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To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic

properties. These conditions are derived from the inescapable physical requirements that local matter field

dynamics must be predictive and allow for an observer-independent notion of positive energy. Possible

modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance,

the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or

Myers-Pospelov are not admissible. Dispersion relations passing the simple algebraic checks derived here

correspond to physically admissible Finslerian refinements of Lorentzian geometry.

DOI: 10.1103/PhysRevD.83.044047 PACS numbers: 04.20.Gz

I. INTRODUCTION

In the standard description of relativistic matter, the
dispersion relation that governs the behavior of matter is
given in terms of a Lorentzian metric. In recent years,
however, numerous authors have made a case for various
modified dispersion relations [1–10], mostly motivated
from specific approaches to quantum gravity [11–21]
or other particular physical and mathematical models
[22–43].

In this paper, we address the question of what can be said
about dispersion relations in general, and most impor-
tantly how they are restricted in principle, independent of
their physical motivation. Starting only from the funda-
mental physical requirements that the underlying local
field theory be predictive and that there be a well-defined
notion of positive energy, we show that there are three
inescapable algebraic conditions that a modified dispersion
relation in classical physics must satisfy. This severely
restricts possible modifications to the standard relativistic
dispersion relation. More precisely, the central result we
arrive at in this article is that: A dispersion relation must be
given by a cotangent bundle function P that is a reduced,
bihyperbolic and energy-distinguishing homogeneous pol-
ynomial in each fiber. These conditions, whose technical
definition and justification will be the subject matter of the
first four sections of this article, all essentially root in the
application of well-known results from the theory of partial
differential equations, real algebraic geometry, and convex
analysis to the kind of questions one considers in classical
physics.

Remarkably, the above conditions are not only physi-
cally necessary, but also mathematically sufficient to set up
the entire kinematical machinery one needs in order to give
physical meaning to quantities on spacetimes with such
dispersion relations. The central role is played here by
Gauss and Legendre maps, which provide a proper duality
theory between cotangent and tangent spaces. Their exis-
tence is far from trivial once one leaves the Lorentzian
metric framework, and indeed we will see that one requires

some rather sophisticated real algebraic geometry that was
originally conceived in the solution of Hilbert’s 17th prob-
lem. Once these theoretical issues are clarified, though,
one sees that indeed everything that one wants from a
Lorentzian metric in standard relativity is equally well
afforded by cotangent bundle functions with the said three
properties. And, this is the most important point, only by
functions with such properties. Thus the present work
defines the outer boundaries of what constitute physically
viable classical spacetime structures.
To arrive at the above results requires numerous steps

and occasional asides on mathematical techniques. The
generality of the obtained result, however, makes this
worth the effort. In order to provide the reader with an
intuition for how the argument proceeds, we now briefly
outline what is shown in each section.
In Sec. II, we study how linear matter field dynamics on

an arbitrary tensorial geometry give rise to a massless
dispersion relation. This will clarify two important points.
On the one hand, we will see that any massless dispersion
relation must be described by a cotangent bundle function
P that induces a reduced homogeneous polynomial in each
cotangent space. This is the first of the three algebraic
conditions identified in this work. On the other hand, it
reveals the close link between dispersion relations and the
underlying spacetime geometry seen by specific fields.
Thus the restrictions on dispersion relations derived in
the course of the paper directly translate into restrictions
of the underlying geometry seen by fields. In Sec. III, we
will explain that a necessary condition for the matter field
equations to be predictive is that the cotangent bundle
function P be hyperbolic in each cotangent space. Here
we will make extensive use of the theory of hyperbolic
polynomials and prove two important technical lemmas.
One of these will ensure that for the set of roots of reduced
hyperbolic polynomials a real version of Hilbert’s
Nullstellensatz holds, which will be of great technical
importance later. In Sec. IV, our focus changes from
cotangent space to the geometry which a massless disper-
sion relation induces on tangent space. In particular, we
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associate vector duals with massless momenta. A central
role is played here by what algebraic geometers call the
dual polynomials with respect to those induced by P. The
physical significance is that the dual polynomials emerge
as the tangent space geometry seen by massless point
particles, but not massive point particles as we will see
later. In Sec. V, we will see that not only the polynomials
defined by P but also their dual polynomials must be
hyperbolic. This is our second algebraic condition on
dispersion relations. In conjunction with the third and final
algebraic condition, namely, that the polynomials be
energy-distinguishing, this is necessary in order to have a
well-defined notion of positive particle energy on which all
observers agree. Thus at the end of this section, we iden-
tified all three algebraic conditions for a cotangent bundle
function P to serve as a physically viable massless disper-
sion relation. In Sec. VI, we extend the theory to massive
dispersion relations. Bihyperbolicity and the energy-
distinguishing property, previously recognized as essential
properties in the context of massless dispersion relations,
are shown to also play a crucial role when discussing
massive matter. In particular, they imply a reverse triangle
and an inverse Cauchy-Schwarz inequality and, above all,
ensure the existence of the Legendre duality theory for
massive covectors employed in the succeeding section. In
Sec. VII, the action for free massive point particles is
analyzed. Compared to the dual tangent space geometry
seen by massless particles, the dual geometry seen by
massive particles is encoded in another, generically non-
polynomial, tangent bundle function. In Sec. VIII, we view
the previous findings on dispersion relations from the
perspective of Finslerian geometry and show how the
restriction to Finsler functions arising from a reduced
bihyperbolic and energy-distinguishing cotangent bundle
function solves three common problems of Finslerian
spacetime models. In Sec. IX, we show why the decidedly
covariant discussion of dispersion relations, which we
adopted throughout this work, is required even if one
ultimately prefers to represent the dispersion relation in
the form of a function Eð ~pÞ, expressing the energy of a
particle in terms of its spatial momentum. This will be seen
to be the case because the required temporal-spatial split
of a covariant particle momentum is only defined in terms
of the covariant dispersion relation. Pushing the theory of
observers and frames further, we identify the generically
nonlinear parallel transport induced by a bihyperbolic and
energy-distinguishing dispersion relation and thus succeed
in defining inertial laboratories. In Sec. X, we put our
understanding of massive and massless momenta to
work. By using virtually the entire machinery developed
before, we reveal a generic high-energy effect for general
dispersion relations. In particular, we determine the maxi-
mum energy a massive particle can have without radiating
off, sooner or later, a massless particle in non-Lorentzian
geometries. The geometric picture reveals that this is a

fully covariant feature induced by the spacetime geometry.
In Sec. XI, we illustrate in detail how easy it is to
check whether concrete field equations possess a bihyper-
bolic and energy-distinguishing dispersion relation.
Remarkably, the popular deformations of Maxwell theory
by Gambini-Pullin or Myers-Pospelov do not pass this test
and are thus recognized to be nonpredictive and to obstruct
a well-defined notion of positive energy. Finally, in
Sec. XII, we draw conclusions from what has been learned,
indicate limitations of the results we obtained, and point
out remarkably interesting issues that one may now study
based on the results of the present work.
Throughout the paper, the abstract theory is illustrated

by showing how the constructions work out for the familiar
example of metric geometry on the one hand, and for area
metric geometry as a prototypical example of a nonmetric
geometry, where our general techniques come into full
play, on the other hand. Of course, and this is one purpose
of this article, the reader may instead study his own favor-
ite candidate for a spacetime geometry or dispersion rela-
tion by the techniques developed in this paper. The results
presented here apply universally.

II. COVARIANT DISPERSION RELATIONS I:
MASSLESS PARTICLES

The dispersion relation for massless matter is deter-
mined by the entirety of matter field equations one stip-
ulates. We conclude in this section that the dispersion
relation is encoded in a cotangent bundle function P that
induces a reduced homogeneous polynomial in every tan-
gent space.
To understand how a massless dispersion relation arises

from matter field equations, we consider a (gauge fixed)
action S½�; G� for a field multiplet � ¼ ð�NÞ, where G is
an a priori arbitrary tensor field encoding the geometry of a
smooth manifoldM on which the matter field dynamics are
defined. Here we will notably not restrict attention to
pseudo-Riemannian geometries, but rather allow a priori
for any tensorial structure G to play the role of the geome-
try. Indeed, it is one of the points of this article to find how
the choice of G is restricted if it is to provide a consistent
classical spacetime structure. Matter field dynamics, how-
ever, are restricted from start to those giving rise to linear
field equations, since only these can serve as test matter
probing the geometry. More precisely, the manifestly local
equations of motion then take the form

DMNð@Þ�NðxÞ �
�Xs
n¼1

Qi1...in
MN @i1 . . . @in

�
�NðxÞ ¼ 0; (1)

where small latin indices range from 0 to dimM� 1, and
the coefficient matrices Q at all orders depend only on the
geometry G but not on the value of the fields�N; note that
this is really only true for genuinely linear field equations,
and does not even hold for the linearization of fundamen-
tally nonlinear dynamics [44]. Remarkably, the theory of
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partial differential equations reveals that the entire causal
structure of the local field equations are encoded in the
principal polynomial P associated with the equations (1).
The latter is defined as the leading order term PðqÞ of the
scalar function !G detDMNðiqÞ on covectors q, where !G

is some scalar density of appropriate weight, constructed
from the tensor G such that P is a polynomial function in
each cotangent fiber. We will see in the following sections
that the choice of the scalar density !G does not affect the
dispersion relation for massless matter, but that it is rele-
vant for the dispersion relation for massive matter.

Concrete illustrations of this truly simple construction
are given at the end of this section, where we determine the
cotangent bundle function P for Abelian gauge field dy-
namics on metric and area metric geometry as two proto-
typical examples, and then again in Sec. XI where we are
able to show the nonphysicality of other popular deforma-
tions of Maxwell theory, based on the results developed
throughout this paper. The central observation of this sec-
tion is that P is recognized to induce a homogeneous poly-
nomial Px of some degree degP in each cotanget space.

The field equations (1) may be viewed in the geometric-
optical limit whenever the leading order term of the above
determinant in fact coincides with the determinant of the
leading order operator of the field equations,

Pðx; qÞ ¼ !G detðQi1...isðxÞqi1 . . . qisÞ; (2)

which indeed is guaranteed to be the case if (2) is not
identically zero. This construction (2) is covariant in the
first place because for fixed M, N, the leading order co-

efficients Qi1...is
MN , and indeed only those, transform like a

tensor, and so the determinant is a tensor density whose
weight depends on the nature of the fields �N and must be
countered by the weight of !G. A concrete illustration of
this construction is given at the end of this section, where
we determine the cotangent bundle function P for Abelian
gauge field dynamics on metric and area metric geometry
as two prototypical examples. As we will show now, the
physical role of P is that it provides the massless dispersion
relation that arises in the geometric-optical limit of (1), in
form of the solvability condition

Pðx; qÞ ¼ 0: (3)

This is seen by considering matter solutions in the short-
wave approximation [45–48], where one considers solu-
tions of (1) taking the form of the formal series

�Nðx; �Þ ¼ eiðSðxÞ=�Þ
X1
j¼0

�N
j ðxÞ�j (4)

and then obtains an approximate solution taking the limit
� ! 0. In the above expansion, �N

j ðxÞ is a tuple of func-

tions for each j, and the scalar function SðxÞ is known as
the eikonal function. Substituting the formal series (4) into
the field equations (1), one finds

eiðSðxÞ=�Þ��s

�
QMNðxÞi1���is@i1S � � � @isS�N

0 ðxÞ

þ X1
j¼1

vMjðxÞ�j

�
¼ 0; (5)

where each of the vMjðxÞ terms depends on some of

the matrix coefficients of the differential equation (1),
on coefficients �N

j ðxÞ of the expansion (4), and on the

eikonal function S and its derivatives of lower than
the highest order s. For �NðxÞ to be a solution after
any truncation of the series (5), the latter has to vanish
order by order in �. Clearly, the first term

eiðSðxÞ=�ÞQMNðxÞi1���is@i1S � � � @isS�N
0 ðxÞ, corresponding to

the power ��s, vanishes with nontrivial �N
0 only if the

eikonal function S satisfies the differential equation

Pðx; @SÞ � detðQðxÞi1���is@i1S � � � @isSÞ ¼ 0; (6)

where Pðx; @SÞ is recognized to be a homogeneous poly-
nomial in @S. Equation (6) is known as the eikonal equa-
tion and represents the solvability condition for the first
term in (5). Considering the first term in (5) as an approxi-
mate solution for (1) is what is called the geometric-optical
limit and its further relevance, beyond the role it plays for
us here, is that having this lower order approximate solu-
tion, one can generate higher order approximate solutions.
More details about the short-wave approximation, albeit
only for scalar fields or otherwise only first-order equa-
tions, can be found in the books by Perlick [46], Egorov
and Shubin [45] and the lecture notes by Rauch [47]. In
[48] equations of the type (1) are discussed.
In case P is a reducible polynomial in each fiber, i.e., a

product Pðx; qÞ ¼ P1ðx; qÞa1 � � �Pfðx; qÞaf of irreducible

[49] factors P1; . . . ; Pf with positive integer exponents

a1; . . . ; af, subtleties arise. In that case [45,46] one has to

take as the cotangent bundle function P the reduced poly-
nomial

Pðx; qÞ ¼ P1ðx; qÞ . . .Pfðx; qÞ; (7)

in other words, one must remove repeated factors in the
original polynomial. We will have more to say about the
relation between properties of a reduced polynomial and
those of its individual factors in Sec. III.
Clearly, this cancellation does not alter the set Nx of

massless momenta at a spacetime point x, which due to the
homogeneity of Px constitutes the algebraic cones

Nx ¼ fk 2 T�
xMjPðx; kÞ ¼ 0g; (8)

which is to say that every positive real multiple of a
massless momentum is again a massless momentum;
cf. Fig. 1. For technical precision, we will occasionally
focus on the smooth subcone

Nsmooth
x ¼ fk 2 NxjDPðx; kÞ � 0g; (9)

GEOMETRY OF PHYSICAL DISPERSION RELATIONS PHYSICAL REVIEW D 83, 044047 (2011)

044047-3



where DP denotes the derivative of P with respect to the
cotangent fiber. So the cotangent bundle function P deter-
mines the (smooth) massless momentum cone. The con-
verse question, namely, under which conditions the
massless momentum cone Nx at a point x determines the
polynomial Px up to a constant factor, is subtle, but of
central importance. The vanishing sets associated with
polynomials are the subject of study of algebraic geometry,
and we will indeed have opportunity to employ some
elaborate theorems of real algebraic geometry. In the re-
mainder of this first section, we clarify the relation between
vanishing sets of real polynomials and the principal ideals
that these polynomials generate, since this will be relevant
later. Recall that an ideal I � R in a ring R (where R is here
concretely the ring of real polynomials in dimM real
variables) is a subset that is closed under addition and
under multiplication with an arbitrary ring element. Now
on the one hand, we may consider the situation where we
are given an ideal I and define the vanishing setV ðIÞ as the
set of cotangent vectors that are common zeros to all
polynomials in I. On the other hand, we may be given a
subset S of cotangent space and consider the set IðSÞ of all
polynomials in R that vanish on all members of that set S.
Now it can be shown that IðSÞ is an ideal in the ring of
polynomials on cotangent space, and that one always has
the inclusion

I ðV ðIÞÞ � I: (10)

The question under which conditions equality holds is
studied in the Nullstellensätze of algebraic geometry.
While this is a relatively straightforward question for
polynomials over algebraically closed fields [50], such as
the complex numbers, for the real numbers underlying our
study here, one needs to employ a string of theorems that
were originally developed in order to solve Hilbert’s 17th
problem. Indeed, for a reduced homogeneous polynomial
Px, one obtains the equality

I ðNxÞ ¼ hPxi; (11)

ifNsmooth
x � ; (which condition we will be able to drop for

the hyperbolic polynomials to which we will narrow our
attention from the next section onward; see the remarks
following the first lemma proven there). Here hPxi denotes
the ideal containing all polynomials that have Px as a
factor. Drawing on the said results from real algebraic
geometry, this is seen as follows. Let Pxi be the ith irre-
ducible factor of Px Then there exists a q 2 NsmoothðPxiÞ so
that corollary 2.9 of [51] shows that Pxi generates a real
ideal, i.e., IðNðPxiÞÞ ¼ hPxii. According to corollary 2.8 of
[51], the reduced polynomial Px thus also generates a real
ideal since it does not contain repeated factors. Finally
theorem 4.5.1 of [52] yields the claim. The equality (11)
will play a significant technical role in ensuring that we can
determine the vector duals of massless momenta using
elimination theory, in Sec. IV.

Illustration: Maxwell theory on metric
and area metric backgrounds

We now illustrate, by way of two concrete examples,
how the cotangent bundle function P and thus the massless
dispersion relation are extracted from a field theory on a
given geometry.
Our first example, Maxwell theory on a metric back-

ground, is of course a classic problem, and developed in
full detail for instance in [46]. Here we present only those
results which are illuminating with regard to the present
work. So let ðM;gÞ be a metric manifold of arbitrary
signature, and consider a one-form field Awhose dynamics
are governed by its coupling to the metric tensor g accord-
ing to the Maxwell action

S½A; g� ¼ � 1

4

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðgÞj

q
gamgbnFmnFab; (12)

where F ¼ dA is the field strength. Moreover, an orient-
able metric manifold carries a canonical volume form

!gabcd ¼ j detðgÞj1=2�abcd, so that after variation of the

action (12) with respect to the one-form field A, and after
introducing coordinates xa ¼ ðt; x�Þ, one can rewrite the

cotangent spacecotangent space cotangent space

FIG. 1. Homogeneity of P in its cotangent fiber gives rise to a cone of P-null covectors in each cotangent space. Three prototypical
examples of such cones are shown, the first one being the familiar Lorentzian metric cone. Only for the second example do we have
Nx � Nsmooth

x , with the difference set being constituted by the covectors lying in the intersection of the cones.
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obtained second-order field equations for A as a system of
first-order field equations (plus two constraint equations)
for the electric field E� ¼ Fð@t; @�Þ and the magnetic field
B� ¼ !�1

g ðdt; dx�; FÞ as
ðAbM

N@b þ BM
NÞuN ¼ 0; (13)

where uN ¼ ðE�; B
�Þ and the matrices AbM

N depend on
the metric tensor g and the volume form !g; see [46]

for the exact dependence. Strictly speaking, choosing the
field strengths as dynamical variables does away with the
gauge symmetry not precisely by gauge-fixing the action,
as was assumed in the general part of this section, but
achieves the same at the level of the equations of motion
and was chosen because it allows for a more concise
discussion here. In any case, the system (13) is a particular
case of (1), so that the massless dispersion relation is given
by some scalar density ~PxðqÞ ¼ detðAbqbÞ ¼ 0. Inserting
the explicit expression for AbM

N , one finds ~PxðqÞ ¼
q20ðg�1

x ðq; qÞÞ2. To obtain the massless dispersion relation,

we must cancel repeated factors in ~PxðqÞ, as explained
above. Moreover, one can show [47] that q0 ¼ 0 is incon-
sistent with the constraint equations, so that we finally
obtain the massless dispersion relation on a metric back-
ground as derived from Maxwell field equations as
PxðqÞ ¼ g�1

x ðq; qÞ ¼ 0, the familiar result.
As a second example, we discuss area metric geometry.

We provide only the most basic definitions and results
needed for the purpose of this example; for a more detailed
introduction, see e.g. [53–55]. An area metric manifold
ðM;GÞ is a smooth differentiable manifold M equipped
with a smooth covariant fourth-rank tensor field G with the
algebraic symmetries Gabcd ¼ Gcdab and Gabcd ¼ Gbacd.
Moreover, an area metric is required to be invertible in
the sense that there is a smooth tensor Gabcd so that
GabpqGpqcd ¼ 2ð�a

c�
b
d � �a

d�
b
cÞ. In particular, an area

metric G can be viewed as a metric PetrovðGÞ in the space
of two forms and it induces the canonical volume

form ð!GÞabcd ¼ ðdetðPetrovðGÞÞÞ1=6�abcd for dimM ¼ 4.
Maxwell theory on an area metric background was fully
studied in [55,56] and here we only summarize the main
results. We consider a one-form field A coupled to an area
metric background according to the action

S½A;G�¼�1

8

Z
d4xjdetðPetrovðGÞÞj1=6FabFcdG

abcd; (14)

where F ¼ dA is the field strength. After variation of the
action (14) with respect to the one-form field A and after
introducing coordinates xa ¼ ðt; x�Þ one can rewrite, as in
the metric case, the obtained second-order field equations
for A as the system (13) of first-order field equations (plus
two constraint equations). For this case uN ¼ ðE�; B

�Þ
with electric field E� ¼ Fð@t; @�Þ and magnetic field B� ¼
!�1

G ðdt; dx�; FÞ, and the matrices AbM
N depend now on the

area metric tensor G and the volume form !G. For the

explicit dependence, see [55]. Then the massless dispersion
relation must again be given by ~PxðqÞ ¼ detðAbqbÞ ¼ 0.
After an explicit calculation one finds ~PxðqÞ ¼ q20PxðqÞ
with

PxðqÞ¼� 1

24
ð!Gx

Þmnpq

	ð!Gx
ÞrstuGmnrða

x Gbjpsjc
x GdÞqtu

x qaqbqcqd: (15)

One can also show, as in the metric case, that q0 ¼ 0 is
inconsistent with the constraint equations, such that we
finally find that the massless dispersion relation on an area
metric background as derived fromMaxwell field equations
is given byPxðqÞ ¼ 0. This result has been obtained first by
Hehl, Rubilar, and Obukhov [57,58] in the context of
premetric electrodynamics.

III. HYPERBOLICITY

Employing our knowledge on how a cotangent bundle
function P encoding the massless dispersion relation arises
from field equations, we now identify the hyperbolicity of P
as a crucial condition for the field equations to be predic-
tive in the first place. For the cone of massless momenta,
the real Hilbert Nullstellensatz is thus shown to hold
without further conditions.
The second property required for a cotangent bundle

function P to provide a viable massless dispersion relation,
besides being a reduced homogeneous polynomial in the
fiber coordinate, also originates in the underlying matter
field equations (1) and goes right to the heart of what
classical physics is all about. Namely that the theory be
predictive. In other words, initial data on a suitable initial
data surface are required to evolve in a unique manner.
Remarkably, the question of what constitutes suitable ini-
tial data surfaces on the one hand, and the question of
whether the field equations evolve the initial data in a
unique way on the other hand, are both decided by an
algebraic property of the cotangent bundle function P.
More precisely, an inescapable condition for the initial
value problem to be well-posed in a region of spacetime
is that P defines a hyperbolic polynomial Px at every point
x of this region [59,60]. A homogeneous polynomial Px is
called hyperbolic with respect to some covector h if for
every covector q with PxðqÞ � 0 any � solving

Pxðqþ �hÞ ¼ 0 (16)

is a real number. This definition of hyperbolicity is easy to
understand in geometric terms. It simply means that there
is at least one covector h such that every affine line in
cotangent space in the direction of h intersects the cone
defined by (3) in precisely degP points (see Fig. 2), count-
ing algebraic rather than geometric multiplicities. Any
such covector h identifying Px as hyperbolic is itself called
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a hyperbolic covector at the point x. The various connected
sets of hyperbolic covectors in the same cotangent space,
as for instance the upper (shaded) cones in Fig. 2, are called
the hyperbolicity cones of P at x. It is often useful to take a
more global point of view and consider a smooth distribu-
tion C of hyperbolicity cones Cx over all spacetime points
x, which one simply may think of as the cone of all smooth
covector fields h for which hx 2 Cx. More precisely, let h
be a covector field hyperbolic with respect to P, that is h
defines a hyperbolic covector at every spacetime point.
Then the hyperbolicity cone CðP; hÞ containing h is con-
stituted by all covector fields q with the property that all
functions � on M satisfying

Pðx; qðxÞ � �ðxÞhðxÞÞ ¼ 0 (17)

are positive everywhere on M. The cone CðP; hÞ induces a
cone CxðP; hÞ in each cotangent space T�

xM, consisting of
the values qðxÞ of all q 2 CðP; hÞ evaluated at x, which is
called the hyperbolicity cone of P with respect to h at x.
Clearly, CxðP; hÞ only depends on the value of h at x, and
thus one may think of CðP; hÞ simply as the said distribu-
tion of the CxðP; hÞ over all x 2 M. The somewhat implicit
definition of hyperbolicity cones, both the local (16)
and the global one (17), can be cast into the explicit form
of degP polynomial inequalities, as was proved in
[61] from the Routh-Hurwitz theorem, if at least one
hyperbolic covector within the cone one desires to describe
is known. More precisely, let P be hyperbolic with respect
to h so that Pðx; hðxÞÞ> 0 without loss of generality. Then
the hyperbolicity cone is described by the degP inequal-
ities

detHiðv; hÞ> 0 for all i ¼ 1; . . . ; degP; (18)

where the matrices H1, H2; . . . ; HdegP are constructed as

Hiðv; hÞ ¼

h1 h3 h5 . . . h2i�1

h0 h2 h4 . . . h2i�2

0 h1 h3 . . . h2i�3

0 h0 h2 . . . h2i�4

..

. ..
. ..

. ..
. ..

.

0 0 0 . . . hi

2
6666666664

3
7777777775

i	i

where hj is set to 0 for j > i

(19)

from the coefficients of the expansion

Pðx; vþ �hÞ ¼ h0ðx; v; hÞ�degP þ h1ðx; v; hÞ�degP�1

þ � � � þ hdegPðx; v; hÞ: (20)

Similar to algebraic geometry dealing with algebraic sets
defined by polynomial equations, there is a rather elaborate
theory of semialgebraic sets [52,62] defined by polynomial
inequalities, of which the hyperbolicity cones are, accord-
ing to the above theorem, a particular instance. Employing
this theory will be of advantage in the proof of the first
lemma, below. The remarkable properties of hyperbolicity
cones, which underlie all further constructions, have been
elucidated by Gårding [63] a long time ago. Recalling that
a subset C of a real vector space V is called a convex cone
if besides any real multiple of an element of C also the sum
of any two elements of C lies again in C, Gårding proved
the following results. First, any covector field b belonging
to a given hyperbolicity cone CðP; aÞ equally represents
the hyperbolicity cone, CðP; bÞ ¼ CðP; aÞ. Second,
CðP; aÞ is an open and convex cone. Third, P is strictly
nonzero on CðP; aÞ, but vanishes on the boundary
@CðP; aÞ. Finally, the suitable initial data surfaces, alluded
to at the beginning of this section, are recognized as those
whose normal covector fields are hyperbolic.
The calculation of hyperbolicity cones is significantly

simplified if the cotangent bundle function P is factoriz-
able into factors of multiplicity one, as in Eq. (7). Then P is
hyperbolic with respect to h if and only if each of its

cotangent space cotangent space

CC

FIG. 2. Hyperbolicity cones for two prototypical polynomials. On the left the familiar second-degree Lorentzian cone; on the right a
fourth-degree cone defined, for simplicity, by a product of two Lorentzian metrics.
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individual factors is hyperbolic with respect to h. For such
reducible Px, the determination of the hyperbolicity cone
with respect to some hyperbolic covector h is reduced to
the determination of the hyperbolicity cones of the indi-
vidual factors, since

CxðPx; hxÞ ¼ CxðP1x; hxÞ \ . . . \ CxðPfx; hxÞ: (21)

Thus it is not a coincidence that the hyperbolicity cone
indicated in Fig. 2 is the intersection of the hyperbolicity
cones of the two Lorentzian cones whose union constitutes
the vanishing set of the underlying dispersion relation. We
conclude this section with the proof of two key properties
of hyperbolic polynomials, which we will use repeatedly
throughout this paper.
First lemma.—For a reduced homogeneous hyperbolic
polynomial Px, the set Nsmooth

x is a dense subset of the
cone Nx of massless momenta.
Proof.—Since our variety N is generated from a single
polynomial P, i.e., hPi ¼ IðNÞ, it follows from defini-
tion 3.3.4 of [52] that the set of singular points is
SingðNÞ ¼ N n Nsmooth. But then dimSingðNÞ< dimN ¼
dimM� 1, where the inequality is proposition 3.3.14 of
[52] and the equality follows from the hyperbolicity of P
[64]. Thus we know that the singular set is at most of
dimension dimM� 2. Further, we know from the first
remark in 3.4.7 of [62] that SingðNÞ, being a real algebraic
set, can be expressed as a finite union of analytic semi-
algebraic manifolds Si and that every such manifold has a
finite number of connected components. From the propo-
sitions 2.8.5 and 2.8.14 of [52] we thus obtain that
dimSingðNÞ ¼ maxðdimðSiÞÞ ¼ maxðdðSiÞÞ, where dðAiÞ
is the topological dimension of the semialgebraic subma-
nifold Si � T�

xM. Since dimSingðNÞ 
 dimM� 2we con-
clude that SingðNÞ consists of only finitely many
submanifolds of Rn of topological dimension less or equal
to dimM� 2. Thus its complementNsmooth ¼ N n SingðNÞ
is dense in N.

This property of hyperbolic polynomials is also men-
tioned in [64]. As an important corollary we obtain that the
real Nullstellensatz (11) holds for any reduced hyperbolic
polynomial without further conditions; for if P is hyper-
bolic, certainly Nx is a nonempty set of codimension one,
so that the dense subset Nsmooth

x must be nonempty.
Second lemma.—If Px is a reduced homogeneous hyper-
bolic polynomial with hyperbolicity cone Cx at some point
x 2 M then for all covectors s 2 T�

xMnclosureðCxÞ there
exists a massless covector r on the boundary @Cx of the
hyperbolicity cone such that sðDPxðrÞÞ< 0.
Proof.—It is clear that if y 2 Cx and s =2 closureðCxÞ, the
line yþ �s intersects the boundary @Cx at some r0 ¼ yþ
�0s for some positive �0. Thus Pxðr0Þ ¼ 0 and, since
PxðCxÞ> 0, we have Pxðr0 � �sÞ> 0 for sufficiently small
positive �. Now we must distinguish two cases:
First assume that Pxðr0 þ �sÞ< 0, from which it follows
that d

d� Pxðr0 þ �sÞj�¼0 ¼ sðDPxðr0ÞÞ< 0, which proves

the lemma with r :¼ r0; Second, assume that Pxðr0 þ
�sÞ> 0 which is equivalent to d

d� Pxðr0 þ �sÞj�¼0 ¼
sðDPxðr0ÞÞ ¼ 0 which in turn holds if and only if
DPxðr0Þ ¼ 0 (to see the latter equivalence assume that,
to the contrary, sðDPxðr0ÞÞ ¼ 0 and DPxðr0Þ � 0; this
implies that s must be tangential to @Cx at r0, but since y
lies in Cx and Cx is a convex cone yþ �s could then
not intersect @Cx at r0, which we however assumed). So
to prove the lemma in this second case, we need to con-
struct another r00 2 @Cx that satisfies the condition

sðDPxðr00ÞÞ< 0. Now since the first lemma guarantees

that the set Nsmooth
x , on which DPx is nonzero, lies dense

inNx, we can find in every open neighborhoodU around r0
a vector r00 2 @Cx such that DPxðr00Þ � 0. We define z :¼
r00 � r0 and y

0 :¼ yþ z. SinceCx is an open cone, y
0 lies in

Cx if we choose the neighborhood small enough, and the
line y0 þ �s intersects @Cx at r00. Finally since r00 2 @Cx

we know that Pxðr00Þ ¼ 0 and Pxðr00 � �sÞ> 0. We con-

clude that sðDPxðr00ÞÞ< 0. This proves the second lemma

with r :¼ r00.

IV. VECTOR DUALS OF MASSLESS
MOMENTA: GAUSS MAP

So far, our considerations have focused on the geometry
that is impressed by the massless dispersion relation on
each cotangent space. In this section, we now associate
vector duals in tangent space with the massless momenta
defined by the dispersion relation. A central role is played
by a dual polynomial P#

x on tangent space that is associ-
ated with the polynomial Px on the corresponding cotan-
gent space. Physically, the dual polynomial emerges as the
tangent space geometry seen by massless point particles.
In order to associate velocity vectors with massless

particle momenta in physically meaningful fashion, we
employ the dynamics of free massless point particles.
Their dynamics, in turn, are uniquely determined by the
dispersion relation, because the Helmholtz action

I0½x; q; �� ¼
Z

d�½qa _xa þ �Pðx; qÞ� (22)

describes particles that are free due to the form of the first
term and massless because of the Lagrange multiplier term.
In the following, we wish to eliminate the momentum q
and the Lagrange multiplier � to obtain an equivalent
action in terms of the particle trajectory x only. Variation
of the Helmholtz action with respect to � of course en-
forces the null condition for the particle momentum.
Now variation with respect to q yields _x ¼ �DPxðqÞ for
all q 2 Nsmooth, which implies the weaker equation

½DPxðqÞ� ¼
�
_x

�

�
; (23)

where ½X� denotes the projective equivalence class of all
vectors collinear with the vector X.
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In order to solve (23) for q, we need the inverse of the
projective map ½DP�. We will now derive that this inverse
is given by the gradient of a so-called dual polynomial.
Indeed, the image N#

x of the massless covector cone Nx

under the gradient map DP is again described by a homo-
geneous polynomial P#

x, albeit of generically different
degree than P. More precisely, for an irreducible cotangent
bundle function P, we look for a likewise irreducible
tangent bundle function P# that is uniquely determined
up to a real constant factor at each point x of the manifold
by the equation

P#
xðDPxðNsmooth

x ÞÞ ¼ 0: (24)

The polynomials Px and P
#
x given by P and P# at any given

point x of the base manifold are then called dual to each
other, and it is convenient to also call the corresponding
cotangent bundle function P and tangent bundle function
P# dual to each other. For a cotangent bundle function P
that is reducible into irreducible factors

Pðx; kÞ ¼ P1ðx; kÞ . . .Pfðx; kÞ; (25)

we define the dual tangent bundle function as the product

P#ðx; vÞ ¼ P#
1ðx; vÞ . . .P#

fðx; vÞ; (26)

where the P#
i are the irreducible duals of the irreducible Pi

determined by Eq. (24). Thus P# is uniquely determined up
to a real factor function on M and satisfies again Eq. (24),
as one easily sees from application of the product rule.

The proof for the existence of a dual P#
x, and indeed its

algorithmic computability for any reduced hyperbolic pol-
ynomials P, is provided by a branch of algebraic geometry
known as elimination theory. This is where the real
Nullstellensatz, discussed at the end of Sec. II and shown
to hold for any reduced hyperbolic polynomial at the end of
the previous section, becomes essential. For if the real
Nullstellensatz holds, proposition 11.10 of [50] asserts
that the polynomial conditions which a vector X must
satisfy, in order for there to be a solution to the problem
of having the polynomials

PxðkÞ; Xi1 �DPxðkÞi1 ; . . . ; Xid �DPxðkÞid
(27)

all vanish for some k, are obtained by first calculating an
elimination ideal. How this is done in practice, by using
Buchberger’s algorithm and Gröbner bases, is explained
most lucidly in [50]. The thus calculated elimination ideal,
however, may turn out to be generated by several real
homogeneous polynomials. However, making use of the
fact that we are dealing with real polynomials, it is easy
to construct the dual P# as a sum of appropriate even
powers of the generating polynomials, which obviously
vanishes where and only where all generators vanish. It
should be said that while for most polynomials of interest,
a direct calculation of dual polynomials using elimination
theory exhausts the capability of current computer algebra
systems, in many cases one is nevertheless able to guess the
dual polynomial by physical reasoning (as we will illus-
trate for the cases of metric and area metric geometry at the
end of this section). Once such an educated guess has been
obtained, one may directly use the defining equation (24)
to verify that one has found the dual polynomial. In any
case, since its existence is guaranteed, we will simply
assume in the following that a dual P# has been found by
some method.
Equipped with the notion of the dual polynomial, we

may now return to the projective gradient map

½DPx�: ½Nsmooth
x � ! ½N#

x�; ½q� � ½DPxðqÞ� (28)

first encountered in (23), where the brackets denote pro-
jective equivalence classes, identifying parallel vectors
(respectively covectors), but not antiparallel ones, and N#

x

is the image of Nsmooth
x under DPx. The projective map

½DPx� is well-defined due to the homogeneity of Px, and
will be referred to as the Gauss map; see Fig. 3. The
problem of inverting the Gauss map is now solved by
definition of the dual Gauss map ½DP#

x� in terms of the
dual polynomial P#

x,

½DP#
x�: ½N#smooth

x � ! ½Nx�; ½X� � ½DP#
xðXÞ�; (29)

Gauss map

cotangent space tangent space

FIG. 3. Gauss map sending the zero locus of a polynomial to the zero locus of a dual polynomial.

RÄTZEL, RIVERA, AND SCHULLER PHYSICAL REVIEW D 83, 044047 (2011)

044047-8



since we then have for null covectors k 2 Nsmooth
x that

½DP#
x�ð½DPx�ð½k�ÞÞ ¼ ½k� if detðDDPxÞðkÞ � 0; (30)

so that the dual Gauss map ½DP#� acts as the inverse of the
Gauss map on the images of all covectors k satisfying the
above determinantal nondegeneracy condition. That rela-
tion (30) holds is most easily seen from rewriting the
duality condition (24) in the form

P#ðx;DPðx; kÞÞ ¼QðkÞPðkÞ for all covectorsk; (31)

since this form does not require an explicit restriction to
null covectors. Thus differentiation with respect to k
yields, by application of the chain rule and then of
Euler’s theorem [65] on the right-hand side, for any null
covector k satisfying the nondegeneracy condition in (30),
that

DP#ðx;DPðx; kÞÞ ¼ Qðx; kÞ
degP� 1

k; (32)

which in projective language takes the form (30). In par-
ticular, we may thus solve the projective equation (23) for

½q� ¼ ½DP#
x�ð½ _x=��Þ: (33)

Obviously, the homogeneity of DP#
x in conjunction with

the projection brackets allows one to disregard the function
� altogether. However, another undetermined function �
appears when translating this result back to nonprojective
language,

q ¼ �DP#
xð _xÞ: (34)

Now we may replace the momentum in (22) by this ex-
pression and use again Euler’s theorem applied to the
homogeneous polynomial P#

x to finally obtain the massless
point particle action

I0½x;�� ¼
Z

d��P#ðx; _xÞ: (35)

Relations (23) and (33) reveal the physical meaning of the
Gauss map ½DPx� and its inverse ½DP#

x�: Up to some
irrelevant conformal factor, they associate null particle
momenta in Nsmooth

x with the associated null particle veloc-
ities in N#smooth

x . The automatic appearance of a final
Lagrange multiplier � in (35) also hardly comes as a
surprise, since it is needed to enforce the null constraint
P#
xð _xÞ ¼ 0. This reveals the direct physical relevance of the

dual tangent bundle function P# as the tangent space
geometry seen by massless particles.

Illustration: Dual polynomials for
metric and area metric geometry

As an illustration of the above abstract theory, we pro-
vide the explicit form of the dual tangent bundle functions
P# associated with the cotangent bundle functions induced

by Abelian gauge theory on first metric and then area
metric geometry.
For a metric manifold ðM;gÞ, we saw that the cotangent

bundle function was given by Pgðx; qÞ ¼ g�1
x ðq; qÞ. It is

easy to guess its dual, namely P#
gðx; vÞ ¼ gðv; vÞ. Indeed,

P#
gxðDPgxðqÞÞ ¼ 4gxðg�1

x ðq; �Þ; g�1
x ðq; �ÞÞ ¼ 4g�1

x ðq; qÞ ¼
4PgxðqÞ, so that Eq. (24) is satisfied. Thus we conclude that
P#
gxðx; vÞ ¼ gxðv; vÞ is the dual polynomial of PgxðqÞ.
The case of an area metric manifold ðM;GÞ, where the

cotangent bundle function PG induced by Abelian gauge
theory is given by (15), is already considerably more
complicated. At first sight it could seem that there is no
way to avoid the use of elimination theory. However, al-
ready in four dimensions, elimination theory is prohibi-
tively difficult for current computer algebra programs,
even if full use is made of our knowledge of normal forms
for area metrics [55]. So while in principle Buchberger’s
algorithm applies, practically one is better off obtaining an
educated guess for what the dual polynomial might be, and
then verifying that guess employing Eq. (24). Thanks to the
invertibility properties of area metrics, an educated guess
for the dual of PG can be derived directly from Maxwell
theory [56]. In the language of [56], a wave covector field q
for an Abelian gauge field field strength F is a section of
T�M satisfying

q ^ F ¼ 0; q ^H ¼ 0; (36)

where the constitutive relation between the field strength F

and the induction H is given as Hab ¼ �1=4j detGj1=6	
!GabmnG

mnpqFpq. Solving (36) leads to the Fresnel poly-

nomial (15). Dually, and this is the key idea, ray vector
fields v on the discontinuity surface determined by a wave
covector field q are defined as

Fðv; �Þ ¼ 0; Hðv; �Þ ¼ 0; (37)

where F andH are solutions of (36). Looking for solutions
of the system (37), one finds that the condition for their
existence is that the ray vector fields v must satisfy the
polynomial equation

P#
GxðvÞ ¼ � 1

24
ð!�1

Gx
Þmnpqð!�1

Gx
ÞrstuGxmnrðaGxbjpsjc

	GxdÞqtuvavbvcvd ¼ 0; (38)

which for physical reasons should present precisely the
dual tangent bundle function associated with PG. Indeed,
using the algebraic classification of area metrics [55], it is
then a simple exercise to verify that for metaclasses I–XI
and XIII–XIX, the cotangent bundle function P#

G defined in

(38) satisfies at every point the defining property of the
dual polynomial (24). But as we will see in the illustrations
at the end of the next section, area metrics of
metaclasses VIII–XXIII can never give rise to viable dis-
persion relations. Anticipating that result, we recognize P#

G
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as the dual polynomial to PG for all viable area metric
spacetime geometries.

V. BIHYPERBOLIC AND ENERGY-
DISTINGUISHING DISPERSION RELATIONS

In this section, bihyperbolicity (meaning that both P and
P# are hyperbolic) and the energy-distinguishing property
are introduced as further conditions on the geometry. These
further conditions are needed in order to provide an un-
ambiguous notion of observers and positive energy.

We saw that the dual polynomials defined by the tangent
bundle function P# in each tangent space play an essential
role. In fact, one needs to restrict attention to dispersion
relations that are bihyperbolic, meaning that both P and its
dual P# are hyperbolic. This is because only then may one
select one hyperbolicity cone C# of P# (which is defined,
mutatis mutandis, precisely as the hyperbolicity cones of P
in Sec. III) and stipulate that it contain the tangent vectors
to admissible observers at a spacetime point. We will prove
a nontrivial consistency result concerning the stability of
the so defined observers in Sec. X. Physically, a choice of
C# corresponds to a choice of time orientation of the
manifold. The point is that having chosen the observer
cone C# in the tangent bundle, one can immediately see
that those momenta p at a point x whose energy is positive
from every observer’s point of view, constitute a convex
cone

ðC#
xÞ? ¼ fp 2 T�

xMjpðvÞ> 0 for all v 2 C#g: (39)

For the Lorentzian metric case, this is simply (the closure
of) what has been chosen as the forward cone, while in
general the situation is more complicated; see the illustra-
tion at the end of this section. If the polynomial P is of the
product form (7), we find that the positive energy cone is
simply the sum of the positive energy cones coming from
the duals of the factors of P [66], i.e.

ðC#Þ? ¼ ðC#
1Þ? þ � � � þ ðC#

l Þ?; (40)

where the sum of two convex sets is just the set of all sums
of any two elements of the two sets.

That hyperbolicity does not imply bihyperbolicity
is illustrated by the counterexample in Fig. 4.
Bihyperbolicity indeed presents a rather stringent condi-
tion on dispersion relations, and thus on the underlying
geometry. This is illustrated at the end of this section, first
for the case of metric geometry, where bihyperbolicity
amounts to the requirement that the metric be Lorentzian,
and second for the case of area metric geometry, where a
similar exclusion of algebraic classes follows directly from
bihyperbolicity. A similar study may and needs to be
conducted for the reader’s favorite candidate for a space-
time geometry. In the following we focus on some con-
clusions that can be drawn independent of any particular
geometry and which will be important for our further
theoretical developments.
Having guaranteed an observer-independent notion of

positive energy, the only thing left is to ensure that any
massless momentum q has either positive or negative
energy. More precisely, we require the set N of massless
nonzero covector fields to disjunctively decompose into
positive and negative energy parts

N ¼ Nþ _[ N�; (41)

where Nþ is defined as the intersection of N with the
positive energy cone ðC#Þ?, and N� as the intersection
with the negative energy cone ð�C#Þ?. We will refer to
such bihyperbolic cotangent bundle functions P as energy-
distinguishing. Figure 5 shows the vanishing sets of an
energy-distinguishing bihyperbolic polynomial Px and its
dual P#

x.
For dispersion relations that are both bihyperbolic and

energy-distinguishing, we find that the set of massless
momenta Nx cannot contain any null planes in spacetime
dimensions d � 3, which in turn implies that the degree of
P cannot be odd. This will be of importance later, and is
seen as follows: First, we prove that bihyperbolicity of Px

implies that

closure ðC#?
x Þ \ �closureðC#?

x Þ ¼ f0g: (42)

Let k0 be such that k0 2 closureðC#?
x Þ and k0 2

�closureðC#?
x Þ. It follows from the definition of the dual

cotangent space tangent space

FIG. 4. Example of a hyperbolic polynomial with nonhyperbolic dual polynomial.
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cone that the following inequalities are true for all x 2 C#
x:

x:k0 � 0 and x:k0 
 0. If this would be true the hyper-
bolicity cone C#

x had to be a plane or a subset of a plane.
That would contradict the property of C#

x to be open.
Second, suppose that the zero set Nx contains a plane.
From closureðC#?

x Þ \ �closureðC#?
x Þ ¼ f0g it follows that

C#?
x n f0g is a proper subset of a half-space. A proper

subset of a half-space cannot contain any complete plane
through the origin. Hence the existence of a null plane of
Px would obstruct the energy-distinguishing property.
Third, this fact immediately restricts us to cotangent
bundle functions P of even degree. For suppose degP
was odd. Then on the one hand, we would have an odd
number of null sheets. On the other hand, the homogeneity
of P implies that null sheets in a cotangent space come in
pairs, of which one partner is the point reflection of the
other. Together this implies that we would have at least one
null hyperplane.

At this point in this article, we have arrived at the insight
that a physical dispersion relation for massless point par-
ticles must be given by a cotangent bundle function P that
is a bihyperbolic and energy-distinguishing reduced hyper-
bolic homogeneous polynomial in each fiber. These are
now all the conditions on P we identify in this work. The
following two sections serve to show that the theory ex-
tends to massive dispersion relations and allows for all
kinematical constructions one needs to provide a physical
interpretation of quantities on the spacetime manifold. The
final two sections are then devoted to further embellishing
the theory, in particular, to make contact to noncovariant
representations of dispersion relations and to derive a
generic mechanism for a covariant energy cutoff on non-
metric spacetimes.

Illustration: Exclusion of algebraic
classes of metrics and area metrics

The polynomial defining the massless dispersion rela-
tion on a metric background g is given as PgxðqÞ ¼

g�1
x ðq; qÞ, as seen in Sec. II. It is easy to verify that Pg is

bihyperbolic if and only if g is a metric of Lorentzian
signature and that its dual is given as P#

gxðvÞ ¼ gxðv; vÞ.
Moreover, hyperbolicity of Pg also implies the energy-

distinguishing property. For from the explicit definition
of C# we know that at every point x and for every vector
X 2 C#

x the covector gxðX; �Þ 2 ðC#
xÞ?. Arranging for

P#
gxðC#

xÞ> 0 and knowing that Pg is hyperbolic, it is easy

to show that gxð!; vÞ> 0 for every vector ! 2 @C#
x and

v 2 C#
x, which shows that for every vector ! 2 @C#

x the
covector gxð!; �Þ 2 ðC#

xÞ? and gxð�!; �Þ 2 �ðC#
xÞ?.

More precisely gxð@C#
x; �Þ 2 ðC#

xÞ? and gxð�@C#
x; �Þ 2

�ðC#
xÞ?. But gxð@C#

x; �Þ 2 ðC#
xÞ? is the image of the dual

Gauss map induced from P#
gx when applied to @C#

x. Thus,

we conclude that Lorentzian metric geometry is a bihyper-
bolic geometry of the energy-distinguishing type.
For the area metric case, bihyperbolicity serves to ex-

clude the algebraic area metric metaclasses VIII to XXIII.
That result was implicitly obtained in [55], specifically it is
contained in lemma 4.1 of that work, which asserts that
there exists a plane of massless covectors for any four-
dimensional area metric manifold belonging to
metaclasses VIII to XXIII. But since the existence of a
null plane does not allow for a bihyperbolic and energy-
distinguishingP, the areametric algebraicmetaclasses VIII
to XXIII must be discarded as viable spacetime geometries.

VI. COVARIANT DISPERSION RELATIONS II:
MASSIVE PARTICLES

In this section, we extend the theory to massive disper-
sion relations and define the set of positive energy massive
particles. Bihyperbolicity and the energy-distinguishing
property, originally introduced to guarantee a well-defined
duality theory between massless covectors and massless
vectors, are shown to also play a crucial role when dis-
cussing massive matter. In particular, they ensure reverse
triangle and inverse Cauchy-Schwarz inequalities.

(C   )#
positive energies

massive momenta
C

observers
#C

cotangent space tangent space

FIG. 5. An energy-distinguishing bihyperbolic dispersion relation.
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For a bihyperbolic and energy-distinguishing dispersion
relation, there is always a hyperbolicity cone in cotangent
space that is of positive energy with respect to a chosen

time orientation C#. For let ~Cx be some hyperbolicity cone

of Px, whose boundary @ ~Cx we know to be a connected set
of null covectors. Now on the one hand, the complete zero

set of Px is contained in ð ~C#
xÞ? [ �ð ~C#

xÞ? due to the
energy-distinguishing property. On the other hand, we

have that (42) holds. Hence either ~Cx or� ~Cx is of positive
energy.

The covector fields in the thus selected positive energy
cone C play two related roles. The first role, from the point
of view of the field theory, was that a hypersurface can only
be an initial data surface if its normal covector field lies in
C. Now in order to identify the second role of the cone C in
relation to massive matter, first observe that within the
hyperbolicity cone C, the sign of P cannot change, so
that we may arrange for P to be positive on C without
upsetting any of the constructions made so far. We will
assume from now on without further comment that this
choice has been made. But then we have for any momen-
tum q in Cx at a spacetime point x that

PxðqÞ ¼ mdegP (43)

for some positive real number m> 0, which we call the
mass associated with the momentum q. It must be empha-
sized that the definition of mass associated to a momentum,
as provided by (43), hinges on the choice of a particular
volume density !G in (2). Physically this is understood
from the need to convert mass densities in field theory into
point masses in particle theory, which conversion requires
a definition of volume. But then (43) represents a massive
dispersion relation whose mass shells foliate the interior of
Cx; see Fig. 6. An immediate physical consequence of
the convexity of the cone Cx is that even for modified
dispersion relations, a decay of a positive energy massless
particle into positive energy massive particles is kinemati-
cally forbidden.

At this point we derive a further important consequence
of bihyperbolicity and the energy-distinguishing property,

namely, that together they imply completeness of the poly-
nomials Px defined by P in each cotangent space; in the
terminology of [63], a hyperbolic polynomial Px is called
complete if the lineality space

LðPÞ ¼ fa 2 T�
xMjfor all y 2 T�

xM and

� 2 R: Pðyþ �aÞ ¼ PðyÞg (44)

only contains the zero covector. In other words, in order to
be complete, Pmust depend on all covector components in
any chosen basis. Geometrically, completeness can be read
off from the closure of the hyperbolicity cones since [67] it
is equivalent to

closure ðCðPx; hÞÞ \ closureðCðPx;�hÞÞ ¼ f0g: (45)

That completeness is already implied by the energy-
distinguishing condition can be easily seen from this. For
picking up the argument given at the start of this section,
we know that

closure ðC#?
x Þ \ �closureðC#?

x Þ
� closureðCxÞ \ �closureðCxÞ: (46)

Thus if the right-hand side differs from {0} (meaning thatP
is incomplete), the left-hand side will contain nonzero
covectors, too (showing that P is not energy-
distinguishing). Because of the inclusion, this only holds
in this direction. We conclude that the energy-
distinguishing property already implies completeness.
There are three principal reasons why it is so important

that completeness holds. First, completeness will play a
crucial role in ensuring, as we will see in the next section,
that there is a well-defined duality theory associating mas-
sive covectors with their vector counterparts. Thus remark-
ably, bihyperbolicity and the energy-distinguishing
property, originally conceived in the context of massless
dispersion relations, also take care of this in the massive
case, via completeness. Second, since we arranged for Px

to be positive everywhere on Cx for the massive dispersion
relation to make sense, we have the reverse triangle
inequality

cotangent spacecotangent space

P(q) = m

C C

P(q) = m2
4

FIG. 6. Mass shells defined by bihyperbolic energy-distinguishing cotangent bundle functions P. On the left the familiar
second-degree Lorentzian case; on the right a fourth-degree case defined by a product of two Lorentzian metrics.
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P
1= degP
x ðk1 þ k2Þ � P

1= degP
x ðk1Þ þ P

1= degP
x ðk2Þ (47)

for all k1 and k2 in the same hyperbolicity cone Cx.
Equality holds if and only if k1 and k2 are all proportional.
Physically, the reverse triangle inequality generalizes a
familiar result from Lorentzian geometry to any viable
dispersion relation in our sense, namely, that the decay of
a massive particle generically gives rise to a mass defect.
Third, defining the tensor

Pxðk1; . . . ; kdegPÞ ¼ 1

ðdegPÞ!
YdegP
J¼1

�XdimV

i¼1

ðkJÞi @

@ki

�
PxðkÞ;

(48)

as the totally symmetric polarization of the polynomial
Px, we can also formulate a reverse Cauchy-Schwarz in-
equality

Pxðk1; . . . ;kdegPÞ�Pxðk1Þ1=degP ���PxðkdegPÞ1=degP (49)

for all k1; . . . ; kdegP in the same hyperbolicity cone Cx.

Similar to the reverse triangle inequality above, equality
holds for the reverse Cauchy-Schwarz inequalities if and
only if all arguments ki are proportional to each other.

VII. VECTOR DUALS OF MASSIVE MOMENTA:
LEGENDRE MAP

For a bihyperbolic and energy-distinguishing P, we
introduce the action for free massive point particles. In
contrast to the polynomial tangent space geometry P# seen
by massless particles, the dual geometry seen by massive
particles turns out to be encoded in a generically non-
polynomial tangent bundle function P�. This largely ob-
structs attempts to devise a nontrivial Finslerian or
Lagrangian tangent bundle geometry that describes mas-
sive and massless point particles simultaneously.

We wish to associate vector duals with massive mo-
menta (having done so for massless momenta in Sec.
IV), and to this end we employ the Helmholtz action

I½x; q; �� ¼
Z

d�

�
qa _x

a � �m lnP

�
x;

q

m

��
; (50)

which describes particles that are free due to the form of
the first term, and massive since the massive dispersion

relation Pðx; qÞ ¼ mdegP is enforced through variation with
respect to �. The particular form of the Lagrange multiplier
term here has been chosen for the technical reason
of having available the theory of Legendre duals on the
open convex cones Cx; see [66]. More precisely, the
so-called barrier function,

fx: Cx ! R; fxðqÞ ¼ � 1

degP
lnPxðqÞ; (51)

which we employed in the massive particle action above,
is first guaranteed to be strictly convex, i.e., for each
� 2 ð0; 1Þ we have fxðð1� �Þvþ �wÞ< ð1� �ÞfxðvÞ þ
�fxðwÞ for all v, w in the hyperbolicity cone Cx, due to the
completeness of P [67], which in turn is guaranteed by the
energy-distinguishing property, as we saw in the previous
chapter; second, near the boundary of the convex set, it
behaves such that for all q 2 Cx and b 2 @Cx

lim
�!0þ

ðDq�bfxÞðbþ �ðq� bÞÞ ¼ 0; (52)

which property is known as essential smoothness in convex
analysis. The important point is that strict convexity and
essential smoothness together ensure that the barrier func-
tion fx induces an invertible Legendre map

Lx: Cx ! LxðCxÞ; q � �ðDfxÞðqÞ (53)

(for an illustration, see Fig. 7) and a Legendre dual func-
tion

fLx : LxðCxÞ ! R; fLx ðvÞ ¼ �L�1
x ðvÞv� fxðL�1

x ðvÞÞ;
(54)

which can be shown, ultimately by virtue of the above
conditions, to be an again strictly convex and essentially
smooth function on the open convex set LxðCxÞ. Note that
the two minus signs in (54) are correct, and due to our sign
conventions. In fact, the inverse Legendre map is the
Legendre map of the Legendre dual function fL:

�DfLx ¼ L�1
x ðvÞ þDL�1

x ðvÞvþDL�1
x ðvÞDfxðL�1

x ðvÞÞ
¼ L�1

x ðvÞ: (55)

In other words, the Legendre dual of the Legendre dual
ðLxðCxÞ; fLx Þ of ðCx; fxÞ is again ðCx; fxÞ; see theorem 26.5
of [66].

Legendre map

cotangent space tangent space

FIG. 7. Mass shell and Legendre map of massive momenta to tangent space.
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The existence of this Legendre theory now enables us to
eliminate the q and � degrees of freedom, in order to obtain
an equivalent particle action I½x� in terms of the particle
trajectory x. In the process, we will identify the definition
of proper time that renders the law of free particle motion
simple. Variation of the action (50) with respect to q yields
_x ¼ ð� degPÞLxðq=mÞ, which we know may be inverted to
yield

q ¼ mL�1
x ð _x=ð� degPÞÞ: (56)

It is now obvious why it was convenient to encode the
dispersion relation by a Lagrange multiplier term involving
the barrier function (51); while many other ways to enforce
the very same dispersion relation of course do exist, the
latter allows one to make use of the above theory of
Legendre transformations in a straightforward manner.
Using the thus obtained relation and the definitions of the
barrier function and the Legendre dual to eliminate q, one
obtains the equivalent action

I½x;��¼�mdegP
Z
d��fLð _x=ð�degPÞÞ

¼�mdegP
Z
d�½�fLx ð _xÞþ�lnð�degPÞ�; (57)

where for the second equality we used the easily verified
scaling property fLð� _xÞ ¼ fLð _xÞ � ln�. From variation of
the action (57) with respect to �, we then learn that

fLð _xÞ þ lnð� degPÞ þ 1 ¼ 0: (58)

Using this twice, we have �fLx ð _xÞ þ � lnð� degPÞÞ ¼
�� ¼ � expð�fLx ð _xÞ � 1Þ= degP. Noting that because of
_x 2 LxðCxÞ we also have L�1ðx; _xÞð _xÞ ¼ 1 and thus
fLx ð _xÞ ¼ �1� fxðL�1ð _xÞÞ, and defining the tangent bundle
function

P�
x: LxðCxÞ ! R; P�

xðvÞ ¼ PxðL�1
x ðvÞÞ�1; (59)

we eliminate � in (57) and finally arrive at the equivalent
action

I½x� ¼ m
Z

d�P�ðx; _xÞ1= degP (60)

for a free point particle of positive mass m. While the
tangent bundle function P� is generically nonpolynomial,
it is elementary to see that it is homogeneous of degree
degP, and for later reference we also display the useful
relation

L�1
x ðvÞ ¼ 1

degP

DP�
xðx; vÞ

P�
xðx; vÞ : (61)

The action (60) is reparametrization invariant, as it
should be. However, parametrizations for which
Pðx; L�1ðx; _xÞÞ ¼ 1 along the curve are distinguished since
they yield the simple relation

_x ¼ Lxðq=mÞ (62)

between the free massive particle velocity _x and the parti-
cle momentum q everywhere along the trajectory x. As
usual, we choose such clocks and call the time they show
proper time. Thus we have established the physical mean-
ing of the Legendre map, and may thus justifiably call the
open convex cone LxðCxÞ the cone of massive particle
velocities, and the function P� the massive dual of P,
which indeed encodes the tangent bundle geometry seen
by massive particles.
Reassuringly, we can now prove that the observer cone

lies in the massive dual, C#
x � LxðCxÞ. Thus one may think

of observers as massive, as usual. The converse, however,
does not hold, since the inclusion is generically proper.
Since this statement, in slightly refined form, will be of
central importance again in Sec. X, we will formulate it by
way of two lemmas.
Third lemma.—For any reduced hyperbolic homogeneous
cotangent bundle function P we have LxðCxÞ ¼
interiorðC?

x Þ.
Proof.—Since by assumptionPx is reduced, hyperbolic, and
homogeneous, we get from the first and the second lemmas
in Sec. III the statement: For all p 2 T�

xM n closureðCxÞ
there exists an r 2 @Cx such that p:DPxðrÞ< 0. Since
p:DPxðqÞ is a continuous function of q, we conclude that
for all p 2 T�

xM n closureðCxÞ there exists an q 2 Cx such
that p:DPxðqÞ< 0. That implies that the set LxðCxÞ? is a
subset of closureðCxÞ n f0g. Since LxðCxÞ is convex, we get
LxðCxÞ � ðclosureðCxÞ n f0gÞ? ¼ interiorðC?

x Þ.
Furthermore, we know that LxðCxÞ � C?

x . Since LxðCxÞ is
open it follows that LxðCxÞ ¼ interiorðC?

x Þ.
Fourth lemma.—For any bihyperbolic and energy-
distinguishing cotangent bundle function P, we have C#

x �
interiorðC?

x Þ.
Proof.—From Sec. VI we know that there exists a hyper-
bolicity cone Cx of Px that lies completely in ðC#

xÞ?. From
ðC#

xÞ? � Cx and the fact that C#
x is open, we conclude that

C#
x � interiorðC?

x Þ.
Comparing these results with those of Sec. IV, we see

that there is a fundamental difference between the ways in
which null covectors on the one hand, and massive covec-
tors on the other hand, are mapped to the respective veloc-
ities on tangent space. In the null case, the Gauss maps
½DPx� and ½DP#

x� associate massless particle momenta with
the respective null velocities, up to an undetermined real
factor. In the massive case, in contrast, the Legendre map
Lx and its inverse L

�1
x afford the same for massive particle

momenta and velocities. As a consequence, the dual ge-
ometries seen on the tangent bundle by massless and
massive particles differ. For the former, the Gauss dual
P# is the relevant structure, and for the latter the Legendre
dual P�. This is of course of direct technical importance,
but also clarifies which Finslerian geometries can provide
viable spacetime structures, and which cannot. This is the
topic of the following section.
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VIII. ADMISSIBLE FINSLERIAN SPACETIMES

Although logically fully independent of it, our study of
physically admissible dispersion relations directly trans-
lates into a characterization of possible Finslerian space-
time geometries. Indeed, in order for a Finslerian geometry
to define the trajectories of massive particles—and indi-
rectly also massless particles—with physical dispersion
relations, the defining Finsler function must arise in a
particular way from a reduced, bihyperbolic and energy-
distinguishing cotangent bundle function. This greatly re-
stricts physically admissible Finslerian spacetime
geometries.

The integrand of the massive particle action (60) is a
function

F: LðCÞ ! Rþ; Fðx; vÞ :¼ P�ðx; vÞ1= degP; (63)

where P is a reduced, bihyperbolic and energy-
distinguishing cotangent bundle function, and LðCÞ the
bundle consisting of all open convex cones LxðCxÞ defined
by P at each point x of the manifold. It is then immediate
from the construction of P� that F is linearly homogeneous
in its tangent fiber argument. Further one can show thatF is
a positive convex function on each cone LðCÞ. These are
the properties that define a Finsler function [68], which is
here restricted to the convex subbundle LðCÞ of the tangent
bundle TM. The trajectories of massive point particles are
thus Finslerian geodesics, and we will make full use of the
apparatus of Finsler geometry in their analysis in the
following section. Conversely, one sees that for any repar-
ametrization invariant action

S½x� ¼
Z

d�Fðx; _xÞ (64)

whose stationary curves are supposed to describe trajecto-
ries of massive particles, the function F must be precisely
of the from (63) in order not to be in conflict with pre-
dictivity or a well-defined notion of positive energy.

This of course greatly restricts viable Finslerian space-
time geometries. In fact, the bihyperbolicity and energy-
distinguishing property of P restrict the Finsler functions
sufficiently to guarantee that the Finsler metrics

gðx;eÞðu; vÞ ¼ 1

2

@2P�ðx; eþ suþ tvÞ2= degP
@s@t

��������s¼t¼0

for any u; v 2 TxM;

(65)

associated with the Finsler function F at each point of the
bundle LðCÞ are of Lorentzian signature. To see this, we
first observe that for e0 ¼ Lð�0Þ, an explicit expression for
the metric (65) in terms of fL is given by

gðx;e0Þab ¼ P�2= degP
x ðe0Þð�ðDDfLx ðe0ÞÞab

þ 2L�1
x aðe0ÞL�1

x bðe0ÞÞ; (66)

and for its inverse in terms of f by

gabðx;�0Þ ¼ Px
2= degPð�0Þð�ðDDfxð�0ÞÞab

þ 2Lx
að�0ÞLx

bð�0ÞÞ; (67)

where ðDDfxð�0ÞÞabðDDfLx ðLð�0ÞÞÞbc ¼ �a
c . In order to

see that the Finsler metrics (67) are indeed Lorentzian,
consider a cotangent frame �a with ��ðLð�0ÞÞ ¼ 0 for all
� ¼ 1; . . . ; dimM� 1, so that from expression (67) one
finds that

gabðx;�0Þ�
0
a�

0
b ¼ Px

2= degPð�0Þ> 0; (68)

gabðx;�0Þ�
0
a�

�
b ¼ 0: (69)

But since any covector ~p on the spatial hyperplane defined
by Lxð�0Þ can be written as ~p ¼ p��

�, we have

gabðx;�0Þp��
�
ap��

�
b ¼�P

2=degP
x ð�0Þ

	 ðDDfxð�0ÞÞabp��
�
ap��

�
b < 0; (70)

where the last inequality follows from the positive definite-
ness of the Hessian of f (see theorem 4.2 and remark 4.3 of
[67]). Thus we conclude that the metric (67) and hence its
inverse (66) are Lorentzian. Thus physically admissible
Finsler geometries are Lorentzian in the sense of [3].
Now it is obvious from the massless particle action (35)

that the trajectories of massless particles are not geodesics
of the same Finslerian geometry. But the geometry govern-
ing the motion of massless particles can be constructed
from any Finsler function F of the form (63), since from
such F we can reconstruct P�, from there by virtue of (61)
the inverse Legendre map L�1, then in principle the
Legendre map L and thus by (59) the polynomial P and
from there finally its dual polynomial P#. Thus a Finsler
function F of the particular form (63), as it is demanded by
a physical dispersion relation, determines indeed also the
tangent bundle geometry seen by massless particles,
through the inevitable mechanism described above.
This solves three common problems encountered in

proposals to employ a Finslerian function as a spacetime
structure. First, it is now clear precisely which class of
Finsler functions gives rise to physically viable massive
dispersion relations. Second, there is a unique massless
particle action associated with each such Finsler function.
Third, the bihyperbolicity and energy-distinguishing prop-
erty of the cotangent bundle function P underlying any
such Finsler function is to Finsler geometry what
Lorentzian signature is to metric geometry. In other words,
the Finsler functions (63) are the Finslerian counterparts to
Lorentzian metrics.
From a practical point of view, however, it is much

easier to stick to the cotangent bundle geometry ðT�M;PÞ
as the fundamental structure, from which the tangent
bundle geometry ðTM;P#; P�Þ derives easily with all
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desirable properties. Generating the latter starting from the
Finsler function (63) is equivalent, but technically much
harder [69].

IX. Eð ~pÞ FORM OF DISPERSION RELATIONS
AND INERTIAL LABORATORIES

The decidedly covariant discussion of dispersion rela-
tions, which we adopted in this paper, is required even if
one ultimately prefers to represent the dispersion relation
in the form of a function Eð ~pÞ, which expresses the energy
of a particle in terms of its spatial momentum. This is
because the therefore-needed temporal-spatial split of a
covariant particle momentum itself is governed by the
covariant version of the dispersion relation. Pushing the
theory of observers and frames further, we identify a ge-
nerically nonlinear parallel transport induced by a bihy-
perbolic and energy-distinguishing dispersion relation and
thus succeed in defining inertial laboratories.

Converting our covariant dispersion relations for
massive and massless matter into noncovariant dispersion
relations is conceptually and mathematically straightfor-
ward. For from the point of view of an observer carrying a
clock that shows proper time [who is thus formally de-
scribed by a P�-unit vector e0 in the observer cone C#; see
the discussion following Eq. (62)], any spacetime momen-
tum p can be uniquely decomposed as

p ¼ EL�1ðe0Þ þ ~p; (71)

namely, into an energy E and a purely spatial momentum ~p
satisfying ~pðe0Þ ¼ 0. For a visualization, see the corre-
sponding tangent space split in Fig. 8. Employing such a
particular observer-dependent split, one may solve the
covariant dispersion relation

Pðx; EL�1ðe0Þ þ ~pÞ ¼ mdegP (72)

for the energyE in termsof the spatialmomentum ~p, and thus
obtain an observer-dependent, noncovariant dispersion rela-
tion E ¼ Eð ~pÞ. Keeping in mind that the latter depends in

two ways on the cotangent bundle function P, namely, in-
directly through the temporal-spatial split (71) imposed by it
and directly through the dispersion relation (72), this non-
covariant version can be useful because it more directly
relates to measurable quantities. However, due to Galois
theory, we know that the energy will not even be an analytic
expression in terms of the spatial momentum unless
degP 
 4, and not polynomial in any case. The crucial
properties of bihyperbolicity and the energy-distinguishing
property are even more hidden in the noncovariant formula-
tion. This is of course the key reason for having dealt ex-
clusively with a strictly covariant treatment of dispersion
relations for all formal developments throughout this article.
Conversely, the conversion of a noncovariant dispersion

relation into a covariant one will be prohibitively difficult
in most cases. This is essentially due to the fact that given a
relation E ¼ Eð ~pÞ, the construction of a spacetime mo-
mentum p from the E and ~p, and indeed their physical
meaning, is not directly possible without the cotangent
bundle function P. We feel that this is often not considered
where modified dispersion relations are proposed.
Sometimes recourse to an ‘‘anyway’’ underlying spacetime
metric is made, but it is hard to see how this would be
consistent with the stipulation of a modified dispersion
relation, due to the above double role played by the co-
tangent bundle function P.
In the above discussion, it was sufficient to identify the

purely spatial momentum associated with the unit timelike
direction of a particular observer worldline. It is often
useful to go further and to consider freely falling non-
rotating observer frames. This is needed, for instance,
if one wishes to determine the electric and magnetic
field strengths seen by such an observer for a given elec-
tromagnetic field strength two-form F. But the definition of
nonrotating frames requires one to establish a meaningful
parallel transport, and we will now see how the latter arises
from a general dispersion relation. Since we saw in
Sec. VII that observers are necessarily massive, their free
motion is governed by an action functional

eann  L  (    )0
−1

eann  L  (    )0
−1

C#
C#

tangent space

e
0

tangent space

e
0

FIG. 8. Purely spatial directions with respect to e0 are those annihilated by L�1ðe0Þ. For the Lorentzian metric case on the left, this
coincides with the space of vectors g-orthogonal to e0.

RÄTZEL, RIVERA, AND SCHULLER PHYSICAL REVIEW D 83, 044047 (2011)

044047-16



S½x� ¼
Z

d�P�ðx; _xÞ1= degP; (73)

which we know to represent the trajectories of point
particles of nonzero mass. Using the reparametrization
invariance to set P�ðx; _xÞ ¼ 1 along the curve, it is straight-
forward to derive the equations of motion and, using the
following standard techniques of Finsler geometry [68], to
cast them into the form

€x a þ �aðx; _xÞ ¼ 0 (74)

with the geodesic spray coefficients

�aðx; vÞ ¼ 1

2
gamðx;vÞ

�
@gðx;vÞmc

@xb
þ @gðx;vÞbm

@xc
� @gðx;vÞbc

@xm

�
vbvc

(75)

defined in terms of the metric (66) and its inverse (67). The
latter will be seen to provide a normalization for local
frames which is preserved along free observer worldlines.
The form of Eq. (74) indeed suggests identifying a parallel
transport on the manifoldMwhich, on the one hand, allows
us to recast the geodesic equation in the form of an auto-
parallel equation, and on the other hand, provides us with
the means to define parallel transport also for purely spatial
vectors. To this end, it is known to be convenient to define
the derivative operators

�i ¼ @

@xi
� �j

iðx; vÞ
@

@vj ; where �i
jðx; vÞ :¼

@�iðx; vÞ
@vj ;

(76)

since now one can define, in full formal analogy to the
Levi-Civita connection in metric geometry, the Chern-
Rund connection coefficients

�i
jkðu; vÞ ¼

1

2
gisðx;vÞð�jgðx;vÞsk þ �kgðx;vÞjs � �sgðx;vÞikÞ:

(77)

These transform, due to the use of the �i operators, pre-
cisely as a linear connection would under a change of
coordinates x ¼ xð~xÞ. It is then straightforward to see
that for any vector w 2 LðCÞ and vector field u on M,
one may define a new vector field with components

ðrwuÞi ¼ wa@au
i þ �ðx; wÞijkwjuk: (78)

Clearly, rw acts as a derivation on vector fields, namely
rwðuþ vÞ ¼ rwuþrwv and rwðfuÞ ¼ ðwfÞuþ frwu
for any function f and vector fields u, v. Thus rw may be
consistently extended to act on arbitrary tensor fields S, T
on M by imposing the Leibniz rule

rwðS 
 TÞ ¼ ðrwSÞ 
 T þ S 
 ðrwTÞ (79)

for arbitrary tensor fields T and S. The derivationrw is not
linear in its directional argument w, though, and thus
amounts to what is often called a nonlinear connection
in the literature. Nevertheless, the nonlinear covariant

derivative r achieves the desired reformulation of the
geodesic equation (74) as the autoparallel equation

r _x _x ¼ 0: (80)

The nonlinear connectionr provides sufficient structure
for the discussion of freely falling nonrotating frames. The
key technical observation is that for a frame field
e0; . . . ; ed�1 that is transported parallel along the first
frame vector e0,

re0ea ¼ 0; (81)

we have the conservation equation

e0ðge0ðea; ebÞÞ ¼ 0: (82)

This means, in particular, that any normalization imposed
on spacetime frames by virtue of the metric (66) is pre-
served along the worldline of a freely falling observer. In
turn, (81) establishes a consistent notion of freely falling
and nonrotating observer frames, and thus inertial
laboratories.

X. HIGH-ENERGY SIGNATURE OF MODIFIED
DISPERSION RELATIONS

The high-energy behavior of massive matter changes not
only quantitatively, but also qualitatively, if the standard
relativistic dispersion relation is modified. In particular,
there is a maximum energy which a massive particle can
have without radiating off, sooner or later, a massless
particle. More precisely, one finds that massive matter
cannot radiate off massless particles if and only if observ-
ers can ride on it. For the standard relativistic dispersion
relation, this is the familiar result that such radiation does
not take place at all. For a modified dispersion relation,
this reveals a covariant mechanism for an effective high-
energy cutoff.
Consider a process where a positive energy massive

particle of momentum p radiates off a positive energy
massless particle. We will now show that due to energy-
momentum conservation, such a process is kinematically
forbidden if and only if p lies in the stability cone

L�1
x ðC#

xÞ; (83)

which in turn always lies entirely within the cone Cx of
massivemomentawith positive energy. For the proof of these
assertions, see further below; for an illustration, see Fig. 9.
Specializing to the familiar case of the standard disper-

sion relation on a Lorentzian manifold, one of course
obtains that L�1

x ðC#
xÞ ¼ Cx; in other words, there is no

Cerenkov radiation in vacuo. But for a modified dispersion
relation where L�1

x ðC#
xÞ ⊊Cx, there is a clear covariant

mechanism for a dynamic energy cutoff: If a massive
particle is made so energetic that its momentum leaves
L�1
x ðC#

xÞ, it may sooner or later radiate off a massless
particle, or several ones, until its momentum lies within
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the stability cone. Reassuringly, observers’ energies are
obviously always below the energy cutoff.

Now we turn to the proof of the assertion that the
stability cone (83) contains precisely the momenta of those
massive particles that cannot radiate off a massless particle
in vacuo. To this end we will need to employ all four
lemmas previously proven in this article: First of all we
get from the third and fourth lemmas that every observer
corresponds to a massive momentum, C#

x � LxðCxÞ ¼
interiorðC?

x Þ, so that L�1
x ðC#

xÞ is well-defined and always
lies within Cx. It is now easy to see that a massive particle
of mass m and positive energy momentum p may only
radiate off a positive energy massless particle if there exists
a positive energy massless momentum r 2 Nþ

x such that
rðLxðpÞÞ> 0. Consider the function

uð�Þ :¼ � lnPx

�
p� �r

m

�
: (84)

Since for any positive �, the covector ��r 2 �ðC#
xÞ? lies

in some half-space of the cotangent bundle, while p 2
Cx � ðC#

xÞ? lies in the corresponding other half, we con-
clude that for some �0 > 1 the line p� �rwill necessarily
intersect the boundary of Cx, so that lim�!�0

uð�0Þ ¼ þ1.

Further, from theorem 4.2 and remark 4.3 of [67], we know
that for a complete hyperbolic Px the Hessian of the barrier
function � lnPx is positive definite. Hence, we find that
u00ð�Þ> 0 everywhere on its domain. Now first assume that
the massive particle of momentum p decays into a massive
particle of the same mass and of momentum p� r and a
massless particle of momentum r, thus respecting energy-
momentum conservation. Then we have from the equality
of masses for the ingoing and outgoing massive particles
that uð0Þ ¼ uð1Þ ¼ 0. But because u00ð�Þ> 0, the only
way for the analytic function u to take the same finite
values at � ¼ 0 and � ¼ 1 while tending to þ1 at some
�0 > 1 is to have 0> u0ð0Þ ¼ �rðLxðpÞÞ. Conversely, as-
sume that rðLxðpÞÞ> 0 for some r 2 Nþ

x . Then u0ð0Þ< 0
and we conclude by the mean value theorem that
there must be a (because of u00ð�Þ> 0 unique) �1 with
0< �1 < �0 such that uð�1Þ ¼ 0, i.e., there is an outgoing
particle of the same mass such that the process occurs. In
summary, a massive particle of momentum p can radiate

off a positive energy massless particle if and only if there
exists an r 2 Nþ

x such that rðLxðpÞÞ> 0.
Now on the one hand, we have that p =2 L�1

x ðC#
xÞ if

rðLxðpÞÞ< 0 for some r 2 Nþ
x . For then r lies certainly

in ðC#
xÞ?, and thus rðLxðpÞÞ> 0 for all p 2 LxðC#

xÞ. On the
other hand, if p =2 L�1

x ðC#
xÞ, we have rðLxðpÞÞ< 0 for

some r 2 Nþ
x . This one sees essentially from the fact

that C#
x is a hyperbolicity cone of P#

x, since then for every
p =2 L�1

x ðC#
xÞ there exists some v on the boundary of C#

x

such that DP#
xðvÞðLxðpÞÞ< 0, as is shown in the second

lemma in Sec. III. Clearly, the image DP#
xðvÞ of v under

the Gauss map DP#
x is then a massless covector, and it

remains to be shown that it lies inside the positive energy
cone C#

x. Since in an energy-distinguishing spacetime, a
null covector is either of positive or of negative energy, it
suffices to find a single y 2 C#

x with yðDP#
xðvÞÞ> 0 in

order to show that DP#
xðvÞ lies indeed in the positive

energy cone ðC#
xÞ?. But this is easily established from the

convexity of C#
x. For then we certainly find some y 2 C#

x

such that yþ v 2 C#
x. But then yðDP#

xðvÞÞ ¼ dP#
xðvþ

syÞ=dsjs¼0 > 0. In summary, p 2 L�1
x ðC#

xÞ if and only if
there exists an r 2 Nþ

x with rðLxðpÞÞ< 0.

XI. NONPHYSICALITY OF GAMBINI-PULLIN
AND MYERS-POSPELOV DISPERSION

RELATIONS

We show how easily our physicality conditions on dis-
persion relations are applied. Starting from the local field
theories underlying two popular proposals for modified
dispersion relations, we show that these theories violate
either predictivity or the energy-distinguishing condition.
The developments of this paper are far from academic

musings of only remote relevance to physics. Indeed,
the identification of bihyperbolicity and the energy-
distinguishing conditions as inevitable properties of dis-
persion relations provides, once known, a simple algebraic
check on the physical consistency of any given dispersion
relation. How simple indeed it is to apply these conditions
has already been shown when we derived that, for certain
classes of area metric geometries, the general linear elec-
trodynamics formulated on such backgrounds satisfy the
physicality conditions.

stable energy cone

L−1(C   )#

#C
observers

inverse Legendre map

ecaps tnegnatecaps tnegnatoc

FIG. 9. Stability cone: If and only if an observer can ride on a particle, the particle cannot lose energy by a vacuum Cerenkov
process.
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In this section we now show that it is equally simple to
extract from our results that some rather popular modifica-
tions of electrodynamics, namely, those of Gambini-Pullin
and Myers-Pospelov, indeed possess dispersion relations
that reveal the underlying field theory to be nonpredictive.
In the case of Myers-Pospelov, hyperbolicity (and thus
predictivity) can be restored, but unfortunately only at the
expense of destroying the energy-distinguishing conditions
(and thus a well-defined notion of positive energy). These
theories thus do not have the physical interpretation that
would be required in order to render observational inves-
tigation of bounds on their parameters meaningful. It is
obvious that it is both necessary, and above all simple, to
subject also any other proposal for modified dispersion
relations to the same straightforward tests, and that not to
do so is simply negligent from a physical point of view.

Gambini-Pullin field equations.Gambini and Pullin [12]
obtained a modified dispersion relation by studying the
interaction Hamiltonian for electromagnetic and gravita-
tional fields in a semiclassical approximation motivated by
loop quantum gravity. More precisely, they found the
following refined equations for the electromagnetic field:

r	 ~B� @t ~Eþ �r2ðr 	 ~BÞ ¼ 0

r	 ~Eþ @t ~Bþ �r2ðr 	 ~EÞ ¼ 0;
(85)

with � being a length scale. In fact, it is easy to see that

Eqs. (85) are not well-posed. For if one defines uA ¼
ð ~E; ~BÞ, Eqs. (85) become

DABð@ÞuB ¼ 0; (86)

with DABð@Þ a matrix-valued differential operator explic-
itly given by

DABð@Þ ¼ ��ik@t �ijk@j þ ��ijk@l@l@j
��ijk@j þ �ijk@l@l@j �ik@t

" #
;

(87)

where in the above expression �ijk is the standard Levi-

Civita symbol and Einstein’s summation convention is
used. The polynomial detDðiqÞ is easily found to be

PðqÞ ¼ detðDðiqÞÞ
¼ �q20ðq2 þ 2�ð ~q � ~qÞ2 � �2ð ~q � ~qÞ3Þ2; (88)

with p2 ¼ p2
0 � ~p � ~p, so that its principal part

Pðq0; ~qÞ ¼ �4q20ð ~q � ~qÞ6; (89)

which is not hyperbolic. Even arguing that only lower order
of � should be considered, the very same problem remains.
Thus, the Gambini-Pullin field equations are not predictive,
and the corresponding dispersion relation nonphysical. It
has been argued [70] that inadequate quantum states were
considered by Gambini and Pullin in obtaining Eqs. (85).
Urrutia et al. [71] performed a reexamination of Gambini-
Pullin calculations, with a more careful motivation for the

quantum states considered. However, these result in only
slightly different refined equations (neglecting a nonlinear
term in themagnetic field) for the electromagnetic field, and
a very similar analysis as above also shows that again the
associated dispersion relation is not hyperbolic.
Myers-Pospelov field equations. Myers and Pospelov

studied dimension-five operators [14] leading to cubicmodi-
fied dispersion relations. Specifically, they proposed the
following modified equations for the electromagnetic field:

D	
�ð@ÞA	 ¼ 0; (90)

with D	
�ð@Þ a matrix-valued differential operator explicitly

written as

D	
�ð@Þ ¼ h�	

� þ 
����
�
�	n
ðn � @Þ2@�; (91)

where in the above expression 
 is the free parameter of the
theory, � is the standard Lorentzian metric � ¼
diagð1;�1;�1;�1Þ, and n is a timelike covector with re-
spect to�, i.e.�ðn; nÞ> 0, which breaks Lorentz invariance.
For the operator (91) one finds

detðDðiqÞÞ ¼ ðq2Þ2½ðq2Þ2 � 
2ðn � qÞ4ðn�n�
� ���n2Þq�q��: (92)

From the above expression we read off the principal part

PðqÞ ¼ 
2ðp2Þ2ðn � pÞ4ðn�n� � ���n2Þp�p�; (93)

which for �ðn; nÞ> 0 is not hyperbolic. This is so, because
thematrixnanc � �acn2, under the assumption�ðn; nÞ> 0,
is positive semidefinite, which implies that one of the factors
of the principal part ofPðpÞ, namely ðn�n� � ���n2Þp�p�

is not hyperbolic. Hence, theMyers-Pospelov field equations
are nonpredictive. Furthermore, even if onewere to choose n
such that�ðn; nÞ 
 0, onewould still have a null plane due to
the term n � p, which we saw at the end of Sec. V to obstruct
the energy-distinguishing property, and thus to lead to a
nonphysical dispersion relation. Precisely the sameargument
also rules out the scalar and fermionic modified field equa-
tions presented in [14].
In conclusion, the field equations found by Gambini,

Pullin, and Urrutia in the framework of loop quantum
gravity, as well as the field equations found by Myers
and Pospelov in the framework of effective field theory
do not lead to physical dispersion relations. More precisely,
there is no spacetime hypersurface � on which initial
data for the electromagnetic field could be given so
that its values on a later hypersurface would be uniquely
prescribed. Hence, phenomenological conclusions, such as
the identification of bounds, based on these modified dis-
persion relations are unfortunately not conclusive.

XII. CONCLUSIONS

Our investigation of viable dispersion relations in clas-
sical physics yielded far more than the identification of the
three restrictive conditions we aimed at. Indeed, while
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deriving that a dispersion relation must be encoded in a
cotangent bundle function P that (i) defines a reduced
homogeneous polynomial in each cotangent space, (ii) is
hyperbolic and has a dual tangent bundle function that is
also hyperbolic, and (iii) is energy-distinguishing, we
collected a number of further important results along the
way.

First of all, the algebraic properties to be satisfied by a
dispersion relation immediately restrict also the possible
fundamental spacetime geometries from which the disper-
sion relation derives. While the connection between the
dispersion relation (encoded in a cotangent bundle function
P) and the fundamental spacetime geometry to which fields
couple (encoded in some tensor G) played an explicit role
only in Secs. II and III, all the restrictions we derived in this
paper for the cotangent bundle function P automatically
translate into restrictions on the geometry G. Making this
transparent has been one purpose of the illustrations
throughout, where we saw how a fundamental geometry
given by a symmetric second rank tensor, for instance, is
automatically restricted to be a Lorentzian geometry (due
to the requirement of bihyperbolicity of the induced
dispersion relation), and then automatically energy-
distinguishing. Thus we recovered, from first principles,
the familiar result that Lorentzian manifolds provide a
consistent fundamental spacetime structure. The crucial
point, of course, is that the very same principles and
resulting conditions apply for any other tensorial geometry.
We illustrated that while these physicality conditions do
hold for certain classes of area metric geometry, they do
not for two very popular proposals for field theories with
modified dispersion relations.

Second, we obtained a complete theory of observers and
point particles. One remarkable observation here was that
massless and massive particles are governed by very differ-
ent geometries on the tangent bundle. While massive par-
ticles are governed by a generically nonpolynomial Finsler
function P�, massless particles are governed by a tangent
bundle function P# that is homogeneously polynomial in
each fiber. But both tangent space structures derive from
the same cotangent bundle structure given by P.
The distinction is generated due to fundamentally different
duality maps between cotangent and tangent spaces,
depending on whether one is dealing with massive or
massless momenta. While in the former case the duality
is given by a Legendre map, it is a projective Gauss map in
the latter case. In both cases, the duality maps are generi-
cally nonlinear, which replaces the ubiquitous linear alge-
bra in metric geometry by the need for some elementary
convex analysis and real algebraic geometry in the general
case.

Third, we found that even for modified dispersion rela-
tions, key properties of the Lorentzian kinematics still
hold. One result is that observers can always be thought
of as massive. Another one that the decay of a massless

particle into massive ones is kinematically impossible. A
third kinematical issue, namely, the kinematic exclusion of
processes where a massive particle radiates off energy in
terms of massless particles, only holds below a certain
energy threshold. The energy threshold, in turn, is encoded
in a subcone of the positive energy massive momentum
cone and thus presents a fully covariant notion. We find
that while observers automatically respect that energy
threshold, there are massive particle momenta exceeding
it. But then a Cerenkov-type process, by which the massive
particle radiates off energy in terms of a massless particle,
is kinematically possible even in vacuo. Proving these
assertions, which amount to a covariant geometric mecha-
nism for an energy cutoff, required use of the entire ma-
chinery we developed for general dispersion relations. Of
course, one cannot make any statement about the average
decay time without studying the quantum theory of matter
on such generalized geometries.
Fourth, we saw that a noncovariant representation of the

dispersion relation, which gives the energy of a point
particle seen by a particular observer as a function of the
spatial momentum, is not even meaningful all by itself. The
trouble is that the decomposition of a spacetime momen-
tum into its energy and purely spatial momentum requires a
temporal-spatial split, which in turn depends on the par-
ticular observer, by way of the cotangent bundle function
P. This means that the kinematical objects appearing in a
noncovariant dispersion relation can only be given mean-
ing by first obtaining the covariant formulation. In practice
therefore it is hard to start with a noncovariant formulation.
Even worse, there may well be no covariant formulation at
all from which a given noncovariant relation could be
derived, in which case the latter is revealed to be in fact
meaningless. It is therefore sensible, both conceptually and
physically, to start from the covariant formulation, as we
have done throughout this article. Even more so, since the
crucial algebraic properties we identified for the cotangent
bundle function are deeply hidden in a noncovariant
formulation.
Fifth, even the notion of freely falling and nonrotating

frames hinges on the covariant dispersion relation at
hand, and is provided by a generically nonlinear connec-
tion on the tangent bundle. Thus the dispersion relation
is also seen to have an effect on the interpretation of
spacetime quantities (such as for instance the electro-
magnetic field strength two-form) in terms of quantities
that are actually measurable in some laboratory and
related to the covariant quantity through an observer
frame (such as electric and magnetic fields). It is both
remarkable and important to realize that the choice of a
dispersion relation has such far-reaching implications. At
the same time, our algebraic restrictions on the cotangent
bundle function P, originally required for other reasons,
single-handedly ensure that all required kinematical no-
tions can be constructed.
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Sixth, the problem of finding a pseudo-Finslerian ana-
logue of Lorentzian geometry is solved. The twist re-
quired by our findings is that the geometry is
established by a single function P on the cotangent
bundle, rather than the tangent bundle. Moreover, one
can and must restrict attention to functions which are
bihyperbolic and energy-distinguishing reduced homoge-
neous polynomials in each cotangent fiber. While we saw
that all of these properties, and their interplay, are impor-
tant for the geometry to provide a viable spacetime struc-
ture, it is bihyperbolicity, in particular, which generalizes
the Lorentzian character of metrics to the much more
general geometries studied in this work. Indeed, the
same physical principle that selects a Lorentzian signature
among all possible metric geometries, namely, the con-
ditions of having well-posed matter field equations and a
well-defined notion of positive particle energy, directly
led to the above general conditions that cover also non-
metric geometries. So while on the cotangent bundle,
there is one single geometric structure over which we
have excellent mathematical control, there are two very
different structures induced by it on the tangent bundle,
the duals P� and P#. The intuition behind many studies
concerning a Finslerian generalization of general relativ-
ity has been correct in allowing for a very generic (non-
polynomial) structure P� on the tangent spaces in order to
describe massive point particles. However, we now know
that attempts to describe massless point particles with the
same structure must fail in general: The massless particle
motion governed by the polynomial structure P# will
generically not coincide with the nonpolynomial P� gov-
erning massive particle dynamics. So not even the most
general Finslerian or Lagrangian geometry on the tangent
bundle could possibly serve as a viable spacetime geome-
try in any other than the most special circumstances (such
as the geometry actually being metric). Starting from the
cotangent bundle, instead, one has available the theory
developed here.

With the results obtained in this work, we are now
well equipped to address two key questions, which arise
whenever a modified dispersion relation (or, equiva-
lently, a modified fundamental spacetime geometry) is
considered.

The first issue is that one needs well-posed dynamical
equations that can replace the Einstein equations.
Remarkably, this apparently physical question is in fact a
predominantly mathematical one: Dynamics for a particu-
lar spacetime geometry can be obtained from studying
minimal representations of the deformation algebra of
hypersurfaces in that very same geometry, so that the field

equations are well-posed by construction. The geometric
key ingredients are to have available, first, a Legendre map
associating the normal covectors of suitable initial data
surfaces with their vector duals, and second, a notion of
proper time that provides a physically distinguished nor-
malization of those normal vectors. For the Lorentzian
case, this program has been carried out in seminal work
by Hojman, Kuchar̆, and Teitelboim [72], and leads to the
Einstein-Hilbert action with an undetermined cosmologi-
cal constant as the unique such dynamics. The geometries
identified in the present work are just the ones where these
tools are indeed still available and thus the corresponding
hypersurface deformation algebras can be derived straight-
forwardly. Finding representations in terms of the geomet-
ric variables directly leads to the corresponding nonmetric
gravity theories whose dynamics are well-posed by con-
struction. In other words, with the tools developed in this
paper, the physical art of constructing an alternative gravity
theory for a given geometric structure has been reduced to
a well-defined mathematical question in representation
theory.
On the other hand, one needs to understand the quan-

tum theory of particles and fields. Equipped with the
technical machinery we developed, one may now indeed
start from the massive or massless point particle action
and perform a first quantization, thereby obtaining field
equations. Subtleties, which one can gloss over in the
case of a Lorentzian background geometry without harm,
now need to be taken into account. For instance, the
restriction that momenta must lie within the hyperbol-
icity cone for massive particles, or on the cone of null
covectors for massless particles, becomes of crucial
technical importance in the nonmetric case. In particular,
this has important repercussions for a second quantiza-
tion of the field equations one obtained from the first
quantization. Again, as in the question of identifying
appropriate gravitational dynamics, the actual execution
of the quantization may present, depending on the
chosen geometry, a hard, albeit now well-defined, mathe-
matical problem.
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[59] L. Hörmander, J. Anal. Math. (Jerusalem) 32, 118
(1977).

[60] V. Y. Ivrii and V.M. Petkov, Russ. Math. Surv. 29, 1
(1974).
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