@Rabcd, where L is the Lanczos-Lovelock
Lagrangian and Rabcd is the curvature tensor [3]. We shall
hereafter call Pabcd the spacetime entropy tensor or simply
the entropy tensor of the theory. (In the case of Einstein’s
theory with L / R, we have Pab

cd / ð�a
c�

b
d � �a

d�
b
cÞ.) Given

the number density of microscopic degrees of freedom one
can construct an entropy functional for the system which
will depend only on Pabcd and lead correctly to the Wald
entropy [4] of the Lanczos-Lovelock theory. The crucial
fact that entropy of a horizon in a gravitational theory

depends on the theory (and is proportional to the area
only in the simple case of Einstein gravity) finds expression
in the related fact that the density of microscopic degrees
of freedom determined through the law of equipartition
depends on the theory.
This key ‘‘internal evidence’’ from the structure of

gravitational theories—especially in Lanczos-Lovelock
models—suggests that they may be viewed as the thermo-
dynamic limit of the statistical mechanics of the micro-
scopic degrees of freedom. This is reminiscent of the work
by Boltzmann and others, who used the internal evidence
of thermal phenomena to deduce the existence of atoms/
molecules and determine the Avogadro number which
quantifies their number density even without knowing
what they are and having no direct observational support
for their existence.
The above results were obtained by starting from the

field equations of the theory, rewriting them in the form of
the law of equipartition, and thus determining the density
of microscopic degrees of freedom. A more attractive
procedure will be to invert this argument and obtain the
field equations of the theory from the density of micro-
scopic degrees of freedom. We do know that the thermo-
dynamical behavior of any system can be described by an
extremum principle for a suitable potential (entropy, free
energy, and so on) treated as a functional of appropriate
variables (volume, temperature, and so on). If our ideas
related to gravitational theories are correct, it must be
possible to obtain the field equations by extremizing a
suitably defined entropy functional. The fact that null
surfaces block information suggests that the entropy func-
tional should be closely related to null surfaces in the
spacetime. This turns out to be true. The Lanczos-
Lovelock field equations can indeed be obtained [5] by*paddy@iucaa.ernet.in
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extremizing an entropy functional associated with the null
vectors in the spacetime. This functional depends only on a
tensor Pabcd which has the symmetries of the curvature
tensor and is divergence-free in all indices. One can show
that the thermodynamic variational principle leads to the
field equations of a Lanczos-Lovelock model with the
same entropy tensor.

In this paper, I will reinterpret these results in a different
manner. I will argue that it is more natural to project the
equations which result from the entropy extremization onto
the null surfaces of the spacetime, thereby obtaining what
is usually called in the literature the Damour-Navier-
Stokes (DNS) equation [6,7]. In general, this equation is
similar to the Navier-Stokes (NS) equation but is not
identical to it because the DNS equation contains a Lie
derivative while the standard NS equation has a convective
derivative. (As I will describe in Sec. III D, this structural
difference exists in all the previous derivations of the DNS
equation in the literature but has not been emphasized.)
I will argue that it is better to study the structure of
gravitational field equations in freely falling frames rather
than in arbitrary coordinates and will show that—in locally
inertial frames—the DNS equation becomes identical to
the NS equation. Moreover, the physical interpretation,
especially aspects related to viscous dissipation, becomes
transparent in this frame.

We thus obtain an entropy extremization principle to
derive the DNS equation directly, which makes the hydro-
dynamical analogy with gravity self-contained. This is in
contrast with the conventional approach in which one first
obtains the field equations from some (action) principle
and then interprets it as an NS-like equation. In such an
approach it seems somewhat mysterious that the equation
looks similar to an NS equation with a thermodynamic
structure.

This paper is organized as follows: I begin in Sec. II with
a short review of the derivation of gravitational field equa-
tions by extremizing the entropy density of spacetime. In
Sec. III A, I argue in favor of projecting these equations
onto a null surface. The technology to describe the extrin-
sic geometry of the null surface is reviewed briefly in
Sec. III B. (A more pedagogical discussion is included in
the Appendix to make the paper self-contained.) This is
used in Sec. III C to recast the equations in the form of an
NS equation, with convective derivative, in a boosted
inertial frame. The DNS equation in a general frame
(which has the Lie derivative rather than convective de-
rivative) is obtained in Sec. III D, and a comparison of
these equations and their physical implications is presented
in Sec. IV. Some further technical issues related to rescal-
ing of null normal and introducing spacetime dependent
boosts are discussed in Sec. IVa, and the conclusions are
presented Sec. V. This analysis also opens up several
further avenues of research, which I will briefly mention
whenever appropriate.

We will use the mostly positive signature; the Latin
indices, a; b . . . go over 0–3 in the spacetime manifold
M while the Greek indices �;�; . . . go over the coordi-
nates in a three-dimensional null surface S with signature
ð�;þ;þÞ. When we restrict ourselves to the two-
dimensional, spatial submanifold of this null surface, we
will use uppercase Latin indices A; B; . . . .

II. ENTROPY DENSITY OF SPACETIME AND
ITS EXTREMIZATION

The field equations of Lanczos-Lovelock models were
obtained previously [1,5] from an entropy extremization
principle along the following lines, which we shall rapidly
review. (The physical motivation and algebraic details are
described in detail in previous papers, e.g., Ref. [1], and
will not be repeated here.) The procedure involves associ-
ating with every null vector in the spacetime an entropy
functional Sgrav and demanding �½Sgrav þ Smatter� ¼ 0 for

all null vectors in the spacetimewhere Smatter is the relevant
matter entropy. It can be argued, based on the energy flux
across local Rindler horizons and the associated entropy,
that the form of Smatter relevant for this purpose can be
taken to be

Smatt ¼
Z
V
dkx

ffiffiffiffiffiffiffi�g
p

Tabn
anb; (1)

where na is a null vector field and Tab is the matter energy-
momentum tensor living in a general Dð� 4Þdimensional
spacetime. (The integration could be over this spacetime
volume [k ¼ D] or even over a nontrivial submanifold
[k < D], say, a set of null surfaces. This does not affect
the variational principle or the resulting equations.) The
simplest choice for Sgrav is a quadratic expression in the

derivatives of the null vector:

Sgrav ¼ �4
Z
V
dkx

ffiffiffiffiffiffiffi�g
p

Pab
cdrcn

ardn
b; (2)

where Pab
cd is a tensor having the symmetries of curvature

tensor and is divergence-free in all its indices. (This makes
the notation Pcd

ab � Pab
cd unambiguous, and we will often

use this placement of indices.) It can be shown that the most
general tensor which satisfies these criteria is the entropy
tensor of a Lanczos-Lovelock theory; that is, the Pabcd in
Eq. (2) can be expressed as Pabcd ¼ @L=@Rabcd, where L is
the Lanczos-Lovelock Lagrangian and Rabcd is the curva-
ture tensor [1]. This choice will also ensure that the equa-
tions resulting from the entropy extremization do not
contain any derivative of the metric which is of higher order
than second. (More general possibilities exist which we will
not discuss in this paper.) The expression for the total
entropy now becomes

S½na� ¼ �
Z
V
dkx

ffiffiffiffiffiffiffi�g
p ð4Pcd

abrcn
ardn

b � Tabn
anbÞ:

(3)
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We now vary the vector field na in Eq. (3) after adding
a Lagrange multiplier function �ðxÞ for imposing the
condition na�n

a ¼ 0. Straightforward algebra (see,
e.g., Sec. 7.1 of Ref. [1]) now shows that the condition
�½Sgrav þ Smatter� ¼ 0 leads to the equations

ð2Ra
b � Ta

b þ ��a
bÞna ¼ 0; (4)

whereRa
b � Pi

b
jkRa

ijk is the generalization of Ricci tensor

to Lanczos-Lovelock models. We demand that this extre-
mum condition should hold for all null vector fields na.

At this stage the usual procedure [1,5] is to use the
generalized Bianchi identity and the condition raT

a
b ¼ 0

to obtain these equations from Eq. (4):

G a
b ¼ Ra

b �
1

2
�a
bL ¼ 1

2
Ta
b þ��a

b; (5)

where � is a constant and Pabcd ¼ @L=@Rabcd. These are
precisely the field equations for gravity in a theory with
Lanczos-Lovelock Lagrangian L. When L / R, leading to
Pab
cd / ð�a

c�
b
d � �a

d�
b
cÞ, we have Ra

b / Ra
b, G

a
b / Ga

b, and

one recovers Einstein’s equations.
There exists, however an alternative route which we will

explore in this paper, that turns out to be more in tune with
the entropy extremization principle and emergent perspec-
tive of gravity. To do this we note that, while Eq. (4) holds
for any vector field, once the normalization condition is
imposed through the Lagrange multiplier, the entropy was
originally attributed to null vectors, and hence it is natural
to study Eq. (4) when na is the null normal ‘a of a null
surface S in the spacetime and project Eq. (4) onto the null
surface. This is what we will do.

In the case of spacelike or timelike surfaces with a
normal, such a projection is straightforward, but the null
surfaces require a somewhat more careful treatment. This
is described in the Appendix for those readers who may not
be completely familiar with the issues involved. In the
main text of the paper, we shall use the results from this
Appendix to proceed further. We will also work with
Einstein’s theory in D ¼ 4 for clarity and definiteness
and will mention more general possibilities at the end.

III. NAVIER-STOKES DYNAMICS OF
NULL SURFACES

A. Entropy extremum condition projected onto a
null surface

In a four-dimensional spacetime manifold M with a
metric gab, a null surface with normal ‘ will be a three-
dimensional submanifold S such that the restriction ��� of

the spacetime metric gab to the S is degenerate. It can be
easily shown [see Eq. (A1)] that the normal ‘a to S satisfies
the null geodesic equation ‘ara‘m � �‘m with a nonaffine
parametrization, indicated by a nonzero � which we will
call the surface gravity. Since the normal ‘ to a null surface
is also a tangent, this result also shows that a null surface

can be thought of as ‘‘filled by’’ (a congruence of)
null geodesics. Using this, we can introduce a natural
coordinate system adapted to a family of null surfaces in
the spacetime. We choose one of the coordinates such that
x3 ¼ constant corresponds to a set of null surfaces with,
say, x3 ¼ 0 on S. Let the intersection of S with an x0 ¼
constant surface (�t) of the spacetime be a two-
dimensional surface St with transverse coordinates xA �
ðx1; x2Þ and coordinate basis vectors eA � @A. We will
choose the coordinate system such that

‘ ¼@0þvA@A¼@0þvAeA; ‘a¼ð1;vA;0Þ; (6)

with ‘ � ‘ ¼ 0 ¼ ‘ � eA. (That is, we embed S in a one-
parameter congruence of null hypersurfaces corresponding
to x3 ¼ constant and choose the other coordinates x0, x1

and x2 in such a way that Eq. (6) holds.) Clearly, ‘ has the
structure of a convective derivative if we think of vA as a
transverse velocity field. The line interval, which has nine
independent functions, has the form of Eq. (A4). In par-
ticular, the line element on the x3 ¼ constant surface is
given by

ds2 ¼ qABðdxA � vAdtÞðdxB � vBdtÞ: (7)

The metric on St corresponding to t ¼ constant, x3 ¼
constant is qAB with a well-defined inverse q

AB. The raising
and lowering of the uppercase indices A, B etc. in this
transverse two-dimensional surface are done using these
metrics.
A more formal way of introducing this metric is as

follows: Given a null surface with the normal ‘a, we first
introduce another null vector ka with ‘ � k ¼ �1. (For
example, in flat spacetime if ‘ ¼ et þ ez is the outgoing
null vector, then k could be k ¼ ð1=2Þðet � ezÞ which is
proportional to the ingoing null vector.) The metric on the
two-dimensional surface St orthogonal to this pair is given
by the standard relations

qab¼gabþ‘akbþ‘bka; qab‘
b¼0¼qabk

b: (8)

The mixed tensor qab allows us to project quantities onto St.

We are interested in the projection of Eq. (4) onto S with
na ¼ ‘a. In contrast to timelike or spacelike surfaces, this
will now contribute (i) a term along ‘ itself when we
contract Eq. (4) with la (because ‘ is also tangent to S)
as well as (ii) a projection to the two-surface St obtained by
contracting Eq. (4) with qiA. In both, the term involving �
will not contribute because ‘2 ¼ 0 and ‘aqab ¼ 0. More
formally, the projection will give (see Eq. (A17)) the
equations:

Rmn‘
mqna ¼ 8	Tmn‘

mqna; Rmn‘
m‘n ¼ 8	Tmn‘

m‘n:

(9)

In other words, the maximization of the entropy associated
with the null vectors leads to these two equations in a
natural, direct manner.
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Of these, the second equation in Eq. (9) involving
Rmn‘

m‘n will give the familiar Raychaudhuri equation
(which we will not discuss in detail) while the first one
with Rmn‘

mqna will lead to an equation that looks like the
Navier-Stokes equation—which will be of interest in this
paper.

To obtain the latter in a physically transparent way, we
only have to consider the A-th component (in the transverse
direction) of the vector Rmj‘

m. This can be expressed in

terms of the covariant derivative of ‘ by the standard
identity

RmA‘
m ¼ R�A‘

� ¼ r�ðrA‘
�Þ � @Aðr�‘

�Þ; (10)

where the first equality arises from Eq. (6). (Recall that, in
our notation, Greek letters cover 0, 1, 2 while uppercase
Latin letters cover 1, 2 in the transverse direction.) To
rewrite this as a Navier-Stokes equation, we need to reex-
press the derivativesrA‘

� andr�‘
� in terms of quantities

related to the extrinsic geometry of S. We will now give a
brief overview of the concepts involved in the extrinsic
geometry of a null surface, delegating details to the
Appendix.

B. Extrinsic geometry of a null surface

The extrinsic geometry of the null surface is determined
by the derivative of the normal r�‘ along the tangential

directions of S. Because ‘ � r�‘ ¼ ð1=2Þ@�‘2 ¼ 0, the

covariant derivative of ‘ along vectors tangent to S is
orthogonal to ‘ and hence is tangent to S. Therefore r�‘
is a vector which can be expanded using the coordinate
basis e� ¼ @� onS. (This basis ismade of@� ¼ ð@0; @AÞ ¼
ð‘� vAeA; eBÞ ¼ e�.) Writing this expansion with a set of

coefficients (called Weingarten coefficients) 
�
�, we have

r�‘ � 
�
�@� ¼ 
�

�e�; r�‘
� ¼ 
�

�: (11)

From ‘ara‘
� ¼ ‘�r�‘

� ¼ 
�
�‘

� ¼ �‘�, it follows that
‘� is an eigenvector of the matrix 
�

� with the eigenvalue
�. The coefficients
�

� determine the extrinsic geometry of
the null surface we are interested in. We will now study the
different components of the 3� 3 matrix 
�

�.
To do this, we define the quantity ��� � ���


�
�, the

components of which are given by

��� ¼ ���

�
� ¼ e� � r�‘ ¼ r�ð‘ � e�Þ � ‘ � r�e�

¼ �‘j�
j
��; (12)

where we have used ‘ � e� ¼ 0. This quantity is clearly
symmetric (��� ¼ ���) because Christoffel symbols are

symmetric. Further, from the result ‘bra‘
b ¼ 0, we have

the identity ���‘
� ¼ 0 which, on expansion, using

‘� ¼ ð1; vAÞ, gives ��0 ¼ ���Bv
B. This implies �0A ¼

�A0 ¼ ��ABv
B, which, in turn, leads to �00 ¼

��0Bv
B ¼ vAvB�AB. Thus all components of ��� can

be determined in terms of the three components of�AB and
the metric coefficients vA.
The components ��� have a direct geometrical signifi-

cance as the Lie derivative along ‘ of the metric qij on S.
Using the restriction of the four-dimensional Lie derivative
of gij to St, we get

�AB ¼ 1

2
L‘qAB (13)

in the adapted coordinate system. This structure is similar
to the standard formula K�� ¼ �ð1=2ÞLnh�� for the ex-

trinsic curvature of a t ¼ constant spacelike surface in the
(1þ 3) decomposition. In fact, evaluating Eq. (13) in the
coordinate system adapted to S, we get a result very similar
to the familiar one for K�� (see, e.g., Eq. (12.21) of

Ref. [8]):

�AB ¼ 1

2

�
DAvB þDBvA þ @qAB

@t

�
: (14)

When qAB is independent of t, we see that �AB is essen-
tially the shear tensor of a velocity field vA. This is the key
reason why the projected equations can be interpreted as
the Navier-Stokes equation.
We will also need to define three more quantities !� ¼

ð!0; !AÞ in terms of the Weingarten coefficients by

!� � 
0
� ¼ r�‘

0 ¼ �0
j�‘

j: (15)

The utility of�AB and ð!0; !AÞ arises from the fact that we
can determine all the components of 
�

� from �AB, !�

and the metric coefficients. Among the components of 
�
�

we already have the direct relations 
0
0 ¼ !0, 


0
A ¼ !A.

As for the remaining components 
A
0, 
A

B, note that

�0B ¼ 
�
0��B ¼ 
0

0�0B þ 
A
0qAB, giving


A
0 ¼ ð�0B � 
0

0�0BÞqBA ¼ �ð�BCv
C �!0vBÞqBA:

(16)

Similarly, we have


C
A ¼ ð�AB � 
0

A�0BÞqBC ¼ ð�AB þ!AvBÞqBC: (17)

So the covariant derivative r�‘ of the normal vector ‘—

and thus the extrinsic geometry of S—is completely char-
acterized by the set (�AB ¼ �‘m�

m
AB, !0 ¼ ‘m�0

m0, !A ¼
‘m�0

mA). Confined to the transverse components, Eq. (17)

also gives the relation

rA‘B ¼ 
AB ¼ ½�AB þ!BvA�; (18)

which will turn out to be useful.
Being a symmetric tensor, �AB can be expressed in

terms of its irreducible parts, viz., the trace � � �A
A and

the trace-free part �A
B, by

�A
B ¼ �A

B þ ð1=2Þ�A
B�: (19)

In the adapted coordinates, � is given by the expression
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� ¼ @

@t
ln

ffiffiffi
q

p þDAv
A (20)

and is related to the divergence of ‘ through the relation

ra‘
a ¼ r�‘

� ¼ rA‘
A þr0‘

0 ¼ ð�þ vA!
AÞ þ!0

¼ �þ ‘�!� � �þ �: (21)

In arriving at the third equality, we have used Eq. (18), and
in arriving at the first and the fourth equality, we have used
Eq. (6). The last relation arises because 
0

�‘
� ¼ �‘0 ¼

� ¼ !�‘
�.

C. The Navier-Stokes equation in the boosted
inertial frame

Using these results, we are in a position to rewrite
Eq. (10) in terms of the variables related to the extrinsic
geometry of the null surface. Using Eqs. (11) and (21), we
can rewrite Eq. (10) as

RmA‘
m ¼ R�A‘

� ¼ r�

�
A � @Að�þ �Þ: (22)

Let us consider this expression around any given event in a
frame in which the Christoffel symbols vanish but their
derivatives do not. We will assume that the metric coef-
ficients become constant and have their usual diagonal
form except for keeping vA � 0 but a constant. (That is,
we are working with a Lorentz-boosted local inertial
frame; we will comment on this choice later on in
Sec. IVa.) In that case, we can write r�


�
A in Eq. (22) as

r�

�
A ¼ @�


�
A ¼ @0


0
A þ @B


B
A

¼ @0!A þ @BðqBC
CAÞ
¼ @0!A þ @B½qBCð�CA þ!AvCÞ�
¼ @0!A þ @B�

B
A þ vB@B!A: (23)

Each equality is obtained by discarding terms involving
Christoffel symbols but retaining terms containing their
derivatives; we have also used Eqs. (15) and (18). (Note,
for example, that!� is proportional to Christoffel symbols

and hence vanishes but its derivative need not.) Thus
we get

RmA‘
m ¼ ð@0 þvB@BÞ!Aþ @B

�
�B

A þ
1

2
��B

A

�
�@Að�þ �Þ

¼ ð@0 þvB@BÞ!Aþ @B�
B
A �@A

�
�þ 1

2
�

�
; (24)

where we have used Eq. (19). The first equation in Eq. (9)
now becomes

ð@0 þ vB@BÞ!A þ @B�
B
A � @A

�
�þ 1

2
�

�
¼ 8	TmA‘

m:

(25)

Again note that �B
A vanishes in the local inertial frame but

its derivative @B�
B
A will not. Rewriting Eq. (25) in the form

ð@0 þ vB@BÞ
�
�!A

8	

�
¼ 1

8	
@B�

B
A � 1

16	
@A�

� @A

�
�

8	

�
� TmA‘

m; (26)

we see that Eq. (26) has the exact form of a Navier-Stokes
equation for a fluid with (i) momentum density �!A=8	;
(ii) pressure (�=8	); (iii) shear viscosity coefficient  ¼
ð1=16	Þ (note that, in the conventional NS equation, the
viscous tensor 2�A

B þ ��A
B� is defined with an extra

factor 2 for shear viscosity); (iv) bulk viscosity coefficient
� ¼ �1=16	; and (v) an external force FA ¼ TmA‘

m. The
NS will also have term �!A, which vanishes in the local
frame because � ¼ 0 but, of course, we can formally add
this term (which is numerically zero) to Eq. (26) to com-
plete the structure; but the derivative @A� is nonzero, which
allows us to uniquely determine the bulk viscosity term.
For this interpretation to be strictly valid, it is also

necessary that �B
A has the form of a trace-free shear tensor

built from the velocity field vA. From Eq. (14) we see that
this is true provided ð@qAB=@tÞ ¼ 0 when we have

@B�
B
A ¼ 1

2
@B½ð@BvA þ @AvBÞ � �B

Að@CvCÞ�: (27)

In the literature, Eq. (26) or its analogues are often called a
‘‘Navier-Stokes equation’’ even when (@qAB=@t) is non-
zero. This is—strictly speaking—incorrect especially be-
cause the metric qAB has no fluid dynamical interpretation
in general. We shall come back this point in the next
section.
It should also be noted that, in the conventional NS

equation, the momentum density that is transported by
the fluid is usually collinear with velocity. In our case,
the !A and vA are in general unrelated and—in fact—the
physical meaning of !A is unclear for a general null
surface. (It does have a physical meaning in the context
of the event horizon of Kerr black hole, for which the
formalism was originally developed; in that context, !A

can be related to the angular momentum of the black hole.)
It is clear that =� ¼ �1 also makes any interpretation

in terms of standard viscous dissipation unnatural for a
general null surface [9]. In the literature, this interpretation
has been provided in situations when teleological evolution
is acceptable especially in the context of black hole event
horizon. More importantly, the ratio between shear viscos-
ity and entropy density s ¼ 1=4 of the null surface is given
by =s ¼ 1=4	, when we use the fact that any null surface
can be attributed an area density of entropy which is (1=4)
in Einstein’s theory. Similar results are known in much
more complicated situations arising from string theory, but
they presumably have the basis in Eq. (26).
For completeness, we will also state the Raychaudhuri

equation arising from the second equation in Eq. (9) which,
in the boosted local inertial frame, reads [see Eq. (A18),
and note that �mn ¼ 0 ¼ � in this frame]
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Rmn‘
m‘n ¼ �ð@0 þ vB@BÞ� ¼ 8	Tmn‘

m‘n; (28)

which relates the evolution of � to the energy flux across
the null surface. In the context of local Rindler frame, the
right-hand side of Eq. (28) can be interpreted as propor-
tional to the heat flux, making this an entropy balance
equation. We shall briefly comment on this interpretation
in Sec. VA.

D. The Damour-Navier-Stokes equation in
arbitrary frame

The entire analysis can be repeated in an arbitrary
coordinate system to obtain a generalized Navier-Stokes
equation, first obtained by Damour [6]. This equation is
derived in the Appendix [see Eq. (A23)] and has the form

Rmn‘
mqna ¼ qmaL‘�m þ ��a �Da

�
�þ �

2

�
þDm�

m
a

¼ 8	Tmn‘
mqna; (29)

where the various terms are defined below. The metric qab is
given by Eq. (8); the �m is the projection �m ¼ qnm!n ¼
�n � �kn, where !n ¼ ‘jrjkn; note that, since kA ¼ 0,

we have �A ¼ !A as far as the transverse components,
which we are interested in, are concerned. The �mn is the
projection of the covariant derivative: �mn ¼ qamq

b
nra‘b.

The Di is the covariant derivative operator defined using
the metric qab in the two-dimensional subspace, while L‘

is the Lie derivative with respect to ‘.
A comparison of Eq. (29) with Eq. (24) shows that,

while most terms have an one-to-one correspondence,
with suitable projections replacing the operation of taking
transverse components, there are two crucial differences
which we will now discuss:

(a) In the literature one usually sees the interpretation of
�m

a as the viscous shear tensor of a fluid with a
velocity field va without bothering about its internal
structure. But, as we have already mentioned, this
tensor contains an extra term involving the time
derivative of the transverse metric, (@qab=@t), which
has no direct fluid dynamical interpretation.
Similarly, the bulk viscosity term involving � con-
tains the time derivative ð@=@tÞ ln ffiffiffi

q
p

. (See Eqs. (14)

and (20); of course, ð@qab=@tÞ ¼ 0 in the frame we
are working with, but its derivative @mð@qab=@tÞ
does not vanish, which is what leads to the diffi-
culty.) To get out of this difficulty, one needs to
make certain choices for the metric and coordinate
system so that qab is independent of t. (In some other
contexts, one can avoid this term by rescaling ‘ or
by working in a perturbative series for the metric;
we shall briefly comment on these possibilities in
Sec. IVa.) There is very little discussion of this issue
in the literature, and the term involving�m

a is usually
called shear viscosity term without worrying about
its internal structure.

(b) The second, and probably more crucial, difference is
the following: The DNS equation in a general coor-
dinate system, given by Eq. (29), contains the Lie
derivative with respect to ‘ while the standard fluid
dynamical, nonrelativistic, NS equation contains the
convective derivative with respect to ‘. This differ-
ence can be explicitly verified by expanding out
Eq. (29) in the coordinate system adapted to the
null surface in which ‘ ¼ @0 þ vADA (see
Eq. (A26)):

ð@0þvBDBÞ!Aþ!BDAv
Bþ�!A

þDB�
B
A�DA

�
�þ1

2
�

�
¼8	Tmn‘

nqmA : (30)

The key difference is the second term in the left-
hand side, !BDAv

B, involving the derivative of the
velocity field which is absent in the standard NS
equation, making the two equations structurally dif-
ferent. (This term vanishes in the local inertial frame
since !A vanishes in that frame, making the struc-
ture of the DNS equation identical to the NS equa-
tion.) More formally, the convective derivative term
Dt�a ¼ qna‘

mrm�n, defined with correct projec-
tions, is related to the Lie derivative term by

Dt�a ¼ qna‘
mrm�n ¼ qmaL‘�n ��m

a�m: (31)

Using this we can rewrite Eq. (29) as

Dt�a þ�m
a�m þ ��a �Da

�
�þ �

2

�
þDm�

m
a

¼ 8	Tmn‘
mqna; (32)

which clearly brings in an extra term, which is the
second term in the left-hand side.

Our Eqs. (29) and (30) agree with the original results
obtained by Damour [see, e.g., Eq. (I.55) of Ref. [6] or
Eq. (15b) of Ref [7]]. In Ref. [6], Damour also quotes the
standard NS equation (see Eq. (I.47) of Ref. [7]) which, of
course, differs by the term involving the derivative of the
velocity from the Eq. (I.55) of the same work. A similar
difference exists in Ref. [10] between the DNS equation
[Eq. (2.67)] and the NS equation [Eq. (2.68)]. This result
has also been obtained in the membrane paradigm ap-
proach in Ref. [11], and our Eq. (32) matches Eq. (2.14)
of Ref. [11]; the second term in the left-hand side of their
Eq. (2.14) is the extra term�m

a�m of our Eq. (32), making
it different from the NS equation. (Price and Thorne,
however, do not call this equation ‘‘Navier-Stokes equa-
tion,’’ probably because of the extra term, and refer to it as
the Hajicek equation.) Since our derivation in the
Appendix is modeled exactly as in Ref. [12], it of course
matches the equations in their Sec. 6.3. This review, as well
as many other papers in the literature (like, for example,
[13]), call our Eq. (29) or Eq. (30) the DNS equation even
though there is an extra term. It is true that the Lie transport
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arises more naturally than convective transport in curved
spacetime, and one may think of it as a natural general-
ization; but the extra term in a partial differential equation
makes its structure (and solutions) very different and hence
a careful distinction needs to be made.

We have, however, shown that one can indeed think of
the DNS equation as identical to the NS equation provided
that we view it in the (boosted) local inertial frame. Since
!a is proportional to the Christoffel symbols, the extra
term vanishes in the local inertial frame, making this
interpretation easy. This procedure actually has a broader
domain of relevance, which I will now describe.

IV. FLUID DYNAMICS OF NULL SURFACE AND
THE ISSUE OF VISCOUS DISSIPATION

In any generally covariant theory, one tries to express the
equations in a form valid in arbitrary coordinate systems in
order to exhibit the symmetries explicitly. While this is
certainly important to check the diffeomorphism invari-
ance of the theory, it has two shortcomings in certain
contexts:

(a) The metric coefficients will depend on the spacetime
coordinates both in curvilinear coordinates as well
as in a curved spacetime. Principle of equivalence
implies that one cannot meaningfully ask ‘‘how
much’’ of this dependence arises due to the choice
of the coordinates and ‘‘how much’’ arises due to the
curvature of spacetime. When we are interested in
the structural aspects of the theory, the spacetime
dependence of the metric due to the choice of coor-
dinates acts as extra baggage which one would like
to avoid. Working in the local inertial frame allows
us to do this.

(b) The emergent paradigm of gravity suggests that one
needs to accept an intrinsic observer dependence in
all thermodynamical variables. In particular, one
can attribute an entropy, temperature, and related
dynamics to the local Rindler horizon as perceived
by the corresponding Rindler observer in the space-
time even though a freely falling observer will not
attribute any thermodynamical features to the same
null surface ([14,15]; see also Sec. 4.4 of Ref. [1]).
But, while we use the observer-dependent thermo-
dynamics to obtain the field equations of gravity in
this approach, the final result should be (and is)
independent of the Rindler observers and must be
generally covariant. Therefore, while projecting the
field equations to a null surface and interpreting
them as the NS equation of a fluid living on that
null surface, it is crucial to ask which part of the
field equation survives in the freely falling frame.
Our analysis shows that the terms involving (i) the
derivatives of the stress tensor, (ii) the derivative of
the pressure, and (iii) the external momentum flux
term remain nonzero in the freely falling frame

because they involve derivatives of the Christoffel
symbols. This is in spite of the fact that the viscous
stress tensor and the pressure themselves vanish in
the freely falling frame. What is relevant for the
equation to be interpreted as the NS equation is
the existence of a viscous force on the fluid, arising
from the gradient of the viscous tensor (and pres-
sure), rather than the viscous tensor (or pressure)
itself. Of course, this is very counterintuitive com-
pared to normal fluid mechanics. If flow of water
exhibits viscosity, it will also have nonzero viscous
tensor in the same frame of reference. But here, we
are merely calling some combination of Christoffel
symbols ‘‘viscosity tensor’’ [see Eq. (12)] and their
derivatives involving certain combinations of Ricci
tensor ‘‘viscous force.’’ Obviously, the former can
vanish without the latter vanishing in a local inertial
frame.

This feature has important implications for the charac-
terization of viscous dissipation in the current context. In
the conventional fluid dynamics based on the NS equation,
the viscous dissipation will be proportional to terms in-
volving �AB�

AB and �2 and—in usual fluid mechanics—
�AB�

AB, �, and @B�
AB will all be nonzero. In our case,

�AB and � vanish in the freely falling frame and the inertial
observers in spacetime will not see any dissipation. (The
Raychaudhuri equation in arbitrary coordinates—
Eq. (A18)—has these quadratic terms in the viscous tensor,
which disappear in Eq. (28), valid in the locally inertial
frame.) This is reassuring since we do not probably expect
a continuous, observer-independent, dissipation to take
place in spacetime. But the force on the viscous fluid,
which depends on the gradient @B�

B
A and @A�, does not

vanish even in the freely falling frame, showing that this
force has an observer-independent existence. It might ap-
pear, at first, paradoxical that a viscous force term exists for
the fluid but no viscous dissipation. But, as we said above,
algebraically this is no more paradoxical than the fact that
effects due to curvature involving derivatives of Christoffel
symbols can be present locally even when the Christoffel
symbols vanish at a point. The result obtained above is just
a translation of this well-known fact in the language of null
surface dynamics. In fact, the real paradox would be if
there were an observer-independent viscous dissipation in
spacetime.
There have been attempts in the literature to interpret the

equations for the fluid on the null surface, especially the
Raychaudhuri equation, as describing entropy production
[6,7,11]. (For more recent work based on the emergent
approach to gravity, see, e.g., [16].) The early work (i.e.,
[6,7,11]) leads to an entropy production that is acausal (or
teleological, as it is often called) involving the entire future
history of the null surface. In this context, we need to
distinguish between two different physical situations.
This teleological feature is probably acceptable in the
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context in which the DNS equation was originally derived
and applied, viz., to black hole event horizons. Event
horizons are in any case teleological even in their definition
and hence this is not a surprise.

But the DNS equation is applicable to any null surface in
the spacetime, including patches of the local Rindler hori-
zons. In the emergent paradigm of gravity, one relies
heavily on local Rindler horizons which are ordinary null
surfaces in spacetime and not event horizons correspond-
ing to some specific solutions of field equations. In fact, to
obtain the field equations from a suitably defined entropy
density of spacetime, one uses the local Rindler horizons as
off-shell constructs in the theory and hence they cannot be
linked to horizons arising in on-shell solutions. But since,
in our derivation of DNS, we never assigned any special
property to the null surface in question, the resulting
equations are as applicable to a local Rindler horizon in a
given spacetime as to an event horizon of a black hole
obtained as a specific solution. This is why we need to
carefully distinguish generic features of interpretation
which are valid for any null surface from some of the
features which might have limited validity in the specific
context of a black hole horizon. The dissipation and gen-
eration of entropy with accompanying irreversible thermo-
dynamics may be acceptable in the case of physical
processes involving, say, black hole horizons, but such
dissipation is difficult to interpret in terms of local
Rindler horizons. So, again, it is probably welcome that
�AB�

AB and �2 vanish in the freely falling frame but the
NS equation for the fluid remains valid. From this point of
view, it seems better to interpret the equations in the freely
falling frame.

Incidentally, it does not seem to have been emphasized
in the literature that Einstein’s equations have a very
simple form in the freely falling frame. Using the exact
expression for Ricci scalar,

Rab ¼ 1ffiffiffiffiffiffiffi�g
p @mð ffiffiffiffiffiffiffi�g

p
�m

abÞ � @a@bðln ffiffiffiffiffiffiffi�g
p Þ � �m

na�
n
bm;

(33)

we find that, in the locally inertial frame, Einstein’s equa-
tions take the form

Rab¼@m�
m
ab�@a@b

ffiffiffiffiffiffiffi�g
p ¼8	

�
Tab�1

2
abT

�
: (34)

In fact, projecting Eq. (34) to a null surface (when theabT
term will not contribute), we can rederive our NS equation.
Since all the terms in the left-hand side of Eq. (34) corre-
spond to specific combinations of curvature tensor compo-
nents, we see that the DNS equation in the boosted inertial
frame essentially provides mapping between curvature
components and the relevant fluid variables. This aspect
will be explored in a separate publication [17].

A. Spacetime dependent boosts and rescaling of the
null normal

In obtaining Eq. (25) we have purposely used a boosted
local inertial frame in which all the metric coefficients take
the standard Cartesian form except g0A ¼ �vA. One could,
of course, have repeated the derivation with vA [and its
derivative which, being proportional to Christoffel sym-
bols, are anyway zero] set to zero but with the second
derivatives of vA (which contribute to the viscous force
term in @B�

B
A) remaining nonzero. We kept the vA nonzero

in the original derivation just to exhibit the nature of
convective derivative and to contrast it with the Lie deriva-
tive. Physically, one can think of nonzero vA as arising
because of a transverse velocity for the observers (e.g.,
local Rindler observers with a constant velocity drift par-
allel to the Rindler horizon).
The derivation of the DNS equation does not presuppose

any special form of the metric. In certain contexts, one can
choose the metric as well as the normalization of ‘ in such
a way that the extra term in the Lie derivative is canceled
out. This arises because the different terms in the DNS
equation scale differently when we rescale the null vector ‘
by a spacetime-dependent factor �ðxÞ. (Being a null vector,
‘ has no natural normalization without our making some
additional assumptions.) This transformation changes the
components of ‘i to the form (�, 0, �vA), suggesting the
interpretation of a spacetime-dependent Lorentz boost with
a � factor. One can easily show that, when ‘ ! ‘0 ¼ �‘,
the �ab, �ab, and � scale by a factor � and the vector k
goes to ��1k. But � and �A change inhomogeneously as

�0 ¼ �ð�þr‘ ln�Þ; �0
A ¼ �A þDA ln�: (35)

Because of Eq. (35), the DNS equation does not retain its
form under such a rescaling. One can, by hand, choose the
value of � to cancel out the extra term in the Lie derivative,
thereby reducing the equations to the standard NS form.
(This has been done, for example, in Ref. [13] with a
different motivation.)
A similar mathematical situation arises in a more gen-

eral context of a set of transformations which are usually
used in the literature. Consider a metric written in a coor-
dinate system with g0� ¼ 0 so that the line element is

ds2 ¼ �F2dt2 þ f��dx
�dx�: (36)

Wewill now substitute in this metric dt ¼ uadx
a, where ua

has the components ua ¼ �ð1; v�Þ. If we take v� to be

constant with � ¼ ð1� v2Þ�1=2, then such a transforma-
tion is equivalent to a Lorentz boost and, of course, leaves
the physics invariant. But when v� and � are functions of
spacetime coordinates, the transformation changes the
character of the geometry. (Without additional constraints,
dt ¼ uaðxÞdxa will not even be integrable and dt will not
be an exact differential; however, one can certainly use this
‘‘rule’’ to modify the metric.) Straightforward algebra now
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shows that the resulting metric can be expressed in the
standard (1þ 3) form as

ds2¼�N2dt2þh��ðdx�þN�dtÞðdx�þN�dtÞ; (37)

where

N2¼F2�2ð1�F2�2v2Þ�1; h��¼f���F2�2v�v�

N�¼F2�2v�ð1�F2�2v2Þ�1; N�¼F2�2v�: (38)

Obviously, such a modification of the metric is not a
symmetry of the theory when uaðxÞ are spacetime-
dependent functions; for example, if the original metric in
Eq. (36) satisfied Einstein’s equations with some source,
the modified metric in Eq. (37) will not be a solution unless
very special conditions are satisfied. I will provide a gen-
eral discussion of these transformations in a future publi-
cation [17] but will point out one simple feature here which
is relevant to our discussion.

Notice that, if we consider the lowest order change,
linear in the boost velocity, it is essentially the generation
of the cross term with N� � F2v�. This has the effect of

generating an extra term to the extrinsic curvature of the
t ¼ constant surface given by

�K�� ¼ 1

2F
½D�ðF2v�Þ þD�ðF2v�Þ�; (39)

where D is the covariant derivative based on the spatial
3-metric. When the original coordinate system was syn-
chronous with F ¼ 1, this extra term has the form

�K�� ¼ 1

2
½D�v� þD�v��: (40)

Further, if we treat one of the spatial coordinates, say, x1,
differently from the two transverse coordinates xA ¼
ðx2; x3Þ, then the �AB of the null surfaces orthogonal to
null vectors in x0 � x1 plane will pick up a term of the form
��AB ¼ ð1=2Þ½DAvB þDBvA� (see Eq. (A14)). This, in
turn, corresponds to the addition of an extra term

��AB ¼ 1

2
½ðDAvB þDBvAÞ � qABðDCv

CÞ� (41)

to the trace-free part of �AB which has the form of the
shear viscosity tensor. This analysis shows how a drift
velocity in the transverse direction to a null surface can
lead to the viscous stress tensor of the correct form. Several
discussions of this topic in the literature are essentially
special cases of the transformation in Eq. (38) with very
specific choices for F, f��, and ua. One is led to an NS

equation in all these contexts essentially because of the
result in Eq. (41).

As a simple illustration of the same effect, consider a
metric of the form

ds2 ¼ �N2dt2 þ dx2

N2
þ �ABðdxA � vAdtÞðdxB � vBdtÞ

(42)

which could represent the local Rindler frame when
vA ¼ 0 and NðxÞ / x with the surface x ¼ 0 being null
and acting as the local Rindler horizon. Since such a metric
represents flat spacetime, it obviously satisfies source-free
Einstein’s equations. If vA � 0 but constant, the metric
represents a boosted frame in which the Rindler observer
has a constant drift velocity vA in the transverse direction.
When vA ¼ vAðx; xAÞ, the metric is still static but will not,
in general, satisfy source-free Einstein’s equations. This
introduces a spacetime-dependent boost velocity with non-
zero shear. For a general NðxÞ, the null surfaces with
translational symmetry in the y, z directions are given by
fðt; xÞ ¼ constant, where

fðt; xÞ ¼ �tþ
Z dx

N2
: (43)

The normal to this null surface can be taken to be ‘a ¼
N2ð�1; N�2; 0; 0Þ. (The overall normalization, as we have
discussed, is not unique, but this form is based on Eq. (A5),
which has some level of naturalness.) A direct calculation
shows that, for these null surfaces, we have

�AB ¼ 1

2
½@AvB � @BvA�; (44)

with �A ¼ ð1=2Þ@xvA and � ¼ @xN
2. It is obvious that

�AB has the form of a shear tensor for a fluid with velocity
vA. So the null surface fluid equations will pick up a
viscous tensor arising from this shear. This is essentially
what happens even in more general contexts.
Finally, it may be noted that the validity of the DNS

equation on a null surface forms the basis for the structural
similarity noticed between gravity and fluid mechanics in
the context of string-theory-motivated approaches in AdS,
etc. (see, e.g., [18]). Once the field equation is reduced to
the DNS form (or its generalization in a higher-
dimensional AdS context), one can attempt to solve the
equation—which is an issue we have not addressed—and
obtain the metric systematically using a long wavelength
approximation of the fluid mechanics. This would involve
expanding the metric in a series gab ¼ gab

0 þ �gab
1þ

�2gab
2 . . . : indexed by a bookkeeping parameter � and

simultaneously introducing a derivative expansion by re-
scaling the coordinates by xi ! �xi in the argument. This
will allow one to solve for the metric order by order in the
long wavelength approximation exactly as in the case of
fluid mechanics.

V. CONCLUSIONS

The similarity between gravitational field equations and
the Navier-Stokes equation in the context of null surfaces
has been known (at least to the relativity community) for
several decades now. However, it had not found any spe-
cific utility except possibly as a conceptual tool in mem-
brane paradigm until recently, when similar results,
inspired by string theory, attracted attention to this subject.
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In this backdrop, the results of this paper have the follow-
ing significance and implications.

A. Structure of spacetime entropy density functional

In all the previous approaches to the DNS equation, one
starts from the gravitational field equations (which would
have been obtained by some standard field theoretic pro-
cedure), projects them onto a null surface, and reinterprets
the resulting equation as the DNS equation. This is some-
what unsatisfactory conceptually since one would have
expected a fluid dynamical equation to arise from an en-
tropy maximization principle or something similar. Given
the fact that Einstein’s field equation itself has a clear
thermodynamical interpretation, it is obvious that the
DNS equation must be derivable in a direct manner from
entropic considerations. We have achieved this goal in this
paper by reinterpreting the previous result [1,5] of obtain-
ing the field equations from extremizing the entropy den-
sity of spacetime.

It is conceptually satisfying that the extremum condition
for the entropy density of spacetime (directly related to
null surfaces because they can act as local Rindler hori-
zons) given by Eq. (4) has a natural interpretation when
projected to a null surface. As Eq. (9) shows, such a
projection—involving contractions with either ‘a or qab—
makes the Lagrange multiplier term in Eq. (4) disappear
and gives a direct relation between Ricci tensor and the
energy momentum tensor.

It may also be noted that the gravitational entropy
density—which is the integrand sgrav / ð�Pcd

abrc‘
ard‘

bÞ
in Eq. (2)—obeys the relation

@sgrav
@ðrc‘

aÞ / ð�Pcd
abrd‘

bÞ / ðra‘
c � �c

ari‘
iÞ; (45)

where the second relation is for Einstein’s theory. This
term is analogous to the more familiar object tca ¼ Kc

a �
�c
aK (whereKab is the extrinsic curvature) that arises in the

(1þ 3) separation of Einstein’s equations. (More precisely,
the appropriate projection to 3-space leads to tca.) This
combination can be interpreted as a surface energy mo-
mentum tensor in the context of the membrane paradigm
because tab couples to �h

ab on the boundary surface when
we vary the gravitational action (see, e.g., Eq. (12.109) of
[8]). In fact, one obtains the results for null surfaces as a
limiting process from the timelike surfaces (usually called
stretched horizon) in the membrane paradigm [11].
Equation (45) shows that the entropy density of spacetime
is directly related to tca and its counterpart in the case of a
null surface.

This term also has the interpretation as the canonical
momentum conjugate to the spatial metric in (1þ 3) con-
text, and Eq. (45) shows that the entropy density leads to a
similar structure. This will form the basis for generalizing
the DNS equation to Lanczos-Lovelock models in a future
publication [17].

Further, the functional derivative of the gravitational
entropy in Eq. (2) has the following form, in any
Lanczos-Lovelock model:

�Sgrav
�‘a

/ Rab‘
b / Ja: (46)

Previous work [1,3,14] has shown that the current
Ja ¼ 2Rab‘

b plays a crucial role in interpreting
gravitational-field equations as entropy-balanced equa-
tions. In the context of local Rindler frames, when ‘a arises
as a limit of the timelike Killing vector in the local Rindler
frame, Ja can be interpreted as the Noether (entropy)
current associated with the null surface. In that case, the
generalization of the two projected equations in Eq. (9) to
the Lanczos-Lovelock model will read as

Ja‘
a ¼ 1

2
Tab‘

a‘b; Jaq
a
m ¼ 1

2
Tab‘

aqbm; (47)

which relate the gravitational entropy density and flux to
matter energy density and momentum flux. The second
equation in the above set becomes the DNS equation in the
context of Einstein’s theory. All these results, including the
DNS equation, will have direct generalization to Lanczos-
Lovelock models which can be structured using the above
concepts [17]. We again see that all these ideas find a
natural home in the emergent paradigm.

B. Comparison of DNS and NS equations

We have used this occasion to clarify some issues related
to the interpretation of the DNS equation as describing a
viscous fluid. As noted in Sec. III D there are, in general,
two crucial differences between the DNS equation and the
standard NS equation. The first is the appearance of time
derivatives of the transverse metric qab in the definition of
the shear viscosity tensor because of which it cannot be
interpreted properly in general. In fact, this term has no
hydrodynamical interpretation except in very specific con-
texts or in a perturbative series. One can avoid this diffi-
culty, however, by choosing a specific class of metrics and
coordinate systems.
The second difference has to do with the appearance of

the Lie derivative rather than the convective derivative in
the momentum transport equation. As I argued above, this
requires one to work in the boosted local inertial frame for
proper interpretation. Somewhat surprisingly, these two
differences have not been explicitly discussed in published
literature, as far as I know.

C. Dissipation: A new level of observer dependence

The existence of viscosity in the fluid equation raises
questions related to possible dissipational effects. I am not
comfortable with the notion of continuous, observer-
independent, dissipation in the spacetime and have stressed
the fact that the dissipational terms involving �ab�

ab and
�2 vanish in the boosted inertial frame which I consider to
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be appropriate for the interpretation of the DNS equation,
in view of the comments in Secs. III D and VB. As pointed
out earlier, in such a frame, the derivatives of the viscous
tensor (related to spacetime curvature) are nonzero while
the viscous tensor (proportional to Christoffel symbols)
vanishes. Of course, an observer who is not freely falling
will perceive nonzero dissipational terms while a freely
falling observer will not observe them. This may sound
paradoxical, but observer dependence in the thermody-
namic description of horizons is very well known and
need not cause any (new) surprise.

A general framework incorporating the observer depen-
dence of thermodynamic variables and providing a trans-
lation table for physical phenomena perceived by observers
in different states of motion is currently lacking. This
aspect deserves further investigation.
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APPENDIX A: NULL SURFACES

Consider a four-dimensional spacetime manifold M
with a metric gab. A null surface in this spacetime is a
three-dimensional submanifold S such that the restriction
��� of the spacetime metric gab to S is degenerate, i.e.,

there exist vectors v� in S such that ���v
� ¼ 0. (Recall

that we use the mostly positive signature; the Latin indices,
a; b . . . go over 0� 3 in M while the Greek indices
�;�; . . . go over the coordinates in a three-dimensional
null surface S with signature ð�;þ;þÞ. When we restrict
ourselves to the two-dimensional, spatial submanifold of
this null surface, we will use uppercase Latin indices
A; B; . . . . Our results are easily generalizable to a
D-dimensional manifold, but we will stick with four di-
mensions for notational simplicity.)

The normal to S is a null vector field ‘a in the spacetime
which can be written in the form ‘a ¼ f@a�, where f and
� are scalars in the spacetime and � is constant on S.
Straightforward algebra using the fact that rirj� ¼
rjri� shows that

‘ara‘m ¼ ð‘i@i lnfÞ‘m � �‘m: (A1)

Therefore the rescaled vector Lm � f�1‘m is null and
satisfies the geodesic equation with affine parametrization;
i.e., LiriL

j ¼ 0. Hence a null surface can be thought of as
‘‘filled by’’ (a congruence of) null geodesics. Equation
(A1) shows that ‘a also satisfies the geodesic equation
but with a nonaffine parametrization if � is nonzero.
When the null surface corresponds to a black hole horizon
in an asymptotically flat spacetime, there is a natural
choice for ‘a such that � can be identified with the surface
gravity of the black hole horizon. We shall continue to use
this terminology and call � in Eq. (A1) the surface gravity

of S even when it depends on the choice of normalization
for the null vector field. In the case of S being a local
Rindler horizon, one can relate � to the acceleration of the
congruence of Rindler observers which one is considering;
the arbitrariness in the normalization translates into the
arbitrariness in the choice of the acceleration for the
Rindler observers.
The fact that the null surface is spanned by the null

geodesics allows us to introduce a natural coordinate sys-
tem adapted to a family of null surfaces in the spacetime
as follows: We choose one of the coordinates such that
x3 ¼ constant corresponds to a set of null surfaces with,
say, x3 ¼ 0 on S. Let the intersection of S with an x0 ¼
constant surface (�t) of the spacetime be a two-
dimensional surface St with coordinates xA � ðx1; x2Þ
and coordinate basis vectors eA � @A. At any point P in
�t, there will be one future-pointing null direction orthogo-
nal to the 2-surface St. We choose ‘ at P to be in this
direction with ‘ � eA ¼ 0 on St. We can now erect a
coordinate system in the neighborhood of�t by the follow-
ing choice: (a) The coordinates x1, x2, x3 are taken to be
constant along the geodesics starting from each point
P ðx1; x2; x3Þ in �t in dthe direction of ‘aðxÞ; (b) x0 is
chosen to be the affine parameter distance along these
geodesics with � ¼ t on �t.
In such a coordinate system, ‘ ¼ @=@x0 so that ‘a ¼ �a

0 ,

and the condition ‘2 ¼ 0 translates to g00 ¼ 0. Further, the
geodesic condition with affine parametrization gives

0 ¼ ‘brb‘
a ¼ r0‘

a ¼ �a
00 ¼

1

2
gabð2@0g0b � @bg00Þ

¼ gab@0g0b; (A2)

requiring @0g0b ¼ 0 along each geodesic. But initially, on
�t we have �0A ¼ ‘ � eA ¼ 0 and �00 ¼ 0 because ‘ is
orthogonal to the basis vectors eA as well as to itself. This
requires ð�00; �0AÞ to vanish all along the geodesic. The
line element will now take the form

ds2 ¼ �N2dt2 þ
�
M

N
dx3 þ �Ndt

�
2

þ qABðdxA þmAdx3ÞðdxB þmBdx3Þ; (A3)

with � ¼ �1. The x3 ¼ constant surfaces are null with the
line element ds2 ¼ qABdx

AdxB because, in the (degener-
ate) metric ��� (with �, � ¼ 0, 1, 2), the coefficients

�0� vanish: i.e., �00 ¼ �0A ¼ 0. For example, when

N ¼ M ¼ 1, qAB ¼ �AB, and mA ¼ 0, we recover the
usual null coordinates x3 ¼ zþ t or x3 ¼ z� t for the
two choices of �.
In this construction of coordinates, we have embedded S

in a one-parameter congruence of null hypersurfaces cor-
responding to x3 ¼ constant and the other coordinates x0,
x1, and x2 are constructed in such a way that ‘ ¼ @=@x0 is a
null geodesic field in the neighborhood of S. While this is
always possible, it is often advantageous to use a slightly
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less restrictive coordinate system in which the geodesic
condition is relaxed but the coordinate x3 is constant on the
null hypersurfaces of interest. This can be achieved by
allowing for nonzero �00 and �0A. In such a case, the
coordinates can be chosen such that the line interval be-
comes

ds2 ¼ �N2dt2 þ
�
M

N
dx3 þ �Ndt

�
2

þ qABðdxA � vAdtþmAdx3Þ
� ðdxB � vBdtþmBdx3Þ: (A4)

The metric on St corresponding to t ¼ constant, x3 ¼
constant is qAB with a well-defined inverse q

AB. The raising
and lowering of the uppercase indices A, B, etc. in this
transverse two-dimensional surface are done using these

metrics. We also have
ffiffiffiffiffiffiffi�g

p ¼ MðdetqABÞ1=2. The null

vector field will now be ‘ ¼ @0 þ vA@A ¼ @0 þ vAeA
with components ‘a ¼ ð1; vA; 0Þ with ‘ � ‘ ¼ 0 ¼ ‘ � eA.
Clearly, ‘ has the structure of a convective derivative if we
think of vA as a transverse velocity field.

From the form of the metric in Eq. (A4) it can be
explicitly verified that ���‘

� ¼ 0 where the Greek letters

run over 0, 1, 2 on the null surface S with x3 ¼ constant.
Therefore the 3-metric on S is indeed degenerate. This fact
requires us to be careful in characterizing the extrinsic
geometry of S, since raising and lowering of indices will
not be possible with a degenerate metric. As outlined in the
main text, this can be done by expanding r�‘ using the
coordinate basis e� ¼ @� on S. For many purposes, it is

convenient to have a more formal approach in terms of
tensorial objects defined in the four-dimensional spacetime
and their projections onto St. We shall now indicate how
this can be done along the lines described in the excellent
review, Ref. [12].

We will begin by introducing the standard (1þ 3) folia-
tion of the spacetime with the normals n ¼ �Ndt to �t,
whereN is the lapse function. Let s be a unit normal to a set
of timelike surfaces such that n � s ¼ 0. We can now define
two null vector fields by

‘ ¼ Nðnþ sÞ; k ¼ ð1=2NÞðn� sÞ: (A5)

The primary vector field we are interested in is ‘, while k is
an auxiliary null vector field with ‘ � k ¼ �1 which is
useful for the study of extrinsic geometry. (Of course, ‘
and k can be introduced without n and s, but this allows a
natural normalization.) We can now define a metric qab on
the two-dimensional surface St orthogonal to the n and s
through standard relations:

qab ¼ gab þ nanb � sasb ¼ gab þ ‘akb þ ‘bka;

qab‘
b ¼ 0 ¼ qabk

b: (A6)

The mixed tensor qab allows us to project quantities onto St.

We can also define another projector orthogonal to kb by
the definition �d

b ¼ �d
b þ kd‘b, which has the properties

�a
b‘

b ¼ ‘a; �a
bk

b ¼ 0;

�a
b‘a ¼ 0; �a

bka ¼ kb:
(A7)

We can now introduce the Weingarten coefficients as the
projection of the covariant derivative rd‘

a by the defini-
tion


a
b � �d

brd‘
a ¼ rb‘

a þ ‘bðkdrd‘
aÞ; (A8)

which has the properties


a
b‘

b � �‘a; 
abk
b ¼ 0; 
ab‘

a ¼ 0;


abk
a � �!b ¼ �‘jrjkb;

(A9)

where the surface gravity � is defined through the relation
‘jrj‘i ¼ �‘i and !a through the last equality. The only

nontrivial result is 
abk
a ¼ �‘jrjkb, which can be proved

(see, e.g., Eq. (5.40) of Ref. [12]) by working out the
components in the adapted coordinate system. Note that
!a satisfies the relations !a‘

a ¼ � and !ak
a ¼ 0. We

next define �ab by projecting 
mb to St. We get, on using
‘m
mb ¼ 0 and km
mb ¼ �!b, this result:

�ab ¼ qma 
mb ¼ 
ab þ ka‘
m
mb þ ‘ak

m
mb

¼ 
ab � ‘a!b; (A10)

which is essentially Eq. (18) expressed in the four-
dimensional notation with suitable projection tensors.
Using Eq. (11) we see that

�ab ¼ �ba ¼ rb‘a þ ‘ak
iri‘b � ‘b!a ¼ qma q

n
brm‘n:

(A11)

This result shows that �ab is a natural projection of the
covariant derivative rm‘n onto the surface St and, obvi-
ously, �ab‘

b ¼ 0 ¼ �abk
b. The trace of �ab, denoted by

�, is given by

�a
a ¼ � ¼ ral

a � �; (A12)

which corresponds to Eq. (21). It is also convenient to
define a similar projection of !a by �b � qab!a. We have

�b � qab!a ¼ �qabðkm
m
aÞ ¼ !b � �kbðkm‘mÞ

¼ !b þ �kb: (A13)

For computational purposes it is often convenient to relate
�ab, �i, etc. to more familiar quantities defined using the
standard (1þ 3) decomposition of the metric. It can be
shown (see Sec. 10.2 of Ref. [12]) that the following results
hold, which are often useful for explicit computation:

�ab ¼ NðDmsn � KmnÞqma qnb;
� ¼ NðD�s

� þ K��s
�s� � KÞ;

(A14)

� ¼ ‘mrm lnN þ s�D�N � NK��s
�s�;

�a ¼ Da lnN � Kmns
mqna:

(A15)
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These results again allow us to express the projection of
Einstein’s equations onto St. To do this, one begins with
the standard relation rmra‘

m �rarm‘
m ¼ Rma‘

m and
substitutes for ra‘

m using Eq. (A11) and for rm‘
m using

Eq. (A12) repeatedly. This leads, after some straightfor-
ward algebra, to the relation

Rma‘
m ¼ rm�

m
a þ ‘mrm!a þ ð�þ �Þ!a �rað�þ �Þ

��amk
nrn‘

m � ð!mk
nrn‘

m þrmk
nrn‘

m

þ knrmrn‘
mÞ‘a: (A16)

The projection of Rma‘
m using �n

a separates into two
terms given by

Rmn‘
m�n

a ¼ �Rmn‘
m‘nka þ Rmn‘

mqna: (A17)

As mentioned in the main text, we now see that there is a
projection along ‘ itself and a projection to the 2-surface
St. Of these, the Rmn‘

m‘n will give the familiar
Raychaudhuri equation while Rmn‘

mqna will lead to an
equation which looks similar to the Navier-Stokes equa-
tion. The Raychaudhuri equation can be obtained very
easily by contracting Eq. (A16) with ‘ and simplifying
the result. We get

Rmn‘
m‘n ¼ ��mn�

mn þ ��� ‘mrm�: (A18)

It is again conventional to separate out the trace of�mn and
define �mn ¼ �mn � ð1=2Þqmn� so that we can write
�mn�

mn ¼ �mn�
mn þ ð1=2Þ�2.

The derivation of the Navier-Stokes–like equation is
more complicated. Contracting Eq. (A16) with qab leads

to the expression

Rmn‘
mqna ¼ qnarm�

m
n þ qna‘

mrm!n þ ð�þ �Þ�a

�Dað�þ �Þ ��amk
nrn‘

m; (A19)

with qnarnð�þ �Þ � Dað�þ �Þ, whereDa is the covariant
derivative defined using the metric on St. The first and the
last terms on the right-hand side can also be combined in
terms of Da using the relation

Da�
a
b � qijq

k
bri�

j
k ¼ ð�i

j þ ‘ikj þ ‘jk
iÞqkbri�

j
k

¼ qkbri�
i
k ��j

brið‘ikj þ ‘jk
iÞ

¼ qkbri�
i
k ��j

bð‘irikj þ kiri‘jÞ
¼ qkbri�

i
k ��j

bðkiri‘j þ�jÞ: (A20)

In obtaining this result we have repeatedly used the or-
thogonality condition �i

a‘
a ¼ 0 ¼ �i

ak
a and the defini-

tions ‘nrnkm ¼ !m, qmj !m ¼ �j. Therefore, we can

combine the first and last terms in Eq. (A19) as

qnarm�
m
n ��m

a k
nrn‘m ¼ Dm�

m
a þ�m

a�m: (A21)

In the second term in Eq. (A19), we introduce the Lie
derivative of �n through the expansion

qna‘
mrm!n ¼ qna‘

mrmð�n � �knÞ
¼ qnað‘mrm�n � �‘mrmknÞ
¼ qnaðL‘�n ��mrn‘

m � �!nÞ
¼ qnaL‘�n ��m

a�m � ��a: (A22)

Combining all these together, we get

Rmn‘
mqna ¼ qmaL‘�m þ ��a �Dað�þ �Þ þDm�

m
a

¼ qmaL‘�m þ ��a �Da

�
�þ �

2

�
þDm�

m
a ;

(A23)

where we have again set �m
n ¼ �m

n þ ð1=2Þ�m
n �.

This result can be reexpressed in several different ways.
For example, the convective derivative of �n has the form

Dt�a ¼ qna‘
mrm�n ¼ qmaL‘�n ��m

a�m; (A24)

using which we can express Eq. (A23) in terms of the
convective derivative. Alternatively, we can express it in
the coordinate system adapted to S, in which the projection
of the Lie derivative has the form

qmBL‘�m ¼ @�A

@t
þ vBDB�A þ�BDAv

B; (A25)

where we have used ‘ ¼ @0 þ vAeA. Then Eq. (A23)
becomes, on using �A ¼ !A for transverse components,
because kA ¼ 0,

Rmn‘
nqmA ¼ ð@0 þ vBDBÞ!A þ�BDAv

B þ �!A

þDB�
B
A �DA

�
�þ 1

2
�

�
: (A26)

This is the form which was used in the main text.
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