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We analyze the impact of the leading quantum gravity effects on the properties of black holes with

nonzero angular momentum by performing a suitable renormalization group improvement of the classical

Kerr metric within quantum Einstein gravity. In particular, we explore the structure of the horizons, the

ergosphere, and the static limit surfaces as well as the phase space available for the Penrose process.

The positivity properties of the effective vacuum energy-momentum tensor are also discussed and

the ‘‘dressing’’ of the black hole’s mass and angular momentum are investigated by computing the

corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical form. As for

their thermodynamical properties, a modified first law of black-hole thermodynamics is found to be

satisfied by the improved black holes (to second order in the angular momentum); the corresponding

Bekenstein-Hawking temperature is not proportional to the surface gravity.
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I. INTRODUCTION

During the past decade the gravitational average action
[1] has been used both as a framework within which the
asymptotic safety scenario for a consistent microscopic
quantum theory of gravity can be tested [1–22] and as a
convenient tool for finding the leading quantum gravity
corrections to various classical spacetimes. The latter in-
vestigations exploited the effective field theory properties
of the average action �k in an essential way. It can be
regarded as a one-parameter family of effective field theo-
ries, one for each value of the built-in infrared cutoff k
[23–26]. In single scale problems involving a typical
covariant momentum scale k a tree-level evaluation of �k

encapsulates the leading quantum effects at this scale.
Thanks to this property the running couplings contained
in �k can be used in order to ‘‘renormalization group
improve’’ the classical field equations or solutions thereof
[27–39]. The possibility of interpreting �k as a ‘‘running
effective field theory’’ distinguishes the effective average
action [23] from alternative functionals satisfying exact
renormalization group (RG) equations. The functional
evolved by Polchinski’s equation, for instance, has the
interpretation of a bare action. Therefore it cannot be
used for ‘‘improvement’’ purposes in the same way [25].

Knowing the gravitational average action with some
accuracy (i.e. in some truncation) means that we know
the scale dependence of a set of generalized gravitational
couplings; typically it includes Newton’s constant, for
instance. These running couplings can be used in order to
RG improve classical spacetimes. The basic idea is as
follows. One starts by picking a solution of the classical
field equation. This solution will in general depend on the

classical gravitational couplings. Then one replaces the
classical ones by their k-dependent counterparts and tries
to express the value of k by means of a ‘‘cutoff identifica-
tion’’ in terms of the relevant geometrical or dynamical
scale.
In Refs. [28,29] this approach has been applied to sta-

tionary and spherically symmetric, uncharged black holes.
The classical starting point was the Schwarzschild metric
which involves the classical Newton’s constant G0 in the
familiar way. The improvement consisted in replacing the
classical G0 by the running Newton’s constant GðkÞ ob-
tained from the functional RG equation for the effective
average action. A subtle point is finding a suitable cutoff
identification. It should be chosen in such a way that higher
values of k correspond to a ‘‘zooming’’ into the details of
the black hole. One can try to find a meaningful identifi-
cation in the form k ¼ kðP Þ which associates scales to
spacetime points P . It is plausible that this map should be
such that k is smaller (larger) at larger (smaller) distances
from the center of the black hole. In the analogous situation
in flat space one would set k / 1=r, where r is the radial
distance; with this identification one can obtain the
quantum-corrected Coulomb potential from the k depen-
dence of the fine structure constant, for instance. In gravity
the assignment of scales to points should be diffeomor-
phism invariant; i.e. upon introducing coordinates x� the
relationship k ¼ kðP Þ should be represented by a scalar
function x� � kðx�Þ. In [28,29] the following class of
cutoff identification was considered:

kðP Þ ¼ �=dðP Þ; (1.1)

dðP Þ ¼
Z
C

ffiffiffiffiffiffiffiffiffiffi
jds2j

q
: (1.2)

Here � is a constant of order unity and dðP Þ is a distance
scale typical of the point P . According to (1.2) it is given
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by the length of a certain curve C. This curve is supposed to
end at P and to start at some reference point P 0. The line
element ds2 refers to the classical metric. While diffeo-
morphism invariant by construction, the above Ansatz is
still very general and different choices are possible for C.
They correspond to different ways of ‘‘refocusing’’ the
‘‘microscope’’ with which spacetime is observed when
one goes from one point to another. In Refs. [28,29] a
straight radial line from the center to the point P has
been employed, and this choice has been motivated in
detail. The only running parameter considered in this
analysis was Newton’s constant. Its k dependence had
been assumed to be given by the formula

GðkÞ ¼ G0

1þ wG0k
2
: (1.3)

Here G0 is the classical (macroscopic) Newton’s constant,
and w is a positive constant. This equation is a rather
precise approximation to GðkÞ as obtained from the
Einstein-Hilbert truncation [1] for all RG trajectories
with a negligible cosmological constant in the classical
regime. According to (1.3), the running Newton’s constant
interpolates between G0 for k ! 0 and the non-Gaussian
fixed point behavior GðkÞ / 1=k2 ! 0 for k ! 1. With
(1.1) inserted into (1.3) we obtain the position-dependent
Newton’s constant

GðP Þ ¼ G0d
2ðP Þ

d2ðP Þ þ �wG0

(1.4)

with �w ¼ w�2.
The RG-improved Schwarzschild metric was obtained

by replacing G0 ! GðP Þ in the classical metric. It has
been analyzed in great detail in [28]. In particular, its
horizon structure was investigated. One finds that besides
the usual Schwarzschild horizon there exists a new inner
horizon which merges with the (standard) outer one at a
critical value of the mass. An ‘‘extremal’’ black hole of this
kind has vanishing Hawking temperature. In fact the im-
provement suggests a very attractive scenario for the final
state of black-hole evaporation: In the early stages the
temperature increases with decreasing mass, as predicted
by the conventional semiclassical analysis. However, once
the mass approaches the Planck mass, the quantum gravity
effects reduce the temperature, and ultimately ‘‘switch
off’’ the Hawking radiation. For further details on the
RG-improved Schwarzschild black hole we refer to [28]
and to [29] where a dynamical picture of the evaporation
process by means of a quantum-corrected Vaidya metric
has been developed. The generalization to higher dimen-
sions was considered in [38].

The purpose of the present paper is to perform a similar
analysis for rotating black holes. We shall construct and
analyze an RG-improved version of the Kerr metric. In
Boyer-Lindquist coordinates the classical Kerr metric
reads [40]

ds2class ¼ �
�
1� 2MG0r

�

�
dt2 þ �2

�
dr2 þ �2d�2

þ�sin2�

�2
d’2 � 4MG0rasin

2�

�2
dtd’: (1.5)

Here we used the traditional abbreviations

�2 � r2 þ a2cos2�; (1.6)

� � r2 þ a2 � 2MG0r; (1.7)

� � ðr2 þ a2Þ2 � a2�sin2�: (1.8)

Kerr black holes are characterized by two parameters: their
mass M and angular momentum J ¼ aM [41–43].
Applying the method outlined above we shall

‘‘improve’’ ds2class � gclass�� dx�dx� by replacing G0 !
GðkÞ and using a cutoff identification of the type (1.1).
To start with, we are going to analyze various plausible
curves C, including a straight radial line again, and discuss
their physical properties.
The classical Kerr spacetime has two spherical horizons

H� at the radii [44,45]

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p
(1.9)

and two static limit surfaces S� at

rS�ð�Þ ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2cos2�

p
: (1.10)

(Here

m � MG0 (1.11)

denotes the ‘‘geometric mass’’ which actually has the
dimension of a length.) We shall discuss in detail the
analogous critical surfaces (horizons and static limit
surfaces) of the improved metric. In particular, we demon-
strate that, contrary to the Schwarzschild case, the im-
provement does not lead to the formation of additional
horizons.
As compared to the Schwarzschild metric, the Kerr

spacetime displays several new features which are inter-
esting from a conceptual point of view. One of them is the
existence of an ergosphere and the possibility of extracting
energy from the black hole via the Penrose process
[45–47]. We shall analyze in detail how the quantum
gravity effects influence the structure of the ergosphere
and the ‘‘phase space’’ available for the Penrose process.
Another new feature of the Kerr spacetime becomes

apparent when one asks whether the improved black holes
still satisfy a set of (quantum-corrected) laws of black-hole
thermodynamics. In full generality this is an extremely
difficult question. Here we can only analyze whether there
exists an entropylike state function satisfying a modified
version of the first law. In the case of Kerr black holes the
space of states, labeled by M and J, is two-dimensional.
As a result, it turns out that the mere existence of an
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entropy is a nontrivial issue. (For the Schwarzschild metric
the space is one-dimensional and so the existence of an
entropy for the improved black hole is guaranteed.) We
shall see that, within the present approach, a state function
with the interpretation of an entropy can exist only if the
corresponding Hawking temperature is no longer propor-
tional to the surface gravity, as it is semiclassically. At
least in the limit of small angular momentum we shall
find unambiguously defined relations T ¼ TðJ;MÞ and
S ¼ SðJ;MÞ for the temperature and entropy of the im-
proved rotating black holes.

The remaining sections of this paper are organized as
follows. In Sec. II we discuss the cutoff identification we
are going to employ, and in Sec. III we introduce the RG-
improved Kerr metric and analyze some of its general
properties; in particular, we derive formulas for the modi-
fied static limit and horizon surfaces, we reexpress the
metric in a set of appropriately generalized Eddington-
Finkelstein coordinates, and we compute the surface grav-
ity of the rotating quantum black holes. Then, in Secs. IV
and V we analyze the detailed structure of the critical
surfaces and the phase space of the Penrose mechanism
(negative energy states), respectively, using both analytical
and numerical methods. In Sec. VI we reinterpret the
improved vacuum black hole as a classical one in the
presence of a certain kind of fictitious matter which mimics
the quantum effects, and we investigate the positivity
properties of this matter system. In Sec. VII we show
how the ‘‘bare’’ mass and angular momentum of these
black holes get ‘‘dressed’’ by the quantum effects in ac-
cordance with the antiscreening character of quantum
Einstein gravity. Finally, in Sec. VIII we take a first step
towards an RG-improved black-hole thermodynamics; in
particular, we derive a modified first law satisfied by the
improved Kerr black holes. Section IX contains a summary
of the results.

II. THE CUTOFF IDENTIFICATION

After replacing G0 ! GðkÞ we would like to express the
scale k as a scalar function on spacetime so that Newton’s
constant becomes position-dependent:

Gðr; �Þ � Gðk ¼ kðr; �ÞÞ: (2.1)

Here we have indicated that for symmetry reasons k and G
can depend on the Boyer-Lindquist coordinates r and �
only. The classical spacetime is stationary and invariant
under rotations about the z axis; we require that the corre-
sponding Killing vectors [47,48]

t � t�@� ¼ @

@t
; ’ � ’�@� ¼ @

@’
(2.2)

are Killing vectors of the improved metric, too. If Gðx�Þ is
annihilated by t and ’, this is indeed the case. In the
Boyer-Lindquist (BL) system this means that G ¼ Gðr; �Þ.

When an explicit form of the ‘‘RG trajectory’’G ¼ GðkÞ
is needed we shall use the relationship (1.3). However, for
our mostly qualitative discussion the precise details of this
function are not important. What matters is only that it
smoothly interpolates between G ¼ const in the infrared
(k ! 0) and GðkÞ / 1=k2 in the ultraviolet (k ! 1).
Furthermore, we assume, as in the previous analyses
[28,29] that kðP Þ ¼ �=dðP Þ, which is given by the integral
(1.2). In the case at hand it reads

dðr; �Þ ¼
Z
Cðr;�Þ

ffiffiffiffiffiffiffiffiffiffi
jds2j

q
; (2.3)

where Cðr; �Þ is a path associated to the point P with BL
coordinates ðt; r; �; ’Þ. By stationarity and axial symmetry,
C and d must not depend on t and ’. The line element ds2

in (2.3) is the one of the classical Kerr metric.
The choice for C which appears most natural is a radial

path from the origin to P . Along this path, dt ¼ d� ¼
d’ ¼ 0 and, by (1.5), ds2 ¼ ð�2=�Þdr2. Hence we have in
this case

dðr; �Þ ¼
Z r

0
d�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�������� �r2 þ a2cos2�

�r2 þ a2 � 2m�r

��������
s

: (2.4)

This integral is easy to perform only in the equatorial
plane, i.e. for � ¼ �=2. One obtains

dðrÞ � dðr; �=2Þ ¼
8<
:
d1ðrÞ if r < r�;
d2ðrÞ if r� < r < rþ;
d3ðrÞ if rþ < r;

(2.5)

where r� are the radii of the classical horizons given in
(1.9), and [49]

d1ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 � 2mr

p
þm ln

��rþm�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 � 2mr

p

ja�mj
�
� a; (2.6)

d2ðrÞ ¼ m

2
ln

��������mþ a

m� a

���������a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mr� r2 � a2

p

þm arctan

�
r�mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mr� r2 � a2
p

�
þm�

2
; (2.7)

d3ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þa2 � 2mr

p
þm lnðr�mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þa2 � 2mr

p
Þ

þ�m�a�m lnjm�aj: (2.8)

The function dðrÞ for the equatorial plane is displayed in
Fig. 1 for a black hole with a mass of 10mPl and for various
values of the angular momentum parameter a. [In this and
the following figures all dimensionful quantities are ex-
pressed in units of the Planckian quantities formed with the
infrared value of Newton’s constant, ‘Pl ¼ m�1

Pl ¼ ffiffiffiffiffiffi
G0

p
.

Since a, m, r, and dðrÞ have the dimension of a length they
are measured in units of ‘Pl. As m � G0M by definition,
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the geometric mass m equals the actual mass M when
Planck units are used.]

The main features of the dðrÞ curves are as follows. For
a < m not too close to the extreme case a ¼ m, the curves
run essentially parallel to the dashed line in Fig. 1, repre-
senting the function dðrÞ ¼ r. At their respective values of
r� and rþ, all curves have a vertical tangent. Near the
classical horizon radii r� the functions dðrÞ shift away
from the dðrÞ ¼ r line by a kind of smoothed-out step
function. At a sufficient distance from r� they run parallel
to dðrÞ ¼ r. In particular, for r � rþ the exact dðrÞ is
approximately of the form dðrÞ � rþ �d, where �d is a
constant independent of r. Obviously, for r large enough so
that �d=r � 1, we can approximate the dðrÞ curves sim-
ply by dðrÞ ¼ r. For smaller r there is the steplike behavior
near r� and rþ, but in most of our qualitative investigations
it will not play a role. The deviations from dðrÞ ¼ r
become significant when a approaches m which corre-
sponds to the situation of an extremal classical black hole.

For � � �=2 it is easy to evaluate the integral (2.4)
numerically. It turns out that dðr; �Þ has a similar r depen-
dence for all values of �. For � < �=2 the shift �d is
somewhat larger than at the equator, but nevertheless all
curves are essentially parallel to dðrÞ ¼ r again.

A more precise asymptotic analysis of the integral (2.4)
reveals that dðr; �Þ has the following structure for r ! 1:

dðr; �Þ ¼ rþm lnðrÞ þ Fð�Þ þO

�
1

r

�
: (2.9)

There are three types of terms which do not vanish for r !
1: a linearly increasing one, a logarithmically increasing
one, and one which is r-independent. Among the three,
only the r-independent one depends on the angle �. Since
Fð�Þ is subdominant we see that, to logarithmic accuracy,
dðr; �Þ is actually independent of � at large r.

An alternative definition of the distance scale dðr; �Þ
could be as follows [45]. Let Cðr; �Þ be a circular path of

coordinate radius r, contained in the � ¼ const plane and
centered about the origin. In this case we define dðr; �Þ to
be the reduced circumference of this path, i.e. its proper
length divided by 2�. In flat space the reduced circum-
ference would equal r; in the Kerr background there are
corrections. A detailed numerical analysis [49] shows that,
for r not too small and a not too close to m, the resulting
distance functions dðr; �Þ have similar qualitative proper-
ties as those from the radial path.
For concreteness we shall use the distance function

obtained from the radial path whenever a concrete expres-
sion is needed. Since our analysis is mostly at a qualitative
or ‘‘semiquantitative’’ level we shall be concerned with
leading order effects only. For this reason we shall neglect
the subdominant � dependence of dðr; �Þ and assume that
d � dðrÞ and, as a result G, depends on r only:

GðrÞ � Gðk ¼ �=dðrÞÞ: (2.10)

The implications of the � dependence are presumably too
weak to be accessible by our present method.

III. GENERAL PROPERTIES OF
THE IMPROVED KERR METRIC

From now on we assume that we are given a r-dependent
Newton’s constant, G ¼ GðrÞ. It may arise by inserting the
cutoff identification k / 1=dðrÞ into a solution of the RG
equation such as (1.3), but for most parts of our discussion
the actual origin of the r dependence is irrelevant.

A. The quantum-corrected metric

Substituting G0 ! GðrÞ in (1.5) we arrive at the im-
proved Kerr metric in BL coordinates:

ds2I ¼ gttdt
2 þ 2gt’dtd’þ grrdr

2 þ g��d�
2 þ g’’d’

2

(3.1)

with the components

gtt¼�
�
1�2MGðrÞr

�2

�
; grr¼ �2

�IðrÞ ;

g’’¼�Iðr;�Þsin2�
�2

;

(3.2)

g�� ¼ �2; gt’ ¼ � 2MGðrÞrasin2�
�2

: (3.3)

Here �2 � r2 þ a2cos2� is unchanged, but � and � con-
tain GðrÞ now:

�IðrÞ � r2 þ a2 � 2MGðrÞr; (3.4)

�Iðr; �Þ � ðr2 þ a2Þ2 � a2�IðrÞsin2�: (3.5)

For later use we also note the components of the inverse
metric tensor:

FIG. 1. The radial distance dðrÞ in the equatorial plane for
m ¼ 10 and various values of a. All quantities are expressed
in Planck units. The gray scale runs from black to gray for
increasing a.
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gtt ¼ � �I

�2�I

; grr ¼ �I

�2
; g’’ ¼ �I � a2sin2�

�2�Isin
2�

;

(3.6)

g�� ¼ 1

�2
; gt’ ¼ � 2MGðrÞra

�2�I

: (3.7)

In the rest of this section we shall describe various general
properties of the metric (3.1) and (3.2). The discussion
parallels the classical case to some extent [48], but the
results collected here will be needed for an analysis of the
quantum effects.

B. Killing vectors and conserved quantities

We mentioned already that the improved metric has the
Killing vector t and ’ of Eq. (2.2). If we employ BL
coordinates, its components are obviously

t� ¼ �
�
t ; ’� ¼ �

�
’ ðBLÞ: (3.8)

Considering a point particle of mass m which moves
along the trajectory x�ð�Þ with four-velocity u� �
dx�=d� and momentum p� ¼ mu� these Killing vectors
imply a conserved energy and angular momentum about
the symmetry axis [47]:

E ¼ �t�p
� � �mt�u

�;

L ¼ �’�p
� � �m’�u

�:
(3.9)

C. Zero angular momentum, static,
and stationary observers

We consider three classes of special ‘‘observers’’
(actually point particles) following a world line x�ð�Þ,
parametrized by the proper time �, with the velocity u� ¼
dx�ð�Þ=d� � _x�, u�u� ¼ �1. (A dot will always denote

the derivative with respect to �.)

1. Zero angular momentum observers

By definition zero angular momentum observers (or
‘‘ZAMOs’’) are particles with vanishing L: 0 ¼ L ¼
mg�� _x

�’�. When evaluated in BL coordinates, this

condition reads gt’ _tþ g’’ _’ ¼ 0. Parametrizing the

ZAMO’s world line by the coordinate time t rather than
the proper time �, the condition assumes the form gt’ þ
g’’ðd’=dtÞ ¼ 0. Therefore, introducing the angular

velocity with respect to the coordinate time,

� � d’

dt
; (3.10)

as well as the convenient abbreviation

! � !ðr; �Þ � � gt’
g’’

¼ � 2GðrÞMar

�I

; (3.11)

we conclude that even though they have no angular
momentum, the ZAMOs rotate around the z axis with the
angular velocity

�ZAMO ¼ !: (3.12)

The quantity! � 0 is the coordinate angular velocity with
which inertial frames are dragged along [44,45,47,50]. It is
affected by the r dependence ofG on which it depends both
explicitly and via �I.

2. Static observers

By definition, the four-velocity of static observers is
proportional to the Killing vector t, i.e. u� ¼ 	t�, where

	 is chosen as 	 ¼ ½�g��t
�t���ð1=2Þ in order to achieve

u�u
� ¼ �1. The motion of static observers is not geode-

sic. To follow their world line they will need a rocket
engine, say. Static observers exist only in those portions
of the improved Kerr spacetime in which t is timelike. The
‘‘static limit’’ is reached when t becomes null, i.e. when
	�2 ¼ �g��t

�t� ¼ 0. In BL coordinates this is the case

where gtt ¼ 0, or explicitly,

r2 � 2GðrÞMrþ a2cos2� ¼ 0: (3.13)

In the classical case the solution to this condition are two
static limit surfaces S� which can be parametrized as r ¼
rS�ð�Þwith rS�ð�Þ given in (1.10). For the improved metric

the situation will be more complicated; depending on the
values of M and a there can be two, one, or no static limit
surface S at all. Also in the improved case, since gtt ¼ 0 on
S, static limit surfaces are surfaces of infinite redshift.

3. Stationary observers

A way of defining event horizons, different from their
characterization as one-way surfaces, is related to station-
ary observers. By definition a stationary observer moves
with a constant angular velocity � ¼ d’=dt in the ’
direction. Its four-velocity is proportional to the Killing
vector � ¼ tþ�’, i.e. u� ¼ 	ðt� þ�’�Þ ¼ 	��. This
class of observers is stationary in the sense that they
perceive no time variation of the gravitational field. They
exist only if� and the constant parameters of their orbit, r
and ’, are such that 	�2 ¼ �g���

��� > 0. In BL coor-

dinates this condition boils down to

qð�Þ � �2 � 2!�þ gtt=g’’ < 0: (3.14)

If

�� ¼ !�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � gtt=g’’

q
(3.15)

is real, the function q has two zeros on the real axis, and
(3.14) is satisfied if �� <�<�þ. Depending on
whether gtt, evaluated at the ðr; �Þ values of the orbit, is
negative, zero, or positive qualitatively different situations

QUANTUM GRAVITY EFFECTS IN THE KERR SPACETIME PHYSICAL REVIEW D 83, 044041 (2011)

044041-5



can occur. The corresponding graph of qð�Þ is sketched
in Fig. 2. Let us discuss the 4 cases depicted there
in turn.

(1) The case gtt < 0.—In this case
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � gtt=g’’

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 þ jgtt=g’’j
q

>! since g’’ > 0 for all r > 0

and � � 0; �. Therefore since! � 0, it follows that
�� < 0 and �þ < 0. Stationary observers exist for
� 2 ð��;�þÞ. Those with � 2 ð��; 0Þ are rotat-
ing in the opposite direction as the black hole, and
those with� 2 ð0;�þÞ rotate in the same direction.
Static observers correspond to the special case
� ¼ 0. The case gtt < 0 is depicted in Fig. 2(a).

(2) The case gtt ¼ 0.—In this case �� ¼ 0 and �þ ¼
2!> 0. There are no counterrotating (�< 0)
observers any more; stationary observers are
necessarily corotating with the black hole.
Counterrotating light rays are bound to stay static
with � � �� ¼ 0 [see Fig. 2(b)].

(3) The case gtt > 0.—Here
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � gtt=g’’

q
<! and

therefore �� > 0 and �þ > 0. All stationary ob-
servers are corotating with strictly positive angular
velocity � 2 ð��;�þÞ. There are no static
observers.

(4) The case �I ¼ 0.—Using the explicit form of the
metric components, the frequencies �� can always
be written as [48,49]

�� ¼ !� �1=2
I �2

�I sin�
: (3.16)

This implies that when �I ¼ 0 the two frequencies
become equal:�þj�I¼0 ¼ ��j�I¼0 ¼ !j�I¼0 ¼ 0.

At a radius r such that �IðrÞ ¼ 0 stationary observ-
ers are forced to rotate precisely with the angular
velocity ! about the black hole. The condition
�I ¼ 0 is equivalent to grr ¼ 0. Therefore using
the same argument as classically [48], one sees
that it defines an event horizon of the improved
Kerr spacetime.

We shall find that under the condition M � mPl the
improved spacetime has two spherical horizons H� and
two limit surfaces S� exactly like the classical one. The
radii of the static limit surfaces, rIS�ð�Þ � rISð�Þ, satisfy

grr ¼ 0 , ðrISÞ2 � 2GðrISÞMrIS þ a2cos2� ¼ 0; (3.17)

while the radii of the horizons, rI� � rIH, are such that

�IðrIHÞ ¼ 0 , ðrIHÞ2 � 2GðrIHÞMrIH þ a2 ¼ 0: (3.18)

FIG. 2. The function qð�Þ in the 4 cases discussed in the text.
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The 4 surfaces can be ordered by increasing radius:

rIS�ð�Þ 	 rI� 	 rIþ 	 rISþð�Þ: (3.19)

Here as always, the label ‘‘I’’ stands for improved.
If one decreases r at fixed �, the 4 cases occur in the

above order: For r > rISþð�Þ, outside the static limit,

case (1) is realized. At r ¼ rISþð�Þ we have gtt ¼ 0 and

case (2) applies. Between Sþ and Hþ, in the ergosphere,
we have (3), and all stationary observers with r 2
ðrIþ; rISþð�ÞÞ necessarily rotate in the direction of the black

hole. When we approach r ¼ rIþ from above the only
allowed angular velocity is

�þ ¼ �� ¼ !ðrIþ; �Þ � �H: (3.20)

For r < rIþ, there exist no stationary observers any
longer: Once it has crossed the horizon Hþ, a particle
necessarily falls into the black hole. We shall refer to
�H as ‘‘the angular velocity of the black hole.’’ Noting
that �H ¼ 2GðrIþÞMarIþ=�IðrIþ; �Þ with �IðrIþ; �Þ ¼
½ðrIþÞ2 þ a2�2 � a2�IðrIþÞsin2� ¼ ½ðrIþÞ2 þ a2�2 we ob-
serve that �H is actually independent of the angle � and
depends only on the parameters M and a:

�HðM;aÞ ¼ a

rIþðM;aÞ2 þ a2
: (3.21)

This formula looks like its classical counterpart [48];
however, the improvement changes the M and a depen-
dence of rIþ.

D. Generalized Eddington-Finkelstein coordinates

The systems of Boyer-Lindquist coordinates ðt; r; �; ’Þ
breaks down when �I ¼ 0, i.e. on a possible horizon. In
order to reexpress the improved Kerr metric in a system of
coordinates which remains regular there, we define a gen-
eralization of the familiar advanced time (or ingoing)
Eddington-Finkelstein (EF) coordinates [47,48]:

v¼ tþ r
ðrÞ; r¼ r; �¼ �; c ¼’þ r#ðrÞ:
(3.22)

Here the functions r
 and r# are given by

r
ðrÞ �
Z r

dr0
r02 þ a2

�ðr0Þ ¼
Z r

dr0
r02 þ a2

r02 � 2Mr0Gðr0Þ þ a2
;

r#ðrÞ �
Z r

dr0
a

�ðr0Þ ¼
Z r

dr0
a

r02 � 2Mr0Gðr0Þ þ a2
:

(3.23)

For a constant GðrÞ these integrals can be performed in
closed form. For the improved metric this is not possible in
general. Luckily the explicit forms of r
 and r# are not
needed in order to express the metric in terms of the new
coordinates x� ¼ ðv; r; �; c Þ. It is enough to use that by
(3.23) dt ¼ dv� ðr02 þ a2Þ��1

I dr and d’ ¼ dc �
a��1

I dr. Inserting these differentials into (3.1) we obtain

the following line element for the improved Kerr metric in
ingoing EF coordinates:

ds2I ¼ �
�
1� 2GðrÞMr

�2

�
dv2 þ 2drdv� 2asin2�dc dr

� 4GðrÞMarsin2�

�2
dc dvþ�Isin

2�

�2
dc 2 þ �2d�2:

(3.24)

We shall also need the Killing vector � ¼ tþ�H’ in
EF coordinates. It is trivial to see that � ¼ @

@v þ�H
@
@’ , i.e.

�v ¼ 1; �r ¼ 0; �� ¼ 0; �c ¼�H: (3.25)

Using the metric (3.24) one obtains the following expres-
sion for the square �2 ¼ g���

���:

� 2 ¼ �Isin
2�

�2
ð!��HÞ2 � �2�I

�I

: (3.26)

This scalar function is well defined both away from
and directly on Hþ. In fact, it vanishes on the horizon,
�2jHþ ¼ 0, since �I ¼ 0 and ! ¼ �H there. This is

exactly as it should be: In Sec. III C 3 we saw that 	�2 ¼
��2 / qð�HÞ, and since qð�HÞ ¼ 0, the Killing vector
becomes null on the horizon.

E. Quantum corrections to the surface gravity

As the improved Kerr metric admits a Killing vector
which is null at the event horizon and tangent to the
horizon’s null generators we may define the surface gravity

 in the usual way [48]:

�D��
2ðrIþÞ ¼ 2
��ðrIþÞ: (3.27)

To determine 
 we shall evaluate (3.27) in the generalized
EF coordinates introduced in the previous subsection.
On the right-hand side (RHS) of (3.27) we insert �� ¼
g�v þ�Hg�c , which, in EF coordinates, evaluates to

��ðrIþÞ ¼ ½1� a�Hsin
2��@�r ¼ ðrIþÞ2 þ a2cos2�

ðrIþÞ2 þ a2
@�r:

(3.28)

In deriving (3.28) we made repeated use of the horizon
condition (3.18). On the left-hand side (LHS) of (3.27) we
need the derivative D��

2 � @��
2 of the function �2 given

in Eq. (3.26), evaluated at r ¼ rIþ. Since �I ¼ 0 and
ð!��HÞ ¼ 0 there, one easily finds

�D��
2ðrIþÞ ¼

ðrIþÞ2 þ a2cos2�

½ðrIþÞ2 þ a2�2 �0
IðrIþÞ@�r: (3.29)

As a result, the surface gravity is given by


 ¼ 1

2

�0
IðrIþÞ

ðrIþÞ2 þ a2
; (3.30)

where the prime, as always, denotes a derivativewith respect
to the argument. More explicitly,
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 ¼ rIþ �GðrIþÞM� rIþG0ðrIþÞM
ðrIþÞ2 þ a2

: (3.31)

Several comments are in order here.
(a) For GðrÞ ¼ const, Eq. (3.31) coincides with the

classical result. The quantum corrections modify 

both explicitly, by the G0ðrIþÞ term, and implicitly,
via the shift in the radius rIþ.

(b) The surface gravity of the improved metric has
turned out independent of �. It is constant on Hþ
therefore. This is nontrivial since the symmetry
assumptions imply only ’ but no � independence.
Classically, 
 ¼ const constitutes the zeroth law of
black-hole thermodynamics where 
 is related to the
Bekenstein-Hawking temperature via T ¼ 
=2�
[51,52]. In Sec. VIII we shall address the question
of whether a similar interpretation can hold in the
improved case.

(c) As in the classical case, 
 vanishes for extremal
black holes. Their �ðrÞ has a double zero at the
horizon, implying � ¼ �0 ¼ 0 there.

(d) Sometimes it is convenient to rewrite 
 in a way
which removes any explicit a dependence. Again
exploiting �IðrIþÞ ¼ 0 yields


 ¼ 1

2GðrIþÞM
� 1

2rIþ
� G0ðrIþÞ

2GðrIþÞ
: (3.32)

Of course, 
 continues to be implicitly a-dependent
via rIþ.

(e) For a ¼ 0 the horizon condition is rIþ ¼ 2GðrIþÞM.
Using this relation in (3.32) we obtain the surface
gravity for the improved Schwarzschild metric:


 ¼ 1

4GðrIþÞM
� G0ðrIþÞ

2GðrIþÞ
: (3.33)

Assuming the validity of T ¼ 
=2� for the
Schwarzschild black hole, Eq. (3.33) implies exactly
the Hawking temperature which had been found in
Ref. [28] using a rather different argument.

IV. HORIZONS AND STATIC LIMIT SURFACES

A. Critical surfaces

In this section we determine the horizons and the static
limit surfaces of the improved Kerr metric. We shall col-
lectively refer to them as ‘‘critical surfaces.’’ In Sec. III we
saw that the radii rISð�Þ and rIH of a static limit surface S
and a horizon H are given by Eqs. (3.17) and (3.18),
respectively. By defining

b �
�
a cos� for S
a for H

(4.1)

those two equations can be combined into one, namely,

r2 � 2GðrÞMrþ b2 ¼ 0: (4.2)

With a GðrÞ of the form (1.4), i.e.

GðrÞ ¼ G0d
2ðrÞ

d2ðrÞ þ �wG0

; (4.3)

this condition becomes

~d 2ð~rÞð~r2 þ ~b2 � 2 ~m ~rÞ þ �wð~r2 þ ~b2Þ ¼ 0: (4.4)

Here and in the following the tilde means that the corre-
sponding quantity is expressed in terms of the Planck units
related to G0. In particular, ~r ¼ r=‘Pl, ~m ¼ m=‘Pl, ~M ¼
M=mPl, ~a ¼ a=‘Pl, ~b ¼ b=‘Pl, and ~d ¼ d=‘Pl, where
G0 � m�2

Pl � ‘2Pl. Thus we are led to investigate possible

zeros of the family of functions

Q �w
~b
ð~rÞ � ~d2ð~rÞð~r2 þ ~b2 � 2 ~m ~rÞ þ �wð~r2 þ ~b2Þ: (4.5)

Depending on our choice for the parameters ~b and �w
Eq. (4.5) describes the critical surfaces of the following
metrics:

(1) classical Schwarzschild metric: �w ¼ 0, ~b ¼ 0;

(2) classical Kerr metric: �w ¼ 0, ~b � 0;

(3) improved Schwarzschild metric: �w � 0, ~b ¼ 0;

(4) improved Kerr metric: �w � 0, ~b � 0.
We shall analyze (4.5) for the distance function dðrÞ

obtained from the straight radial path C discussed in
Sec. II. We proceed in two steps: We first employ the
simple approximation dðrÞ ¼ r for an analytic discussion
of the problem, and then in a second step, we use numerical
methods to show that, qualitatively, the results obtained
analytically are indeed representative and provide us with a
correct picture of the new features which are due to the
nonzero angular momentum of the black hole.

B. The approximation dðrÞ ¼ r

For dðrÞ ¼ r the function Q �w
~b

becomes a quartic

polynomial:

Q �w
~b
ð~rÞ � ~r4 � 2 ~m~r3 þ ð~b2 þ �wÞ~r2 þ �w~b2: (4.6)

Before turning to the general case of the improved Kerr
metric it is instructive to see how the critical surfaces arise
in the special cases (1), (2), and (3):
(1) The classical Schwarzschild metric.—In this case

the polynomial simplifies to

Q0
0ð~rÞ � ~r3ð~r� 2 ~mÞ: (4.7)

It has a triple zero at ~r ¼ 0 and a simple zero at ~r ¼
2 ~m, or r ¼ 2G0M.

(2) The classical Kerr metric.—Here the function (4.6)
becomes

Q0
~b
ð~rÞ � ~r2ð~r2 � 2 ~m ~rþ~b2Þ: (4.8)

It has a double zero at ~r ¼ 0 and two simple zeros at

~r� ¼ ~m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 � ~b2

p
(4.9)

if ~m � ~b or one double zero at ~r ¼ ~m if ~m ¼ ~b.
These zeros give rise to the familiar static limit
surfaces S� and horizons H� at
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rS�ð�Þ ¼ G0M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG0MÞ2 � a2cos2�

q
; (4.10)

r� � rH� ¼ G0M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG0MÞ2 � a2

q
: (4.11)

In the case ~m ¼ ~a the two horizons Hþ and H�
merge to a simple one with the ‘‘critical’’ radius
~r ¼ ~m. We then have an extremal black hole
with a ¼ G0M, or J � aM ¼ G0M

2, and rcrit ¼
G0Mcrit ¼ a [53].

(3) The improved Schwarzschild metric.—In this case
(4.6) reads

Q �w
0 ð~rÞ ¼ ~r2ð~r2 � 2 ~m ~rþ �wÞ: (4.12)

This function has a double zero at ~r ¼ 0 and two
simple zeros at

~r I� ¼ ~m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 � �w

p
(4.13)

if ~m2 � �w or one double zero at ~rI ¼ ~m if ~m2 ¼ �w.
As a result, the quantum-corrected Schwarzschild
spacetime has two spherical horizons H� at

rI� ¼ G0M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG0MÞ2 � �wG0

q
: (4.14)

If ~m2 ¼ �w, the two horizons coalesce to a single

one at the critical radius rcr ¼
ffiffiffiffi
�w

p
‘Pl ¼ G0Mcr.

This new type of an extremal black hole is realized

when the mass equals the critical mass Mcr ¼ffiffiffiffi
�w

p
mPl. Since �w ¼ Oð1Þ extremal black holes have

a mass of the order of mPl. For M<Mcr the im-
proved Schwarzschild metric has no horizon at all.
The improved Schwarzschild metric has been dis-
cussed in detail in Ref. [28] to which the reader is
referred for further details.
As for the existence of horizons it is also interesting
to note that there is a close analogy between
the classical Kerr metric and the improved
Schwarzschild metric. The above formulas are iden-
tical if one identifies ~a2 with �w or, for the dimen-
sionful quantities a2, with �wG0.
Note that in going from case (1) to either case (2) or
case (3) the triple zero at ~r ¼ 0 turns into a double
zero at ~r ¼ 0, plus a simple zero at ~r > 0.

(4) The improved Kerr metric.—Finally we discuss the

zeros of Q �w
~b
with both �w and ~b nonzero. In principle

their dependence on ~m, ~b, and �w could be written
down in closed form but the formulas are not very
instructive. The following indirect reasoning shows
the essential points more clearly.
The first and second derivatives of Q �w

~b
are

FIG. 3. The figures show examples of the 3 possible configurations the function Q �w
~b
of Eq. (4.6) can assume, with two, one, and no

zero on the positive real axis.
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d

d~r
Q �w

~b
ð~rÞ ¼ 2~r½2~r2 � 3 ~m ~rþð~b2 þ �wÞ�; (4.15)

d2

d~r2
Q �w

~b
ð~rÞ ¼ 12~r2 � 12 ~m ~rþ2ð~b2 þ �wÞ: (4.16)

The derivative (4.15) vanishes at the ~r values ~r0, ~r1,
and ~r2 given by

~r0 ¼ 0;

~r1 ¼ 3

4
~m

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

9

~b2 þ �w

~m2

s 3
5;

~r2 ¼ 3

4
~m

2
41þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

9

~b2 þ �w

~m2

s 3
5:

(4.17)

Provided

8
9 ð~b2 þ �wÞ 	 ~m2; (4.18)

the square roots in (4.17) are real so that ~r1 and ~r2
are real and positive. As a result, Q �w

~b
has 3 different

extrema for ~r � 0, except when the equality sign

holds in (4.18). Then two extrema merge to an
inflection point. Inserting (4.17) into (4.16) one finds
that the second derivative is negative at ~r1 and
positive at ~r0 and ~r2. Therefore in the nondegenerate
case, ~r0 and ~r2 are minima, and ~r1 is a maximum of

Q �w
~b
. If 8

9 ð~b2 þ �wÞ ¼ ~m2, there is a minimum at

~r0 ¼ 0 and an inflection point at ~r1 ¼ ~r2 ¼ 3 ~m=4,

and if 8
9 ð~b2 þ �wÞ> ~m2, the only critical point is the

minimum at ~r0 ¼ 0.
Let us come back to the zeros of Q �w

~b
. Regarded a

function of the complex variable ~r 2 C, it has 4 zeros on
the complex plane; only those on the positive real axis are
physically relevant though. Furthermore, regarded a func-
tion on the full real line, Q �w

~b
ð~rÞ is the sum of 4 terms all of

which are positive if ~r < 0. As a consequence, Q �w
~b
has no

zeros at strictly negative ~r. A priori Q �w
~b
could have 4 zeros

at ~r > 0. This case is already excluded, however, since we
saw that the function has at most one maximum and one
minimum at strictly positive ~r. Therefore, as far as zeros at
~r > 0 are concerned, only the following 3 cases can occur:
(a) 2 simple zeros, (b) 1 double zero, and (c) no zero at all.
In Fig. 3 we show an example of each case. In this figure

and all similar diagrams the notation ~rI~b�
stands for either

~rIH� � ~rI� or ~rIS� , depending on the interpretation of ~b.

FIG. 4. The figures show the m dependence of the radii rb� (thick lines) and rIb� (thin lines) for a ¼ 5 and several values of �. The
continuous lines represent r� and rI�. The dashed lines represent rS� and rIS�.
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The superscript ‘‘I’’ indicates that the respective radii refer
to the improved metric.

From the definition ofQ �w
~b
, Eq. (4.6), it is obvious that the

occurrence of zeros is the more likely the larger is ~m and the

smaller are ~b and �w. The reason is that for ~m large and
~b and �w small the second term on the RHS of (4.6),
�2 ~m~r3 < 0, becomes very negative and the positive terms

ð~b2 þ �wÞ~r2 > 0 and �w~b2 > 0 are small which favors zeros.
Therefore we expect that, for ~a (and �w) fixed, there are two
zeros for large ~m [case (a)] and no zero for small ~m
[case (c)]. In between there is a critical mass at which the
extremal situation of a simple double zero is realized
[case (b)].

In Fig. 4 we show that this is indeed the case. Here the
radii of both horizons and critical limit surfaces are dis-

played; this amounts to ~b ¼ ~a and ~b ¼ ~a cos� in the for-
mulas above. In all diagrams we fixed ~a ¼ 5 (and �w ¼ 1)
and plotted the classical and improved radii as a function of
~m. The 4 diagrams correspond to different values of �.
Generically [cases (b) and (c)] we find 4 different improved
radii ~rI�, ~rIS�ð�Þwhen ~m is very large. When we lower ~mwe

reach a point at which the two horizons coalesce, ~rIþ ¼ ~rI�,
and below which there is no horizon any longer, but there
still exist two critical limit surfaces. Lowering ~m even
further the two static limit surfaces coalesce at a certain
critical mass, ~rISþð�Þ ¼ ~rIS�ð�Þ, and for even smaller ~m

there exists neither a horizon nor a static limit surface.
Figure 4(a) applies to the poles (� ¼ 0; �) where the

event horizons and static limit surfaces touch, ~rIþ ¼
~rISþð�Þ, ~rI� ¼ ~rIS�ð�Þ. Figure 4(d) refers to the equatorial

plane (� ¼ �=2) in which, classically, rS� ¼ 0, rSþ ¼ 2m.

In the two-dimensional diagrams of Fig. 5 we display the
� dependence of the various radii. Here we picked the

parameter values ~m ¼ 6, ~a ¼ 5 for which there exist two
horizons H� and two static limits S�. (For the constant �w
we chose �w ¼ 4.)
Both Figs. 4 and 5 show that the quantum effects are the

larger the smaller is ~m. For ~m � M=mPl � 1 the critical
surfaces of the improved black hole coincide essentially
with those of the classical one. LoweringMwe find that the
radius of the outer horizonHþ is always smaller than in the
classical case, while the radius of H� is always larger than
classically. Similarly we see that ~rISþð�Þ< ~rSþð�Þ whereas
~rIS�ð�Þ> ~rS�ð�Þ. Both for horizons and static limits the

extremal points where the upper and the lower branches
of the curves meet are shifted towards larger masses by the
quantum corrections.

FIG. 5. The figures show a cross section through the event horizons (continuous lines) and static limit surfaces (dashed lines) in the
xz plane for a quantum black hole with ~m ¼ 6 and ~a ¼ 5. To facilitate the comparison with the classical case, in (b) the corresponding
classical surfaces are superimposed (thick lines).

FIG. 6. The solution ~mð~aÞ of the quantum extremality condition
for the improved Kerr black hole [with dðrÞ ¼ r and �w ¼ 1]. The
dashed line represents the ~mð~aÞ ¼ ~a dependence of the classical
Kerr spacetime. For ~a ! 0, ~m assumes its minimum value at

ffiffiffiffi
�w

p
,

while it approaches the classical behavior for ~a ! 1.
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C. The quantum extremality condition

Let us determine the condition on ~m and ~b which
implies a double zero of Q �w

~b
ð~rÞ. If b ¼ a, this is the

condition for the two horizons Hþ and H� to coincide,
i.e. for the quantum black hole to be extremal. WhenQ �w

~b
ð~rÞ

has a double zero at some value of ~r, the function must
have a (local) minimum there. Since ~r ¼ ~r2 of (4.17) is the
only minimum it has for ~r > 0, it follows that the extremal
case is realized precisely if Q �w

~b
vanishes at ~r2:

Q �w
~b
ð~r2Þjextremal ¼ 0. Inserting (4.17) into (4.6) we obtain

Q �w
~b
ð~r2Þ ¼ � 27 ~m4

32

��
1� 8

9

~b2 þ �w

~m2

�ð3=2Þ þ 8

27

ð~b2 � �wÞ2
~m4

� 4

3

~b2 þ �w

~m2
þ 1

�
: (4.19)

As a result, setting b ¼ a, the condition for Hþ ¼ H�
reads

�
1� 8

9

~a2 þ �w

~m2

�ð3=2Þ þ 8

27

ð~a2 � �wÞ2
~m4

� 4

3

~a2 þ �w

~m2
þ 1¼ 0:

(4.20)

We shall refer to (4.20) as the ‘‘quantum extremality con-
dition.’’ If �w ¼ 0, it reduces to ~m ¼ ~a for the classical Kerr

metric, and if ~a ¼ 0, to ~m ¼ ffiffiffiffi
�w

p
, which is the correct

result for the extremal version of the improved
Schwarzschild black hole; see Ref. [28]. In the general
case �w � 0, ~a � 0 the condition (4.20) can be solved for
~m ¼ ~mð~aÞ only numerically. The result is shown in Fig. 6.
We observe that ~mð~aÞ approaches the classical ~m ¼ ~a for
large a but deviates significantly for ~a ! 0.

FIG. 7 (color online). The figures show the m dependence of the improved radii rIb� obtained from the exact dðrÞ given in (2.5) at
� ¼ �

2 , for �w ¼ 5 and several values of a. The outer curves are the improved static limits rIS� and the inner ones the improved event

horizons rI�. The structure of the curves is essentially the same as in the dðrÞ ¼ r approximation.
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D. Exact distance function

Up to now we employed the simplified distance function
dðrÞ ¼ r, which has the virtue that all calculations can be
performed analytically. Using numerical techniques we
have repeated the above analysis for the ‘‘exact’’ distance
function (2.5) and (2.6). It turns out that, qualitatively, the
results found with the exact dðrÞ are exactly the same as
those from the dðrÞ ¼ r approximation. This concerns, in
particular, the number of horizons and critical surfaces, the
systematics of their mass and angular momentum depen-
dence, and their disappearing at extremal configurations.
(See Fig. 7 for an example.)

Thus one of the main results is that the classical and the
improved Kerr metrics, sufficiently far away from extrem-
ality, have the same number of horizons and static limit
surfaces. This was different for the Schwarzschild metric:
The classical spacetime has 1 horizon, but the improved
spacetime has 2. So, a priori one might have expected a
similar doubling in the case of the Kerr metric. Actually
this is not what happens: The quantum corrections do not
generate new critical surfaces but rather smoothly deform
the classical ones.

In the language of ‘‘catastrophe theory’’ [54,55] this can
be understood from the structural stability properties of the
zeros and critical points ofQ �w

~b
. The corresponding function

for the classical Schwarzschild metric has a ‘‘structurally
unstable’’ triple zero at ~r ¼ 0; giving a nonzero value to �w
it dissolves into a double zero at ~r ¼ 0 and a simple one at
~r > 0. The very same transition from a triple to a double
plus a simple zero happens to the Kerr metric already
classically by a nonzero value of ~a. If, in addition, the
quantum parameter �w / OðℏÞ is given a nonzero value, no
further zero is generated. It is easy to formally prove the
structural stability of the classical Kerr zeros [49].

V. PENROSE PROCESS

One of the most remarkable features of rotating black
holes is the possibility of extracting energy from them, by
means of the Penrose process, for instance [45]. This is
possible since under certain kinematical conditions test
particles in the Kerr metric can be in a state of negative
energy. In fact, let us consider a composite system A,
consisting of two particles B and C, which crosses the
static limit. It disintegrates into B and C near the event
horizon whereby particle B is in a state of negative energy.
Subsequently B falls through the horizon, thus making a
negative contribution to the black hole’s internal energy.
The other particle, C, leaves the ergosphere and reaches its
final state at infinity. The conservation of the total energy
for the black hole and the test particles implies an increased
energy for the test particle C. The energy it gains equals
minus the change in the internal energy of the black hole.

As the possibility of energy extraction is intimately
limited to the existence of negative energy states we shall
now analyze this issue for the improved Kerr metric in

order to get a first impression of the impact the quantum
gravity corrections have on the region of the test particle
phase space with E< 0.
The conserved energy of a point particle is given by

Eq. (3.9). If we use BL coordinates and parametrize its
trajectory by the proper time �, we have explicitly, with the
angular velocity � � d’=dt,

E ¼ �mt�g��

dx�

d�
¼ �m

�
gtt

dt

d�
þ g’t

d’

d�

�

¼ �m

�
gtt þ g’t�

�
dt

d�
: (5.1)

Using the explicit form of the improved Kerr metric the
negative energy constraint E 	 0 boils down to

� 	 �0 � � gtt
g’t

¼ 2MGðrÞr� �2

2MGðrÞrasin2� : (5.2)

Following [45] it is convenient to reexpress the inequality
(5.2) in terms of the tangential ‘‘bookkeeper velocity’’

vtan � Rðr; �Þ d’
dt

¼ Rðr; �Þ� (5.3)

with the reduced circumference

Rðr; �Þ � ffiffiffiffiffiffiffiffiffi
g’’

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Isin

2�

�2

s
: (5.4)

(The reduced circumference is defined such that ds2 ¼
R2d’2 if dt ¼ dr ¼ d� ¼ 0.) In terms of vtan the negative
energy condition � 	 �0 becomes vtan 	 R�0, or

vtanðrÞ 	 v0 � Rðr; �Þ
�
2MGðrÞr� �2

2MGðrÞrasin2�
�
: (5.5)

In the following we shall restrict our analysis to the equa-
torial plane, � ¼ �=2. In this case the condition (5.5)
assumes the form

vtanðrÞ 	 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 þ 2Ma2GðrÞ

r

s �
1� r

2MGðrÞ
�
¼ veq

0 ðrÞ:
(5.6)

Here veq
0 denotes the bookkeeper tangential velocity, i.e.

the velocity referring to the coordinate time t of a particle
which moves in the equatorial plane and has vanishing
energy E ¼ 0.
The phase space for the rotational motion of a massive

test particle is bounded by the vðrÞ curves for co- and
counterrotating light rays:

vlight� ðrÞ< vtanðrÞ< vlight
þ ðrÞ: (5.7)

The bookkeeper tangential velocities for light follow from
(3.15):

v
light
� ðrÞ ¼ Rðr;�Þ�� ¼ Rðr;�Þ

�
!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � gtt

g’’

s �
: (5.8)
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In the ðr; vtanÞ plane, the part of the test particle phase space
corresponding to E< 0 is obtained by intersecting the
regions defined by the inequalities (5.6) and (5.7),
respectively.

The situation is sketched qualitatively in Fig. 8. Besides

vlight
� and veq

0 the figure shows also the r dependence of the
dragging velocity vdragging ¼ Rðr; �Þ!. It is not difficult to

prove that for any function GðrÞ, the veq
0 and vlight� curves

intersect at the static limit (r ¼ rSþ) and that v
eq
0 ¼

v
light
þ ¼ vlight� ¼ vdragging at the horizon (r ¼ rþ).
In Figs. 9 and 10 we show the corresponding realistic

plots which were obtained numerically. Figure 9 corre-
sponds to the classical and Fig. 10 to the improved case.
All plots refer to the equator, � ¼ �=2, and in the im-
proved case the functionGðrÞwas taken as in Eq. (4.3) with
dðrÞ ¼ r. Next to each ðr; vÞ plot we display the M depen-
dence of the radii r� and rS� and indicate by a dashed
vertical bar the M value used in the corresponding plot on
the LHS. This presentation makes it obvious if, and how
many, critical surfaces exist for the correspondingM value.
When varying the mass m ¼ MG in Figs. 9 and 10 we

keep the ratio a=m fixed. The reason is that, classically, r�
and rS� are linear functions ofm if we readjust a such that
a=m ¼ const; see Eqs. (1.9) and (1.10). As a consequence,
the negative energy region for the classical metric changes

FIG. 8. The figure shows schematically the r dependence of

v
light
� , v

eq
0 , and vdragging at the equatorial plane. The hatched

region corresponds to pairs ðr; vÞ for which the test particle
has negative energy.

FIG. 9. The plots on the LHS of this figure display the r dependence of vlight
� and veq

0 and are analogous to Fig. 8. They refer to
classical Kerr black holes with M ¼ 15mpl, a ¼ 13:5mpl and M ¼ 15mpl, a ¼ 12:6mpl, respectively. They have the same ratio

a=m ¼ 0:9. On the RHS the radius of the critical surfaces is displayed for all masses up to 20mpl, for the constant ratio a=m ¼ 0:9 as in

the corresponding plots on the LHS. The dashed vertical line in the plots on the RHS symbolizes the mass values used on the LHS.
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FIG. 10. The same type of plots as in Fig. 9, but now for the improved Kerr black hole, with masses ranging fromM ¼ 5mpl down to
M ¼ 0:5mpl. All examples considered have an identical ratio a=m ¼ 0:9.
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its size with m but not its shape. This can be seen in Fig. 9.
Hence changes of the shape are entirely due to the quantum
effects.

Figure 10(a) shows the region of negative energy for
M ¼ 5mpl, a ¼ 4:5. Since we are still sufficiently away

from the Planck region the shape of the improved negative
energy region is not too different from the classical one. In
Fig. 10(b) we have changed M from 5 to 4 Planck masses
for which the shape of the negative energy region is almost
unchanged. Besides the E< 0 region discussed above,
Figs. 10(a) and 10(b) show an internal negative energy
region bounded by rIS� and rI�. Since the possibility of

extraction of energy relies on the existence of stationary
states with negative energy outside rIþ, the internal region
cannot be considered physically relevant.

Figures 10(c)–10(f) were obtained for the regime
M � mpl. Drastic changes in the shape of the negative

energy regions are visible. Since the reliability of our
method is questionable in this regime, conclusions about
this region have to be considered with some care. We
analyze these cases nevertheless since they hint at the
possibility of interesting new features.

In Fig. 10(c) the quantum extremal black hole with
M ¼ Mcr and rI� ¼ rIþ ¼ rIextr has been reached. The in-
ternal and external negative energy regions touch at rIextr.

Figure 10(d) shows a hypothetical configuration for
M<Mcr with two static limits SI� and no event horizon.
The internal and external negative energy regions merged
into just one. This region is bounded by the static limit
surfaces at rIS� and rISþ . In this case there exists an ergo-

sphere fromwhere energy can be extracted, but no horizons.
Figures 10(e) and 10(f) show configurations in which no

extraction of energy is possible. At the extremal static limit
configuration shown in Fig. 10(e) the negative energy
region is reduced to zero size.

This analysis suggests that, while it is possible to extract
energy from classical black holes with arbitrarily small
masses and angular momenta, there exists a lowest mass
for the Penrose mechanism in the improved Kerr space-
time. It is close to the Planck mass and defined by the
extremal static limit. However, since the reliability of our
method is questionable in the regimeM � mPl, it would be
desirable to investigate this possibility by independent
methods.

VI. VACUUM ENERGY-MOMENTUM TENSOR
AND ENERGY CONDITIONS

We may reinterpret the RG-improved vacuum Kerr met-

ric gimp
�� as a classical spacetime in the presence of matter.

Knowing gimp
�� explicitly, we can compute its Einstein

tensor and insist on the validity of the classical field
equation

G��ðgimpÞ ¼ 8�G0T
Q
��: (6.1)

This equation then defines a vacuum energy-momentum
tensor which describes the energy and momentum of a
fictitious ‘‘pseudomatter’’ which reproduces the quantum
corrections found by the RG improvement by means of the
conventional Einstein equation. The explicit calculation
yields, after a fair amount of algebra,

TQ
��ðr; �Þ ¼ M

32�G0�
6�

q1 0 0 v
0 q2 0 0
0 0 q3 0
v 0 0 q4

2
6664

3
7775 (6.2)

with the entries (n ¼ 1; 2; 3; 4)

qnðr; �Þ � �nðr; �ÞG0ðrÞ þ �nðr; �ÞG00ðrÞ;
vðr; �Þ � ��ðr; �ÞG0ðrÞ þ ��ðr; �ÞG00ðrÞ: (6.3)

Here the coefficient functions are given by

�1ðr; �Þ � �ða2 þ r2Þ½8r2ða2 þ r2Þ � a4ðsin2�Þ2�
� 16ra2MGsin2�cos2�; (6.4)

�2 � 8r2�2; �3 � 8�a2cos2�; (6.5)

�4 � csc2��3 � 8a2r2;

�� � 8ar2ðr2 þ a2Þ � a�3;
(6.6)

�1ðr; �Þ � 4�r�2a2sin2�; �2ðr; �Þ � 0; (6.7)

�3ðr; �Þ � 4�r�2; �4ðr; �Þ � 4�r�2csc2�; (6.8)

��ðr; �Þ � �4a�r�2: (6.9)

The rows and columns of the TQ
�� matrix above are ordered

in the sequence t� r� �� ’. The matrix is diagonal

except for the t’ entry. A nonzero value of TQ
t’ was to be

expected, of course, since this corresponds precisely to
matter rotating about the z axis.

It is not difficult to diagonalize TQ
��. In its eigenbasis it

reads

TQ
��ðr; �Þ ¼ M

32�G0�
6�

diag½l1; l2; l3; l4� (6.10)

with the diagonal matrix elements

l1 � 1
2½q1 þ q4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 � 2q1q4 þ q24 þ 4v2

q
�;

l2 � q2;

l3 � q3;

l4 � 1
2½q1 þ q4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 � 2q1q4 þ q24 þ 4v2

q
�:

(6.11)

Despite the formal analogy it would be premature to
conclude that the vacuum quantum effects can be mim-

icked by the presence of matter. The reason is that TQ
��

turns out to violate all the positivity conditions which are
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usually assumed to be satisfied by physically realizable
matter [56]. For a diagonalized energy-momentum tensor
T�
� ¼ diag½��; p1; p2; p3� one distinguishes the following

‘‘energy conditions’’ [48,56]:

weak energy condition: �� 0; �þpi > 0;

null energy condition: �þpi � 0;

dominant energy condition: �� 0; �� jpij;
strong energy condition: �þpi � 0; �þX

i

pi � 0:

(6.12)

From (6.10) with (6.11) we can read off the energy density
� and the pressures pi, i ¼ 1; 2; 3, corresponding the

energy-momentum tensor TQ
��. It is then straightforward

to check numerically whether or not the energy conditions
(6.12) are satisfied. The result is that all four energy con-
ditions are violated, at least in a part of the improved Kerr
spacetime.

This result does not come completely unexpected; also
the vacuum expectation value of energy-momentum opera-
tors (as in the case of the Casimir effect, for instance)
typically violates the energy conditions. As a consequence,
the quantum gravity effects are qualitatively different from
those due to ordinary matter. From the practical point of
view this means that the analysis of the improved black
hole does not reduce to applying the many known results
and theorems which are available for classical black holes
with matter. The reason is that in most cases their deriva-
tion assumes the validity of one or the other of the con-
ditions (6.12). For instance, for deriving the focusing
theorem for timelike geodesic congruences from
Raychaudhuri’s equation one needs the strong energy con-
dition [48]. Furthermore, the thermodynamics of the im-
proved black holes is not a special case of the familiar
(semi)classical black-hole thermodynamics with matter.

VII. DRESSING OF MASS AND
ANGULAR MOMENTUM

The improved Kerr metric describes an isolated object in
an asymptotically flat spacetime. As this spacetime pos-
sesses the two Killing vectors t and ’ we can ascribe a
mass and an angular momentum to this object by means of
the Komar integrals [48,57]:

MKomar ¼ � 1

8�G0

Z
S
r�t�dS��; (7.1)

JKomar ¼ 1

16�G0

Z
S
r�’�dS��: (7.2)

Here S is a two-sphere at spatial infinity. Its surface ele-
ment dS�� is given by dS�� ¼ �2n½�r��

ffiffiffiffi


p
d2�, where n�

and r� are the timelike and spacelike normals to S, respec-
tively. Here is the determinant ofab, the metric induced
from g�� in the 2D surface S, and d2� � d�1d�2 with �a

angular coordinates on S. The integrals for MKomar and
JKomar probe the metric only at spatial infinity. Since the
improved Kerr metric equals the classical one far away
from the black hole, the values ofMKomar and JKomar are not
changed by the RG improvement. It is well known [48] that
for the classical Kerr metric they coincide with the mass
and angular momentum parameters which it contains:

MKomar ¼ M; JKomar ¼ J: (7.3)

Thus, for S a surface at spatial infinity, (7.3) holds true also
in the improved case.
The mass and angular momentum of the object as mea-

sured at infinity receive a contribution from the pseudo-
matter mimicking the quantum effects. To identify it we
break up MKomar and JKomar into two pieces, one which
contains only the effect of the pseudomatter within the
outer horizon H � Hþ and one which is due to the matter
distribution outside H. The first contribution yields quan-
titiesMH and JH, which we refer to as the mass and angular
momentum of the black hole, respectively, meaning here
only the portion of space bounded by H. The second
contribution describes the ‘‘dressing’’ of this intrinsic
mass and angular momentum by matter external to the
black hole.
The relation between the parametersM and J calculated

at the spatial infinity and the quantities MH and JH calcu-
lated at the event horizon can be derived if we consider a
3D spacelike hypersurface � extending from the event
horizon to spatial infinity. Its inner boundary is H, a two-
dimensional cross section of the event horizon, and its
outer boundary is S. Using Gauss’ theorem and the field
equation (6.1) we find that M and J can be decomposed as

M ¼ MH þ 2
Z
�

�
TQ
�� � 1

2
TQg��

�
n�t�

ffiffiffi
h

p
d3y; (7.4)

J ¼ JH �
Z
�

�
TQ
�� � 1

2
TQg��

�
n�’�

ffiffiffi
h

p
d3y: (7.5)

Here hab is the metric induced in�, and ya (a ¼ 1; 2; 3) are
coordinates intrinsic to this hypersurface. MH and JH are
the ‘‘genuine’’ black-hole mass and angular momentum,
respectively. They are given by surface integrals over H:

MH ¼ � 1

8�G0

Z
H
r�t�ds��; (7.6)

JH ¼ 1

16�G0

Z
H
r�’�ds��: (7.7)

The surface element ds�� ¼ 2�½�N��
ffiffiffiffi


p
d2� ¼ ð��N� �

��N�Þ
ffiffiffiffi


p
d2� involves an auxiliary null vector N� which

satisfies N��
� ¼ �1 and N�N

� ¼ 0 [48].
The relations (7.4) and (7.5) can be interpreted as fol-

lows: The total massM (angular momentum J) is given by
a contribution MH (JH) from the black hole, plus a con-
tribution from the matter distribution outside. If the black
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hole is in vacuum, then M ¼ MH and J ¼ JH. According
to the discussion of Sec. VI we expect that MH � M and
JH � J when the contributions of the ‘‘quantum fluid’’ are
taken into account, i.e. that the mass and the angular
momentum of the black hole get ‘‘renormalized’’ or
dressed by the matter surrounding it. This interpretation
is confirmed by an explicit evaluation of the integrals (7.6)
and (7.7). The calculation is somewhat lengthy but similar
to the classical one. The final answer reads [49]

MH¼M
GðrþÞ
G0

�
1�

�ðr2þþa2ÞG0ðrþÞ
aGðrþÞ

�
arctan

�
a

rþ

��
; (7.8)

JH ¼
�
J þ

�
1� 2MGðrþÞ

a
arctan

�
a

rþ

���
M2G0ðrþÞr2þ

a

��

�GðrþÞ
G0

: (7.9)

These results have a number of remarkable properties:
(A) One can verify that for any pair of black-hole

parameters, ðM; JÞ, the ratio MH=M is always
smaller than unity; it approaches unity only asymp-
totically, for M ! 1, when the quantum effects
become insignificant. The interpretation is that the
black hole possesses a genuine (positive) mass MH

to which the quantum matter adds another positive
contribution to make up the mass measured at in-
finity, M. Given the fact that the pseudomatter
satisfies no standard positivity condition it is by
no means trivial that M is larger than MH.
However this is exactly what one would expect if
quantum gravity is antiscreening: The metric fluc-
tuations dress any test mass (here the black-hole
interior) in such a way that the mass increases with
the distance [1]. The same is found to hold true for
the angular momentum: JH=J is always smaller
than unity; i.e. the pseudomatter increases the spin
of the test mass.

(B) Despite their somewhat complicated structure, the
results (7.8) and (7.9) satisfy the same Smarr for-
mula which is valid for classical black holes
[49,58]:

MH ¼ 2�HJH þ 
A
4�G0

: (7.10)

Here�H and 
 are given by the improved equations
(3.21) and (3.31), respectively, and A denotes the
surface of the outer horizon H. Both in the classical
and the improved case it can be written as

A ¼ 4�ðr2þ þ a2Þ; (7.11)

but for improved black holes the dependence of rþ
on M and J (or a) is much more complicated.

(C) The results (7.8) and (7.9) are strikingly similar to
the corresponding formulas for the classical

Kerr-Newman spacetime [48] which, besides mass
and angular momentum, is characterized by an
electric charge Q. The expressions coincide exactly
if we identify

Q2¼̂2Mr2þG0ðrþÞ=G0: (7.12)

This coincidence does not come completely unex-
pected. In [27] where the a ¼ 0 case had been
analyzed, it turned out that the improved
Schwarzschild metric has many features in common
with the classical Reissner-Nordström metric [a
minimum of the lapse function fðrÞ, causal struc-
ture, etc.]. For a � 0 there is still a corresponding
similarity between the improved Kerr metric and
the classical Kerr-Newman spacetime. The exact
coincidence of the Komar integrals is somewhat
surprising though. It is intriguing to speculate that
it might have a deeper meaning.

VIII. A MODIFIED FIRST LAW OF BLACK-HOLE
THERMODYNAMICS

The first law of classical black-hole thermodynamics
states that the 1-form 2�ð�M��H�JÞ=
 is exact, i.e. that
it can be written as the differential of a state function
S ¼ SðM; JÞ. Hence

�M��H�J ¼ T�S; (8.1)

where one interprets

TðM; JÞ ¼ 
ðM; JÞ
2�

(8.2)

and S as the black-hole temperature and entropy, respec-
tively [51,59]. In terms of its surface area A the latter is
given by S ¼ A=4G0 [60]. For these results to hold the
functions (zero forms) 
 and �H must have a very special
M and J dependence. In Sec. III we found the correspond-
ing relations for the improved case, namely,


ðM; JÞ ¼ rIþ �M½rIþG0ðrIþÞ þGðrIþÞ�
ðrIþÞ2 þ ðJ=MÞ2 ; (8.3)

�HðM; JÞ ¼ ðJ=MÞ
ðrIþÞ2 þ ðJ=MÞ2 : (8.4)

Here rIþ � rIþðM; JÞ, but this relationship cannot be writ-
ten down in closed form.
In this section we analyze whether the RG-improved

black holes satisfy a quantum-corrected version of the first
law (8.1) and, if so, how the temperature and entropy get
modified.

A. Preliminaries

The states an improved Kerr black hole can be in are
labeled by the two parameters M and J. We visualize the
corresponding state space as (part of) the two-dimensional
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Euclidean plane with Cartesian coordinates x1 ¼ M,
x2 ¼ J. Using the convenient language of differential
forms, state functions are zero forms on this space, i.e.
scalars f ¼ fðxÞ � fðM; JÞ. Defining the exterior deriva-
tive as1

� ¼ �M
@

@M
þ �J

@

@J

a differential form � is closed if �� ¼ 0, and it is exact if
� ¼ ��, where � denotes a (p� 1)-form when � is a
p-form. The state space being two-dimensional, the
only case of interest is p ¼ 1. A general 1-form has the
expansion � ¼ PðM; JÞ�Mþ NðM; JÞ�J. This 1-form is
closed if

@P

@J
¼ @N

@M
(8.5)

and it is exact if there exists a 0-form SðM; JÞ such that
� ¼ �S or, in components, P ¼ @S=@M, N ¼ @S=@J. We
assume that the states ðM; JÞ form a simply connected
subset of the Euclidean plane so that �� ¼ 0 is necessary
and sufficient for the exactness of �.

If � is not exact, one can try to find an integrating factor
�ðM; JÞ such that the product �� is exact: �ðM; JÞ� ¼
�S. Hence �ð��Þ ¼ 0, or @ð�PÞ=@J ¼ @ð�NÞ=@M,
which implies a quasilinear partial differential equation
for the 0-form �ðM; JÞ [61–63]:

P

�
@�

@J

�
� N

�
@�

@M

�
¼ �

��
@N

@M

�
�

�
@P

@J

��
: (8.6)

B. Does there exist an entropylike state function?

The 1-form we are actually interested in is

� ¼ 2�


ðM; JÞ ð�M��HðM; JÞ�JÞ (8.7)

with

P � 2�



; N � � 2��H



(8.8)

involving the surface gravity and angular velocity of
Eqs. (8.3) and (8.4). The crucial question is whether � is
closed, i.e. whether its components (8.8) satisfy the inte-
grability condition (8.5). The explicit calculation reveals
that for a generic GðrÞ this is actually not the case: The
1-form (8.7) with the quantum-corrected versions of 
 and
�H is not closed and, as a consequence, not exact. [This
calculation is straightforward, in principle, but rather tedi-
ous [49]. One has to be careful about differentiating all the
implicitM and J dependencies that enter via rIþðM; JÞ. One
does not need the explicit form of this function; its partial
derivatives can be expressed in terms of rIþ itself by differ-
entiating the horizon condition �ðrIþÞ ¼ 0.]

As � is not exact in the improved case we must
conclude that there does not exist a differential relation
of the type

�M��H�J ¼
�



2�

�
�

�
A
4G0

þ quantum corrections

�
(8.9)

which could play the role of a modified first law for
quantum black holes. The interpretation of (8.9) would
have been clear: The Bekenstein-Hawking temperature of
the improved black holes is related to the surface gravity by
T ¼ 
=2�, as in the classical case, and there exists a state
function SðM; JÞ which equals the classical A=4G0 plus
correction terms. Since � is actually not exact we must
conclude that either there exists no entropylike state func-
tion for the improved black holes or the classical relation
T ¼ 
=2� does not hold true for them.
We see that for quantum Kerr black holes even the very

existence of an entropy is a nontrivial issue. The situation
was different for the improved Schwarzschild black holes
[28]. Since there the state space is one-dimensional, � �
ð2�=
Þ�M is trivially exact, T ¼ 
=2� continues to be
valid, and the entropy one finds has indeed the structure
A=4G0 þ quantum corrections [28,29].
Thus we are led to conclude that if there exists a modi-

fied, i.e. quantum, version of black-hole thermodynamics
which is accessible by RG improvement, then the tempera-
ture cannot be simply proportional to the surface gravity:
T � 
=2�. While a priori it is perhaps not very surprising
that the semiclassical relation T ¼ 
=2� is subject to
quantum gravity correction, this causes a difficulty of
principle. Within the present approach we were able to
find the corrected M and J dependence of 
 and �H, and,
as a result, we know the corrected 1-form �. However,
without additional input, knowledge of � is not enough to
deduce the two functions TðM; JÞ and SðM; JÞ. There exist
infinitely many pairs ðT; SÞ such that � ¼ T�S for a pre-
scribed �. In a full-fledged quantum gravity version of
black-hole thermodynamics it might be possible to find the
‘‘correct’’ one, presumably.
A general theory of this kind is beyond the scope of the

present paper. Here we only consider the possible structure
of a modified first law. As we shall see in the next sub-
section, progress can be made by restricting the discussion
to black holes of small angular momentum. To leading
order in a J2 expansion the corrections to the temperature
and entropy are found to be uniquely fixed.

C. Temperature and entropy to order J2

By time reflection symmetry, the small-J expansions of
the temperature and entropy read

TðM; JÞ ¼ T0ðMÞ þ T2ðMÞJ2 þOðJ4Þ; (8.10)
1To conform with the standard notation of thermodynamics we

denote the exterior derivative by � rather than d.
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SðM; JÞ ¼ S0ðMÞ þ S2ðMÞJ2 þOðJ4Þ: (8.11)

The terms of lowest order, T0ðMÞ and S0ðMÞ, refer to the
RG-improved Schwarzschild spacetime [28,29]. They sat-
isfy �M ¼ T0�S0 or 1=T0ðMÞ ¼ dS0ðMÞ=dM. In [28] this
relation has been integrated in order to find the entropy of
the improved Schwarzschild black hole:

S0 ¼
Z M

Mcr

dM0

T0ðM0Þ : (8.12)

In the approximation dðrÞ ¼ r the temperature was found
to be given by

T0ðMÞ ¼ 1

4�G0Mcr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yð1�YÞp

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1�Y

p

¼ 1

8�G0M

�
1� 1

4

�
Mcr

M

�
2 � 1

8

�
Mcr

M

�
4 þOðM�6Þ

�
:

(8.13)

Here Y � M2
cr=M

2 and Mcr �
ffiffiffiffi
�w

p
mPl. (The critical

mass Mcr is the smallest mass for which the improved
Schwarzschild spacetime has an event horizon [28].) Using
(8.13) in (8.12) yields

S0ðMÞ ¼ S0ðMcrÞ þ 2� �w½Y�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y

p ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y

p Þ
þ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y

p �

¼ S0ðMcrÞ þASch
Class

4G0

þ 2� �w

�
ln

�
2M

Mcr

�
� 3

2

� 3

8

�
Mcr

M

�
2 � 5

32

�
Mcr

M

�
4 þOðM�6Þ

�
: (8.14)

Here ASch
Class � 4�ð2G0MÞ2 is the classical Schwarzschild

surface area. The first few terms of the large-M expansions
given in (8.13) and (8.14) are rather reliable predictions
probably since forM � mPl the classical spacetime is only
weakly distorted by quantum effects.

Next we try to determine T2 and S2 such that �M�
�H�J ¼ T�S is satisfied to order J2. Inserting the Ansätze
for T and S we have

�M��H�J ¼ ½T0ðMÞ þ T2ðMÞJ2��½S0ðMÞ þ S2ðMÞJ2�
¼ T0�S0 þ �S0T2J

2 þ �ðS2J2ÞT0 þOðJ3Þ:
(8.15)

Exploiting that T0�S0 ¼ �M we are left with

��H�J¼ �S0T2J
2 þ�ðS2J2ÞT0 þOðJ3Þ

¼ T2J
2

�
dS0
dM

�
�MþT0

�
J2
�
dS2
dM

�
�Mþ 2JS2�J

�
þOðJ3Þ: (8.16)

Equating the coefficients of �J and �M we find the follow-
ing two coupled equations which determine S2 and T2:

T2

�
dS0
dM

�
þ T0

�
dS2
dM

�
¼ 0þOðJ4Þ; (8.17)

2JT0S2 þ�H ¼ 0þOðJ3Þ: (8.18)

In Eq. (8.18) we need �H to linear order in J only. From
(8.4) we obtain

�HðM; JÞ ¼ J

MrISchþðMÞ2 þOðJ3Þ; (8.19)

where rISchþ � rIþðJ ¼ 0Þ refers to the improved

Schwarzschild black hole. In the approximation dðrÞ ¼ r
we are using here this radius is explicitly given by [28]

rISchþ ¼ G0M½1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y

p �: (8.20)

With (8.19) in (8.18) we can solve for the function S2:

S2ðMÞ ¼ �½2MT0ðMÞrISchþðMÞ2��1: (8.21)

Furthermore, taking advantage of dS0=dM ¼ 1=T0 again,
we can solve (8.17) for T2 in terms of the, by now known,
function S2:

T2ðMÞ ¼ �T0ðMÞ2 dS2ðMÞ
dM

: (8.22)

In deriving the relations (8.21) and (8.22) we were able to
find a well defined and unique answer for the coefficients
of the J2 terms. Equation (8.21) for S2ðMÞ involves only the
known Schwarzschild quantities T0 and r

I
Schþ, and once S2

is known also T2 is completely fixed by Eq. (8.22).
Using the results from the Schwarzschild case we obtain

the following final result for the temperature and entropy to
order J2:

TðM;JÞ¼ 1

8�G0M

�
1�1

4

�
Mcr

M

�
2�1

8

�
Mcr

M

�
4þOðM�6Þ

�

� J2

32�M5G3
0

�
1þ

�
Mcr

M

�
2þ15

16

�
Mcr

M

�
4

þOðM�6Þ
�
þOðJ4Þ; (8.23)

SðM; JÞ ¼ ASch
class

4G0

þ 2� �w

�
ln

�
2Mcr

M

�
� 3

2
� 3

8

�
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M

�
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�
�

�
�J2

M2G0

�

�
�
1þ 3

4

�
Mcr

M

�
2 þ 5

8

�
Mcr

M

�
4 þOðM�6Þ

�
þOðJ4Þ: (8.24)

In writing down the result for the entropy we fixed the
undetermined constant of integration such that S ¼ 0 for
M ¼ Mcr and J ¼ 0.
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We observe that the angular momentum-dependent
terms in (8.23) and (8.24) decrease both the black hole’s
temperature and entropy as compared to the corresponding
Schwarzschild quantities. We also see that the size of the
J2 corrections increases withMcr=M; i.e. these corrections
grow as the mass M of the black hole becomes smaller
during the evaporation process.

In summarizing the most important aspects of the modi-
fied black-hole thermodynamics discussed in this section
we recall that 2�T does not agree with the surface gravity

 here as it is the case in the familiar (semi)classical
situation. We demonstrated that a modified first law can
exist only when we give up the relationship T ¼ 
=2�. We
also showed that, to order J2, there is a uniquely deter-
mined modification of this relationship which allows for
the existence of a state function SðM; JÞ with the interpre-
tation of an entropy.

IX. SUMMARYAND CONCLUSION

In this paper we tried to assess the impact of the leading
quantum gravity corrections on the properties of rotating
black holes within the framework of quantum Einstein
gravity. Using the gravitational average action as the basic
tool we developed a scale-dependent picture of the space-
time structure. We exploited that �k is a family of effective
field theories labeled by k. More precisely, to each point P
we associated a coarse-graining scale k ¼ kðP Þ and then
described a neighborhood of P by the specific effective
action �kðP Þ. In principle, there could be several plausible

choices of the map P ! kðP Þ. They lead to different
‘‘pictures’’ of the same physical system. Using the analogy
of a microscope with a variable resolving power [25] we
are using a microscope with a position-dependent resolv-
ing power, and clearly the picture we see depends on how
we change the resolving power from point to point. For the
black hole the choice of kðP Þ is made less ambiguous than
for a generic spacetime since we would like the picture,
the improved metric, to have the same symmetries as the
classical metric. We chose kðP Þ to be monotonically de-
creasing in the radial direction, giving the best ‘‘resolu-
tion’’ to points near the black hole and the worst to those
asymptotically far away. The experience with similar RG
improvements indicates that in this way the improved
metric encodes the leading quantum corrections at least
at a qualitative level.

The results we obtained can be summarized as follows.
In general, the quantum corrections are small for heavy
black holes (M � mPl) but become appreciable for light
ones. Heavy quantum black holes have the same number of
critical surfaces as the classical ones, namely, two static
limit surfaces and two horizons. (For J ¼ 0 the improve-
ment had led to the formation of a new horizon.) As one
lowers M towards the Planck mass, the two horizons
coalesce and then disappear. At an even smaller mass the
static limit surfaces coalesce and then disappear as well.

Even though the reliability of the improvement method
becomes questionable when the corrected metric is very
different from the classical one we believe that the disap-
pearance of the horizons below a certain critical mass is a
fairly reliable prediction. In fact, this phenomenon has a
very simple interpretation: The existence of a horizon
means that the gravitational field is so strong that it can
trap light; if, however, the strength of the gravitational
interaction is reduced at small distances by the RG running
ofG, then it is quite plausible that very small objects with a
low mass cannot prevent light from escaping.
Whether or not these objects have a naked singularity

remains an open question. The method used here is likely
to lose its validity close to the black hole’s center. Also on
the basis of earlier investigations [28], it is likely though
that the quantum corrections soften the singularity (again
because G is switched off at short distances); it is even
conceivable that it disappears altogether [28].
A particularly intriguing feature of the Kerr black hole is

the possibility of energy extraction. As the Penrose process
is related to the existence of negative energy states of test
particles we analyzed the phase space of such negative
energy states in detail. In particular, we saw that, while it is
possible to extract energy from classical black holes of
arbitrary small mass and angular momentum, in the im-
proved Kerr spacetime there exists a minimum mass for
energy extraction. It is defined by the extremal configura-
tion of the static limit surfaces.
We explained that even though the quantum black holes

in the vacuum can be reinterpreted as classical black holes
in the presence of a special kind of matter mimicking the
quantum fluctuations, many of their mechanical and, in
particular, thermodynamical properties are nevertheless
nonstandard since this pseudomatter does not satisfy any
of the familiar energy conditions.
As a first step towards an ‘‘RG-improved black-hole

thermodynamics’’ we analyzed the problem of identifying
a state function which could possibly be interpreted as an
entropy. We saw that in the quantum case the 1-form
ð�M��H�JÞ=
 is no longer exact or, stated differently,
the surface gravity is not an integrating factor of �M�
�H�J. We concluded that if an entropy is to exist also for
the improved black hole, their temperature cannot simply
be proportional to 
. We also saw that for small angular
momentum, to order J2, there exist unambiguously defined
modified relationships for the M and J dependence of
temperature and entropy. We hope to come back to a
more detailed discussion of these thermodynamical issues
elsewhere.
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