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Misner space is a two-dimensional (2D) locally flat spacetime which elegantly demonstrates the

emergence of closed timelike curves from causally well-behaved initial conditions. Here we explore the

motion of rigid extended objects in this time-machine spacetime. This kind of 2D time-travel is found to

be risky due to inevitable self-collisions (i.e. collisions of the object with itself). However, in a

straightforward four-dimensional generalization of Misner space (a physically more relevant spacetime

obviously), we find a wide range of safe time-travel orbits free of any self-collisions.
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I. INTRODUCTION

About 40 years ago, Misner [1] introduced an amazing
vacuum solution of the Einstein equations, known as the
Misner space. This is a two-dimensional (2D) spacetime
which describes the formation of closed timelike curves
(CTCs) from causally well-behaved initial conditions. The
solution evolves from an initial spacelike hypersurface
T ¼ const< 0, in a causally well-behaved manner, up to
a ‘‘moment’’ (actually a null hypersurface) denoted T ¼ 0.
Subsequently, the spacetime extends smoothly to the do-
main T > 0, in which all points rest on CTCs. It thus nicely
demonstrates the phenomenon of smooth formation of
CTCs from causally well-behaved initial conditions. This
solution may straightforwardly be extended to any d > 2
dimensions.

Quite remarkably, Misner space is actually flat. It may
be obtained from the Minkowski spacetime by a certain
cut-and-paste operation, in a manner resembling the con-
struction of a cone by folding the flat Euclidean plane.

One of the outstanding open questions in space-
time physics is that of CTC formation: Do the laws of
nature permit the creation of CTCs from physically and
causally well-behaved initial conditions? As it stands,
Misner space falls short of providing a compelling ‘‘real-
istic’’ physical example—mainly due to its topologically
nontrivial (S1 � Rd�1) character (which apparently makes
it incompatible with the asymptotics of our realistic space-
time). Several other interesting examples of time-machine
spacetimes were introduced previously [2], but all of
them suffer from some severe physical problems.
Nevertheless, it was recently demonstrated that a certain
nonflat generalization of Misner space (based on the
‘‘pseudo-Schwarzschild’’ metric rather than Minkowski)
may be used to construct a more feasible time-machine
model [3]: Namely, an asymptotically flat and topologi-
cally trivial four-dimensional (4D) spacetime which satis-
fies all the energy conditions, and which smoothly
develops CTCs at a certain stage.

Besides these constructional issues, one may be con-
cerned about other unusual physical phenomena which

may take place in a time-machine spacetime. In particular,
several authors [4] investigated the stability of classical
and quantum fields in certain time-machine spacetimes.
There are obvious indications for linear instabilities of
various kinds in the neighborhood of the chronology hori-
zon [4]. It is still unclear, however, what will be the out-
come of these instabilities in the full nonlinear context.
In this work we introduce an additional probe for the

nature of physical processes on a time-machine back-
ground: We consider the motion of physical objects of
finite size, and examine whether such objects can penetrate
(and traverse) the region of CTCs, without being destroyed
or damaged by self-collisions. For simplicity we shall
consider here the Misner space (in two or more dimen-
sions). Since this spacetime is flat, no tidal forces will act
on the object, which may therefore be considered as rigid.
Yet the nontrivial identifications may result in self-
collisions—e.g. a ‘‘head-tail’’ collision of the object’s
two edges.
A brief look reveals that such self-collisions certainly

occur for some orbits, but the more interesting question is
whether it is possible to choose orbits which avoid these
collisions. We shall show that it is fairly easy to avoid self-
collisions up to T ¼ 0. However, in the 2D case, collisions
are found to be inevitable once the object has crossed into
T > 0.
Nevertheless, we shall demonstrate here that for any

d > 2 a collision-free motion is possible, throughout the
region of CTCs, for a wide, nonzero-measure, range of
orbits. This includes the case of most obvious physical
relevance, namely, that of a three-dimensional rigid object
moving in 4D Misner space.
We note that the motion of extended objects has been

analyzed previously by several authors, mostly during the
1990s, in the context of the ‘‘billiard-ball’’ problem [5,6].
To the best of our knowledge, however, these investigations
were restricted to the wormhole-based time-machine
spacetime [7]. We are not aware of extensions of the
billiard-ball analyses to the Misner-space background—
or to any other background spacetime which similarly
satisfies the energy conditions [8]. Note also, that Misner
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space is especially convenient due to its flatness, which
implies vanishing tidal forces and hence conceptually sim-
plifies the notion of ‘‘rigid extended object’’.

In Section II we describe the basic structure of Misner
space and analyze its geodesics. Section III is devoted to
analyzing an extended object in a 2D Misner space,
whereas in Section IV we extend Misner space to three
dimensions and analyze the object’s motion in this ex-
tended model. Section V treats the four-dimensional
case, and in Section VI we briefly discuss our results.

Throughout the paper we use relativistic units in which
c ¼ 1.

II. MISNER SPACE

Misner space [1] is a 2D spacetime with the metric

ds2 ¼ �2dTdc � Tdc 2; (1)

where �1< T <1 but the coordinate c is periodic, that
is, each c is identified with c þ c 0 for a certain parame-
ter c 0 > 0. Since detðgÞ ¼ �1 the metric (1) is perfectly
regular everywhere and in particularly at T ¼ 0.

The curves T ¼ const are all closed due to the period-
icity of c . Whereas the T < 0 curves are spacelike, the
T > 0 curves are timelike. It then follows that all points
at T > 0 rest on CTCs but those at T < 0 do not. The curve
T ¼ 0 is null, and it serves as the chronology horizon
(i.e. the hypersurface separating the causal and noncausal
parts of spacetime).

Any hypersurface T ¼ const � T0 < 0 is spacelike and
can be chosen as an initial hypersurface over which initial
data (for both geometry and physical fields) may be speci-
fied. The hypersurface T ¼ 0 is a Cauchy horizon for
any such initial hypersurface T ¼ T0 < 0. The Cauchy

evolution of the latter unambiguously yields the portion
T0 < T < 0 of Misner space. Assuming that the evolution
beyond the Cauchy horizon proceeds in an analytic man-
ner, we recover the region T > 0 as well, and CTCs appear.
Hence Misner space satisfactorily describes the formation
of CTCs from rather conventional (though topologically
nontrivial) initial conditions.
The metric (1) is flat, so in a local sense it is equivalent

to 2D Minkowski. However, in a global sense it is
drastically different from Minkowski due to the identifica-
tion of c . The universal covering of Misner space is
obtained by unfolding the coordinate c , namely, by setting
�1< c <1. In this covering space the portions T < 0
and T > 0 correspond to regions I and II of Minkowski,
respectively, as shown in Fig. 1. There are an infinite
number of Misner copies in these two regions of
Minkowski.
We begin by presenting the Misner process—the proce-

dure which transforms the Minkowski spacetime into
Misner. To this end we introduce an intermediate,
Rindler-like, coordinate z which will be useful in later
analysis. Following the Misner process we derive the geo-
desics in the Misner coordinates and also discuss their
relation to the Rindler-like coordinate z.

A. Coordinate transformation

We start with the 2D Minkowski metric

ds2 ¼ �dt2 þ dx2: (2)

Misner’s covering space occupies only the portion x < t of
Minkowski, namely, the gray regions I and II in Fig. 1. We
first elaborate on region I. We consider the coordinate
transformation
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FIG. 1 (color online). Misner space and its universal covering presented in Minkowski coordinates ðt; xÞ. In both figures (a,b), the
universal covering (the portion t < x, which corresponds to �1< c <1) is the shaded (gray) region, consisting of the two
Minkowski quadrants I and II. In the Misner space (compactified c ), the two diagonal lines denoted ‘‘c ¼ const’’ in Fig. 1(a)
are identified. Alternatively, Misner’s identification may be implemented by identifying two z ¼ const lines. This is demonstrated in
Fig. 1(a), which displays a pair of such identified z ¼ const lines in each of the quadrants I, II. In both figures identification points are
marked by the same Greek letter.
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�
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(3)

where T < 0 and �1< z <1. This leads to the metric

ds2 ¼ dT2

T
� Tdz2: (4)

We now introduce the coordinate c by

c ¼ z� lnjTj: (5)

Transforming the line element (4) from z to c , one obtains
Misner’s metric (1).

The analytic extension of the metric (1) from T < 0
(region I) to T > 0 (region II) is straightforward.
However, we note that the transformation (3) only applies
to region I. In order to directly transform region II from
ðt; xÞ to ðT; zÞ, we must modify the transformation into

x ¼ 2
ffiffiffiffi
T

p
cosh

�
z

2

�
;

t ¼ 2
ffiffiffiffi
T

p
sinh

�
z

2

�
:

(6)

It will result in the metric (4) as before. [The transforma-
tion (5) defining c applies to T > 0 without any modifi-
cation, and yields the metric (1) in region II as well.]

Note that the lines T ¼ const are spacelike in region I
and timelike in region II, and the lines z ¼ const are time-
like in I and spacelike in II. On the other hand, the lines
c ¼ const are everywhere null.
So far we have constructed Misner’s metric (1) on the

(topologically trivial) ‘‘half-Minkowski’’ manifold,
namely, the union of regions I and II in Fig. 1. In
the next stage, we choose a parameter c 0 > 0 and fold
the c coordinate by identifying c with c þ c 0 (at the
same T). The coordinate T still takes the entire range
�1< T <1. A pair of such identified constant-c lines,
embedded in the half-Minkowski covering space, is shown
in Fig. 1(a). On these two lines we marked identified points
by the same Greek letter. These identified pairs of points all
lie on constant-T lines.

It will be useful to note at this stage that identifying
the c coordinate at the same T value is equivalent to
the identification of the z coordinate at the same T [see
Eq. (5)]. Lines of constant z are presented in Fig. 1(b),
along with the constant-T lines. Again, we marked identi-
fied points by the same Greek letter.

Altogether the transformation from Minkowski to
Misner is:

t ¼ Teðc =2Þ � e�ðc =2Þ;

x ¼ Teðc =2Þ þ e�ðc =2Þ;
(7)

and the inverse transformation is:

c ¼ �2 ln

�
x� t

2

�
; (8)

T ¼ x2 � t2

4
: (9)

These relations hold at both regions I and II.
As was mentioned above, Misner’s identification can

be manifested by identifying two lines of constant z (at
the same T, and with z values separated by c 0). The
velocity dx=dt is fixed along each such line of constant z
[cf. Eqs. (3) or (6)], therefore the relative velocity between
a pair of identified z ¼ const lines is well-defined. A
straightforward calculation reveals that this relative veloc-
ity is u ¼ Tanhðc 0=2Þ. Thus, Misner’s ‘‘folding’’ process
may be viewed as identification under the action of a boost
with velocity u.
Let ðp; qÞ be a pair of points in the half-Minkowski

covering space, and let ðp0; q0Þ be their images under a
certain (generic) boost. Since in 2D Minkowski spacetime
any two boosts are commutative, it immediately follows
that p0 and q0 are identified (under Misner’s folding) if and
only if p and q are identified. It thus follows that the 2D
Misner space inherits the boost invariance of Minkowski.

B. Geodesics

Our main interest in this work is the motion of a rigid
object in Misner space. To simplify the analysis, we shall
employ the above mentioned boost symmetry and choose
a Lorentz frame in which the object is at rest [namely,
xðtÞ ¼ const]. We start here by analyzing the properties of
a single such geodesic.
It is convenient to express the geodesics using their

corresponding function Tðc Þ [9]. A single static geodesic
satisfies (in the covering space) x ¼ const � x0, which by
virtue of Eq. (7) yields

Tðc Þ ¼ �e�c þ x0e
�ðc =2Þ: (10)

Consider the propagation of such an x ¼ x0 geodesic
from some T < 0 toward T ¼ 0. The relation (10) makes it
clear that there are two different classes of such geodesics:
Those with x0 < 0 only approach T ¼ 0 at c ! 1. On the
other hand, those with x0 > 0will all reach T ¼ 0 at a finite
c , and continue their journey in the region T > 0 [10].
Since our primary objective is the motion of extended
objects into the region of CTCs (T > 0), throughout the
rest of the paper we shall restrict our attention to the second
class, namely, the x0 > 0 geodesics.
Consider now the behavior of those x0 > 0 geodesics at

T > 0. For each of these geodesics the function Tðc Þ will
reach its maximum at its intersection point with t ¼ 0. This
behavior is demonstrated in Fig. 2(a), which displays two
different x ¼ x0 > 0 geodesics, as well as the line t ¼ 0.
This property can be easily deduced by finding the ðT; c Þ
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coordinates at the maximum point of the relation (10), and
using Eq. (7) in order to obtain the corresponding t value.

These static geodesics exhibit a simple symmetry when
displayed in the ðT; zÞ coordinates. From Eq. (6) we ob-
serve that in the T > 0 region, the relation x ¼ x0 yields

TðzÞ ¼
�

x0
2 coshðz=2Þ

�
2
: (11)

This function is symmetric about z ¼ 0, hence the
maximum of T is attained at z ¼ 0. This is illustrated in
Fig. 2(b), which displays a single x ¼ x0 geodesic and the
line t ¼ 0 in ðT; zÞ coordinates. From Eq. (6) it is also clear
that t ¼ 0 coincides with z ¼ 0, demonstrating again that
the geodesics x ¼ x0 reach their maximal T value at a point
where t vanishes.

III. ROD MOTION: THE TWO-DIMENSIONAL
CASE

Consider now a rigid extended object, a ‘‘rod’’, which
moves freely in 2D Misner space. The rod may be consid-
ered as a one-parameter family of rod’s points. Presumably

no external forces are present, and since Misner space is
flat, the tidal force vanishes as well, so all rod’s points are
expected to move on geodesics (as long as self-collisions
have not occurred). The rod’s motion in spacetime is thus
described by a congruence of timelike geodesics. Rigidity
implies that these geodesics are all parallel (in x-t coor-
dinates). However, the identification of c may lead to a
collision of two rod’s points. Furthermore, at T > 0 a rod
point may even collide with itself (owing to the presence of
CTCs). Our main objective is to investigate whether such
collisions may be prevented.
Exploiting the boost invariance of Misner space, we

choose a Lorentz frame in which the rod is at rest (in the
corresponding Minkowskian universal covering space), so
all geodesics in the rod’s congruence satisfy x ¼ const �
x0. Each rod’s point is thus characterized by its x0 value.
The rod presumably starts its journey at the pre-CTC

region T < 0, and moves towards the CTC region T > 0.
We shall first consider the journey toward the chronology
horizon, namely, the domain T < 0.
We denote the rod’s two edges by x0 ¼ a1 and x0 ¼ a2,

assuming 0< a1 < a2. Figures 3(a)–3(c) display the orbits
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T 0

T
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z
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FIG. 2 (color online). Constant-x geodesics plotted in Misner coordinates ðT; c Þ and in ðT; zÞ coordinates. The dashed (black) curve
represents the t ¼ 0 line, which in fact coincides with z ¼ 0. Figure 2(a) shows three geodesics: The dotted (blue) curve is an x0 < 0
geodesic. The two solid (red) curves represent x0 > 0 geodesics. These geodesics attain their maximal T values at their intersection
with t ¼ 0. Figure 2(b) demonstrates the symmetry of a single (x0 > 0) geodesic around z ¼ 0.
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FIG. 3 (color online). A plot of the rod’s two edge geodesics x ¼ a1;2, embedded in the universal covering space. These geodesics
are represented by dashed (red) lines—in Minkowski coordinates ðt; xÞ, in Misner coordinates ðT; c Þ, and in ðT; zÞ coordinates, in
Figs. 3(a)–3(c) respectively. In Fig. 3(a) the short horizontal bold solid (black) line represents the rod, and the two vertical lines are the
edge geodesics. In Figs. 3(b) and 3(c) the two solid (blue) curves represent curves of constant t. In the 2D case, the spacetime region
occupied by the rod is the entire gray strip. In the d � 3 case (with v � 0, as discussed below), at a given y ¼ const hypersurface the
rod occupies the domain Sy, namely, the quadrangle-like region denoted S.
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of the two edge geodesics (in the universal covering space)
by dashed (red) lines, in t-x, T-c , and T-z coordinates,
using Eqs. (10) and (11). The rod thus occupies the region
between the two dashed (red) lines, marked by gray in
Figs. 3(b) and 3(c). Evidently, a necessary and sufficient
condition for a safe journey up to the chronology horizon
will be that at any slice T ¼ constant � 0, the
c -difference between the two edges will be <c 0.
The function Tðc Þ of Eq. (10) is monotonic throughout

the region T � 0 and can thus be inverted:

c ðTÞ ¼ 2 ln2� 2 ln½x0 þ ðx20 � 4TÞ1=2�: (12)

At constant T, the c -difference between the two edges
will be

�c ðTÞ � jc 2ðTÞ � c 1ðTÞj ¼ 2 ln

0
B@
a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � 4T

q

a1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4T

q

1
CA:

(13)

A collision-free motion will occur if �c ðTÞ< c 0 for any
T � 0. Since the right-hand side of Eq. (13) is a mono-
tonically increasing function of T, it will reach its maxi-
mum (in the domain T � 0 presently under consideration)
at T ¼ 0. This determines the criterion for a collision-free
motion of the rod up to the chronology horizon: c 0 >
2 lnða2=a1Þ. This criterion may be reformulated as a con-
dition on a1:

a1 >
Lx

ec 0=2 � 1
; (14)

where Lx � a2 � a1 is the rod’s length.
We turn now to consider the rod’s motion in the CTC

region T > 0. As is evident from Eq. (10), the x0 > 0
geodesics reach a (positive) maximal value of T, then
Tðc Þ decreases monotonically until it vanishes as
c ! 1. This behavior is demonstrated by the two dashed
(red) lines in Fig. 3(b). We denote this (geodesic-
dependent) maximal T value by Tmax. Any constant-T
line in the range 0< T < Tmax intersects the geodesic
twice, at two different c values. For a given geodesic,
we denote the c -difference between these two intersection
points by �c ðTÞ. This �c ðTÞ diverges at the limit T ! 0þ.
A self-collision occurs whenever �c ðTÞ ¼ nc 0, where
hereafter n denotes a nonvanishing integer. Thus, regard-
less of the value of c 0, there will be an infinite sequence of
such self-collisions as T ! 0þ. This means that any time-
like geodesic will hit itself an infinite number of times
immediately after crossing T ¼ 0.

We conclude, that within the framework of 2D Misner
space, once a point particle crosses the chronology horizon
it will inevitably hit itself. It is obvious that a finite-length
rod will be subject to such self-collisions too.

However, our physical spacetime is four dimensional.
Can these extra dimensions save the object from this
inevitable fate of self-collisions? The rest of this paper

will be devoted to addressing this question. We shall
show that by adding one dimension (or more) to the
Misner space, the way is opened for a collision-free jour-
ney of rigid objects. We shall first demonstrate this in three
dimensions, and then address the straightforward extension
to four (or more) dimensions.

IV. THE THREE-DIMENSIONAL CASE

We shall consider now a two-dimensional rigid extended
object moving in a three-dimensional spacetime with the
flat metric

ds2 ¼ �2dTdc � Tdc 2 þ dy2; (15)

which is the straightforward extension of the 2D Misner
metric (1) to three dimensions. As before, c is periodic
with a period c 0, and �1< T, y <1. Using Eq. (7)
again to transform ðT; c Þ into ðt; xÞ, one recovers the
standard three-dimensional Minkowski line element in
the Cartesian coordinates ðt; x; yÞ.
As was mentioned above, Misner’s identification in the

t-x (or T-c ) plane may be associated to a boost (with
relative velocity u) in the x direction. Now, in d > 2
Minkowski spacetime two boosts commute if and only if
they are co-directed. By a straightforward extension of the
discussion at the end of Sec. II A we observe that d > 2
Misner space is invariant to boosts in the x direction, but
not to boosts in any other direction.
Similar to the two-dimensional case, we assume that

all object’s points (OPs) move along geodesics. In the
Minkowski coordinates these are just straight lines. The
object’s rigid motion in spacetime is described by a con-
gruence of parallel timelike geodesics, all sharing the same
velocity vector. As before, we use the boost invariance in
the t-x plane to pick a Lorentz frame in which the object’s
velocity has a vanishing x component. We assume,
however, that the object does have a nonvanishing velocity
v > 0 in the y direction (otherwise, the previous analysis
would still hold at each y separately, and self-collisions
would be inevitable at T > 0). The OPs thus move along
the geodesics

xðtÞ ¼ x0; yðtÞ ¼ y0 þ vt; (16)

where the constants of motion x0, y0 characterize the
object’s individual points. For simplicity we shall consider
here a rectangular object described by

a1 � x0 � a2; b1 � y0 � b2 (17)

with a1 > 0 [12]. The object’s dimensions (in the chosen
Lorentz frame) are ‘x ¼ a2 � a1, ‘y ¼ b2 � b1. The
proper dimensions (as measured in the object’s local rest

frame) are Lx ¼ ‘x and Ly ¼ �‘y, where � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
.

A collision occurs when two distinct events ðp; qÞ on the
object’s congruence satisfy

Tp ¼ Tq; c p ¼ c q þ nc 0; yp ¼ yq: (18)
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(These two events either belong to two different object’s
geodesics, or to the same geodesic but at different proper
times.)

We shall analyze the possibility to avoid self-
collisions—first at T � 0, and then at T > 0.

A. T � 0

It is easy to see that Eq. (14) remains a sufficient
condition for collision avoidance at T � 0: First, any col-
lision in 3D must involve, in particular, a collision in the
two-dimensional subspace ðT; c Þ [as manifested by the
first two equalities in (18)]. Also the relation (16) for xðtÞ
is the same as it was in the 2D case. Thus, the analysis of
the previous section still implies that if Eq. (14) is satisfied,
collisions in the ðT; c Þ subspace will be avoided at T � 0.

B. T > 0

Let us denote by Sy the intersection of the object’s

congruence (a three-parameter set) with some y ¼ const
slice. Sy is a two-parameter set which may be parametrized

by ðx0; y0Þ. It occupies a nonzero-measure portion of the
y ¼ const hypersurface. We may use ðT; c Þ as coordinates
for this hypersurface—and hence also for its subset Sy.

Figure 3(b) displays a certain y ¼ const hypersurface and
its corresponding subset Sy, which is the quadrangle-like

domain denoted ‘‘S’’. The association of an OP ðx0; y0Þ
with the corresponding ðT; c Þ coordinates (for a specific y)
is done by Eqs. (8) and (9)—along with Eq. (16), which
now reads x ¼ x0 and t ¼ ðy� y0Þ=v. The boundary of Sy
thus consists of the two lines x ¼ a1;2 and the two lines

t ¼ t1;2, where t1;2 � ðy� b1;2Þ=v. From Eq. (7), each

of these boundary lines corresponds to a curve in the

ðT; c Þ plane, given by either T ¼ x1;2e
�c =2 � e�c or

T ¼ t1;2e
�c =2 þ e�c .

For later convenience we define �t � t1 � t2 and
tcen � ðt1 þ t2Þ=2, such that t1;2 ¼ tcen � �t=2. Note that

�t ¼ ‘y=v is a constant of motion. On the other hand tcen
grows linearly with y: tcenðyÞ ¼ �ðb1 þ b2Þ=2vþ y=v.
This will allow us to replace the variable y by tcen in the
analysis below.

For any line T ¼ const which intersects Sy, we define

�c yðTÞ to be the span of c along the intersection of this

line with Sy. More precisely, �c yðTÞ is the c -difference

between the two (furthest [13]) intersection points of the
line T ¼ const with the boundary of Sy. We further define

�c maxðyÞ � maxT>0�c yðTÞ. It now immediately follows

from Eq. (18) that a collision may occur at a given y only if
�c maxðyÞ � c 0. That is, a collision-free motion is guar-
anteed if �c maxðyÞ< c 0 for all y. This raises the issue of
whether �c maxðyÞ is bounded (as a function of y) or not.

It will be easier to explore the dependence of �c max on
tcen than on y. We thus define [14]

�� � max
tcen

�c maxðtcenÞ: (19)

If this maximum exists (i.e. it is finite), then the condition
for collision-free motion will be simply c 0 >��.
We shall now employ the reflection symmetry of the

problem with respect to the z coordinate to show that it is
sufficient to take the maximum of �c maxðtcenÞ in the range
tcen < 0. To this end all we need to show is that the function
�c maxðtcenÞ is symmetric about tcen ¼ 0. This symmetry is
illustrated in Fig. 4, which displays (in T-z coordinates)
two different, symmetric, Sy regions, one (denoted S) for

which tcen ¼ �t0 and the other one (denoted S’) for which
tcen ¼ t0, for some t0 > 0. The horizontal dashed (purple)
line denotes a certain T ¼ const line. The figure also
shows the four t ¼ const lines which border these two
Sy regions—as well as their four intersection points with

the T ¼ const line, denoted by p, q, q0 and p0. Corres-
pondingly we denote the four t values by tp, tq, tq0 , and tp0

respectively. Since jtcenj is the same for S and S’ and �t is
fixed, one can easily verify that tp0 ¼ �tp and tq0 ¼ �tq.

Consider now the pair of points p and p0. They have a
common T but opposite t values (tp0 ¼ �tp). From Eq. (6)

it follows that these two points also have opposite z values,
zp0 ¼ �zp. The same argument obviously applies to the

other pair of points q, q0, and we obtain zq0 ¼ �zq.

Defining �z ¼ zq � zp and �0
z ¼ zp0 � zq0 , we find that

�0
z ¼ �z. However, from Eq. (5) it is obvious that for any

pair of points on a given T ¼ const line, the differences in
c and in z are the same. Therefore, �c yðTÞ (defined

above) is the same for S and S’. Since this argument applies
to any T ¼ const line [15], we find that �c max is also the
same for these two symmetric Sy regions, which completes

our argument. We therefore conclude that

�� ¼ max
tcen�0

�c maxðtcenÞ: (20)

Next, for any Sy we define �~c max to be the maxi-

mal c -difference between all points in Sy. Obviously, for

any T (and any given Sy), �~c max � �c yðTÞ, therefore

S S
p pq q

tp tptq tq

a2

a1

z

T

FIG. 4 (color online). The reflection symmetry of the geo-
desics and constant-t lines around the z ¼ 0 line, illustrated in
ðT; zÞ coordinates. The dashed (red) curves represent the geo-
desics of the rod’s two edges, x ¼ a1;2. The four solid (blue)

curves represent curves of constant t. S and S’ are two symmetric
Sy regions, corresponding to two different y ¼ const slices with

the same jtcenj.
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�~c max � �c max. As is obvious from the layout of Sy in

Fig. 3(b), �~c max is nothing but the c -difference between
the two ‘‘corners’’ (x ¼ a1, t ¼ t1) and (x ¼ a2, t ¼ t2) of
Sy, and from Eq. (8) it immediately follows that

�~c max ¼ 2 ln
a2 � t2
a1 � t1

¼ 2 ln
a2 þ �t=2� tcen
a1 � �t=2� tcen

: (21)

We now define, in analogy with Eq. (20) above,

�~� ¼ max
tcen�0

� ~c maxðtcenÞ: (22)

Obviously, �~� � ��, hence finiteness of �~� will guar-
antee a finite ��—and will ensure collision-free motion

for any c 0 > �~�.
The maximum in Eq. (22) is easily calculated. Notice

that �~c max is a monotonically increasing function of tcen,
therefore the maximum is attained at tcen ¼ 0:

�~� ¼ �~c maxðtcen ¼ 0Þ ¼ 2 ln
a2 þ �t=2

a1 � �t=2
: (23)

Clearly, this parameter is well-defined only if a1 > �t=2,
which we shall assume.

As mentioned above, a sufficient condition for a

collision-free motion is c 0 > �~�. It will be useful to re-
express this last inequality as a condition on a1, once c 0 is
given. Setting a2 ¼ a1 þ Lx one obtains the condition

a1 >
Lx þ �t

ec 0=2 � 1
þ �t

2
: (24)

Note that this inequality automatically ensures that
a1 > �t=2 (which was assumed above).

This condition on a1 was designed so as to avoid colli-
sions throughout the region T > 0. However, it is definitely
stronger than the inequality (14) which ensured collision-
free motion at T � 0. We therefore conclude that the
constraint (24) is a sufficient condition for avoiding colli-
sions throughout the entire Misner space. Stated in other
words: Given the spacetime’s identification parameter c 0,
the object’s dimensions Lx, Ly, and its velocity v > 0 (and
hence also �t ¼ Ly=�v), it is always possible to avoid
collisions by placing the object at sufficiently large
x values—namely, by increasing a1.

V. THE FOUR-DIMENSIONAL CASE

We turn now to consider the more realistic case, the four-
dimensional Misner space with the metric

ds2 ¼ �2dTdc � Tdc 2 þ dy2 þ dZ2 (25)

(with periodic c as before, and �1< T, y, Z <1). The
object again has a velocity v > 0 in a direction perpen-
dicular to x, and without loss of generality we take it to be
in the y direction. The OPs thus move on parallel geodesics
satisfying Eq. (16) as well as ZðtÞ ¼ Z0. The object is now
assumed to be a three-dimensional rectangular box de-
scribed by Eq. (17) along with c1 � Z0 � c2.
One can easily verify that since there is no motion in

the Z direction (unlike in y), the addition of the Z dimen-
sion does not affect the above analysis in any way (that is,
the analysis of the previous section still applies at any
Z ¼ const slice). Equation (24) thus remains a sufficient
condition for a collision-free motion.

VI. DISCUSSION

We conclude that self-collisions indeed constitute a real
threat for time travels, but at the same time they do not pose
an impenetrable barrier: In the four-dimensional Misner
space (like in any of its d � 3 counterparts), there exists a
wide range in the space of possible orbits for which self-
collisions are avoided—as demonstrated in Eq. (24).
However, this requires the object to have a sufficient
velocity in a direction perpendicular to the one underlying
the Misner identification.
As was discussed above, the Misner space itself admits a

nonstandard topology (c is closed), which restricts the
physical relevance of this specific flat geometry.
However, curved-spacetime generalizations of 4D Misner
space (e.g. the compactified ‘‘pseudo-Schwarzschild’’ ge-
ometry) may serve as a core for more acceptable time-
machine spacetimes, which are topologically trivial and
asymptotically flat [3]. It will be interesting to investigate
the motion of extended objects into and throughout
the CTC region of such nonflat time-machine spacetimes
as well.
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