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Belinski, Khalatnikov, and Lifshitz pioneered the study of the statistical properties of the never-ending

oscillatory behavior (among successive Kasner epochs) of the geometry near a spacelike singularity. We

show how the use of a ‘‘cosmological billiard’’ description allows one to refine and deepen the under-

standing of these statistical properties. Contrary to previous treatments, we do not quotient the dynamics

by its discrete symmetry group (of order 6), thereby uncovering new phenomena, such as correlations

between the successive billiard corners in which the oscillations take place. Starting from the general

integral invariants of Hamiltonian systems, we show how to construct invariant measures for various

projections of the cosmological-billiard dynamics. In particular, we exhibit, for the first time, a (non-

normalizable) invariant measure on the ‘‘Kasner circle’’ which parametrizes the exponents of successive

Kasner epochs. Finally, we discuss the relation between: (i) the unquotiented dynamics of the Bianchi-IX

(a, b, c or mixmaster) model; (ii) its quotienting by the group of permutations of (a, b, c); and (iii) the

billiard dynamics that arose in recent studies suggesting the hidden presence of Kac-Moody symmetries in

cosmological billiards.
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I. INTRODUCTION

A remarkable achievement of theoretical cosmology
has been the construction, by Belinski, Khalatnikov,
and Lifshitz (BKL), of a general solution to the four-
dimensional vacuum Einstein equations in the vicinity of
a spacelike (‘‘cosmological’’) singularity [1–4]. They
found that this solution exhibits a never-ending oscillatory
behavior, with strong chaotic properties. They could de-
scribe in detail the statistical properties of this never-
ending oscillatory behavior by approximating the
Einstein field equations (near the singularity) by a system
of ordinary differential equations for three variables a, b, c
(anisotropic scale factors), namely

2
d2 lna

d�2
¼ ðb2 � c2Þ2 � a4; (1.1a)

2
d2 lnb

d�2
¼ ðc2 � a2Þ2 � b4; (1.1b)

2
d2 lnc

d�2
¼ ða2 � b2Þ2 � c4; (1.1c)

where d� ¼ �dt=ðabcÞ, and by approximately reducing
the continuous dynamics of a, b, c to a sequence of discrete
maps. The crucial discrete map introduced by BKL relates
the Kasner exponents pa, pb, pc describing the (approxi-
mately linear) �-evolutions of the three scale factors a, b, c
during two successive epochs (i.e. two successive segments
of the dynamics (1.1) during which the influence of
the right-hand side is negligible). More precisely, BKL,

following [5], parametrize the three Kasner exponents
pa, pb, pc (constrained to satisfy 1 ¼ pa þ pb þ pc ¼
p2
a þ p2

b þ p2
c) by means of one real parameter u, and

show that the interval 1 � u � 1 is in one-to-one corre-
spondence with the unordered set fpa; pb; pcg. In terms of
this parametrization, BKL showed that the discrete map
describing the passage from one epoch to the next is

if u > 2; u0 ¼ u� 1 (1.2a)

while; if 1< u< 2; u0 ¼ 1

u� 1
: (1.2b)

They also defined an ‘‘era’’ as being a set of successive
epochs during which u evolves according to the simple law
(1.2a). This led them to realize that the chaotic part of the
discrete epoch dynamics (1.2) is essentially contained in
the ‘‘Gauss iteration map’’1

xnþ1 ¼ f1=xng � 1=xn � ½1=xn�: (1.3)

Here, x (with 0< x< 1) denotes the fractional part of u
during an era. Let us recall that the u parameter of all the
epochs belonging to the n-th era can be written in two
essentially equivalent ways, which depend on the precise
way in which one defines an era as a collection of epochs.
If one uses the definition of an era such that the corre-
sponding u parameters are always larger than 1, the n-th
era consists of kn epochs parametrized by values of u of the
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1Here fyg denotes the fractional part, fyg ¼ y� ½y� (where ½y�
denotes the integer part of y) of the (positive) real number y.
We recall that the Gauss map is at the basis of the expansion
of a positive real number into a continued fraction n1 þ 1=ðn2 þ
1=ðn3 þ � � �ÞÞ.
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form kn þ xn; kn � 1þ xn; . . . ; 1þ xn. The next era then
starts by a value of u equal to knþ1 þ xnþ1 ¼ 1=xn, so that
knþ1 ¼ ½1=xn�, and xnþ1 ¼ f1=xng. We shall refer to this
definition of an era as the ‘‘standard’’ one (because it was
adopted in the treatise of Landau and Lifshitz [6]), or as the
BKLu>1 one. An alternative definition, introduced by BKL
in Eq. (5.4) of [4] (that we shall call the BKLu>0 one) leads
to considering that the n-th era starts with u ¼ kn þ xn �
1, and ends with u ¼ xn < 1 (with the next era starting
with u ¼ knþ1 � 1þ xnþ1). We shall see below that the
latter, (alternative) definition of an era is more natural in
the billiard picture, and this is the one we shall actually use
in our work. The iteration of the Gauss map (1.3) leads to a
statistical behavior of the successive values of x, with an
asymptotic stationary probability distribution over the in-
terval [0, 1] [3,4,7]:

wðxÞdx ¼ 1

ln2

dx

1þ x
: (1.4)

For general reviews of the works dealing with the BKL
singularity, see [4,7,8]. Later studies have refined the de-
scription of the statistical properties of the chaotic BKL
oscillations, notably by introducing and studying more
complete discrete iteration maps (involving several real
variables), and notably by the two-dimensional discrete
map [9–11]

xþnþ1 ¼ f1=xþn g � 1=xþn � ½1=xþn �; (1.5a)

x�nþ1 ¼ 1=ð½1=xþn � þ x�n Þ: (1.5b)

The iteration of this two-dimensional map (of the unit
square into itself) asymptotically leads to a statistical
behavior for ðxþn ; x�n Þ 2 ½0; 1� � ½0; 1� with probability
distribution [9–11]

wðxþ; x�Þdxþdx� ¼ 1

ln2

dxþdx�

ð1þ xþx�Þ2 : (1.6)

Separately from the work of BKL,2 and, with a different
aim and motivation, Misner realized that generic Bianchi-
IX homogeneous cosmological models have a ‘‘very
complex singularity’’ [13]. He described this complex
dynamics by a Hamiltonian formalism, in terms of a ‘‘sys-
tem point’’ � ¼ ð�þ; ��Þ bouncing against a system of
‘‘potential walls.’’ A reformulation of this dynamics
[14,15] led to the simpler picture of a point moving on a
Lobachevsky plane and reflecting upon fixed billiard-type
cushions. This led Chitre (using earlier mathematical re-
sults by Hopf and Hedlung) to remark that the dynamics of
the system point is ergodic and mixing, with unique in-
variant Liouville measure (restricted to a fixed energy
shell) [15,16]

�L ¼ �ðHðq; pÞ � EÞd2qd2p / d2�d�

ð1� j � j2Þ2 : (1.7)

The description of cosmological singularities in terms
of billiards in (higher dimensional) Lobachevsky (or
Lorentzian) spaces has recently received a new impetus
from the discovery that the billiard chambers correspond-
ing to many interesting physical theories can be
identified with the ‘‘Weyl chambers’’ of certain (infinite-
dimensional) Lorentzian Kac-Moody algebras [17–19].
This has raised the conjecture that, hidden below the
BKL ‘‘chaos,’’ there lies a remarkable Kac-Moody sym-
metry, akin to the duality symmetries of supergravity and
string theories [20–22]. Coming back to the cosmological
singularities in (3þ 1)-dimensional general relativity, the
problem of relating the statistical properties of the discrete
BKL map, such as Eq. (1.4) or Eq. (1.6), to the invariance
of the Liouville measure (1.7) in the continuous billiard
dynamics, à laMisner-Chitre, has been considered in some
detail by Kirillov and Montani [23]. These authors have
shown, by an explicit calculation, that the Liouville
measure �L, Eq. (1.7), (which is a three-form) could be
formally rewritten as the product of the invariant measure
of the discrete BKL-type map (1.6), namely, the two-form

�2 ¼ dxþ ^ dx�

ð1þ xþx�Þ2 ; (1.8)

by a one-dimensional measure d�, measuring the proper
(hyperbolic) length along the billiard motion on the
Lobachevsky plane. One of the aims of the present
work is to better understand the link between the two
different invariant measures (1.7) and (1.8), and the origin
of these measures within the symplectic structure of the
(Lorentzian) billiard dynamics. Another aim will be to go
beyond the symmetry quotienting which has been used in
most previous studies of the statistical properties of cos-
mological billiards. Indeed, there is a basic triality3 sym-
metry between the three BKL dynamical variables a, b, c,
and the discrete maps (1.3) or (1.5) arise only if one
effectively quotients the phase-space dynamics by their
symmetry. [An example of this quotienting is the fact
that the parameter u, taken in the interval 1< u<1,
parametrizes the unordered set of Kasner exponents
fpa; pb; pcg.] Here, we shall instead consider the richer
(continuous and discrete) billiard dynamics in the full,
unquotiented phase space. As we shall see, this full dy-
namics contains new statistical features that do not appear
in the traditionally considered quotiented dynamics.
Finally, we shall also compare and contrast the (unquo-
tiented or quotiented) BKL dynamics of the (diagonal
type-IX) a, b, c system with the billiard dynamics that
naturally arose in recent studies that uncovered the hidden
presence of Kac-Moody-related structures in cosmological

2It seems that western physicists, and notably J. A. Wheeler
who was in the audience, first heard about the BKL results from
a seminar given by Isaak Khalatnikov at the Institut Henri
Poincaré, Paris, in January 1968; see [12].

3Actually, what matters is a six-fold symmetry corresponding
to the permutation group of the set fa; b; cg.
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billiards ([17–22]). Indeed, the billiard dynamics which are
most closely connected to such hidden symmetries take
place in the Weyl chambers of some Kac-Moody algebras.
In the usual case of four-dimensional vacuum Einstein
gravity, this Weyl chamber is what we shall call a ‘‘small
billiard,’’ obtained by quotienting the full ða; b; cÞ billiard
table by the six-fold permutation group of the three letters
a, b, c. As we shall discuss, the billiard dynamics in this
quotiented (configuration space) billiard table is not
equivalent to the quotienting of the billiard dynamics in
the full table, though the further quotienting of this small-
billiard dynamics by modding out the action (in phase
space) of the a-b-c permutation is equivalent to the
(phase-space) quotienting of the full ‘‘big billiard’’ dynam-
ics. Our present paper will focus on the usual case of four-
dimensional vacuum Einstein gravity. In a sequel paper, we
will extend our results to higher-dimensional gravity
models, using the generalized ‘‘cosmological-billiard’’ ap-
proach [21]. The paper is organized as follows. In Sec. II,
we introduce cosmological billiards; this leads, in particu-
lar, to contrasting the big billiard studied by Belinski,
Khalatnikov, Lifshitz, and Misner, with the small billiard,
connected with the Weyl chamber of a Kac-Moody algebra
as shown in Fig. 2. In Sec. III, we discuss two conformal
representations of cosmological billiards, i.e. the disk
model and the upper-half-plane model; in particular, we
outline their representations of epochs and eras. In Sec. IV,
we define integral invariants for general dynamical sys-
tems, which allow us to find an invariant measure for the
BKL discrete map (full details about integral invariants in
Hamiltonian systems are given in the Appendix). In Sec. V,
we analyze the big billiard, describe its dynamics as a
‘‘hopscotch game’’ at different levels, and define the cor-
responding maps. In Sec. VI, we exploit the symmetries of
the big billiard to define a symmetry-quotiented map. In
Sec. VII, we study the main properties of this symmetry-
quotiented map. In Sec. VIII, periodic phenomena in
cosmological billiards are considered, and some differ-
ences between the complete billiard and the symmetry-
quotiented billiard are outlined. In Sec. IX, the small
billiard is introduced, its features are investigated, and its
equivalence with the big billiard is discussed. Brief con-
cluding remarks end the paper.

II. REMINDERS AND TECHNICAL
PRELIMINARIES

Let us start by defining our notation and recalling some
basic facts about cosmological billiards. (We mainly fol-
low the notation of [21].) In order to describe the evolution
of a general inhomogeneous space-time metric near a
spacelike singularity, it is convenient to use ‘‘pseudo-
Gaussian ’’ coordinates, with vanishing ‘‘shift’’ Ni ¼ 0,
but with some convenient choice of the ‘‘lapse’’ N:

ds2 ¼ �ðNðx0; xiÞdx0Þ2 þ gijðx0; xkÞdxidxj: (2.1)

Here x0 denotes the coordinate time associated to any
particular way of choosing the value of the lapse function
N. The indices i; j ¼ 1; . . . ; d denote the various spatial
dimensions. In the present work we shall consider the case
d ¼ 3, but many of the general technical results recalled in
this section are valid for any value of the space dimension
d. There are two useful choices of the lapse N for exhib-
iting the ‘‘billiard nature’’ of the dynamics of gij near the

singularity. The choice

N ¼ ffiffiffi

g
p

; (2.2)

where g denotes the determinant of the spatial metric gij,

corresponds to using as coordinate time x0 the parameter �
introduced by BKL, i.e. the quantity

d� ¼ � dt
ffiffiffi

g
p ; (2.3)

where dt ¼ Ndx0 denotes the (local) proper time. [A
minus sign is introduced in (2.3) so that the cosmological
singularity conventionally located at t ! 0þ (‘‘big bang’’)
is approached as � ! þ1 with respect to the �-coordinate
time.] The choice of (2.2) and (2.3) leads to an asymptotic
description of the gravitational dynamics in terms of a
‘‘Lorentzian billiard in �-space’’. More precisely, one first
performs an Iwasawa decomposition of the spatial metric,
i.e. one (locally) replaces the dðdþ 1Þ=2 functions
gijðx0; xkÞ by the d functions �aðx0; xkÞ, together with the

dðd� 1Þ=2 functions N a
iðx0; xkÞ parametrizing an upper

triangular matrix with 1’s on the diagonal, according to

gij ¼
X

d

a¼1

e�2�a
N a

iN
a
j: (2.4)

In the near-singularity (or BKL) limit (t ! 0þ or � ! þ1,
or

P

a�
a ! þ1), one finds that the upper triangular ma-

trix N a
i has a limit [21] and that the only parts of the

metric which have a ‘‘chaotic behavior’’ are the ‘‘diagonal
degrees of freedom’’ parametrized by the d functions
�aðx0; xkÞ. Then one finds that, at each point of space,
the �a’s asymptotically follow a Lorentzian-billiard
dynamics: namely, the �að�Þ’s undergo a succession of
constant-velocity straight-line flights interrupted by colli-
sions (and reflections) on some hyperplanes in �-space.
The free-flight dynamics of the �-particle between wall
collisions is described by the free action

Z 1

2
d�

X

d

a;b¼1

Gab

d�a

d�

d�b

d�
; (2.5)

submitted to the constraint

X

d

a;b¼1

Gab

d�a

d�

d�b

d�
¼ 0: (2.6)

Here, the �-space metric Gab is defined by
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d�2 ¼ X

d

a;b¼1

Gabd�
ad�b ¼ X

a

ðd�aÞ2 �
�

X

a

d�a

�

2
:

(2.7)

The metric Gab endows the d-dimensional space of the �’s
with a Lorentzian structure (signature �þþ . . .þ ). [In
the case of 3þ 1-dimensional general relativity, the three-
dimensional �-space metric has signature �þþ. Note,
however, that the coordinates �1, �2, �3 are not of the
canonical Lorentzian form. Indeed one has d�2 ¼
�2ðd�1d�2 þ d�2d�3 þ d�3d�1Þ.] Note that the con-
straint (2.6) means that, between collisions, the
�-particle goes ‘‘with the velocity of light’’ (in the sense
of the Lorentzian structure Gab in �-space.) In other
words, the free-flight dynamics deduced from the action
(2.5), namely

d2�a

d�2
¼ 0 ) �að�Þ ¼ �a

0 þ va�; (2.8)

is restricted by the quadratic constraint

0 ¼ X

d

a;b¼1

Gabv
avb ¼ X

a

ðvaÞ2 �
�

X

a

va

�

2
: (2.9)

The free-flight dynamics (2.8) in �-space (and in the �
parametrization) corresponds, in the BKL language, to a
‘‘Kasner epoch’’ (between two successive wall collisions).
The usually considered Kasner exponents pa, a ¼
1; . . . ; d, corresponding to a Gaussian (or synchronous)
gauge (i.e. N ¼ 1), are related to the d-dimensional veloc-
ity vector va in �-space (and pseudo-Gaussian � gauge,
N ¼ ffiffiffi

g
p

) via

pa ¼ va

P

b

vb
: (2.10)

Note that while va satisfies the unique quadratic con-
straint (2.9) (proportional to the combination

P

aðpaÞ2 �
ðPapaÞ2), the Kasner parameters pa satisfy the two
well-known constraints

X

a

pa ¼ 1 ¼ X

a

p2
a: (2.11)

The free-flight dynamics (2.7) is only valid if the ‘‘point’’
� is sufficiently far from certain (Lorentzian) ‘‘wall hyper-
planes’’ in �-space. The equations of these wall hyper-
planes depend on the field content of the theory that one
considers, (e.g. Einstein-Maxwell versus Einstein, etc.).
They are of the general form

wAð�Þ � X

d

a¼1

wA
a�

a ¼ 0: (2.12)

More precisely, the dynamics of the�-particle is given by a
Hamiltonian H of the form H ¼ H0 þ V, where H0 is a
free kinetic term describing (in Hamiltonian form) the free-
flight part of the dynamics, namely

H0 ¼ 1

2

X

d

a;b¼1

Gab	a	b; (2.13)

where Gab is the inverse of the covariant metric tensor Gab

(in �-space), introduced in (2.7). Its components in the �a

(Iwasawa-related) coordinates are explicitly given by

X

a;b

Gab	a	b ¼
X

a

ð	aÞ2 � 1

d� 1

�

X

a

	a

�

2
: (2.14)

As for the potential Vð�Þ in the HamiltonianH ¼ H0 þ V,
it is a sum of ‘‘Toda-like’’ (i.e. exponential) terms, Vð�Þ �
P

AcA expð�2wAð�ÞÞ. As recalled in the Appendix, in the
near-singularity limit the potential Vð�Þ can be replaced
by its sharp-wall limit V1ð�Þ ¼

P

A�1ð�2wAð�ÞÞ, where
�ðxÞ :¼ 0 if x < 0 and �ðxÞ :¼ þ1 if x > 0. For a ge-
neric inhomogeneous metric, the set of linear wall forms
wAð�Þ always includes curvature (or gravitational) walls
(wg

ðabcÞð�Þ) and symmetry (or centrifugal) walls (wS
ab).

They are explicitly defined by

wg
ðabcÞð�Þ � �a � �b � �c þX

e

�eðb � cÞ; (2.15)

wS
ðabÞ � �b � �aða < bÞ: (2.16)

Beware of the fact that the indices with parentheses ap-
pearing on the left-hand sides of these definitions should be
considered as labels [like the label A in Eq. (2.12)], and not
as �-space tensor indices. For example, in the linear form
of the �’s wg

ðabcÞð�Þ ¼
P

ew
g
ðabcÞe�

e only the summed-over

index e must be considered as a tensor index. In addition,
note that the index e on wg

ðabcÞe is covariant, while the

index e on �e is contravariant. This means that, when
computing the Lorentzian scalar product between two
wall forms, wAð�Þ ¼ P

aw
A
a�

a and wBð�Þ ¼ P

aw
B
a�

a,
one should use the contravariant �-space metric Gab:

wA � wB � X

a;b

GabwA
aw

B
b : (2.17)

Among all possible walls entering the Hamiltonian, only
the subset of ‘‘leading’’ walls (those not ‘‘hidden behind’’
another wall) should be retained to define the �-space
billiard defining the asymptotic BKL-like dynamics.
Indeed, the billiard chamber is defined as the intersection
of the positive sides of the set of wall hyperplanes, i.e. the
domain where all the linear forms wAð�Þ are positive. For
instance, in the case of three spatial dimensions, there are 6
gravitational walls, and 3 symmetry ones. However, among
these, some walls are ‘‘subleading’’ in that they are always
behind some other walls. For example, the symmetry wall
wS

ð13Þ ¼ �3 � �1 can be identically expressed as wS
ð13Þ ¼

�3 � �2 þ �2 � �1 � wS
ð12Þð�Þ þ wS

ð23Þð�Þ. Therefore the
inequality wS

ð13Þð�Þ> 0 is a consequence of the two in-

equalities wS
ð12Þð�Þ> 0 and wS

ð23Þð�Þ> 0, meaning that the

wall wS
ð13Þð�Þ is behind the two walls wS

ð12Þð�Þ and wS
ð23Þð�Þ
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and is therefore subleading. Similarly, one finds that among
the gravitational walls wg

ðabcÞ the ones where the first label
is equal either to b or c (b � c), i.e. �cð�Þ ¼ ��c þ
P

e�
e are always subleading. In d ¼ 3, this leaves only 3

a priori leading gravitational walls,

wg
ð123Þð�Þ ¼ 2�1; wg

ð231Þð�Þ ¼ 2�2; wg
ð312Þð�Þ ¼ 2�3:

(2.18)

Moreover, the same reasoning which allows one to
conclude that the symmetry wall wS

ð13Þð�Þ is ‘‘behind’’

the two other symmetry walls wS
ð12Þð�Þ and wS

ð23Þð�Þ shows
that the gravitational walls wg

ð231Þð�Þ and wg
ð312Þð�Þ are both

behind the combination of the walls fwS
ð12Þ; w

S
ð23Þ; w

g
ð123Þg.

Therefore, for a generic inhomogeneousmetric the asymp-
totic billiard chamber in �-space is defined by the follow-
ing three independent inequalities:

wS
ð12Þð�Þ � �2 � �1 � 0; (2.19a)

wS
ð23Þð�Þ � �3 � �2 � 0; (2.19b)

wg
ð123Þð�Þ � 2�1 � 0: (2.19c)

Note that the boundary of this billiard chamber is made of
two (portions of) symmetry walls, and one (portion of)
gravitational wall. The occurrence of the symmetry
walls here comes from terms in the Hamiltonian associated
with the kinetic energy of the off-diagonal components,
N a

i , in the Iwasawa decomposition (2.4) of the metric.
Note that an alternative way of seeing the ‘‘constraining’’
effect of the off-diagonal components of the metric
consists of using, instead of an Iwasawa decomposition,
a Gauss decomposition of the spatial metric: gij ¼
P

ae
�2�a

Ra
iR

a
j, with R

a
i being a rotation matrix, parame-

trized by three Euler angles. Such a Gauss decomposition
was introduced by Belinski, Khalatnikhov, and Ryan in
[24]. As shown there, it entails the presence of centrifugal
walls which are simply related to the (Iwasawa) expo-
nential symmetry walls expð�2wS

ðabÞÞ via Vcentrif
ðabÞ /

½sinhðwS
ðabÞÞ��2. In the special case of a homogeneous

vacuum model of Bianchi type IX, it is possible to restrict
oneself (without loss of generality) to considering a metric
gij�

i�j which is diagonal in a coframe �i ¼ eimdx
m of

left-invariant one-forms. In that case, the kinetic energy
terms associated to the off-diagonal components of gij
vanish, so that the symmetry walls do not appear. As a
consequence, the billiard chamber for the special diagonal
Bianchi-IX case is defined by the three leading gravita-
tional walls (2.18), i.e. by the three inequalities

wg
ð123Þð�Þ ¼ 2�1 � 0; (2.20a)

wg
ð231Þð�Þ ¼ 2�2 � 0; (2.20b)

wg
ð312Þð�Þ ¼ 2�3 � 0: (2.20c)

Note that these three billiard walls correspond to the lead-
ing terms that appear on the right-hand side of the BKL

a, b, c system (1.1) when using the exponential parame-
trization a ¼ e�
, b ¼ e��, c ¼ e��. Indeed, in terms of
these variables, the a, b, c system (1.1) reads

d2


d�2
¼ 1

2
½e�4
 � e�4� � e�4� þ 2e�2ð�þ�Þ�; (2.21a)

d2�

d�2
¼ 1

2
½e�4� � e�4� � e�4
 þ 2e�2ð
þ�Þ�; (2.21b)

d2�

d�2
¼ 1

2
½e�4� � e�4
 � e�4� þ 2e�2ð�þ
Þ�: (2.21c)

The terms / e�4
, e�4�, e�4� exactly correspond to the

three wall forms (2.20), i.e. e�4�1
, e�4�2

, e�4�3
.

They appear even more clearly in the Hamiltonian
constraint of the a, b, c system which has the form
H � 1

2Gab
_�a _�b þ Vð�Þ ¼ 0, i.e., explicitly,

H��d


d�

d�

d�
�d


d�

d�

d�
�d�

d�

d�

d�
þ1

4
½e�4
þe�4�

þe�4��2e�2
e�2��2e�2
e�2��2e�2�e�2��¼ 0:

(2.22)

It is easily seen that the three symmetry walls wS
ð12Þð�Þ,

wS
ð23Þð�Þ, wS

ð31Þð�Þ partition the �-space chamber (2.20)

into six subchambers which are all congruent (with respect
to the Lorentzian geometry of �-space) to the billiard
chamber (2.19) corresponding to a generic inhomogeneous
(and generically nondiagonal) metric. In view of this, and
for brevity, we shall refer, in the following, to the diagonal
Bianchi-IX chamber (2.20) as being the big billiard by
contrast to the small billiard (2.19) associated to a generic
inhomogeneous metric. Note that, in the introduction, we
referred to the big billiard either as ‘‘the full a, b, c
billiard’’ or as the ‘‘unquotiented a, b, c billiard.’’ In
addition, note that the (6 times smaller) billiard table of
the small billiard is obtained by quotienting the big billiard
table by the permutation group of f�1; �2; �3g.

Hyperbolic billiards

So far we have recalled how the use of the time gauge
(2.2) and (2.3) leads to a description of the asymptotic
dynamics of the metric, near a spacelike singularity, in
terms of a billiard motion in an auxiliary d-dimensional
Lorentzian space parametrized by the ‘‘logarithmic scale
factors’’ �a. [Note that, in the diagonal Bianchi-IX case
the BKL scale factors a, b, c are related to the �’s via
a ¼ expð��1Þ, b ¼ expð��2Þ, c ¼ expð��3Þ]. A conve-
nient reformulation of this Lorentzian billiard consists of
decomposing the motion in �-space into radial, �, and
angular, �a, parts. Here, the terms ‘‘radial’’ and ‘‘angular’’
refer to Lorentzian analogs of the usual Euclidean decom-

position of a position vector x as x ¼ rn, with r � ðx2Þ1=2
and n being a unit vector. Namely, one decomposes the
(timelike) ‘‘position vector’’ �a in Lorentzian space as

�a � ��a; � � ð�Gab�
a�bÞ1=2: (2.23)
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When using such a decomposition, it is convenient to
redefine the time gauge, and to replace the condition
(2.2) by [13,21]

N ¼ �2 ffiffiffi

g
p

: (2.24)

One then finds that the radial motion asymptotically de-
couples from the angular one and leads to a uniform
motion of the logarithmic variable � � ln� with respect
to the coordinate time, say T, associated to the new gauge
(2.24), i.e.

dT ¼ �d�

�2
¼ � dt

�2 ffiffiffi

g
p : (2.25)

As for the ‘‘angular motion’’ �aðTÞ on the (future) unit
(d� 1)-dimensional hyperboloid, say

H d�1: Gab�
a�b ¼ �1; (2.26)

it is found to be asymptotically described by a hyperbolic
billiard, i.e. by a succession of constant-velocity [in T
time, Eq. (2.25)] geodesic flights on the unit hyperboloid
H d�1 (2.26), interrupted by collisions (and reflections) on
hyperbolic walls located on some geodetic hyperplane in
�-space. The �-space chamber within which this angular
billiard dynamics takes place is simply the projection (seen
from the origin) of the corresponding �-space billiard
chamber onto the unit hyperboloid H d�1, Eq. (2.26).
For instance, in the case ofD ¼ 4 vacuum Einstein gravity
that we shall focus on in this paper, we end up with a
noncompact, but finite volume billiard chamber on a two-
dimensional hyperboloid H 2 bounded by three geodetic
lines. In the case of a generic, inhomogeneous metric, the
billiard chamber is defined by the H 2 projection of the
inequalities (2.19), i.e.

small billiard : �2��1 � 0; �3��2 � 0; 2�1 � 0:

(2.27)

On the other hand, in the special diagonal Bianchi-IX case,
the billiard chamber is the H 2 projection of (2.20), i.e.

big billiard : 2�1 � 0; 2�2 � 0; 2�3 � 0:

(2.28)

The link between the projected big billiard chamber on
H 2 and the corresponding big Lorentzian billiard in
�-space is sketched in Fig. 1. We have defined here the
billiards on H 2 in terms of the three components of
the unit Lorentzian vector �a (satisfying Gab�

a�b ¼
�2ð�1�2 þ �2�3 þ �3�1Þ ¼ �1, see Eq. (2.7) with
d ¼ 3). This is a hyperbolic analog of defining a billiard
chamber on the unit sphere S2 by writing three linear
inequalities wAðnÞ � 0 in the three components n1, n2,
n3 of a unit Euclidean vector [satisfying ðn1Þ2 þ ðn2Þ2 þ
ðn3Þ2 ¼ 1]. For many purposes, the knowledge of the
linear forms wS

Að�Þ defining the billiard walls [e.g. wS
ð12Þ ¼

�2 � �1 for the first wall of the small billiard (2.27)] is all
that is needed to compute most quantities of physical
interest. For instance, the (hyperbolic-geometry) angle

�AB between the walls wAð�Þ ¼ wAa�
a and wBð�Þ ¼

wBa�
a is given by

cos�AB ¼ wA � wB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wA � wA
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wB � wB
p ; (2.29)

where wA � wB � GabwAawBb, Eq. (2.17), G
ab denoting

the contravariant metric, Eq. (2.14). For example, one
easily checks that the three angles on the small billiard
(2.27) are 0, 	3 , and

	
2 , while the three angles between the

three sides of the big billiard (2.28) are 0, 0, 0. In addition,
the law of reflection of the �-space T-time velocity vector,
say Va ¼ d�a=dT, on a certain wall wAð�Þ is simply given
[at the location of the collision, i.e. when wAð�Þ ¼ 0] by

V0a ¼ Va � 2
wAðVÞwa

A

wA � wA

; (2.30)

where wAðVÞ � wAaV
a, and where wa

A � GabwAb is the
contravariant vector associated to the covariant compo-
nents wAa entering the wall form wAð�Þ ¼ wAa�

a.
Equation (2.30) relates �-space vectors that are (at the
location of the collision) all tangent toH d�1. It is obtained
by projecting the corresponding �-space, �-time collision
law [17]

v0a ¼ va � 2
wAðvÞwa

A

wA � wA

; (2.31)

which, contrary to (2.30), involves time-independent
vectors.
However, for some purposes, it is convenient to use an

explicit parametrization of the billiard dynamics on
H d�1 � H n by means of n � d� 1 intrinsic coordi-
nates. This can be done in several ways. Let us first
emphasize that the unit hyperboloid H n is a model of
the n-dimensional Lobachevsky space (i.e. it is diffeomor-
phic to Rn and has a constant sectional curvature �1).

FIG. 1. The hyperbolic billiard on the unit hyperboloid H 2.
The big-billiard chamber defined by the three gravitational walls
is sketched.
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As shown long ago by Beltrami (see, e.g., the textbook [25]
and the review paper [26]), H n admits several useful
representations in an n-dimensional Euclidean space.
Among these, the conformal representations are useful
because, as they preserve angles, they allow one to express
the reflection law (2.30) as a usual (locally Euclidean)
reflection law of the (local) velocity vector on the wall
wA. The two main conformal representations are: (i) the
ball model, say Bn, which represents H n as a unit ball
x2 � 1 in n-dimensional Euclidean space x 2 Rn, with
metric ds2 ¼ 4dx2=ð1� x2Þ2; and (ii) the upper-half-
space model or Poincaré model, say P n, which represents
H n as the half-space v � 0, u � ðu1; . . . ; un�1Þ 2 Rn�1,
with metric

ds2 ¼ du2 þ dv2

v2
: (2.32)

The ball conformal representation can be geometrically
realized within the (nþ 1)-dimensional Lorentzian
�-space by stereographically projecting (from the ‘‘south
pole’’ �S, i.e. a center of projection located on the past unit
hyperboloid) the future unit hyperboloid (2.26) onto a
(n-dimensional) hyperplane passing through the origin in
�-space. The Poincaré model can be obtained by a suitable
geometric inversion of the ball model. In both models, the
geodesics of H n become Euclidean circles orthogonal
to the boundary (the boundary being a unit (n� 1)-
dimensional sphere for Bn and the plane v ¼ 0 for P n),
while walls, i.e. geodetic hyperplanes, become (n� 1)-
dimensional spheres orthogonal to the boundary. Note
that the ‘‘boundary’’ corresponds to the ‘‘absolute’’ of
H n, i.e. its domain at infinity (which corresponds to the
future null cone, Gab�

a�b ¼ 0 when replacing the �a’s
with projective �a coordinates). In addition to these
Euclidean space representations (which naturally define n
coordinates, (x1; . . . ; xn) or (u1; . . . ; un�1; v), on H n), it
might also be useful to coordinatize H n by means of the
hyperbolic analog of the polar coordinates on a sphere. For
example, in the case n ¼ 2, one can represent the metric on
H 2 as ds

2 ¼ d�2 þ sinh2�d2.

III. CONFORMAL REPRESENTATION OF THE
D ¼ 4 COSMOLOGICAL BILLIARDS

In space-time dimensions D ¼ dþ 1 ¼ 4, the walls
reduce to (geodesic) lines on the two-dimensional
Lobachevsky plane H 2. As recalled in the previous
section, one can consider two different pure gravity bil-
liards, in D ¼ dþ 1 ¼ 4: (i) the big billiard (2.28) (de-
fined by an ideal triangle onH 2, i.e. a triangle whose three
sides meet at infinity with pairwise vanishing angles) or
(ii) the small billiard (2.27) (which has angles 0, 	3 , and

	
2

and only one vertex at infinity). The most symmetric
representation of the big billiard [which manifestly re-
spects the symmetry group, of order 3! ¼ 6, of the inequal-
ities (2.28)] is obtained by using a disk model centered at

the point �1 ¼ �2 ¼ �3. See Fig. 2 which also exhibits
the small billiard (2.27). By the Gauss-Bonnet theorem,
(Aþ Bþ C� 	 ¼ R

KdS) the (hyperbolic) area of the
billiard is equal to 	, while that of the small billiard is
	=6 (consistently with the fact that there are six congruent
copies of the small billiard within the big one). By using a
Euclidean geometric inversion with respect to the ‘‘cusp’’
(i.e. the vertex on the absolute) of the small billiard, one
obtains a Poincaré model of the billiard in which that cusp
is represented by the point at infinity of the upper
half-plane (v ¼ 1). In this representation (see Fig. 3) the
geodesics �1 ¼ 0, �2 ¼ 0 and �2 � �1 ¼ 0 are all repre-
sented as vertical straight lines.
As the explicit form of the transformations relating the

original gravitational variables �a successively to �a, and
to its images in the ball and Poincaré models, tend to be
unwieldy and not very illuminating, let us sketch how the
form of the final results can be obtained essentially without
calculations, by using various geometric considerations.
In any Poincaré representation (say of coordinates u, v) a
general wall 0 ¼ wAð�Þ � wA1�

1 þ wA2�
2 þ wA3�

3 must
be (projectively) equivalent to the equation of a circle.
Therefore each �a must be of the form �aðu; vÞ ¼
�ðu; vÞ�aðu; vÞ, with

�aðu; vÞ ¼ Aaðu2 þ v2Þ þ Bauþ CavþDa; (3.1)

for some constants Aa, Ba, Ca,Da. Moreover, if we choose
to put the cusp of the small billiard at infinity in the
Poincaré plane, �1ðu; vÞ ¼ 0 and �2ðu; vÞ ¼ 0 must be
the equations of two vertical lines (see Fig. 3). Therefore,
�1 and �2 must simply be of the form �1 ¼ B1uþD1,
�2 ¼ B2uþD2. By contrast, �3ðu; vÞ ¼ 0 must be the
equation of a circle centered on the v ¼ 0 axis, i.e.
�3ðu; vÞ ¼ A3ðu2 þ v2Þ þ B3uþD3, and cutting the v
axis at the two points �1ðuÞ ¼ 0 and �2ðuÞ ¼ 0

FIG. 2. The disk model B2 of the hyperbolic billiard. Both the
big billiard (with walls a, b, c) and the small billiard (with walls
G, B, R) are sketched. The six fundamental Kasner intervals are
indicated on the boundary of the disk, which is identified with
the Kasner circle.
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(see Fig. 3). In addition, the infinity of H 2 projectively
corresponds to the light cone in �-space so that the infinity
of the Poincaré model (i.e. v ¼ 0) must correspond to
Gab�

a�b ¼ 0. All these conditions fix the expressions of
�aðu; vÞmodulo an overall factor and modulo the parabolic
subgroup of the symmetry group (SLð2;RÞ) ofH 2 leaving
fixed the cusp, i.e. u0 ¼ auþ b, v0 ¼ au. It was shown by
Kirillov and Montani [23] that a particular choice of a and
b leads to expressions for �aðu; vÞ which are nicely com-
patible with the u-parametrization of Kasner parameters
which has been used by BKL [4,5]. This choice leads to the
expressions

�1ðu; vÞ ¼ �u; (3.2a)

�2ðu; vÞ ¼ uþ 1; (3.2b)

�3ðu; vÞ ¼ uðuþ 1Þ þ v2; (3.2c)

which entail [in view of the quadratic constraint (2.26)]

�aðu; vÞ ¼ �aðu; vÞ=ð ffiffiffi

2
p

vÞ, i.e. explicitly

�1ðu; vÞ ¼ � u
ffiffiffi

2
p

v
; (3.3a)

�2ðu; vÞ ¼ uþ 1
ffiffiffi

2
p

v
; (3.3b)

�3ðu; vÞ ¼ uðuþ 1Þ þ v2

ffiffiffi

2
p

v
: (3.3c)

As shown in Fig. 3, in this normalization the gravitational
wall �1 ¼ 0 (i.e. the awall) which is common to the small
and the big billiard is located at u ¼ 0; the symmetry wall
�1 ¼ �2 of the small billiard (B wall) is located at
u ¼ �1=2; and the other vertical gravitational wall of
the big billiard, �2 ¼ 0 (b wall), is at u ¼ �1. On the
other hand, the remaining walls (either �3 ¼ 0 or
�3 � �2 ¼ 0) are circles orthogonal to the v axis.

An essential role will be played in the following by the
images in the Poincaré model of the Kasner epochs of the
cosmological billiard, i.e. the free flights between two
successive wall collisions. In �-space, these free-flight

segments are described by uniform motion (in �-time)
and in straight line; see Eq. (2.7). The (�-space) ‘‘veloc-
ity’’ of these free flights is described by the Lorentzian
vector va, submitted to the constraint of being null,
Eq. (2.9). The Kasner parameters pa of each Kasner epoch
are (projectively) related to the components of the �-space
velocity va by the relation (2.10).
The disk-model (B2) projection of consecutive �-space

free flights is made of geodesic segments inB2, i.e. arcs of
circles orthogonal to the boundary circle ofB2. See Fig. 4,
which represents the reflection of these geodesics on the
three gravitational walls of the big billiard.
When represented in the Poincaré model, instead of the

disk model, each �-space straight-line segment �ð�Þ ¼
�0 þ va� (with �1 < �< �2) gets mapped into a geodesic
segment of the Poincaré plane P 2, i.e. a segment of a circle
orthogonal to the horizontal axis v ¼ 0, say

u ¼ 1

2
ðuþ þ u�Þ � 1

2
ðuþ � u�Þ cos�; (3.4a)

v ¼ 1

2
j uþ � u� j sin�; (3.4b)

with 0< �1 � � � �2 <	 Here �1 (which corresponds to
�1 in the �-space ‘‘upstairs’’) corresponds to the last
collision, and �2 ( $ �2) to the next one. See Fig. 5, which
represents the big billiard in the Poincaré model P 2.
Here, we are considering oriented circles whose formal
extension to the full interval 0< �< 	 would start, when
� ¼ 0, at the location u ¼ u� on the v axis, and end, when
� ¼ 	, at the location u ¼ uþ on the v axis. [Note that the
radius of the circle is 1

2 j uþ � u� j , while its center is

located at uc ¼ 1
2 ðuþ þ u�Þ, vc ¼ 0.]

For a given billiard table, the oriented pair of real
parameters ðuþ; u�Þ (exemplified in Fig. 5) uniquely de-
termines the (oriented) geodesic segment corresponding
to some Kasner epoch. More precisely, it is easy to see
geometrically that the ‘‘end’’ parameter uþ uniquely pa-
rametrizes the family of �-space straight-line segments
�a ¼ �a

0 þ va� (without considering their � parametriza-

tion) that share a common (formal) asymptotic direction

FIG. 3. The Poincaré model P 2 of the hyperbolic billiard. Both
the big billiard and the small billiards are sketched.

FIG. 4. Kasner epochs of the big billiard in the disk model B2

of the hyperbolic billiard.
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/ va. In other words, uþ uniquely parametrizes the three
Kasner exponents of the considered Kasner epoch. The
precise technical link between uþ 2 R and the three
pa’s is obtained by relating successively pa: (i) to va

[see Eq. (2.10)]; (ii) to �að�Þ in the formal � ! þ1 limit
[via Eq. (2.7)]; (iii) to �að�Þ ¼ �a=� in the same limit; and
thereby (iv) to �aðu; vÞ in the corresponding (formal) limit
u ! uþ, v ! 0 corresponding to the future end point of
the circle in the Poincaré model representing the formal
extension of the Kasner epoch. In other words,

pa ¼ va

P

b

vb
¼ lim

�!þ1
�a

0 þ va�
P

b

ð�b
0 þ vb�Þ ¼ lim

�!þ1
�að�Þ
P

b

�bð�Þ

¼ lim
v!0;u!uþ

�aðu; vÞ
P

b

�bðu; vÞ : (3.5)

Using the Poincaré model expressions (3.3), this leads to
the result

pa ¼ pBKL
a ðuþÞ; (3.6)

where the three functions pBKL
a ðuÞ are the well-known

u-parametrization of Kasner exponents introduced by
Belinski, Khalatnikhov, and Lifshitz, namely

pBKL
1 ðuÞ � � u

u2 þ uþ 1
; (3.7a)

pBKL
2 ðuÞ � uþ 1

u2 þ uþ 1
; (3.7b)

pBKL
3 ðuÞ � uðuþ 1Þ

u2 þ uþ 1
: (3.7c)

In other words, as was found in Ref. [23], the BKL
u-parameter can be interpreted as the location on the real
axis of the future end point of the circle representing the
considered Kasner flight in a suitably defined Poincaré
model of H 2.

On the other hand, if we now consider the formal
extension of the considered Kasner flight toward the
‘‘past’’ (in �-time), there occurs a subtlety: the past
end point u� of the corresponding Poincaré circle does
not correspond (as one might naively expect) to the

formal � ! �1 limit of �að�Þ ¼ �a
0 þ va�, but only to

the finite past limit � ! �0 such that �a
Kasnerð�Þ ¼ �a

0 þ
va� intersects the �-space (future) light cone:
Gab�

a
Kasnerð�0Þ�b

Kasnerð�0Þ ¼ 0, i.e. �ð�0Þ ¼ 0. As this limit
again corresponds to a point at infinity for �a

Kasnerð�Þ �
�a

Kasnerð�Þ=�ð�Þ 2 H 2, one finds, by changing the limits
in Eq. (3.5) that the past end point u ¼ u�, v ¼ 0 on the
(oriented) Poincaré circle parametrizes �a

Kasnerð�0Þ in a
projective manner:

�a
Kasnerð�0Þ

P

b

�b
Kasnerð�0Þ ¼ pBKL

a ðu�Þ: (3.8)

As we shall need them below, let us note at this stage some
features of the BKL u-parametrization of Kasner expo-
nents (3.7). First, let us emphasize that the manifold of
Kasner parameters, pa, restricted by the two constraints
(2.11), is topologically a (d� 2)-dimensional sphere
[indeed Eqs. (2.11) represent the intersection of a
(d� 1)-dimensional sphere by an hyperplane]. In the
case considered here where d ¼ 3, this means that the
three Kasner parameters p1, p2, p3 run over a topological
circle. In fact, this Kasner circle can be identified, in the
disk representation of H 2, with the boundary of the unit
disk, i.e. with the absolute ofH 2. See Fig. 2. In particular,
the u-parameter in Eqs. (3.7) should be considered as

running on the extended real line �R ¼ R [ f1g. The ex-

tended line u 2 �R is then naturally divided into the six
permutations of the three letters ðp1; p2; p3Þ which con-
stitute the symmetry group of the two Kasner constraints
(2.11). As the latter symmetry group is generated by re-
flections in the symmetry walls, it is natural to divide the u
line, i.e. the boundary ofH 2, by means of these symmetry
walls: �2 � �1 ¼ 0, �3 � �2 ¼ 0, �3 � �1 ¼ 0, that is,
by considering the solutions of the equations pBKL

1 ðuÞ ¼
pBKL
2 ðuÞ, or pBKL

2 ðuÞ ¼ pBKL
3 ðuÞ, or pBKL

1 ðuÞ ¼ pBKL
3 ðuÞ.

This leads to dividing the u-line into the intervals

ð�1;�2Þ; ð�2;�1Þ;
�

�1;� 1

2

�

;

�

� 1

2
; 0

�

; ð0; 1Þ; ð1;þ1Þ:
(3.9)

If, following BKL, we consider the interval 1< u<þ1
as a fundamental interval, over which the Kasner
exponents are ordered as pBKL

1 ðuÞ< pBKL
2 ðuÞ< pBKL

3 ðuÞ,
the other five possible orderings of p1, p2, p3 will be
obtained by applying to the variable u a transformation
implementing a composition of geometric reflections
across some symmetry walls. It is well known that
a geometric reflection acts on the complex variable
z � uþ iv of the Poincaré plane according to

z0 ¼ �a�zþ b

c�zþ d
; (3.10)

with a, b, c, d 2 R, and ad� bc ¼ þ1. When acting
on the boundary of the Poincaré model (v ¼ 0), and

FIG. 5. Kasner epochs of the big billiard in the Poincaré model
P 2 of the hyperbolic billiard.
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composing several reflections, this leads to transformations
of the form

u0 ¼ 	 auþ b

cuþ d
; ad� bc ¼ 1: (3.11)

The explicit expression of the five transformations
u0 ¼ fiðuÞ, i ¼ 1; . . . ; 5 of the form (3.10) that map the
first five intervals (3.9) into the last (fundamental) one are
given in Table I. In the following, we shall refer to these
as ‘‘Kasner transformations.’’ Note that each boundary
Kasner transformation u0 ¼ fiðuÞ uniquely determines
the way the corresponding combination of reflections
acts on the interior of the Poincaré model: if the sign in
Eq. (3.11) is þ (even isometry), it is z0 ¼ ðazþ bÞ=
ðczþ dÞ, while if the sign in Eq. (3.11) is � (odd isome-
try), it is given by Eq. (3.10). If one adds the identity
transformation, say k0 (k0ðuÞ � u), the six transformations
fk0; k1; . . . ; k5g constitute (under their composition) a real-
ization of the permutation group of three objects (say, the
three walls a, b, c).

IV. REDUCED SYMPLECTIC
FORM FOR BILLIARDS

Let us briefly recall various ways in which one can
define integral invariants for Hamiltonian systems. (For
more details, see, e.g., [27,28] and the Appendix below)
For a general (possibly time dependent) Hamiltonian
dynamics, with (Hamiltonian) action (i ¼ 1; . . . ; n)

S ¼
Z

dt½pi _q
i �Hðq;p; tÞ�; (4.1)

one can use the Poincaré-Cartan two-form

!ð2Þ
PC ¼ X

i

dqi ^ dpi � dt ^ dHðq; p; tÞ (4.2)

to define a whole hierarchy of integral invariants of
the (unparametrized or parametrized) Hamiltonian flow.
Leaving a more general discussion to the Appendix,
we shall consider here the case of a time-independent
Hamiltonian Hðq; pÞ, and focus on invariants of the flow
on a given (2n� 1)-dimensional energy hypersurface, say

Eð2n�1Þ
E , satisfying Hðq; pÞ ¼ E. For this case, the invari-

ance of the energy-shell reduced Liouville measure

�ð2n�1Þ
L;E / �ðHðp; qÞ � EÞdq1 ^ dq2 ^ . . . ^ dqn ^ dp1 ^

dp2 ^ . . . ^ dpn is well-known. Less well-known is the

construction of integral invariants based on the existence
of a reduced symplectic two-form

!ð2Þ
red

:¼
�

X

i

dqi ^ dpi

�

Qð2n�2Þ
E

; (4.3)

defined on the quotient Qð2n�2Þ
E � Eð2n�1Þ

E =F H of the en-
ergy hypersurface Hðq; pÞ ¼ E by the unparametrized

Hamiltonian flow. In other words, Qð2n�2Þ
E � Eð2n�1Þ

E =F H

is the (2n� 2)-dimensional space of unparametrized

Hamiltonian motions on Eð2n�1Þ
E . [The reduced symplectic

form (4.3) is linked to the general theory of reduction of
phase spaces with symmetry; it was used in Ref. [29] as a
way to define a measure in cosmology.] A concrete repre-

sentation of the quotient space Qð2n�2Þ
E can be obtained by

considering any ‘‘transverse section’’ F H of Eð2n�1Þ
E ,

i.e any initial conditions for the (unparametrized)

Hamiltonian flow. The fact that !ð2Þ
PC ‘‘descends’’ to the

quotient means that its restriction to any transverse section
of F H is independent of the choice of section. As a con-
crete example of the reduced (symplectic) form (4.3) on the
space of motions (or initial conditions), one can have in
mind the symplectic form on the manifold of (unparame-
trized) straight lines in a Euclidean plane. A straight line L,
i.e. xðsÞ (where s measures the length along the line),
can be parametrized by two vectors, b, n, submitted
to the two constraints n2 ¼ 1, b � n ¼ 0, namely xðsÞ ¼
bþ ns. In any Cartesian coordinate system, one can
explicitly parametrize (b, n) by two real numbers: b ¼
ð�b sin
; b cos
Þ, n ¼ ðcos
; sin
Þ, where b is the im-
pact parameter between the origin and L, and
 is the angle
between the x axis and L. The reduced symplectic form
on the two-dimensional manifold of (unparametrized)
straight lines L can be obtained by starting either

from the unparametrized action S1 ¼
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx2 þ dy2
p

, or

from the parametrized one S2 ¼
R

dt 12 ð _x2 þ _y2Þ submitted

to a fixed energy constraint. For instance, S2 corresponds
to a four-dimensional phase space ðx; y; px; pyÞ with

Hamiltonian H ¼ 1
2 ðp2

x þ p2
yÞ. Let us consider the two-

form (4.3) reduced both by the energy con-
straint H ¼ 1=2 (i.e. p2

x þ p2
y ¼ 1, or px ¼ cos
,

py ¼ sin
), and by restricting it, e.g., to the section

0 ¼ yðs0Þ ¼ b cos
þ s0 sin
, i.e. s0 ¼ �b cot
. These
two constraints reduce the phase space to a two-
dimensional one parametrized either by x0, px, where

TABLE I. Kasner transformation, k1; . . . ; k5 mapping the indicated intervals of the u line
(Kasner circle) onto the fundamental interval 1< u<þ1.

k1 0< u< 1 u0 ¼ 1=u p1ðu0Þ ¼ p1ðuÞ p2ðu0Þ ¼ p3ðuÞ p3ðu0Þ ¼ p2ðuÞ
k2 �1=2< u< 0 u0 ¼ �ð1þ uÞ=u p1ðu0Þ ¼ p3ðuÞ p2ðu0Þ ¼ p1ðuÞ p3ðu0Þ ¼ p2ðuÞ
k3 �1< u<�1=2 u0 ¼ �u=ðuþ 1Þ p1ðu0Þ ¼ p3ðuÞ p2ðu0Þ ¼ p2ðuÞ p3ðu0Þ ¼ p1ðuÞ
k4 �2< u<�1 u0 ¼ �1=ðuþ 1Þ p1ðu0Þ ¼ p2ðuÞ p2ðu0Þ ¼ p3ðuÞ p3ðu0Þ ¼ p1ðuÞ
k5 �1< u<�2 u0 ¼ �u� 1 p1ðu0Þ ¼ p2ðuÞ p2ðu0Þ ¼ p1ðuÞ p3ðu0Þ ¼ p3ðuÞ
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x0 ¼ ½x�y¼0 ¼ �b sin
þ s0 cos
 ¼ �b= sin
 and px ¼
cos
, or by ðb;
Þ. The symplectic form reduced to this
section yields

!ð2Þ
red ¼ dx0 ^ dpx ¼ d

�

� b

sin


�

^ dðcos
Þ ¼ db ^ d
:

(4.4)

We see that the impact parameter b and the angle 

constitute canonical coordinates on the two-dimensional
manifold of straight lines. The reduced symplectic form
(4.4) can also be written in a form that is manifestly
invariant under the group of Euclidean symmetries, namely

!ð2Þ
red ¼ db ^ n � dbx ^ dnx þ dby ^ dny (4.5)

with the algebraic constraints n2 ¼ 1, b � n ¼ 0. It is also
easily checked that any other section (e.g. x ¼ 0 instead of
y ¼ 0) yields the same reduced form. Note that, in the
present example, the reduced phase space of Euclidean
straight lines is two-dimensional so that the reduced sym-

plectic form !ð2Þ
red furnishes directly a measure on the space

of straight lines.
We spent some time on this simple example because we

shall be interested, in this paper, with the hyperbolic-plane
generalization of this structure. More precisely, we shall
find it useful to consider the reduced symplectic form (4.3)
in the case where the Hamiltonian dynamics is that of a
(radially projected) billiard motion on �-space, i.e. on the
hyperbolic space H n. More precisely, we consider the
case where n ¼ 2, and use the Poincaré half-plane model.
The corresponding phase space is four-dimensional, say
ðu; v; pu; pvÞ in the Poincaré model, and the corresponding
Hamiltonian reads

H�ðu; v; pu; pvÞ ¼ 1

2
v2ðp2

u þ p2
vÞ þ V1ð�ðu; vÞÞ: (4.6)

The energy surface EE�
¼ fH�ðu; v; pu; pvÞ ¼ E�g is

three-dimensional. Finally, the quotient space Q� ¼
EE�

=F H�
is simply two-dimensional. Therefore, in that

case, the general fact that the ambient symplectic form

�d�ð1Þ
PC can descend onto the reduced symplectic form

!ð2Þ
�red on the abstract quotient space Q� (and, therefore,

on any section of the Hamiltonian flow) means that !ð2Þ
�red

directly provides an integral invariant of arbitrary ‘‘snap-
shots’’ of the billiard motion. In particular, if we take
the snapshots corresponding to collisions on the wall, we

conclude that !ð2Þ
�red is invariant under the discrete billiard

mapT . Moreover, as we are considering here a case where

the quotient space Q� is two-dimensional, !ð2Þ
�red directly

defines an invariant measure of the discrete billiard map
T . [See the Appendix for a general discussion of the link

between the measure onQð2n�2Þ
E associated to!ð2Þ

�red and the

energy-shell Liouville measure.]

There are many ways to compute the reduced symplectic

form !ð2Þ
�red. Let us first note that it is the generalization of

the measure discussed above, on the two-dimensional
manifold of straight lines in a Euclidean plane. Here, in-

deed, !ð2Þ
�red is a measure on the two-dimensional manifold

of geodesic lines in a Lobachevsky plane. As in the

Euclidean calculation above, Eq. (4.4), !ð2Þ
�red can be ob-

tained by reducing the ambient symplectic form du ^
dpu þ dv ^ dpv by two conditions: the energy-shell con-
dition v2ðp2

u þ p2
vÞ ¼ 2E�, and a cross-section condition

locally transverse to the Hamiltonian flow. It is easily seen
that, if we consider for simplicity the energy shell E ¼ 1

2

for a geodesic (i.e. that the geodesic motion on H 2 pro-
ceeds with unit speed), the general geodesic line in EE�¼1=2

(i.e. a circle orthogonal to the measure boundary) can be
parametrized as

u ¼ U� V cos�; v ¼j V j sin�; (4.7)

pu ¼ signðVÞ sin�
v

¼ 1

V
; pv ¼ cos�

v
¼ cot�

jVj ; (4.8)

where � grows, according to d�=dT ¼ sin�, from 0 to	 as
T formally varies from �1 to þ1. The two constants of
integration ðU;VÞ parametrize the two-dimensional mani-
fold of geodesic lines on the Poincaré half-plane. They are
related to the parameters uþ, u� used in Eq. (3.4) above via

U ¼ 1

2
ðuþ þ u�Þ; V ¼ 1

2
ðuþ � u�Þ: (4.9)

If, for instance, we use as cross section to restrict

!ð2Þ
� ¼ du ^ dpu þ dv ^ dpv any v ¼ const slice (i.e.

0 ¼ dv ¼ sin�djVj þ jVj cos�d�) we get

!ð2Þ
red ¼ du ^ dpu ¼ dðU� V cos�Þ ^ d

�

1

V

�

¼ �dU ^ dV

V2
: (4.10)

Rewritten in terms of ðuþ; u�Þ, Eq. (4.9), this reads

!ð2Þ
red ¼ 2

duþ ^ du�

ðuþ � u�Þ2 : (4.11)

The result (4.10) or (4.11) is similar to the Euclidean
measure (4.4) or (4.5) on the manifold of Euclidean straight
lines. Analogously to the fact that the measure (4.5) was
invariant under the group of Euclidean symmetries (trans-
lations, rotations, and reflections), the measure (4.10) and
(4.11) is invariant under the group of symmetries of the
hyperbolic plane. This group is SL2ðRÞ � Z2, and it acts on
the boundary of the Poincaré model (i.e. on the parameters
uþ and u�) by transformations of the form (3.11). This
group of transformations is generated by u0	 ¼ au	 þ b,
u0	 ¼ �1=u	, and u0	 ¼ �u	. It is then easily seen
that (4.11) is indeed invariant under each one of these
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generating transformations. Note that this also gives a
direct proof that the reduced symplectic form (4.11) is
invariant under the Hamiltonian flow of the billiard.
Indeed, this flow is made of two types of evolutions: (i) a
free-flight evolution during which uþ and u� do not vary;
and (ii) collisions on the walls, during which the geodesic
undergoes a hyperbolic reflection, i.e. a transformation of
the type (3.10) leading to Eq. (3.11) with a minus sign.

V. HOPSCOTCH DYNAMICS
OF THE BIG BILLIARD

We shall start our investigation of the various possible
cosmological billiards for pure gravity in d ¼ 3 spatial
dimensions by considering the big-billiard table delimited
by the three gravitational walls appearing in diagonal
homogeneous Bianchi-IX cosmological models, i.e.
the walls !g

ð123Þð�Þ, !g
ð231Þð�Þ, and !g

ð312Þð�Þ, Eq. (2.18),
which, respectively, correspond to the terms a4 � e�4
,
b4 � e�4�, and c4 � e�4� in the usual BKL representation
[see Eqs. (2.21) and (2.22)]. Using Eqs. (2.18), which
express �a / �a in terms of the coordinates ðu; vÞ of the
Poincaré model, we see that, in this model, the a wall (or
�1 wall) is located along the vertical line u ¼ 0; the bwall
(�2) along the vertical line u ¼ �1; while the c wall (�3)
is located along the circle uðuþ 1Þ þ v2 ¼ 0. The reflec-
tion laws of a point z ¼ uþ iv 2 P 2 through these
geodesics must have the form (3.10). One can determine
the values of the coefficients a, b, c, d entering the
transformation (3.10) by requiring that the transformation
leaves pointwise fixed the circle through which one is
‘‘reflecting’’ (in a hyperbolic-geometry sense) the
point z ¼ uþ iv. Indeed, the condition z0 ¼ z, i.e. z ¼
�ða�zþ bÞ=ðc�zþ dÞ, yields as a locus of fixed points the
circle

0 ¼ cz�zþ dzþ a�zþ b

¼ cðu2 þ v2Þ þ ðdþ aÞuþ ðd� aÞvþ b; (5.1)

which degenerates to a straight line when c ¼ 0.
By successively identifying the pointwise fixed circle

(5.1) to the three diagonal Bianchi-IX walls, one finds the
following reflection laws [acting on the end points u	,
according to Eq. (3.11) with a minus sign]. For the a
wall (u ¼ 0), u	 ! Aðu	Þ with

Aðu	Þ ¼ �u	; (5.2)

for the b wall (u ¼ �1), u	 ! Bðu	Þ with
Bðu	Þ ¼ �u	 � 2; (5.3)

and for the c wall (uðuþ 1Þ þ v2 ¼ 0), u	 ! Cðu	Þ with

Cðu	Þ ¼ � u	

2u	 þ 1
: (5.4)

Note that all these reflection laws act diagonally
(i.e. separately) on uþ and u�. A billiard motion in the

presently considered big billiard is a succession of geode-
sic flights (or Kasner epochs) connecting two different
walls. For instance (as illustrated in Fig. 5)

. . . c ! b ! a ! b ! a ! c ! . . . (5.5)

In this work, we shall define a ‘‘Kasner era’’ as a set of
Kasner epochs joining the same two walls, with the con-
dition that the epochs preceding and following the consid-
ered Kasner era involve the third wall. The length of an era
is defined as the number of epochs (i.e. geodesic flights) it
contains. For instance, in the sequence (5.5) there is an era
of length 3 between the walls a and b, namely

E3ðb; aÞ: b ! a ! b ! a: (5.6)

Here, we have introduced the notation Ekðx; yÞ for an era
of length k ¼ 1; 2; 3 . . . , whose first free flight is from the
wall x to the wall y (where x; y 2 fa; b; cg, x � y). Note
that ðx; yÞ is an ordered pair as one should distinguish an
era which starts on x and then goes to y, from an era which
starts on y and then goes to x. Note also that the beginning
of an era is defined by checking [as sketched in (5.5)] that
the previous connecting flight started from a wall z � x
and y (similarly for the end of an era). Note that the above
definition of a Kasner era corresponds to one of the two
different definitions of an era considered by BKL. More
precisely, it is the definition they consider in Eq. (5.4) of the
review [4]. In this definition (called BKLu>0 in the intro-
duction of this paper), the BKL u parameter varies (using
the notation of the introduction) from k� 1þ x to x (with
0< x < 1 and k 2 R). [This contrasts with the other (more
standard) definition of an era used by BKL, the BKLu>1 in
which the u parameter varies from kþ x to 1þ x (so that u
stays in the interval ½1;þ1�)]. As noted in the second
footnote on p. 753 of [4], the former (less standard) defi-
nition of an era (that we shall use here) is more natural
when considering the dynamics of the variables lna, lnb,
lnc. In terms of the billiard picture, this more natural
character does correspond to the definition we gave above
of collecting all the epochs joining the same two walls. By
contrast, in the other BKL definition (kþ x to 1þ x), the
era corresponding, for instance, to the sequence (5.5)
would consist of the three epochs c ! b ! a ! b, and
what is in our definition the last epoch of the era (of the
type b ! a) would be considered as the first epoch of the
next era. Note that in both definitions the Kasner era has
the same length: in our example a length 3; the last epoch
c ! b of the preceding era having been added as a first
epoch, in replacement of the last b ! a in Eq. (5.6).
The shortest possible length of an era is k ¼ 1, i.e. an era

corresponding to only one epoch. For example, as we shall
see later, the simplest periodic big-billiard orbit (involving
the golden ratio) proceeds along the equilateral (hyper-
bolic) triangle geodesically connecting the middles of the
three a, b, cwalls, and is made of only one-epoch eras, say
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. . . c ! b ! a ! c ! b ! a ! c . . . ; (5.7)

or the reverse.

A. Hopscotch dynamics

As just recalled, the dynamics of the big billiard is
described as a sequence of eras Ekðx; yÞ, where each
era Ekðx; yÞ is made of k epochs, i.e. k arrows x ! y !
x ! . . . connecting the walls x and y (x � y; x; y 2
fa; b; cg). Note that the last wall involved in the era
Ekðx; yÞ will be y if k is odd, and x if k is even. To describe
mathematically the discrete big-billiard dynamics induced
by the effect of the successive collisions, i.e. of the corre-
sponding discrete billiard maps T xy transforming the

phase-space variables on an x wall ( just after the
x-collision) to the phase-space variables on the following
y wall, it is useful to use the Poincaré plane variables.
[Note, however, that though the Poincaré-plane variables
are algebraically more convenient, it is generally more
enlightening to geometrically visualize the billiard dynam-
ics on the disk model. See Fig. 4.] As recalled above, in the
Poincaré plane each epoch trajectory (i.e. each geodesic
segment connecting two successive sides) is uniquely pa-
rametrized by an ordered pair ðu�; uþÞ, where u� (respec-
tively uþ) is the end point (respectively starting point) on
the v ¼ 0 axis (or absolute) of the corresponding, extended
geodesic. In terms of these variables, the billiard dynamics
induces a discrete map T transforming a point in the
ðu�; uþÞ plane (describing some epoch) into another
point ðu0�; u0þÞ (describing the next epoch): ðu0�; u0þÞ ¼
T ðu�; uþÞ. Looking at Fig. 5, it is clear that the knowledge
of ðu�; uþÞ, i.e. the knowledge of the initial epoch,
uniquely determines the wall on which it will next collide,
and therefore uniquely determines the explicit form of the
transformation T , among the three possible explicit forms
A, B, C, listed in Eqs. (5.2), (5.3), and (5.4). It is also clear
that the transformationT is one-to-one because its inverse
T �1 is defined by ‘‘reversing the time evolution,’’ i.e.
exchanging the roles of uþ and u�. As for the iteration
of T , T 
T 
T 
 . . . , it corresponds to composing a
sequence of ðu�; uþÞ transformations [among Eqs. (5.2),
(5.3), and (5.4)] corresponding to a sequence of wall colli-
sions. For example, the sequence (5.5) will correspond to
successively composing the actions of

. . .C ! B ! A ! B ! A ! C ! . . . (5.8)

on the ðu�; uþÞ plane, i.e. the combined map (in reverse
order)

. . .C 
 A 
 B 
 A 
 B 
 C . . . : (5.9)

Note also that the composition of maps (5.9) can also
be expressed as the corresponding matrix product of the
matrices

�a �b
c d

� �

(with ad� bc ¼ 1) corresponding [via u0	 ¼ �ðau	 þ bÞ=
ðcu	 þ dÞ ¼ ð�au	 � bÞ=ðcu	 þ dÞ] to the fractional
linear transformations (5.2), i.e.

. . .C:A:B:A:B:C . . . ; (5.10)

where

A¼ �1 0
0 1

� �

; B¼ �1 �2
0 1

� �

; C¼ �1 0
2 1

� �

;

(5.11)

and where the dots in Eq. (5.10) denote the ordinary matrix
product.
Summarizing so far: the representation of the big-

billiard dynamics in the ðu�; uþÞ plane is the following:
(i) during each epoch (i.e. free flight) the reduced phase-
space point ðu�; uþÞ stays fixed; and (ii) the effect of each
collision on the wall a, b, or c consists in transforming the
phase-space point ðu�; uþÞ into a new point ðu0�; u0þÞ ¼
T ðu�; uþÞ, where the explicit expression of ðu0�; u0þÞ is
uniquely defined by the initial phase-space point ðu�; uþÞ,4
and is either of the form ðAðu�Þ; AðuþÞÞ, ðBðu�Þ; BðuþÞÞ,
or ðCðu�Þ; CðuþÞÞ [with Aðu	Þ, Bðu	Þ, Cðu	Þ given by
Eqs. (5.2), (5.3), and (5.4), respectively], where the choice
between A, B, or C is determined by the a, b, c wall that is
next crossed by the oriented geodesic defined by ðu�; uþÞ.
In other words, we can think of the ðu�; uþÞ plane as a big
‘‘hopscotch court’’5 on which the representative phase-
space point ðu�; uþÞ jumps around, in a deterministic
manner, ðu�; uþÞ ! T ðu�; uþÞ ! T 
T ðu�; uþÞ !
. . . according to a sequence of ‘‘jumps’’ whose concrete
form is of the type (5.8). These jumps act diagonally, i.e. in
the same way on uþ and u�.
As we shall discuss below, though each ‘‘collision trans-

formation’’ A, B, or C acts on uþ (respectively, on u�)
independently of u� (respectively, of uþ), one needs to
keep track of the successive values of the pairs ðu�; uþÞ to
determine the entire (two-sided) sequence of maps, such as
Eq. (5.9), corresponding to the billiard dynamics. The big-
billiard hopscotch dynamics T just defined differs from
the usually discussed BKL dynamics in several respects.
Indeed, in order to simplify their discussion, and go to
the essence of the Bianchi-IX dynamics, Belinski,
Khalatnikhov, and Lifshitz did not keep track of the order
of the Kasner exponents during an era [i.e., in their nota-
tion, whether ðpl; pmÞ is ðp1; p2Þ or ðp2; p1Þ in an era of
oscillations between the a and b walls]. Moreover, BKL
further simplified their discussion by using the six-fold
permutation symmetry among ða; b; cÞ, so that they also
did not keep track of which unordered pair fa; bg, fb; cg, or
fc; ag an era referred to, nor of the ordering of the first pair

4As we shall discuss below, the initial value of the uþ alone
suffices to determine the explicit form of T among A, B, C.

5The child’s game called ‘‘hopscotch’’ in English is called
‘‘marelle’’ in French and ‘‘campana’’ in Italian.
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in a given era. By contrast, our description above explicitly
keeps track of both ordering and labeling issues. Below, we
shall discuss how one can quotient, in a precise manner, the
more complete big-billiard dynamics down to the usual
BKL discrete dynamics.

As an example of fuller description in the big-billiard
representation, note that the particular length-3 era
E3ðb; aÞ, Eq. (5.6), corresponds to applying, successively,
to the values ðuþFba; u�FbaÞ parametrizing the first epoch of

E3ðb; aÞ [i.e. the first arrow in (5.6)] the transformations A,
B, and then A. This yields successively

u0	 ¼ Aðu	Fba
Þ ¼ �u	Fba; (5.12a)

u00	 ¼ Bðu0	Þ ¼ u	Fba � 2; (5.12b)

u	Fac � u000	 ¼ Aðu00	Þ ¼ �u	Fba þ 2; (5.12c)

where, as indicated by the notation, u	Fac
¼ A 
 B 


Aðu	Fba
Þ are the phase-space parameters of the first epoch

of the following era (which oscillates between the a and c
walls, starting on a). Note that the transformations appear-
ing in the era composition A 
 B 
 A do not include the
effect of the first wall b in (5.6). Indeed, the collision on b
would be (conventionally) included in the composition of
transformations appearing in the previous era (which os-
cillated between c and b, ending on b). By contrast, we
conventionally include the effect of the collision on the last
wall of an era in the composition of transformations asso-
ciated to this era [e.g. the last transformation in (5.12)
represents the last collision, on the wall a of the era (5.6)
]. The number of transformations which are composed
during an era Ekðx; yÞ is equal to the length k of the era,
i.e. to the number of arrows (or of epochs) in the diagram
(5.6) of the era.

The successive transformations

u ! �u ! u� 2 ! �uþ 2 ! u� 4 ! . . . (5.13)

that appear in a long era of big-billiard oscillations be-
tween the a and bwalls differ from the standard BKL result
for oscillations between a and b, namely,

u ! u� 1 ! u� 2 ! u� 3 ! u� 4 ! . . . : (5.14)

However, this difference is only due to the fact that the big-
billiard description is keeping track of information that
BKL did not wish to track of, namely, the precise order
between the Kasner exponents pl, pm (in the notation of
BKL) associated to the oscillating diagonal metric compo-
nents a2 � t2pl , b2 � t2pm . As an unordered set fpl; pmg ¼
fp1; p2g (with p1 � p2 � p3 as in Sec. III above). Indeed,
we see in the list of Kasner transformations, Table I, label-
ing the possible permutations of the Kasner exponents, that
the transformation

u0 ¼ k5ðuÞ � �u� 1; (5.15)

which corresponds to the permutation between p1 and p2,
maps each one of the apparently discrepant values of u

(namely �u, �uþ 2, etc.) in the big-billiard sequence
(5.13) into the corresponding usual BKL one (5.14).
Namely,

k5ð�uÞ ¼ u� 1; k5ð�uþ 2Þ ¼ u� 3; etc: (5.16)

Let us now clarify what is the shape of the hopscotch
court, i.e. the part of the ðu�; uþÞ plane which parametrizes
the dynamics of the big billiard. This full hopscotch court
is naturally divided into six separate boxes: (1) a box, say
Bab, parametrizing the epochs going from a to b; and (2) a
box, say Bba, parametrizing the epochs going from b to a,
etc., when considering the other ordered pairs ðx; yÞ with
ðx; yÞ 2 fa; b; cg. The precise boundaries of the box Bxy are

easily obtained by requiring that, in the Poincaré half-
plane, there exists an oriented half-circle (orthogonal to
the boundary) crossing the walls x and y in that order. For
instance, it is easily seen that the box Bab is defined by the
inequalities

Bab: 0< u� <þ1; �1< uþ <�1: (5.17)

The inequalities defining all the boxes Bxy are gathered in

Table II, and the corresponding regions in the ðu�; uþÞ
plane are represented in Fig. 6. Two important remarks
concerning these boxes are: (i) all the boxes have a rect-
angular shape, and (ii) the union of all the boxes (together
with their boundaries) does not cover the full ðu�; uþÞ
plane. More precisely, the domain of the ðuþ; u�Þ plane
which does not parametrize any epoch is the union of the
following three vacuum boxes:

Va: 0< u� <þ1; 0< uþ <þ1; (5.18a)

Vb: �1< u� <�1; �1< uþ <�1; (5.18b)

Vc: � 1< u� < 0; �1< uþ < 0: (5.18c)

For instance, we illustrate in Fig. 6 a long era of epochs
oscillating between b and a (see the points marked 1, 2, 3,
4, 5) which starts (point 1) in the upper right part of the box
Bba, and then jumps successively from Bba toward Bab and
back until it exits by terminating in Bbc (point 5). Then the
ðu�; uþÞ point will jump from Bbc to Bcb, as part of a next
era of the EkðbcÞ type.
We have seen above that the (bijective) applications A,

B, C [Eqs. (5.2), (5.3), and (5.4)] corresponding to the
collisions on the walls a, b, c, respectively, leave invariant

the two-form !ð2Þ
red, Eq. (4.11), that we shall simply denote

in the following as

TABLE II. Hopscotch court.

Bab �1< uþ <�1 0< u� <1
Bba 0< uþ <1 �1< u� <�1
Bac �1< uþ < 0 0< u� <1
Bbc �1< uþ < 0 �1< u� <�1
Bca 0< uþ <1 �1< u� < 0
Bcb �1< uþ <�1 �1< u� < 0
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! ¼ 2
duþ ^ du�

ðuþ � u�Þ2 : (5.19)

Therefore the two-form ! defines an oriented measure on
the full hopscotch court that is invariant under the hop-
scotch discrete map T defined above. We would seem to
be able to straightforwardly apply the tools and results of
ergodic theory to our full hopscotch game. In particular, we
know that this hopscotch game must be ergodic in the
sense that it cannot leave invariant a subdomain, having a
nonzero measure with respect to the form !, Eq. (5.19), of
the full hopscotch court. Indeed, our hopscotch game is a
projection of the billiard motion within an ideal triangle on
the hyperbolic plane H 2. If the projected billiard motion
could leave ‘‘unvisited,’’ for an infinite ‘‘time,’’ a continu-
ous subdomain of the full hopscotch court, this would be
inconsistent with the fact that the billiard dynamics on an
ideal triangle on H 2 is known (since the classic work of
Hedlung and Hopf) to be ergodic, and therefore to visit the
full three-dimensional phase-space ðu�; uþ; sÞ which lies
‘‘above’’ our hopscotch court. However, there is a catch in
that, contrary to what is usually assumed in most inves-
tigations of ergodic theory, the full invariant measure of
our (projected) phase-space, i.e. the integral of the
two-form !, Eq. (5.19), on the full hopscotch court
defined in Table. II is infinite! Indeed, the form (5.19) is
singular along the line uþ ¼ u�, as well as at infinity
juþj � ju�j � 1, where the integral of ! is logarithmi-
cally divergent. We see on Fig. 6 that the singular line
uþ ¼ u� lies mostly in the excluded (vacuum) part of the
hopscotch court. However, this line touches the boundaries
of the court around the points ðu�; uþÞ ¼ ð0; 0Þ and
ðu�; uþÞ ¼ ð�1;�1Þ. In addition, the boxes Bab and Bba

extend at infinity, where
R

! diverges logarithmically.

It is also easily seen that the integral of ! over Bca and
Bac diverges logarithmically near ðuþ; u�Þ ¼ ð0; 0Þ, and
that the same is true for

R

! near ðuþ; u�Þ ¼ ð�1;�1Þ.
The three points (0, 0), ð�1;�1Þ, ð1;1Þ correspond to the
three cusps of the ideal triangle on H 2. Indeed, another
way to understand why the integral of ! is infinite is to

remember that !ð2Þ
red ¼ ! can also be written (in Birkhoff

coordinates) as dl ^ dðsin
Þ ¼ cos
dl ^ d
, where l
measures the length of the boundary of the billiard, and
where 
, �	=2<
<	=2, is the angle between the
normal to the boundary and the velocity vector. The inte-
gral of sin
 yields a factor 2, while the integral over dl
yields the total length of the boundary of the billiard. In the
case of the ideal triangle, the length diverges logarithmi-
cally at each corner.
Before discussing other issues concerning the invariant

measure !, Eq. (5.19), in the 2-plane ðu�; uþÞ, let us note
that, bymarginalizing the variable u�, we can deduce from
! an invariant measure for the dynamics of uþ alone. We
already noticed that the hopscotch map T acts diagonally
on ðu�; uþÞ (i.e. separately, and actually in the same way,
on u� and uþ). Wewarned the reader above that, in spite of
this diagonal action, one needs to keep track of the action
of T on the two variables ðu�; uþÞ in order to determine
the full, two-sided sequence of collisions corresponding to
the billiard dynamics taking place within the chamber of
the big billiard. However, if one ignores the variable u�,
and only considers the action of T on uþ, it is easily seen
that the sole knowledge of the initial value of uþ suffices to
determine the explicit expression of T (among A, B, or C)
and therefore all the future values of uþ. Indeed, a look at
Fig. 5 shows that there are three, and only three, possible
cases: (i) if uþ belongs to the interval ½�1;�1�, the next
collision will be on the b wall so that the action of T is
u0þ ¼ T ðuþÞ ¼ BðuþÞ; (ii) if uþ 2 ½�1; 0�, the next col-
lision is on the c wall, so that T ðuþÞ ¼ CðuþÞ; and (iii) if
uþ 2 ½0;þ1�, one has T ðuþÞ ¼ AðuþÞ. Therefore, once
we know uþ, we can uniquely determine all its T iterates.
(Reciprocally, it is easy to see that the knowledge of the
initial value of u� suffices to determine all the past values
of u�, i.e. all itsT �1 iterates.) In other words, if we simply
ignore the variable u�, the map T defines a dynamics for
uþ alone, which is an unquotiented version of the usual
BKL dynamics on the single variable u recalled in the
introduction. (Remember that the BKL variable u actually
coincides with our variable uþ.) These remarks show that
the unquotiented generalization of the BKL u-map defined
by u0þ ¼ T ðuþÞ will admit an invariant one-dimensional
measure wðuþÞduþ obtained by marginalizing (i.e.
integrating upon) the variable u� in the two-dimensional
measure (5.19). Explicitly, we can then define
wðuþÞduþ as

wðuþÞduþ � 1

2

Z

u�
!duþ ¼

Z du�

ðuþ � u�Þ2 ; (5.20)

FIG. 6 (color online). Billiard phase space in the u�uþ pa-
rametrization: the epoch hopscotch court. The Bxy regions are

sketched, and filled with different colors (shades of gray).
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so that

wðuþÞ ¼ X

b

�b
1

uþ � u�b ðuþÞ
: (5.21)

Here, u�b ðuþÞ denote the various boundaries of the inte-

gration domain on the u� axis, and �b the associated signs.
As one sees in Fig. 6, these boundaries are piecewise-
constant functions of uþ. For instance, when uþ > 0,
there are two boundaries: u�min ¼ �1 (with �min ¼ �1),
and uþmax ¼ 0 (with �max ¼ þ1). This leads to wðuþÞ ¼
1=uþ. When�1< uþ < 0, one has four different bounda-
ries (on each side of the vacuum domain in the middle of
Fig. 6). Finally, we can conclude that the unquotiented,
big-billiard dynamics of the variable uþ considered sepa-
rately leaves invariant the measure wðuþÞduþ where

if 0< uþ <þ1; wðuþÞ ¼ 1

uþ
; (5.22a)

if � 1< uþ < 0; wðuþÞ ¼ 1

uþ þ 1
� 1

uþ

¼ � 1

uþðuþ þ 1Þ ; (5.22b)

if �1< uþ <�1; wðuþÞ ¼ � 1

uþ þ 1
: (5.22c)

The existence of this invariant one-dimensional measure
for the (unquotiented) BKL dynamics is not well-known,
and the explicit expression of wðuþÞduþ has, as far as we
know, never been written down before. It was indicated in

Fig. 2 that uþ 2 �R should really be considered as a coor-
dinate on the Kasner circle, i.e. the manifold of solutions
p1, p2, p3 of the two Kasner constraints. Note that one
could also parametrize the Kasner circle by an angle �
(with the usual 2	 period). In addition, one can require that
� be equal, say, to 0 at the ab corner (uþ ¼ þ1), to 2	=3
at the bc one (uþ ¼ �1), and to 4	=3 at the ca one
(uþ ¼ 0). With these requirements, and remembering
that the disk model of Fig. 2 is related with the half-plane
model of Fig. 3 (in which uþ appears as a natural coor-
dinate along the absolute) by a fractional linear transfor-
mation between the complex coordinates z � uþ iv of
Fig. 3, and � ¼ xþ iy of Fig. 2, of the form

� ¼ 2zþ 1� i
ffiffiffi

3
p

2zþ 1þ i
ffiffiffi

3
p ; (5.23)

the transformation between uþ and � (as defined above)
is given by (with � ¼ iei� on the Kasner circle, i.e. the
absolute)

ei� ¼ uþ þ 1
2 � i

ffiffi

3
p
2

uþ þ 1
2 þ i

ffiffi

3
p
2

: (5.24)

The expression of the invariant measure wðuþÞduþ,
Eqs. (5.22), in terms of the angle � on the Kasner circle
(in the disk representation) is then easily obtained by using

Eq. (5.24). It is found to only depend on the angular
distances between � and the two big-billiard corners sur-
rounding it. Let us denote the angular location of the
‘‘corner ab,’’ between the walls a and b (see Fig. 2) by
�ab, and similarly for the angular location �bc for the
corner bc, and �ca for the corner ca. These three angles
correspond to uþ ¼ þ1,�1, and 0, respectively, and with
our chosen normalization, take the values �ab ¼ 0, �bc ¼
2	=3, and �ca ¼ 4	=3 or �2	=3. With this notation, the
invariant measure wð�Þd� on the Kasner circle is given,
when �ab < � < �bc (i.e. when � is on the negative, or
‘‘shadow,’’ side of the b wall) by

wð�Þd� ¼
ffiffiffi

3
p
4

d�

sin���ab
2 sin�bc��

2

ð�ab < � < �bcÞ: (5.25)

Its expression in the two other intervals �bc < � < �ca
and �ca < � < �ab is obtained by cyclic permutations
abc ! bca ! cab. Note that this measure is invariant
around the middle points, e.g. ð�ab þ �bcÞ=2 for the inter-
val ½�ab; �bc� of Eq. (5.25), and is logarithmically divergent
as � tends to the extremities. For instance, as � ! �ab ¼ 0,
R

� wð�0Þd�0 ’
R

� d�
0=�0 ’ ln1=� in keeping with the

logarithmic divergence ’ lnð�uþÞ of the corresponding

uþ interval (5.22c) as uþ ! �1, given the link � ’
� ffiffiffi

3
p

=uþ deduced from Eq. (5.24) as uþ ! 	1.
Let us note finally that it is straightforward to check

directly the invariance of the measure wðuþÞduþ defined
above under the explicit transformation laws A, B, C
defined in Eqs. (5.2), (5.3), and (5.4). However, to do that
one must note that, contrary to the two-dimensional mapT
acting on the ðu�; uþÞ plane (which is one-to-one), the
one-dimensional action ofT on the real line of the variable
uþ is no longer one-to-one, but rather two-to-one. (Indeed,
the preimage of a certain uþ located within one of the three
intervals ½�1;�1�, ½�1; 0�, ½0;þ1�, can lie in either one
of the two other intervals.) In such a case, one must
remember [30] that the definition of the invariance of a
measure � under T is that, for any measurable set U,
�ðUÞ ¼ �ðT �1UÞ, where T �1 is the preimage (rather
then the image) of U. When applied to an infinitesimal
interval I ¼ uþ 	 1

2du
þ, one must then take into account

that T �1I consists of two separate infinitesimal intervals.
The invariant measure wðuþÞduþ [or wð�Þd�] on the

Kasner circle is not normalizable. Indeed, we pointed out
that its integral diverges logarithmically near each one of
the three corners of the big billiard (i.e. near uþ ¼ 1,�1,
and 0, or � ¼ 0, 2	=3, or 4	=3). Therefore, the invariant
measure of both the two-dimensional map T and its
one-dimensional restriction are not normalizable. It can
seem strange to have an invariant measure of a projected
phase-space which is infinitely large, while the invariant
measure of the original, unprojected, phase-space was
finite. Indeed, the invariant Liouville measure of the bil-
liard on an ideal triangle, namely

THIBAULT DAMOUR AND ORCHIDEA MARIA LECIAN PHYSICAL REVIEW D 83, 044038 (2011)

044038-16



�ð3Þ
L ¼ du ^ dv ^ d�

v2
; (5.26)

where the angle � (0 � �< 2	) parametrizes the angular
direction of the unit velocity vector, integrates to the
product of the finite area of the idea triangle

RR

dudv=v2 ¼
2	 and of

R

d� ¼ 2	. As proven in full generality (for any
time-independent Hamiltonian system) in the Appendix
[see Eq. (A13)], the energy-shell-reduced Liouville
measure is simply equal to the reduced product of the

symplectic measure �ð2n�1Þ
red / ð!ð2Þ

redÞ^ðn�1Þ by ds, where
s denotes a phase-space coordinate which is canonically
conjugate to the Hamiltonian (so that ds=dt ¼ 1 along
the Hamiltonian flow). In the present case, where
n ¼ d� 1 ¼ 2, this yields

�ð3Þ
L ¼ !ðu�; uþÞ ^ ds; (5.27)

where s measures (when considering a unit velocity bil-
liard) the hyperbolic length along the billiard orbit. This
agrees (modulo an unimportant factor) with the result (25)
of [23]. In terms of the phase-space coordinates ðU;V; �Þ,
or equivalently ðuþ; u�; �Þ6 of Eqs. (4.7), (4.8), and (4.9),
we have ds ¼ d�= sin�, so that

sðu�; uþ; �Þ ¼ s0ðu�; uþÞ þ lntan
�

2

¼ s0ðu�; uþÞ þ 1

2
ln
1� cos�

1þ cos�
: (5.28)

Here, we can choose the u	-dependent integration con-
stant as we wish. For instance, we can choose it so that, for
any given ðuþ; u�Þ, sðu�; uþ; �Þ varies between 0 and
some maximum value, say �ðu�; uþÞ as � varies between
the starting wall and the ending wall along the oriented
geodesic defined by ðu�; uþÞ. With this choice, we see that
the full three-dimensional big-billiard phase-space has the
shape, in ðu�; uþ; sÞ coordinates, of a slab, above the
ðu�; uþÞ hopscotch court, of varying thickness 0 � s �
�ðu�; uþÞ. Using Eqs. (5.28) and (4.7), one can express the
thickness �ðu�; uþÞ of this slab in terms of the values of
the u coordinates (in the Poincarè model) of the starting
and ending walls along the geodesic [say ustartðu�; uþÞ,
uendðu�; uþÞ], namely

�ðu�; uþÞ ¼ 1

2

�

ln
uend � u�

uþ � uend
� ln

ustart � u�

uþ � ustart

�

¼ 1

2
ln
ðuend � u�Þðuþ � ustartÞ
ðuþ � uendÞðustart � u�Þ : (5.29)

It is then easily checked that �ðu�; uþÞ tends to zero near
each corner of the billiard, thereby ensuring the conver-
gence of the Liouville measure (5.27), i.e. the convergence
of

RR

!ðu�; uþÞ�ðu�; uþÞ. For instance, near the corner

u� ! 1, uþ ! 1 (with ustart ¼ 0, uend ¼ �1 or the re-
verse), the result (5.29) yields a thickness �ðu�; uþÞ ’ 1

2 �ðuend � ustartÞðu�1þ � u�1� Þ ! 0.
The ergodic theory of transformations preserving a mea-

sure on an infinite-measure space (or infinite ergodic the-
ory) is an active field of current mathematical research7 in
which, however, there are many less concrete general
results than for the case of finite measure. In order to be
able to avail ourselves of the usual ergodic theorems (such
as the equality between the time average and the measure
average), it is useful to transform the problem onto another
one exhibiting a finite measure. Several different strategies
are possible for doing so.
As a first strategy, we could lift the full big-billiard

hopscotch game back to the hyperbolic billiard it
came from. This would mean considering the ergodic
properties of functions on the three-dimensional phase-
space ðuþ; u�; sÞ, with the finite Liouville measure
(5.27). In this case, we would be considering a continuous
Hamiltonian flow, so that the relevant ergodic theorem
would assert that, for almost every phase-space point x,

lim
T!1

1

T

Z T

0
dT0fðF T0 ðxÞÞ ¼

R

�ðx0Þfðx0Þ
R

�ðx0Þ : (5.30)

Here fðxÞ is a (measurable) function on phase-space,
F TðxÞ denotes the Hamiltonian flow over a time8 T, and

� denotes the relevant, finite measure, i.e. � ¼ �ð3Þ
L ,

Eq. (5.27). Then, if we were interested in the ergodic
properties of phase-space functions fðxÞ ¼ fðu�; uþ; sÞ
that do not depend on s, i.e. on functions fðu�; uþÞ that
live on the ðuþ; u�Þ hopscotch court, we can conclude from
(5.30) (using the fact that ds=dT ¼ 1 along each geodesic
segment) that

lim
N!1

P

N�1
n¼0 �ðT nðu�; uþÞÞfðT nðu�; uþÞÞ

PN�1
n¼0 �ðT nðu�; uþÞÞ

¼
R

!ðu�; uþÞ�ðu�; uþÞfðu�; uþÞ
R

!ðu�; uþÞ�ðu�; uþÞ ; (5.31)

where �ðu�; uþÞ is the thickness (in the s direction) of the
phase-space slab above the point ðu�; uþÞ, and where T
denotes the billiard map, i.e. the discrete hopscotch map
transforming any ðu�; uþÞ parametrizing one Kasner
epoch, into the values ðu0�; u0þÞ parametrizing the next
Kasner epoch. As explained above, T is equal to A, B,
or C depending on the wall on which the considered

6The unit (Euclidean) velocity vector ðvpu; vpuÞ �ðcos�; sin�Þ ¼ ðsgnðVÞ sin�; cos�Þ so that we have a link of
the form �þ 	=2 ¼ �sgnðVÞ� which ensures that the inequal-
ity 0 � � � 	, together with the fact that V can be either
positive or negative, corresponds to an angular direction � of
the velocity vector varying over a 2	 range.

7See, e.g., [31] for an entry into the literature on infinite
ergodic theory.

8As recalled in Sec. , the appropriate time variable for the
hyperbolic billiard is the T-time of Eq. (2.25).

STATISTICAL PROPERTIES OF COSMOLOGICAL BILLIARDS PHYSICAL REVIEW D 83, 044038 (2011)

044038-17



geodesic segment will collide. The notation T n denotes
the n-th iteration T 
T 
 . . . 
T , i.e. a composed trans-
formation of the type of Eq. (5.9). Note how the
continuous-time average of Eq. (5.30) has reduced itself
(for functions depending only on u� and uþ) to a discrete-
time average, i.e. to a discrete sum (5.31) involving the
successive iterates of the hopscotch map. However, the
continuous-time origin of (5.31) is recalled through
the occurrence of the ‘‘weights’’ �ðT nðu�; uþÞÞ involving
the successive thicknesses of the phase-space slabs, en-
countered along the billiard trajectory in ðu�; uþ; sÞ space.
[In ðu�; uþ; sÞ space the billiard motion becomes a so-
called special flow [30], i.e. a combination of uniform
motion in the ‘‘vertical’’ s direction, with 0 � s <
�ðu�; uþÞ, with discrete jumps in ðu�; uþÞ and in s
(back to zero when it reaches �ðu�; uþÞ).]

A second strategy for reducing the problem to a discrete
map having a finite measure is to follow BKL in lumping
together the epochs into eras, and to focus on the statistical
properties of eras rather than epochs. In order to do this, we
need to know on which subregions of the full hopscotch
court, Fig. 6, each type of era E�ðx; yÞ must start. [Here, as
above, ðx; yÞ denotes an oriented pair of walls, and E�
denotes the union of all Ek’s, i.e. an era of arbitrary
length k ¼ 1; 2; 3 . . . .] This is straightforwardly obtained
by using the transformation rules A, B, C discussed above.
For instance, the subregion say Fab (where F stands for
‘‘First’’) of the hopscotch court corresponding to the
start of an era of the E�ða; bÞ type must come from a c
wall, and include the process c ! a ! b. Using either
some simple geometric reasoning, or working with the
algebraic relations defining the transformations A, B, and
C, Eq. (5.12), one finds that the Fab subregion is the
rectangular subdomain of the Bab box defined by the
inequalities

Fab: 0< u� < 1; �1< uþ <�1: (5.32)

The full set of inequalities defining the six possible starting
subregions Fxy, with x; y 2 fa; b; cg are listed in Table III.

For compactness, we also indicate the six possible subre-
gions on which an era of the type E�ðx; yÞ can end. They are
denoted by Lxy (where L stands for ‘‘Last’’). If we consider

the overlap domain Fxy

T

Lxy between the start and the end

of some ðx; yÞ-type era, it must correspond to an era
E1ðx; yÞ of length k ¼ 1, i.e. containing only one epoch.
For instance, we see on Table III that the intersection
Fba

T

Lba corresponds to the small box

F1
ba: � 2< u� <�1; 0< uþ < 1: (5.33)

The box F1
ba, Eq. (5.33), describes the starting domain, in

the ðuþ; u�Þ plane, of all the one-epoch eras of the ba-type.
More generally, it is not difficult to write down the inequal-
ities defining the starting domains, say Fk

xy, of all the

k-epoch eras (with k ¼ 1; 2; 3 . . . ) of the (starting)
xy-type. They are given by intersecting the full Fxy with

the condition

nxyðuþÞ ¼ k; (5.34)

where nxyðuþÞ is the integer-valued9 function listed in the
second column of Table IV which yields the length of the
era starting at some given point ðu�; uþÞ in phase-space.
This leads to the era hopscotch court of Fig. 7 which
represents the six era-starting domains, and their division
in k-epoch subregions Fk

xy. Note that the function nxyðuþÞ
giving the length of each era depends only on uþ, and not
on u�. This corresponds to the fact that on Fig. 7 all
the boundaries between the Fk

xy boxes are horizontal.

We have also indicated in Fig. 7 the special points
ðu�; uþÞ ¼ ð�� 1; Þ, ðu�; uþÞ ¼ ð�;þ 1Þ,
ðu�; uþÞ ¼ ð�1=ð2þÞ;�1=ð1�Þ [where  ¼
ð ffiffiffi

5
p � 1Þ=2 ’ 0:618 denotes the small golden ratio] corre-
sponding to the simplest periodic hopscotch orbit
corresponding to the infinite succession of one-epoch
eras (5.7). [There exists also the time-reverse version of
(5.7), namely a ! b ! c ! a . . . which jumps between
F1
ab ! F1

bc ! F1
ca ! . . . .]

For completeness, we have also indicated in Table IV the
discrete sequence of values of u	m , where 1 � m � nxy

describing the successive epochs contained within an era
that starts from some u	 2 Fnxy

xy (one example of such

sequence of epochs was drawn in Fig. 6). In Table IV,
umxy

denotes either uþmxy
or u�mxy

[we indeed recall that the

discrete hopscotch map T acts on a diagonal manner on
uþ and u�: u0þ ¼ T ðuþÞ and u0� ¼ T ðu�Þ]. Moreover,
within some era Enxyðx; yÞ starting with an epoch of the
x ! y type, roughly half of the epochs contained in
Enxyðx; yÞ are of the x ! y type (namely those correspond-
ing to m ¼ 1; 3; 5 . . . ) while the other half are of the y ! x
type (those corresponding to m ¼ 2; 4 . . . ).

TABLE III. Starting and ending subregions.

Fab �1< uþ <�1 0< u� < 1
Fba 0< uþ <1 �2< u� <�1
Fac �1< uþ < 0 1< u� <1
Fbc �1< uþ < 0 �1< u� <�2
Fca 0< uþ <1 �1< u� < 1=2
Fcb �1< uþ <�1 �1=2< u� < 0
Lab �2< uþ <�1 0< u� <1
Lba 0< uþ < 1 �1< u� <�1
Lac �1< uþ <�1=2 0< u� <1
Lbc �1=2< uþ < 0 �1< u� <�1
Lca 1< uþ <1 �1< u� < 0
Lcb �1< uþ <�2 �1< u� < 0

9The notation ½x� for x 2 R denotes the usual integer part of x
when x � 0 (e.g. ½	� ¼ 3), and �½�x� � 0 when x � 0 (so that
½�	� ¼ �3). We did not find useful to introduce other defini-
tions of the integer part (e.g. the floor, ceiling, or Hurwitz ones).
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B. Era hopscotch dynamics

If, following the spirit of Belinski, Khalatnikhov, and
Lifshitz, we focus on the discrete dynamics of successive
eras, we can consider a hopscotch game based on the era
hopscotch court represented in Fig. 7, i.e. the six era-
starting domains Fxy (further divided in sub-boxes labeling

the length of the era). The resulting discrete era-transition
mapsT era [mapping the ðu�; uþÞ point of the first epoch of
an era to that of the first epoch of the next era] will be
obtained by composing the individual epoch-transition
maps contained in the considered era. For example, an
era E3ða; bÞ, i.e. a ! b ! a ! b, would correspond to

TABLE IV. Epoch hopscotch.

Fab nab ¼ ½�uþFab
� umab

¼ uFab
þm� 1 umba

¼ �uFab
�m

Fba nba ¼ ½uþFba
� þ 1 umba

¼ uFba
� nþ 1 umab

¼ �uFba
þm� 2

Fac nac ¼ ½� 1
uþFac

� umac
¼ 1

m�1þ1=uFac
umca

¼ � 1
mþ1=uFac

Fca nca ¼ ½ 1
uþFca

� þ 1 umca
¼ � 1

m�1�1=uFca
umac

¼ 1
m�2�1=uFca

Fbc nbc ¼ ½ 1
uþFbcþ1

� umbc
¼ �1� 1

m�1� 1
1þuFbc

umcb
¼ �1þ 1

m� 1
1þuFbc

Fcb ncb ¼ ½ 1
1þ1=uþFcb

� umcb
¼ �1þ 1

m�1� 1
1þuFcb

umbc
¼ �1� 1

m�2þ 1
1þuFcb

FIG. 7 (color online). The era hopscotch court in the ðu�; uþÞ parametrization. The six starting boxes Fxy are sketched, and filled
with different colors (shades of gray), according to Fig. 6, as explained in Table III. For each starting box Fxy, the starting subboxes

corresponding to k-epoch eras (as described in Table IV) are indicated for k ¼ 1; 2; 3; namely F1
xy, F

2
xy, and F3

xy. The three ðu�; uþÞ
points of the simplest periodic orbit are denoted as asterisks. Please note that, for typographical reasons, the Fk

xy’s are in this figure

indicated as Fkxy.
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T era ¼ B 
 A 
 B. Depending on the parity of the number
nxy of epochs contained in the considered era Enxyðx; yÞ, the
era-transition map T era will map the initial starting rect-
angle Fxy to a next starting rectangle, say F0

x0y0 , where the

labels x0 and y0 are fully determined by the knowledge of
ðx; yÞ and of the parity of nxy (i.e. whether it is even or odd).
The explicit rules giving F0

x0y0 for each Fxy are given in the

first columns of Table V. In addition, the explicit form of
the corresponding era-transition map,

u	F0
x0y0

¼ T nxyðu	Fxy
Þ; (5.35)

transforming the phase-space point u	Fxy
of the first epoch

in some era Enxyðx; yÞ into the phase-space point u	F0
x0y0

of

the first epoch in the next era E
nx

0y0 ðx0; y0Þ are explicitly

given in the last column of Table V. For instance, if we
consider uFba

¼ ðu�F ;Þ,  ’ 0:618 denoting the small

golden ratio as above, we shall have (from Table IV) nba ¼
½� þ 1 ¼ 1, which is odd, so that (from Table V) the next
era will be F0

ac, and the new starting phase-space point in
F0
ac will have as coordinates (from the last column of

Table IV)

u�F0
ac
¼ �u�F ; uþF0

ac
¼ �: (5.36)

We have proven above that the two-form ! (5.19) was left
invariant by each individual wall collision transformation
A, B, or C (and more generally by any symmetry trans-
formation of H 2). Therefore, ! will be invariant under
the era-transition maps T nxy , which are certain com-
positions of nxy wall-collision transformations, e.g.
T E3ða;bÞ ¼ B 
 A 
 B.

A crucial property of the era hopscotch court, Fig. 7, is
that the integral of! over the era court is finite. Indeed, the
points (0, 0), ð�1;�1Þ, and ð1;1Þ leading to the logarith-
mic divergence of the !-measure of the full epoch hop-
scotch court of Fig. 6 are well separated from the six Fxy

era rectangles of the era hopscotch court. For instance, the
region at infinity of the Fba rectangle is �2< u� <�1,
uþ ! þ1, which leads to convergence for

R

!ðu�; uþÞ.
We are therefore in the usual conditions for applying the

results of ergodic theory on a finite-measure space. In other
words, after many iterations of the era map T era we can
consider that the phase-space point ðu�; uþÞ behaves in a
stochastic manner, described by a probability measure
equal to !=I, where I is the integral of ! over the era
hopscotch court of Fig. 7. Note that, in the present context
of the iteration of a discrete map T , which is ergodic and
admits an invariant measure !, the probability measure is
! itself, and its meaning is that the ratio

R

A!=
R

D !
(whereA � D is a subregion of the full domainD of the
era hopscotch court) yields the n ! 1 limit of the fraction
nA=n of the number of eras nA spent in A among the n
first iterates of an arbitrary initial phase-space point.
In other words, the word ‘‘probability’’ refers here to a

limiting era-frequency. We shall explicitly compute some
probabilities in the era hopscotch dynamics below.

VI. SYMMETRY-QUOTIENTING
THE BIG BILLIARD

As already mentioned, the basic a, b, c system,
Eq. (1.1), underlying the big-billiard dynamics is formally
invariant under the six-fold group of permutations of the
three letters a, b, c, say S3. This group S3 is the symmetry
group of the (ideal) triangle, in the Lobachevsky plane,
represented on Fig. 1. It comprises (when seen in the disk
model) two rotations by	2	=3 (that exchange the corners
among themselves), and three reflections with respect to
the lines bisecting the corners (that permute two sides
among themselves). Note also that the action of the six
elements of S3 on the boundary of the disk correspond to
the five Kasner transformations given in Table I, together
with identity transformation, say k0 (with u

0 ¼ k0ðuÞ � u).
We can use the symmetry group S3 to quotient the

dynamics of the big billiard. There are (at least) two
ways of thinking about this quotienting. One way would
be to consider a kaleidoscopic version of the big-billiard
dynamics in which the single ‘‘moving ball’’ of the billiard,
shown e.g. in Fig. 4, is augmented by its five (generically
distinct) images under S3. This leads to a billiard game
where six (symmetry related) balls simultaneously move
within the same billiard table, and (simultaneously) bounce
on its bounding walls. The phase-space points of this
kaleidoscopic billiard is a symmetry orbit of the original
(single ball) phase-space point, i.e. an unordered set
of (at most) six (two-dimensional) qi’s and six (two-
dimensional) pi’s (restricted by the condition gijpipj ¼
1). (Some of these variables are allowed to coincide when
the original ball crosses one, or several, of the fixed sets of
S3 [bisecting lines].) A second way to look at the quo-
tiented dynamics is to replace the latter kaleidoscopic

TABLE V. Era hopscotch.

Fab nab odd F0
bc uFbc

¼ �uFab
� nab � 1

nab even F0
ac uFac

¼ uFab
þ nab

Fba nba odd F0
ac uFac

¼ �uFba
þ nba � 1

nba even F0
bc uFbc

¼ uFba
� nba

Fac nac odd F0
cb uFcb

¼ � 1
nacþ1þ 1

uFac

nac even F0
ab uFab

¼ 1
nacþ 1

uFac

Fca nca odd F0
ab uFab

¼ 1
nca�1� 1

uFca

nca even F0
cb uFcb

¼ � 1
nca� 1

uFca

Fbc nbc odd F0
ca uFca

¼ �1þ 1
nbcþ1� 1

1þuFbc

nbc even F0
ba uFba

¼ �1� 1
nbc� 1

1þuFbc

Fcb ncb odd F0
ba uFba

¼ �1� 1
ncb�1þ 1

1þuFcb

ncb even F0
ca uFca

¼ �1þ 1
ncbþ 1

1þuFcb
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phase-space point fqið1Þ; qið2Þ; . . . ; qið6Þ;pð1Þ
i ; pð2Þ

i ; . . . ; pð6Þ
i g by

its unique representative, say qirep, within a fundamental

domain of S3, together with its corresponding momenta
pi
rep. For instance, one can use as fundamental domain the

small billiard, with sides G, B, R in Fig. 2. (We shall use
this relation when considering the small-billiard dynamics
below.) When passing from the continuous billiard dynam-
ics to the discrete billiard map from an epoch to the next
epoch, the quotienting of the big billiard leads to a quo-
tiented version of the epoch hopscotch game of Fig. 6. For
instance, the kaleidoscopic version of Fig. 6 would replace
each ðu�; uþÞ point indicated there by six symmetry-
related points, i.e. u	 and its five transforms under the
Kasner transformations of Table I, namely k1ðu	Þ, k2ðu	Þ,
k3ðu	Þ, k4ðu	Þ, k5ðu	Þ. These six points would then si-
multaneously jump, after a (six-fold) collision on a gravi-
tational wall, to their next six-fold positions in the ðu�; uþÞ
plane. For instance, the S3 orbit f1I; 1II; 1III; 1IV ; 1V; 1VIg
of point 1 in Bba (Fig. 6) would jump onto the new S3 orbit
f2I; 2II; 2III; 2IV; 2V; 2VIg. In the alternative, fundamental-
domain, version of the quotiented dynamics we could re-
place each S3 orbit in the ðu�; uþÞ plane by its unique
representative located within, say, the box Bba. (Indeed, the
six boxes Bxy of Fig. 6 are exchanged under S3.) In that

view, the discrete quotiented big billiard would become a
map from the box Bba onto itself. For instance, in the
example shown in Fig. 6, the initial point 1 would first
jump to the point 20 (midway between the points 1 and 3),
then to a point 40 (midway between 2 and 5, and belonging
to Bba). The next epoch would be the image of the
point 5 2 Bbc which belongs to Bba. As suggested by
our description of the example of Fig. 6, one finds that
each era gets quotiented into a succession of ðu�; uþÞ
representative points within Bba which lie on a straight
(Euclidean) line of slope þ1 (as the line passing through
the points 1 and 3 in Fig. 6). More precisely, if we denote
by ðu�F ; uþF Þ 2 Bba the first epoch of a quotiented era, the
Bba-representative of the version of the considered era is
made of the points

ðu�F ;uþF Þ; ðu�F �1;uþF �1Þ;
ðu�F �2;uþF �2Þ; . . . ; ðu�F �½uþF �;uþF �½uþF �Þ

(6.1)

obtained by successively subtracting 1 both from u�F and
uþF . As indicated, the length of the era is simply given by
k ¼ ½uþF � þ 1, so that the last point of an era is reached
when its uþ coordinate is between 0 and 1: uþL ¼ uþF �
½uþF � � fuþF g. Note, however, that the u� coordinate of the
last epoch is given by u�L ¼ u�F � kþ 1 ¼ u�F � ½uþF �, so
that it depends both on u�F and on uþF (while the sequence
of the uþ values depends only on the starting value of
uþF of uþ). Then, it is easily seen that the next epoch (i.e.
the first point of the next era) will be (when mapped back to
Bba by S3)

�

1

u�F � ½uþF �
� 1;

1

uþF � ½uþF �
� 1

�

: (6.2)

If we ignore the u� coordinate, we see that the law giving
the successive values of the uþ coordinate coincides with
the law found long ago by BKL (when using the BKLu>0

definition of an era, as discussed above), namely, uþF ¼
xþ k� 1, uþF � 1 ¼ xþ k� 2, down to uþL ¼ x, with
k ¼ ½uþF � þ 1 denoting the length of the era. This shows
that the BKL discrete dynamics of the variable u is ob-
tained by: (i) quotienting our more complete hopscotch
dynamics by the permutation group S3, and (ii) ignoring
the u� coordinate and identifying the BKL variable u with
uþ. Note again that this link between the hopscotch dy-
namics and the BKL dynamics is particularly simple if one
uses the BKLu>0 definition of an era, rather than the
BKLu>1. The S3-quotiented hopscotch dynamics, i.e. the
discrete dynamics mapping Bba onto itself, defined by
Eqs. (6.1) and (6.2), constitutes a two-variable general-
ization of the BKL map, say

ðu�; uþÞ 2 Bba ! ðu�0
; uþ0Þ ¼ T baðu�; uþÞ 2 Bba:

(6.3)

Like the full (unquotiented) epoch hopscotch dynamics,
the quotiented discrete map T ba (6.3) leaves invariant the
measure ! However, like in the unquotiented case, the
integral of ! on the domain (and image) Bba of the map
T ba is infinite.
Before discussing the obtention of a finite-measure dis-

crete map associated with T ba, let us note that, as we did
for the unquotiented hopscotch dynamics, we can also
consider the action of the quotiented billiard map T ba on
the single (BKL-like) variable uþ. It is defined as

uþF ! uþF � 1! . . .! uþF �½uþF � !
1

uþF �½uþF �
� 1! . . . :

(6.4)

In other words, it is just the usual BKLmap on u recalled in
the introduction (in its BKLu>0 version). Note the appear-
ance of �1 in the definition of the new ‘‘first uþ’’ of the
next era. This takes into account that the unordered triplet
of Kasner exponents of fuþF g< 1 is identical to that of
fuþF g�1 and should therefore not appear twice in the se-
quence of transforms of uþ. As in the unordered case
discussed above, we can obtain an invariant measure for

the one-dimensional version, say T ð1Þ
ba , of the quotiented

billiard map by marginalizing over u� the two-
dimensional invariant measure !ba (i.e. the restriction of
! to the region Bba). We use the same definition as above,
Eq. (5.20). The difference is that, now, uþ is restricted to be
in the interval 0< uþ <þ1, and the boundaries of inte-
gration over u� are u�min ¼ �1 and u�max ¼ �1 (where

u�max differs from its previous value). This leads to the
invariant one-dimensional measure
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wbaðuþÞduþ ¼ duþ

uþ þ 1
: (6.5)

It is again easy to check directly that wbaðuþÞduþ is
invariant (in the sense recalled in Sec. IV and in the

Appendix) under the discrete map T ð1Þ
ba (one needs to

take into account that T ð1Þ
ba is two-to-one so that the pre-

image of an infinitesimal interval uþ 	 1
2du

þ consists of

two infinitesimal intervals.) Note that if, instead of consid-

ering the definition above of T ð1Þ
ba , one considers the stan-

dard BKLu>1 map (where u remains always >1 and
decreases by units of 1 until the value 1þ fug, after which
it jumps to 1=fug), the expression of the invariant measure
reads

wBKLu>1
ðuÞdu ¼ du

u
: (6.6)

As far as we know, the results in Eqs. (6.5) and (6.6)
have not been explicitly discussed before in the literature.
It should be noted that the one-dimensional measure
wbaðuþÞduþ differs from the restriction to Bba of its un-
quotiented analog discussed in Section V above. [Indeed,
we had before wðuþÞdu¼ðduþ=uþ when uþ > 0.] This is
an effect of the quotienting which means that one must fold
back onto Bba the symmetric images that were elsewhere
(and notably in Bca). Finally, we note that, as before, the
invariant measure wðuþÞduþ is not normalizable. Indeed,
it diverges logarithmically when uþ ! þ1. Note, how-
ever, that it converges at the lower boundary uþ ! 0. [The
same is true of the invariant measure wBKLu>1

ðuÞdu ¼ 1=u

of the standard BKL u-map, with 1< u<þ1].
Let us now come back to discussing the two-dimensional

quotiented map T ba, acting on Bba. To get a discrete map
preserving a finite measure, we need to consider the quo-
tiented analog of the era hopscotch dynamics. In fact, we
obtain an era hopscotch dynamics simply by ignoring the
intermediate epochs and focusing on the map transforming
the (quotiented) first epoch of an era ðu�F ; uþF Þ into the

first epoch ðu�0
F ; uþ0

F Þ of the next era. We shall denote this
quotiented era map as T. When using, as we did above, a
representative of the S3 orbit within the Bba box, the
quotiented era map T is a map of Fba onto itself. We recall
that Fba is the domain of the first points of eras starting as
b ! a. It is the rectangular domain �2< u�F <�1, 0<
uþF <þ1 (see Fig. 7). The explicit expression of the map
T is given by Eq. (6.2), i.e.

T u	F ¼ þ 1

u	F � ½uþF �
� 1: (6.7)

This map leaves invariant the restriction of the two-form!
to the domain Fba, i.e.

!F ¼ 2
duþF ^ du�F
ðuþF � u�F Þ2

: (6.8)

By contrast with the original measure ! on the full hop-
scotch court, this restricted measure has now a finite inte-
gral, namely

Z

!Fba

!F ¼ 2 ln2: (6.9)

We shall also refer to the map T as being the Chernoff-
Barrow-Lifshitz-Khalatnikov-Sinai-Khanin-Shchur map
for the big billiard, abbreviated as the CB-LKSKS map.
This one-to-one map between two variables was intro-
duced in [9],10 while Refs. [10,11] showed how such a
two-variable map appears as a completion of the original
BKL analysis, when keeping not only the original BKL
variable uþ (parametrizing p1, p2, and p3), but also a
variable � related to the amplitude of oscillations of the
a, b, c metric variables during an era (the precise relation
between our variables and those used in [10,11] will be
given below). The CB-LKSKS map is one-to-one over its
domain Fba. Note, however, that the original mapT on the
era hopscotch court, whose quotienting leads to T, is such
that both the image T Fba and the preimage T �1Fba of
Fba are the union of an infinite number of rectangular
domains belonging to two different Fxy boxes. For in-

stance, the image T Fba is of the form Pbc [ Pac, where
Pbc is the union of an infinite number of disconnected
rectangles contained within Fbc, while Pac is the union
of an infinite numbers of disconnected rectangles con-
tained within Fac.
Note that uþF and u�F play asymmetric roles in the Tmap.

Indeed, for all the starting boxes Fxy, the boundaries of the

subdomains corresponding to a given era length are hori-
zontal (see Fig. 7). Therefore, whether a given rectangle in
Fba is T-mapped into one or several rectangles only de-
pends on the range of uþF independently of the range of u�F .
As a consequence, the mixing character of the T map is
essentially contained in the uþ direction. Actually, we see
by differentiating Eq. (6.7) that

dðTu�F Þ ¼ � du�F
ðu�F � ½uþF �Þ2

: (6.10)

As �2 � u�F � �1 and ½uþF � 2 N, the denominator
ðuF � ½uþF �Þ2 is always strictly larger than 1. Therefore,
jdTu�F j=du�F < 1, i.e. the T map is contracting in the u�F
direction.
Finally, let us clarify the link between the CB-LKSKS

map as defined above and the unit-square map given in
[10,11]. The range of the variables u�, uþ in the above-
defined CB-LKSKS map is the infinite vertical rectangle
Fba, i.e. �2< u� <�1, 0< uþ <þ1. By contrast,
the statistical analysis developed in [10,11] is based on
two variables xþ, x�, defined in the unit square, i.e.
0< xþ < 1, 0< xþ < 1. Let us consider the following

10The definition of the map in [9] and our definition match
when one relates the variable denoted as x in [9], which we shall
call XCB, with our u�F by XCB ¼ �1=ðu�F þ 1Þ. For the sake of
completeness, let us also note that the names of the Kasner
exponents p1 and p2 are exchanged in [9].
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transformation mapping Fba into the unit square
0< xþ < 1 and 0< x� < 1:

xþ ¼ 1

uþF þ 1
; (6.11a)

x� ¼ �u�F � 1: (6.11b)

In terms of the unit-square variables ðx�; xþÞ, Eqs. (6.11),
the CB-LKSKS map reads

Txþ ¼
�

1

xþ

�

; (6.12a)

Tx� ¼ 1

x� þ ½ 1
xþ
� ; (6.12b)

consistent with the results of [11]. As the unit-square
transformation in (6.11) does not consist of applying the
same fractional linear transformation to both variables uþ
and u�, the two-form ! is not invariant under (6.11),
but becomes

!F ¼ 2
dxþ ^ dx�
ð1þ xþx�Þ2

: (6.13)

The choice of Bba (and Fba) as representative boxes for
the quotiented big-billiard dynamics does not affect the
unit-square results (6.12) and (6.13). Had we considered
another representative box Bxy, and defined a correspond-

ingly modified version of the unit-square transformation
(6.11), we would have ended up with the same results
(6.12) and (6.13).

VII. SOME PROPERTIES OF THE SYMMETRY-
QUOTIENTED DYNAMICS

In this section, we shall start from the Fba-box version
of the CB-LKSKS map (or, simply, T map), Eq. (6.7), and
study some of its properties, recalling, when needed, some
results obtained by previous authors and focusing on new
results.

A. Probabilities

Let us indicate how, in our setup, one can compute the
probability for an era to contain a given number of epochs.
The probability Pn1 for an era to contain a number n1 of

epochs, 1< n1 <þ1, is proportional to the integral of the
two-form !F (6.8) over the relevant region of the u�F , uþF
space. In the considered case of a given number, n1, of
epochs, the relevant region is simply the box Fn1

ba,

as defined above, i.e. the domain �2< u�F <�1, n1 �
1< uþF < n1. To normalize this probability, we must then
divide by the integral of !F over the full domain Fba,
as given in Eq. (6.9), 2 ln2. As a result, we obtain that
the probability Pn1 for an era to contain a number n1 of

epochs as

Pn1 ¼
1

ln2

Z n1

n1�1
duþF

Z �1

�2
du�F

1

ðuþF � u�F Þ2

¼ 1

ln2
ln

ðn1 þ 1Þ2
n1ðn1 þ 2Þ : (7.1)

This agrees with the result of BKL [which was obtained
from the stationary probability distribution (1.4) of the
Gauss iteration map]. For instance, the probabilities for
the length of an era to take the values n1 ¼ 1; 2; 3; 4; 5 are

P1 ¼ 0:4150 (7.2a)

P2 ¼ 0:1699 (7.2b)

P3 ¼ 0:0931 (7.2c)

P4 ¼ 0:0589 (7.2d)

P5 ¼ 0:0406; (7.2e)

whose sum is
P5

k¼1 Pk ¼ 0:7775. Hence, 77.75% of the

eras have lengths smaller or equal to 5, and actually
58.49% of the eras have lengths smaller or equal to 2.
This shows that most eras have rather small lengths. The
asymptotic behavior of Pn1 , as n1 ! þ1 is

Pn1 ’
1

cn21
; (7.3)

with c ¼ ln2 ’ 0:693 15.Therefore, the probability to
have n1 � N1 is asymptotically given (for large N1) by
Pðn1 � N1Þ ’ 1

cN1
, which decreases rather slowly as N1

increases. In other words, though most eras have rather
small lengths, from time to time eras with unbounded
lengths can arise. The rather slow decrease of Pn1 as n1
increases implies, in particular, that the mean value of n1 is
infinite (being given by the logarithmically divergent series
P

n1�1Pn1n1). Note, however, that a finite result is obtained

if one considers the expectation value of the geometric
mean of large sequences of independent era lengths, i.e.
the exponential of the expectation value of lnn1 (known as
the Khinchin number). This yields [32]

exp
X

n1�1

Pn1 lnn1 ’ 2:6854 . . . : (7.4)

This result confirms that the ‘‘typical’’ length of an era is
rather small.
Let us now consider the computation of a probability

of a more specific event (not explicitly considered by
BKL), namely, the probability Pn1;n2 for an era of

length 1< n1 <1 to be followed by an era of length
1< n2 <1. This probability is obtained by integrating
the form (5.19) over the appropriate range of the variables
uþF , u�F . This range is determined by Table IV (as in the
previous case), and by the properties of the CB-LKSKS
map. Combining the two, the range n1 � 1þ 1

n2þ1 < uþF <

n1 � 1þ 1
n2
is obtained. The range of u�F is determined as

in the previous case. As a result, we obtain
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Pn1;n2 ¼
1

ln2

Z �1

�2
du�F

Z n1�1þ1=n2

n1�1þ1=ðn2þ1Þ
duþF

ðuþF � u�F Þ2

¼ 1

ln2
ln

�ðn1n2 þ 1Þðn1n2 þ n1 þ n2 þ 2Þ
ðn1n2 þ n1 þ 1Þðn1n2 þ n2 þ 1Þ

�

: (7.5)

Note that this probability is symmetric in n1 and n2. The
previous probability Pn1 is (as it should be) recovered by

summing Pn1;n2 over all the values of n2,

Pn1 ¼
1

ln2

X

n2¼1

n2¼1

Pn1;n2 ¼
1

ln2
ln

� ðn1 þ 1Þ2
n1ðn1 þ 2Þ

�

: (7.6)

Note that in both cases we were considering events that
depend only on uþF so that the result involved margin-
alizing the variable u�F , i.e. integrating the (normalized)
! form over the complete range of u�F . And, indeed,
integrating the (normalized) two-form !F over the com-
plete range of u�F (� 2< u�F <�1) yields the one-form

1

ln2

Z �1

�2

du�F duþF
ðuþF � u�F Þ2

¼ 1

ln2

duþF
ðuþF þ 1ÞðuþF þ 2Þ ; (7.7)

which yields the Gauss distribution (1.4), i.e. wðxÞdx ¼
1
ln2

dx
1þx when parametrizing uþF 2�0;þ1½ by x 2�0; 1½,

such that uþF � 1
x � 1 (with 0< x< 1). Note that the (in-

tegrable) invariant one-dimensional measure (7.7) differs
from the (nonintegrable) invariant one-dimensional mea-
sure (6.5): while the former refers to the discrete dynamics
of the uþ value of the first epoch era, the latter refers to the
discrete dynamics of the uþ values of all the epochs. Note
also that the probability Pn1 to have an era of length n1 is

obtained (in view of the link n1 ¼ ½uþF � þ 1) by integrating
the measure (7.7) over the interval n1 � 1< uþF < n1. It is
interesting to note that the (pseudo)random variables n1
and n2 (i.e. the lengths of two consecutive eras) are not
independent of each other, because Pn1n2 � Pn1Pn2 .

However, the variables n1 and n2 are approximately inde-
pendent statistical variables. Indeed, using the explicit
expressions (7.1) and (7.6) one finds that the ratio Rn1n2 �
Pn1n2=Pn1Pn2 , which would be, by definition, equal to 1 if

n1 and n2 were independent random variables, takes values
rather close to 1. For instance, R11 ’ 0:8826, R12 ¼ R21 ’
0:9985, R13 ¼ R31 ’ 1:051, and R22 ’ 1:008. Therefore
the low values of n1 and n2 (which are of greatest impor-
tance for many issues) are approximately independent. As
concerns the large values of n1 and n2, let us note that the
asymptotic value of Pn1n2 is

Pn1n2 ’
1

cn21n
2
2

; (7.8)

where c ¼ ln2 as above. This implies that the ratio Rn1n2 �
Pn1n2=Pn1Pn2 is asymptotically constant, and equal to c 
0:693 15. Having seen that the lengths of consecutive eras
are approximately independent random variables, we ex-
pect that such an independence property will become more

and more exact as one considers eras that are more and
more separated.

B. Continued fractions

Let us briefly recall (from [4]) the usefulness of the
continued-fraction representation of the variables u�, uþ
in describing the effect of iterating the CB-LKSKS map.
Any number 0< y <þ1, can be uniquely decomposed as

y ¼ ½y� þ fyg; (7.9)

where ½y� is its integer part, while fyg is its fractional part.
This decomposition can be iterated by considering the
decomposition (7.9) of 1=fyg. This leads to the unique
continued-fraction decomposition of y > 0

fyg ¼ n1 þ 1

n2 þ 1
n3þ1

...

� ½n1; n2; n3; . . .�; (7.10)

where n1, n2, n3; . . . are natural integers. In Eq. (7.10) we
have introduced a notation for the continued-fraction ex-
pansion which distinguishes (by means of a semicolon) the
first integer n1 � ½y�. In the case where n1 ¼ 0 (i.e. in the
case 0< y< 1, i.e. y ¼ fyg), we shall also use the notation
fyg ¼ ½n2; n3; n4; . . .� (without semicolon). The continued-
fraction expansion contains a finite sequence of integers
n1, n2; . . . if y is rational, while it contains an infinite
sequence of integers if y is irrational.
With this notation, the continued-fraction expansions11

of the first ðu�; uþÞ values of a (quotiented) era starting (as
above) in the box Fba can be written as

uþF � nba � 1þ ½n2; n3; n4; . . .� � ½nba � 1;n2; n3; n4; . . .�;
(7.11a)

u�F ¼ �1� ½m1;m2;m3; . . .�: (7.11b)

Here, we have denoted the first integer of the decomposi-
tion of uþF as nba � 1 ¼ ½uþF �, so that nba ¼ ½uþF � þ 1
denotes the length of the era starting with uþF . In terms of
these decompositions pertaining to the first era, we can
write the first u�, uþ values of the N-th era (with N ¼
2; 3; . . . ), i.e. the (N � 1)-th iteration of the T map

TN�1uþF ¼ nN � 1þ ½nNþ1; nNþ2; nNþ3; . . .�; (7.12a)

TN�1u�F ¼ �1� ½nN; nN�1; . . . ; n2; nba; m1; m2; . . .�:
(7.12b)

In other words, at each iteration of the CB-LKSKS map,
the information about the length of the corresponding era is
transferred from the uþ variable to the u� variable. Note
that the information contained in uþF (i.e. the sequence
of integers m1, m2; . . . ) is progressively decaying in the
tail of the iterates of u�F . By contrast, the iterates of uþF
progressively uncover the tail of uþF , thereby exhibiting the
chaotic character of the uþF dynamics which progressively

11Here, we adopt the definition of the integer part of a negative
number given in footnote 9, and we define the fractional part of a
negative number accordingly, e.g. f�	g ¼ �0:14 . . . .
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amplifies smaller and smaller details of the continued-
fraction expansion of the initial uþF .

C. Recovering information about
the unquotiented dynamics

Up to now, in this section, we have discussed the
quotiented dynamics (viewed within the representative
box Bba, or Fba when considering the first epoch of an
era). This quotienting has ignored the fuller information
contained in the original, unquotiented era hopscotch
dynamics, namely, the precise corner, fxN; yNg (with
xN; yN 2 fa; b; cg) and orientation, ðxN; yNÞ, (i.e.
xN ! yN), of the first epoch of the N-th hopscotch era.
For each starting box, say Fxy, the specific Kasner trans-

formation mapping the region Fxy into the representative

region Fba is given in Table VI. Therefore, if we start an
unquotiented era hopscotch dynamics in some specific
region Fxy, we can first map it to the reference region

Fba by some specific Kasner transformation kxy to get its

ba-representative, uþ½ba�
Fxy

, namely

uþ½ba�
Fxy

� kxyu
þ
Fxy

: (7.13)

Then starting from ½uþFxy
�ba we can define its continued-

fraction decomposition, say

uþ½ba�
Fxy

¼ kxyu
þ
Fxy

� nxy � 1þ ½n2; n3; . . .�: (7.14)

Here, the so-defined integers nxy, n2, n3; . . . give us the

values of the successive lengths of all the eras that will
evolve from the initial value uþFxy

.

This reasoning shows how the knowledge of any era-
starting values ðu�F ; uþF Þ in the ðu�; uþÞ plane determine the
subsequent era-length history. First, the location of uF in
the plane determines the initial corner xy. Second, the
knowledge of the initial corner uniquely determines kxy
(mapping it to Fba). And, third, the computation of kxyu

þ
Fxy

and of its continued-fraction expansion, determines all the
era-lengths nxy, n2, n3; . . . . However, we need more infor-

mation if we wish to recover the full hopscotch dynamics
from the simpler quotiented hopscotch dynamics discussed
above. Specifically, we need to recover information about:
(i) what is the succession of corners (among the three
corners of the big billiard) that will be visited, and
(ii) what is the succession of the directions (clockwise
or counterclockwise) in which the oscillations within
these corners will take place. Let us now show how
one can recover this missing information from the

knowledge of the era-starting values ðu�Fxy
; uþFxy

Þ in the

ðu�; uþÞ plane.
Before doing so, let us establish some notation. Looking

at Fig. 2, we shall say that an era is clockwise if its first
epoch connects two billiard walls in the clockwise sense
with respect to the unit disk, i.e. if it is either ba, ac, or cb.
In the other case (first epoch of the type ab, bc, or ca) we
shall say that the era is counterclockwise. Now, we remark
that the information about this direction of motion is con-
tained in the determinant of the Kasner transformation kxy
that maps each era-starting box Fxy onto the reference box

Fba (as given in Table VI). More precisely, if the determi-
nant of kxy, say D½kxy� is equal to þ1, the era Fxy is

clockwise, while if D½kxy� is equal to �1, the era is

counterclockwise. Given two era-starting regions Fxy and

Fx0y0 , it will sometimes be convenient to say that they

are ‘‘parallel’’ if they have the same direction of motion
(clockwise or counterclockwise) and ‘‘antiparallel’’ in the
other case.
Let us now show how one can encode the information

which is missing in the quotiented billiard in a pair �, �,
where � takes three different values, and � two different
ones. In more mathematical terms, � 2 Z3 and � 2 Z2,
where Zn denotes the cyclic (multiplicative) group
of order n. The values of � can be f1; expði2	=3Þ;
expð�i2	=3Þg, and are encoding rotations in the disk
model of the billiard by the angles 0, 2	=3 or �2	=3
respectively. The values of � are fþ1;�1g and can encode
the two possible ‘‘directions of motion’’ of an era (clock-
wise or counterclockwise).
Our aim is, starting from some initial (era-starting)

position ðu�Fxy
; uþFxy

Þ 2 Fxy, to determine the ordered cor-

ner xN , yN within which the N-th unquotiented T iterate,
Tðu�F ; uþF ÞN of ðu�F ; uþF Þwill oscillate (i.e. the first epoch of
the (N þ 1-th era). We parametrize the ordered corner xN ,
yN by the pair �N , �N where �N is the rotation, in the disk
model, mapping the initial (unordered) corner fx; yg into
fxN; yNg, and where �N gives us the relative orientation
between xN, yN , and x, y. (i.e �N ¼ þ1 if they are parallel,
and �N ¼ �1 if they are antiparallel). One can iteratively
build the values of �N and �N by using the following
elementary facts:
(i) an (intermediate) era Fx0y0 containing an odd (respec-

tively, even) number of epochs is followed by an era
Fx00y00 whose relative direction of motion is parallel

(respectively, antiparallel);
(ii) the rotation (in the disk model) between some in-

termediate era Fx0y0 and the following Fx00y00 is equal

to eþi2	=3 (respectively, e�i2	=3) if Fx0y0 contains an

even (respectively, odd) number of epochs.

To exhibit the iterated effect of these elementary rules, it is
convenient to define the following quantities (taking the
values 	1):

TABLE VI. The Kasner maps for each starting box of the big-
billiard table.

k5 ubaK ¼ �uab � 1
k2 ubaK ¼ �ðuac þ 1Þ=uac
k3 ubaK ¼ �ubc=ðubc þ 1Þ
k1 ubaK ¼ 1=uca
k4 ubaK ¼ �1=ðucb þ 1Þ
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�j � ð�Þnjþ1; (7.15)

where nj denotes the number of epochs contained in the

j-th era defined by the initial value of uþF . With this
notation, the Z3 � Z2 valued pair ð�N; �NÞ giving the
rotation (with respect to the original era-starting domain
Fxy) and the relative ‘‘sense of motion’’ (parallel or anti-

parallel to xy) corresponding to the ordered corner of
T Nðu�F ; uþF Þ is defined by (with D½kF� ¼ 	1 denoting as
above the determinant of the Kasner transformation kF
mapping ðu�F ; uþF Þ to Fba)

�N ¼ ei�N ; with �N � �D½kF� 2	3 ð�1 þ �1�2 þ . . .

þ �1�2 . . . �NÞ; (7.16a)

�N ¼ �1�2 . . . �N: (7.16b)

Note that �N can be rewritten as �N ¼ ð�ÞQN , where

QN ¼ N þ X

N

k¼1

nk: (7.17)

Note also that the absolute sense of motion (clockwise or
not) of the N-th era is given by

D½kF��N ¼ D½kF��1�2 . . . �N: (7.18)

Given this result, we can now write, for any starting
point ðu�F ; uþF Þ, the explicit result of iterating N times the
unquotiented T map, i.e.

u	F
xN;yN

¼ T Nu	Fxy
¼ T 
 . . . 
T 
T u	Fxy

; (7.19)

in terms of the simpler action of the quotiented T map,
namely

u	F
xN;yN

¼ k�1
xN;yN

Tkxyu
	
Fxy

:N: (7.20)

[For brevity, we have denoted above the phase-space point
ðu�F ; uþF Þ simply as u	F ]. Here, kxy is, as above, the Kasner
transformation mapping the initial era-starting box Fxy to

Fba, and k�1
xN;yN

is the inverse of the Kasner transformation

mapping the ordered corner of T Nu	Fxy
onto the standard

ba corner. The transformation is determined from
the above-computed values of ð�N; �NÞ. More precisely,
the procedure determining k�1

xN;yN
is: (i) starting from kxy

and the continued-fraction decomposition of kxyu
þ
F ¼

n1 � 1þ ½n2; n3; . . .�, one determines the �i, Eq. (7.15),
and the �N and �N; (ii) then �N determines the rotation
between xy and the final corner xN , yN , and �N determines
whether this corner is parallel or antiparallel to the initial
xy; (iii) finally, knowing the ordered corner ðxN; yNÞ,
Table VI determines the transformation kxN;yN that maps

it onto the ba corner.
Let us note the dissymmetric roles of uþ and u�. In the

above construction, it was the knowledge of the initial
value of uþ which allowed one to recover the full infor-
mation about the future evolution of the unquotiented
dynamics. The situation would be different if we wanted
to describe the past unquotiented dynamics. In that case, it

would be the continued-fraction of the ba transformation
of the initial u�F that would encode the needed information.
To make the above construction more concrete, let us

end this subsection by working out an explicit example. We
consider (for simplicity) an initial era-starting box of the
ba type. For the convenience of the reader, we list in
Table VII the concrete meaning, for this case, of the six
different values of ð�N; �NÞ in determining the ordered
corner of the N-th iterate of the initial point. Let us for
instance consider uþFba

þ 1 ¼ ½n1; n2; . . .� of the form

uþFba
þ 1 ¼ ffiffiffi

2
p

, i.e. uþFba
þ 1 ¼ ½1; 2; 2; . . .�, and consider

the second iterate TuþFba
2. In that case, xy ¼ ba and

kxy ¼ k0 (the identity), and therefore D½kxy� ¼ þ1. As

n1 is odd and n2 even, we easily find that �2 ¼ 1 and
�2 ¼ �1. This shows that the second iterate (i.e. the third
era, if we count the initial one) is of the ab type. The
explicit expression of T 2u	Fba

is then

T 2u	Fba
¼ k�1

ab T
2u	Fba

; (7.21)

where kab ¼ k5 in the list VI. We have thereby reduced the
computation of the iteration of T to the simpler computa-
tion of the iteration of its quotiented version T.

D. On the anisotropic behavior
of the unquotiented big billiard

The aim of this subsection is to highlight one interesting
feature of the unquotiented big billiard that is lost in its
quotiented description: its anisotropy, i.e. the fact that,
after each given era (taking place in some corner, with
some sense of motion for the first epoch), the next era has
more probability to take place in a specific ordered corner,
namely, a corner obtained from the previous one by rotat-
ing it in the same direction as the first epoch in the disk
model, and keeping the same sense of motion for the first
epoch (by 	2	=3). For instance, if the first era is, say, of
the ba type, the following era has more probability to be of
the ac type rather than the bc one (which is the other
possibility).
Indeed, the general formulas (7.16) above show that,

when N ¼ 1, i.e. after one iteration, the second era is
obtained from the first by applying the rotation �1 ¼ e�1 ,
with �1 ¼ � 2	

3 D½KF��1, and that its relative sense of

TABLE VII. The exit possibilities for a sequence of eras
starting with Fba. The rotation �M is considered modulo 2	.

�M �M xMyM

1 1 ba
1 �1 ab
e�ið2=3Þ	 1 ac
e�ið2=3Þ	 �1 ca
e�ið4=3Þ	 1 cb
e�ið4=3Þ	 �1 bc
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motion is �1 ¼ �1. Here, �1 � ð�Þ1þn1 is determined by
the parity of the length n1 of the first era. On the other
hand, the sign �1, which determines both �1 and �1, is a
statistical variable whose probability distribution is deter-
mined by that of n1, i.e. by Pn1 , Eq. (7.1). Among the two

possible values of �1, the most probable is �1 ¼ þ1,
corresponding to n1 being odd. Indeed, this probability is
obtained by summing (7.1) over n1 ¼ 2kþ 1, k 2 N, and
reads

Pð�1 ¼ þ1Þ ¼ podd ¼
X

1

k¼0

1

ln2
ln

� ð2kþ 2Þ2
ð2kþ 1Þð2kþ 3Þ

�

¼ ln	� ln2

ln2
’ 0:6515: (7.22)

The complementary probability that �1 ¼ �1, i.e that n1
be even, is

Pð�1 ¼ �1Þ ¼ peven ¼
X

1

k¼1

1

ln2
ln

� ð2kþ 1Þ2
ð2kÞð2kþ 2Þ

�

¼ 2 ln2� ln	

ln2
’ 0:3485: (7.23)

In other words, we have a strongly anisotropic behavior
after one era: if the first era is, say, of the ba type, the
following era will be of the ac type in 61.15% of cases, and
of the bc one in only 34.85% of cases.

Let us now see what happens after two iterations. Fixing
for simplicity the initial ordered corner to be ba, the
ordered corner after two iterations can be of four different
types:

(i) if ð�1; �2Þ ¼ ðþ1;þ1Þ (corresponding to �2 ¼
�4	=3, �2 ¼ þ1), it will be cb;

(ii) if ð�1; �2Þ ¼ ðþ1;�1Þ (corresponding to �2 ¼ 0,
�2 ¼ �1), it will be ab;

(iii) if ð�1; �2Þ ¼ ð�1;þ1Þ (corresponding to �2 ¼
4	=3, �2 ¼ �1), it will be ca;

(iv) if ð�1; �2Þ ¼ ð�1;�1Þ (corresponding to �2 ¼ 0,
�2 ¼ þ1), it will be ba.

The probabilities corresponding to each one of these
cases is easily computed from the probability distribution
(7.5), for n1, n2 [remembering that �1 ¼ ð�Þn1þ1, �2 ¼
ð�Þn2þ1]. For instance, Pð�1 ¼ þ1; �2 ¼ þ1Þ ¼
P

k2�0;k1�0P2k1þ1;2k2þ1 � Podd;odd is found to be

Pð�1 ¼ þ1; �2 ¼ þ1Þ ¼ Podd;odd ’ 0:4199: (7.24)

Similarly,

Pð�1 ¼ þ1; �2 ¼ �1Þ ¼ Podd;even

¼ X

k2�1;k1�0

P2k1þ1;2k2 ’ 0:2316;

(7.25a)

Pð�1 ¼ �1; �2 ¼ þ1Þ ¼ Peven;odd

¼ X

k2�0;k1�1

P2k1;2k2þ1 ¼ Podd;even

’ 0:2316; (7.25b)

Pð�1 ¼ �1; �2 ¼ �1Þ ¼ Peven;even ¼
X

k2�1;k1�1

P2k1;2k2

’ 0:1169: (7.25c)

Again we see a strong anisotropy among the various pos-
sibilities. In particular, the most probable case is again that
corresponding to applying the two rotations (by	2	=3) in
the direction indicated by the first epoch, keeping the same
sense of motion. The calculation gets more involved for
higher iterations. One expects that, after many iterations,
the memory of the initial ordered corner will get lost, and
that one will end up with asymptotically equal probabilities
in any one of the six possible ordered corners. Note,
however, that the anisotropic behavior we are discussing
here will continue to be present locally: after each era
(whether or not it is much ‘‘later’’ than the initial era),
the next era will take place in a preferred corner with
respect to the previous one.

VIII. PERIODIC ORBITS

Let us briefly discuss periodic orbits in the big billiard
with a focus on the differences between the notion of
periodic orbit in the unquotiented billiard, and the corre-
sponding notions either in the quotiented billiard or in the
BKL map (acting solely on uþ).
Given any discrete map, sayT , acting on some space X,

a periodic orbit is a set of successive T images of a point
x 2 X, say fx;T x; . . . ;T m�1xg, such that T mx ¼ x. The
(minimal possible) integer m is called the period of the
discrete map T . As the CB-LKSKS T map is a quotiented
version of the full hopscotch map T , it is easily seen that
any n-periodic orbit of T will automatically descend to a
corresponding periodic orbit of T. However, the period of
the corresponding T orbit might be a divisor of m. On the
other hand, it is a priori possible that periodic orbits of T
could not be ‘‘lifted’’ to periodic orbits of T . To study
these two issues (the change in period fromT to T, and the
possibility of lifting periodic orbits from T to T ) let us
start from some given n-periodic orbit of T.
A first issue that should be discussed is the relation

between periodic orbits of the BKL map TBKL [i.e. the
restriction of the two-dimensional map T to the one-
dimensional map u0þ ¼ TBKLðuþÞ], and periodic orbits
of T in the ðu�; uþÞ plane. The periodicity condition
of TBKL involves only one condition, namely uþ ¼
Tm
BKLðuþÞ � TðuþÞm, while the periodicity condition of
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T looks much more restrictive as it involves two
separate conditions, namely uþ ¼ TðuþÞm and u� ¼
Tðu�; ½uþ�Þm (we recall that the action of T on uþ only
depends on uþ, while its action on u� depends, in addition,
on the integer part of uþ). However, we have seen above
that the T map was always contracting in the u� direction
[see Eq. (6.10)]. Therefore, we expect that the iterated
effect on any starting value of u� of the finite collection
of maps indexed by the various values of ½uþ� in the
periodic orbit Tðu�; ½uþ�Þ will converge to some corre-
sponding fixed orbit of u� values.

Let us then start by an arbitrary m-periodic orbit of the
one-dimensional BKL map: Tm

BKLðuþÞ ¼ uþ. It is well-
known, [4,33,34], and evident from the explicit form of
the action of T on the continued-fraction expansion of
uþ, that any such m-periodic orbit is parametrized by the
special values of uþ that admit a (regular) periodic
continued-fraction expansion (CFE) of the type

uþ þ 1 ¼ ½n1; n2; n3; . . . ; nm; n1; n2; n3; . . .�: (8.1)

By well-known theorems going back to Euler and
Lagrange all such values of uþ þ 1 are quadratic irrational
numbers, i.e. irrational real roots of quadratic equations
of the form ax2 þ bxþ c ¼ 0with integer coefficients and
a positive discriminant b2 � 4ac (that is not a perfect
square). The simplest example of such periodic-CFE

numbers is the (large) golden ratio uþ þ 1 ¼ � ¼
½1; 1; 1; 1; 1; . . .� ¼ ð ffiffiffi

5
p þ 1Þ=2 ’ 1:618 [so that uþ ¼

�� 1 �  � ð ffiffiffi

5
p � 1Þ=2 is equal to the small golden

ratio  ¼ �� 1 ’ 0:618]. The second simplest examples

are of the type uþ þ 1 ¼ ½n; n; n; n; . . .� ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 4
p

þ
nÞ=2, with some integer n � 1 and are sometimes called
‘‘silver ratios.’’ Note that in the cases of the golden ratio, or
of the silver ratios, the periodm of the BKL orbit ism ¼ 1.

Let us first show that any m-periodic orbit of the
one-dimensional BKL map TBKL gives rise to a unique
corresponding m-periodic orbit of the two-dimensional T
map. This follows from the explicit expression (7.12) of
the iterated action of T on an arbitrary starting value of
u�, written as Eq. (2.32). By repeatedly iterating the
uþ-dependent) action of T on u� one sees that the infor-
mation contained in the initial value of u� is lost in the
receding tail of the CFE of Tu�N so that the sequence of
values of u� tends to a fixed orbit that is entirely defined by
the periodic-CFE of uþ. More precisely, the limiting value
of u�, which pairs with the given uþ to define a two-
dimensional m-periodic orbit of T is given by

� ð1þ u�Þ ¼ ½nm; nm�1; . . . ; n2; n1; nm; nm�1; . . .�: (8.2)

Having shown that any m-periodic orbit of the one-
dimensional BKL map T, uþ ! TBKLðuþÞ, i.e. any
(regular) periodic-CFE of the type, Eq. (8.1), uniquely
determines a corresponding m-periodic orbit of the two-
dimensional T map, ðuþ; u�Þ ! Tðuþ; u�Þ, we now dis-
cuss the issue whether any m-periodic orbit of T can be

lifted to some periodic orbit of the full, unquotiented
billiard. This question can be answered positively by study-
ing them-iterated action of the unquotiented mapT on the
initial point ðu�; uþÞ 2 Bba of a m-periodic orbit of the
quotiented map T. The fact that Tðu�; uþÞ ¼ ðu�; uþÞm
means that the S3-symmetry orbit of T mðu�; uþÞ coin-
cides with that of ðu�; uþÞ. This means that there exists a
particular Kasner transformation k� (which depends on m
and on the considered periodic orbit of T) such that

T mðu�; uþÞ ¼ k�ðu�; uþÞ: (8.3)

The set of six Kasner transformations is a realization of the
S3 permutation group (of order 3! ¼ 6). In fact, this per-
mutation group consists of the identity, 3 transpositions
[(12), (23) and (31)], and 2 cyclic transformations [(213)
and (321)]. We recall that the order of a particular group
element, such as k�, is the smallest integer p such that
kp� ¼ k0. As a transposition is of order 2, and a cyclic
permutation, (123) or (321), of order 3, we see that the
order p of k� must be equal to p ¼ 1, 2, or 3. Therefore, by
iterating (8.3), we get

T mpðu�; uþÞ ¼ kp� ðu�; uþÞ ¼ ðu�; uþÞ; (8.4)

and mp will be the smallest such integer. In other words,
ðu�; uþÞ is the initial point of a periodic orbit under the
unquotiented billiard map T , with period pm, where
p ¼ 1; 2; 3 is the order of k�. Actually, the specific value
of p can be algorithmically derived from the value of the
Z2 � Z3 pair ð�m; �mÞ corresponding to T m. More pre-
cisely: (i) if �m ¼ �1, then p ¼ 2, independently of the
value of �m; (ii) if �m ¼ 1 and �m ¼ 1, then p ¼ 1; while
(iii) if �m ¼ 1 and �m � 1, then p ¼ 3. (Note that, when
m ¼ 1 ) �m � 1.)
We have therefore proven that any periodic orbit of the

quotiented map T (or, even, any periodic orbit of the one-
dimensional BKL map TBKL) can be lifted to a periodic
orbit of the unquotiented big-billiard mapT . Note that this
property extends to the corresponding continuous billiard
motion in the unquotiented big billiard (simply by con-
sidering the geodesic segments corresponding to all the
ðu�; uþÞ’s belonging the periodic orbit). To make this
general result more concrete, let us consider a particular
example. The simplest periodic orbit of the quotiented
billiard is that given by the golden ratio, namely

uþ þ 1 ¼ ½1; 1; 1; 1; . . .� ¼ � ¼
ffiffiffi

5
p þ 1

2
(8.5a)

�ðu� þ 1Þ ¼ ½1; 1; 1; . . .� ¼  ¼
ffiffiffi

5
p � 1

2
: (8.5b)

‘‘Downstairs’’ its period is m ¼ 1. However, the T
transform of the above golden-ratio point ðu�; uþÞ ¼
ð�1�;Þ is given by reflection in the a wall, i.e. by
the matrix A of Eq. (5.14), so that

THIBAULT DAMOUR AND ORCHIDEA MARIA LECIAN PHYSICAL REVIEW D 83, 044038 (2011)

044038-28



T uþ ¼ �uþ ¼ �; (8.6a)

T u� ¼ �u� ¼ 1þ: (8.6b)

The transformation u0 ¼ �u is not one of the Kasner
transformations. However, in keeping with the general
reasoning above one can use the fixed-point property of
this golden-ratio periodic orbit [namely ð1þÞ ¼ 1] to
rewrite the right-hand sides of the above equations as

T uþ ¼ � 1

1þ
¼ � 1

uþ þ 1
� k4ðuþÞ; (8.7a)

T u� ¼ 1


¼ � 1

u� þ 1
� k4ðu�Þ (8.7b)

where k4ðuÞ � �1=ðuþ 1Þ is one of the Kasner transfor-
mations of Table I. Therefore, the specific Kasner trans-
formation k� corresponding to the particular golden-ratio
periodic orbit of T is k� ¼ k4. The latter Kasner trans-
formation correspond to the element of S3 realizing the
cyclic permutation ðp1; p2; p3Þ ! ðp2; p3; p1Þ of Kasner
exponents. The order of such a cyclic transformation is
p ¼ 3: k4 
 k4 
 k4 ¼ Identity. This shows that the
golden-ratio initial conditions above define a periodic orbit
of the unquotiented billiard of order pm ¼ 3� 1 ¼ 3.
We recover the periodic orbit of Eq. (5.7) made of
three successive one-epoch eras between the middle of
the three successive gravitational walls a, c, and b.

Note that, in the general case of a starting value for uþ of
the type (8.1), anm-periodic orbit of the quotiented billiard
will containm eras containing, successively, n1; n2; . . . ; nm
epochs (so that it contains n1 þ n2 þ � � � þ nm epochs in
all), while the lift of this periodic orbit onto the unquo-
tiented big billiard will contain pm eras, containing
pðn1 þ n2 þ . . .þ nmÞ epochs in all.

Finally, let us note that the billiard periodic orbits dis-
cussed here are the projection down to hyperbolic space
H 2 of Lorentzian-billiard motions in �-space which are
not periodic there. Indeed, the spatial metric gijðT;xÞ
corresponding to these dynamics is expressed in terms of
the �’s, rather than the projected �’s, say (for the diagonal
Bianchi-IX case of relevance to the big billiard)

gijðT;xÞ ¼
X

a

e�2�aðTÞeai ðxÞeaj ðxÞ; (8.8)

with

�aðTÞ ¼ �ðTÞ�aðTÞ; (8.9)

and

�ðTÞ ’ expðcTÞ; ðwith c > 0Þ; (8.10)

where we used the result [17,21] that � ¼ ln� is (asymp-
totically) a linear function of the coordinate time T defined
in Eq. (2.25). A periodic orbit of the big billiard is such that
�aðT þ nP Þ ¼ �aðTÞ for n 2 N and some period P in
T-time. This periodicity downstairs in T-time does not

correspond to a periodicity of the metric coefficients
gijðT;xÞ. It does not even correspond, as one might have

thought, to a discrete self-similar symmetry of the metric
[i.e. gijðT þ nP ;xÞ ¼ �ngijðT;xÞ] but to a rather different
discrete transformation under which the scale factors

aaðTÞ � e��aðTÞ (i.e. the BKL variables a, b, c) change as

aaðT þ nP Þ ¼ ½aaðTÞ��n
(8.11)

with

� ¼ ecP > 1: (8.12)

As the �a’s are confined by the big-billiard walls to remain
(nonstrictly) positive, the (periodic) scale factors aaðTÞ
stay � 1, and we see on Eq. (8.11) that (apart from when
they collide on a gravitational wall, where the correspond-
ing scale factor becomes equal to 1) the scale factors tend
to zero superexponentially with the number n of periods.

IX. SMALL BILLIARD

Up to now we have been discussing the big billiard, with
three walls a, b, cmaking up an ideal triangle in hyperbolic
space (see Fig. 2 or Fig. 3.). This billiard corresponds to the
dynamics of the diagonal Bianchi-IX model, i.e. the a, b, c
system of BKL. However, as recalled above, in the most
general (nondiagonal, inhomogeneous) case, the use of
an Iwasawa decomposition of the spatial metric, as in
Eq. (2.4), leads to a closely related but slightly different
billiard, namely, the small billiard made of one gravita-
tional wall, and two symmetry walls. As in Fig. 2 or Fig. 3,
we shall denote the (partial) gravitational wall as G (for
gravity or green), and its symmetry walls as B (for blue)
and R (for red). More precisely, in the notation of the
Poincaré model of Fig. 3,
(i) the G wall is the portion u ¼ 0, v > 1 of the gravi-

tational wall a ¼ 0;

(ii) the B wall is the portion u ¼ �1=2, v >
ffiffiffi

3
p

=2 of
the symmetry wall a ¼ b;

(iii) the R wall is the portion u2 þ v2 ¼ 1,
�1=2< u< 0 of the symmetry wall a ¼ c.

Our aim in this section is to relate the dynamics within the
small billiard to the dynamics within the big billiard
studied above. Somewhat surprisingly, though the two
billiard tables are closely related, the two corresponding
dynamics cannot be straightforwardly mapped among
themselves.

A. Dynamics of the unquotiented small billiard

We start by considering the dynamics within the three
wallsG, B, R of the small billiard, without introducing any
extra quotienting. Indeed, the small-billiard table is already
a fundamental domain of the six-fold symmetry group S3
of the big billiard acting on H 2, therefore one could a
priori expect that the small-billiard dynamics be equivalent
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to the quotient of the big-billiard one by S3 (as studied
above). Actually, this is not the case. We shall find that the
small-billiard dynamics is not equivalent to the quotiented
big-billiard dynamics. The basic reason for this nonequi-
valence is that the small-billiard table is obtained by
quotienting only the configuration space (q-space) of the
big-billiard dynamics by S3, while the S3-quotienting we
considered above was done in phase-space (q, p-space).
When considering on its own the small-billiard dynamics it
is natural to introduce analogs of the notions introduced
(by BKL) in the big-billiard context. First, we shall define
an epoch of the small billiard as a geodesic segment (i.e. a
Kasner motion) connecting two successive walls. For ex-
ample, a B ! G epoch (or, for short, a BG epoch) is an
epoch starting from the blue ðBÞ wall and ending on the
green or gravitational ðGÞ wall, etc.

The dynamics of successive epochs of the small billiard
is similar to that of the big billiard. For instance, the
following sequence of epochs

R ! G ! B ! G ! R (9.1)

corresponds to a succession of ‘‘collisions’’ on the G, B,
and G walls for a dynamics which started on the red wall
and returned on it. As in the big-billiard case, it is conve-
nient to parametrize each epoch by a point in the ðu�; uþÞ
plane, with uþ, respectively u�, parametrizing the end,
respectively beginning, of the extended geodesic corre-
sponding to the considered epoch. A first difference with
the big-billiard case is that the regions of the u�uþ plane
which describe the small-billiard dynamics are quite dis-
similar to the corresponding big-billiard regions drawn in
Fig. 6.

They are drawn in Fig. 8: they comprise six allowed
regions, labeled as BG, BR, RG, RB, GR, and GB, and a
large, connected forbidden (vacuum) region which occu-
pies the central part of Fig. 6 (between the upper hyper-
bolalike curves and the lower ones). The precise definition
of the allowed regions is given in Table VIII where we used
a shorthand notation for the following functions of u�:

u
 � � 1

u�
(9.2a)

u� � � u� þ 2

2u� þ 1
: (9.2b)

As we see the boundaries of the various allowed (and
forbidden) regions are made of segments of hyperbolas:
uþ ¼ ðau� þ bÞ=ðcu� þ dÞ. This is different from the
big-billiard case, where all the boundaries corresponded
to horizontal or vertical lines (see Fig. 6). In addition, the
forbidden region of the big billiard (white domains in
Fig. 6) was made of three disconnected pieces. If we
compare Fig. 6 and 8 we can roughly consider that the
small-billiard u�uþ picture, Fig. 8, is obtained by ‘‘morph-
ing’’ the big-billiard one, Fig. 6, via a deformation where
the Bba box becomes the BG one, Bca ! RG, Bbc ! BR,

Bac ! GR, Bcb ! RB, and Bab ! GB, while the three
disconnected forbidden regions of Fig. 6 ‘‘percolate’’
among themselves into the connected central forbidden
domain of Fig. 8. This correspondence between the
two pictures exists because, for instance, the extension to
the big billiard of a small-billiard BG epoch corresponds
to a ba epoch, etc. However, contrary to what one
might have naively expected, it is not possible to find a

globally defined transformation uþ0 ¼ Uðu�; uþÞ, u�0 ¼
Vðu�; uþÞ (leaving invariant the two-form !, Eq. (5.3))
that maps Fig. 6 into Fig. 8. The main obstacle to the
existence of such a transformation is the fact that the
forbidden regions of the small-billiard comprise (say in
the Poincaré model) not only all the forbidden regions of
the big billiard (geodesics in the Poincaré half-plane that
do not intersect the abc triangle), but, in addition, new
forbidden regions (geodesics that intersect the abc triangle
but not its GBR subtriangle) that were allowed before.
Let us now briefly describe the dynamics of the small

billiard, as seen in the u�uþ plane, Fig. 8. It is similar to
the hopscotch game associated to Fig. 6. Namely, each
initial point ðu�; uþÞ in the occupied regions of Fig. 8
will jump to another position according to the following
rules:
(i) if the point ðu�; uþÞ belongs either to the BG region

or the RG one (so that it corresponds to an epoch
starting either on B or on R and ending by a collision
on G) it will jump by a G-collision, i.e. by the
transformation:

Gwallðu ¼ 0Þ: u	 ! Gðu	Þ � �u	; (9.3)

(ii) if ðu�; uþÞ belongs either to the RB or GB regions,
it jumps by the transformation:

Bwall

�

u ¼ � 1

2

�

: u	 ! Bðu	Þ � �u	 � 1;

(9.4)

(iii) if ðu�; uþÞ belongs either to the BR or GR regions,
it jumps by the transformation:

Rwallðu2 þ v2 ¼ 1Þ: u	 ! Rðu	Þ � 1=u	:
(9.5)

Note that a point in some XY region will jump either to
the YX or the YZ region (with fX; Y; Zg ¼ fG;B; Rg). Note
also that the jumping rules above are similar to, but differ-
ent from, the corresponding A, B, C jumping rules of the
big billiard; see Eqs. (5.12).
The small-billiard hopscotch game defined above leaves

invariant the two-form !, Eq. (4.11). However, as in the
big-billiard case the integral of ! over the allowed regions
of the small billiard is logarithmically infinite. As in the
big-billiard case, this logarithmic divergence comes (when
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writing ! in terms of Birkhoff coordinates along the sides
of the billiard table) from the infinite hyperbolic length of
theG andBwalls that meet on the absolute. This suggests a
natural way of bypassing this divergence problem: to con-
sider the (Poincaré) return map of the small billiard on its
red ðRÞ wall, which is the only wall having a finite length.
In other words, it is very natural, within the small billiard,
to collect together all the epochs corresponding to bounces
between the G and B walls into small-billiard eras, and to
focus on the small-billiard era hopscotch dynamics which
maps the beginning of such an era to the beginning of the
next one. For instance, a small-billiard era comprising
four epochs was indicated in Eq. (9.1). For definiteness,
we shall define the first epoch of a small-billiard era as the
epoch which starts on R (for instance the leftmost R ! G

FIG. 8 (color online). The phase space of the small billiard in the u�, uþ parametrization. The regions RG and RB are delimited by
solid thick lines; the regions BR and GR are delimited by dashed thick lines. The Kasner intervals are indicated on both axes by thin
gray lines. The subdomains corresponding to the first few eras of RG and RB are also sketched.

TABLE VIII. The regions of the uþu� plane, where the dy-
namics of the small billiard takes place.

BG u� <�1, uþ > u

�1< u� <�1=2, uþ > u�

BR u� <�1, u� < uþ < u

RG �1< u� <�1=2, u
 < uþ < u�

�1=2< u� < 0, uþ > u

RB �1=2< u� < 0, uþ < u�

<u� < 1, u
 < uþ < u�
GR u� > 1, u
 < uþ < u�
GB 0< u� < 1, uþ < u


u� > 1, uþ < u�
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epoch in Eq. (9.1)). Clearly, the era-hopscotch transforma-

tion u	0
F ¼ fðu	F Þ mapping the u	 coordinates of the first

epoch in an era to the coordinates of the first epoch in the
next era, being obtained by composing the individualG, B,
R rules above, will be given by some diagonal fractional-
linear transformation:

u0þF ¼ TSBu
þ
F ;

u0�F ¼ TSBu
0
F; with TSBu ¼ auþ b

cuþ d
;

(9.6)

and will leave invariant the restriction to the R wall of the
usual two-form !, Eq. (4.11). More precisely, the analog
of what was before the first-epoch domains (such as the
Fba subregion of Bba represented in Fig. 7) become the
R-leaving domains. Contrary to what happened in the big-
billiard case, we do not need here to delineate these regions
as subregions of the full small-billiard hopscotch court of
Fig. 8. Indeed, by definition the era-starting region of the
small billiard consists of the union of the RG and RB
regions in Fig. 8. The RG region represents the first-epochs
of the small-billiard eras that leave R towards the G wall,
while the RB region represents the first-epochs of the
small-billiard eras that leave R toward the B wall. They
are indicated by solid thick lines in Fig. 8. The era-
hopscotch rule TSB (9.6) will map RG [ RB onto itself
(mapping sometimes, say, RG to itself or to RB, etc.).
Now, the small-billiard era-map TSB leaves invariant !
on a space (RG [ RB) on which ! has a finite integral.
Therefore we are now in the good conditions for applying
ergodic theory, and considering that! defines a probability
measure on RG [ RB. More precisely, one finds that

Z

RG

1

2
! ¼ 1

2
ln

�

3

2

�

;
Z

RB

1

2
! ¼ 1

2
ln2; (9.7)

so that the normalized probability measure on RG [ RB is

c
duþ ^ du�

ðuþ � u�Þ2 with
1

c
¼ 1

2
ln

�

3

2

�

þ 1

2
ln2 ¼ 1

2
ln3:

(9.8)

It would seem that, at this stage, we have obtained a
small-billiard era-dynamics that is very similar to the
quotiented big-billiard era dynamics, i.e. the CB-LKSKS
map T between the big-billiard first-epoch region Fba to
itself. An apparent qualitative difference is the fact that the
small-billiard era-starting region RG [ RB is made of two
disconnected pieces. However, it is easily found that if we
transform the RB region by the diagonal transformation

u0	 ¼ �u	 � 1 (9.9)

(which leaves invariant !), the RB region will be mapped
onto a new region say RB0, of the u�uþ plane which is
contiguous to RG (along its left boundary). Therefore, we
can simply replace the RG [ RB domain by a thicker,
connected domain RG [ RB0 (delimited in Fig. 8 by a

dotted line), and consider the dynamics of the (suitably
transformed) era-hopscotch map ~TSB from RG [ RB0 onto
itself. At this stage, we have an era-hopscotch map which
looks quite similar to the quotiented map T from Fba onto
itself. Moreover, if we look at the asymptotic region of
long eras, i.e. the uþ � 1 region of RG [ RB0 (where the
RB0 part came from the uþ � �1 region of RB) we see
that the shape of our new small-billiard first-epoch domain
is simply

� 1< u� < 0; uþ � 1: (9.10)

In other words, it is asymptotically rectangular and,
modulo a simple shift of u� by one unit, seems to coincide
with the (exactly rectangular) quotiented big-billiard
domain Fba.
This asymptotic coincidence (modulo some suitable

identifications) between the small-billiard red-return
map and the quotiented big-billiard era-map T was physi-
cally expected because long eras of the big billiard (with
uþ � 1) correspond to many bounces between the b and a
walls which clearly (see Fig. 5 together with Fig. 3) will
correspond to roughly twice as many bounces between the
B and G walls of the small billiard. Here, we have in mind
folding some, say, a ! b ! a oscillation of the big billiard
back onto the small billiard by introducing a B ‘‘mirror’’ in
the middle of the ba corner, so that the big billiard bounces
a ! ðBÞ ! b ! ðBÞ ! a (which do not ‘‘see’’ the B wall)
become transformed in small-billiard oscillations of the
type G ! B ! G ! B ! G, where we used the fact that,
deep into the corner, a and G coincide. However, this
asymptotic (large uþ) coincidence does not extend to the
small-uþ (short-era) region. In other words, there does not
exist a!-preserving transformation of the u�uþ plane that
would map the RG [ RB0!TSBRG [ RB0 dynamics onto
the Fba!TFba one. Indeed, if such a transformation ex-
isted the !-area of FR [ RB (or equivalently RG [ RB0)
would be equal to that !-area of Fba. However, we have

Z

RG

1

2
!þ

Z

RB

1

2
! ¼ 1

2
ln
3

2
þ 1

2
ln2

¼ 1

2
ln3 � ln2 ¼

Z

Fba

1

2
!: (9.11)

However, this nonequivalence does not mean that the
small-billiard is unrelated to the big-billiard. (Actually, we
shall discuss in the following subsection a well-defined,
accurate relation between the two billiards.) It mainly
means that the natural definition of eras in the small-
billiard, as R-return maps, cannot be identified with the
natural definition of eras in the quotiented big billiard. It is
true that, roughly speaking, the small-era definition (which
means, when viewed in the big billiard, that an era ends
when one crosses one of the three symmetry segments
connecting the center of the disk to the middles of the
three gravitational walls in Fig. 2) signals the passage from
an oscillation in one of the corners of the abc billiard to an
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oscillation in another corner. However, the problem is that
the precise definition used in the big billiard of the tran-
sition between an ab-type oscillation to, say, a bc one
cannot be equivalently characterized as the crossing of
one of the three symmetry segments (similar to the R
segment in Fig. 2). This nonequivalence essentially stems
from the fact that a big-billiard epoch (going to a gravita-
tional wall to another gravitational wall) can, on its way,
cross either 1, 2, or even 3 symmetry walls. And even if
one considers the three symmetry segments of the type of
the R one in Fig. 2, some big-billiard epochs can cross
either 1 or 2 R-type symmetry segments. This noncon-
stancy in the number of crossings of symmetry walls or
segments prevents one from being able to define, in a
uniform manner, a transformation between big-billiard
eras and small-billiard ones, which respects, say, the num-
ber of epochs during an era.

In addition to this nonequivalence in the definition of
eras, a technical inconvenience of the unquotiented small-
billiard era hopscotch map defined above is that it is more
difficult to find the generic, explicit expression of the
small-billiard era map TSB, Eq. (9.6). Indeed, while it
was easy to define the small-billiard epoch hopscotch
map [see Table IX and Eqs. (9.3), (9.4), and (9.5)] for
any starting point u�uþ, the corresponding definition of
the small-billiard era map TSB (as the return map on the R
wall) has remained rather implicit. Given some ðu�; uþÞ 2
RG [ RB one needs to iterate the epoch map a certain
number of times (which depends on the starting point) to
find the explicit expression of the red-return map TSB.
Actually, with some more effort it is possible to define
TSB nearly explicitly. Let us indicate how. First, we can
delineate the small-billiard analogs of the Fk

xy boxes of the

big billiard, i.e. the subregions of the RG and RB regions
that will lead to (small-billiard) eras having some given
number of epochs. Let us call RGn (respectively RBn) the
subregion of RG (respectively RB) which provides a
starting point for an n-epoch era. Here, as it is easily
seen, n � 3 for RG and n � 2 for RB. (For instance, any
RG-starting era must go through R ! G ! B ! R before
returning to R.) These regions are defined by the domains
described in Table IX. In this table the last column lists the
equations of the four curves that delimit, for each n, the
corresponding era-starting subdomains. These curves are
given by equations of the type uþ ¼ fðu�Þ, where the
functions fðu�Þ are either the functions u
ðu�Þ, u�ðu�Þ
defined in Eqs. (9.2), or the following functions:

(i) unb ¼ 1
2
�2nu�þ2u�þn2�2nþ5

�2u�þn�1 ;

(ii) uan ¼ 1
2
�4nþ7�2nu�þ4u�þn2

�2�2u�þn ;

(iii) Ub
n ¼ � 1

2
2nu��2u�þn2�2nþ5

2u�þn�1 ;

(iv) Un
a ¼ � 1

2
3þ2nu�þ2n2

2u�þn .

Some of the corresponding regions, for n � 5, are rep-
resented in Fig. 8. As we see, contrary to the big-billiard
case where the boundaries between the Fk

xy boxes where

always horizontal (i.e. of the type uþ ¼ const), here the
boundaries between RGn or RBn boxes are curved. This
contributes to the difficulty of writing an explicit expres-
sion for the red-return map TSB. Anyway, given these
results, we can semiexplicitly define TSB by the following
algorithm. Given some red-starting point ðu�uþÞ, one must
first find to which box, RGn or RBn it belongs by using
Table IX. Then, knowing the type (RG or RB), and the
length ðnÞ of the era starting from ðu�uþÞ, one can write
TSB by composing n� 1 transformations of the G or B
type, and one final R transformation. Let us give an explicit
example. If ðu�uþÞ 2 RG3, we will have

TSBðu�; uþÞ ¼ R 
 B 
Gðu�; uþÞ; (9.12)

where the explicit expressions of the R, B and G
transformations have been given in Eqs. (9.3), (9.4), and
(9.5) above.
Collecting all these ingredients together, it is easy to

evaluate the probability PRXn for a small-billiard era RX to
contain a certain number n of epochs. These probabilities
are obtained by integrating the ! form over the suitable
domain, as explained in Table IX. Because the domains are
not defined by straight lines, but by hyperbolas, the explicit
expression for such probabilities would be somewhat awk-
ward to write down. Nevertheless it is nevertheless always
possible and straightforward to calculate it. As the most
direct example, we evaluate the probability PRB2 , i.e. the
probability for a RB era to consist of two epochs. As we see
from Fig. 8 and Table IX, the subregion of RB correspond-
ing to this case is the simplified domain

0< u� <; u3a < uþ < u�; (9.13a)

< u� < 1; u
 < uþ < u�; (9.13b)

where u3a ¼ �ðu� þ 2Þ=ðu� þ 1Þ, and u
 ¼ u3a at
u� ¼ . The probability then reads

PRB2 ¼ c

�

Z 

0
du�

Z u�

u3a

duþ

ðuþ � u�Þ2

þ
Z 1


du�

Z u�

u


duþ

ðuþ � u�Þ2
�

’ 0:1240: (9.14)

We remark that, while, in the BKL case, the probability for
an era to consist of k epochs was a monotonically decreas-
ing function of k, in the small billiard, this probability is a
nonmonotonic function of k: it increases for the lowest
values of k and then starts to decrease. Furthermore, the
probabilities PRB0Gn for an era to contain n epochs in the

TABLE IX. Small-billiard hopscotch.

RGn, n odd uþ > 1, u� <�1=2, ðu
; u�; unb; unaÞ
RGn, n even uþ > 1, u� <�1=2, ðu
; u�;n�1

b ; unþ1
a Þ

RBn, n odd uþ < 0, u� >�1=2, ðu
; u�;Un
b;U

n
aÞ

RBn, n even uþ < 0, u� >�1=2, ðu
; u�;Un�1
b ; Unþ1

a Þ

STATISTICAL PROPERTIES OF COSMOLOGICAL BILLIARDS PHYSICAL REVIEW D 83, 044038 (2011)

044038-33



RG [ RB0 domain can also be investigated. The most
interesting information is obtained in the asymptotic region
for large uþ, as described in the above. For the RG region,
in this asymptotic regime, the u� boundaries can be con-
sidered as vertical straight lines, i.e. �1=2< u� < 0, and
the uþ boundaries can be considered as horizontal straight
lines, as given by the asymptotic behavior of the functions
unb ! ðn� 1Þ=2, una ! ðn� 2Þ=2. On the other hand, the

probabilities for the region RB0 are obtained applying the
transformation (9.10) to the appropriate functions in
Table IX. For large values of uþ, the region RB0 is delim-
ited by vertical straight lines u� ¼ �1 and u� ¼ �1=2,
and the horizontal lines delimiting the n-epoch era starting
region are uþ ¼ ðn� 2Þ=2 and uþ ¼ ðn� 3Þ=2. This way,
the probability, say PRB0Gn , to obtain a n-epoch era starting
from the RG [ RB0 extended region is given by the integral
of the ! form over the appropriate domain, i.e.

PRB0Gn ’ 1
1
2 ln3

�

Z ðn�1Þ=2

ðn�2Þ=2
duþ

Z 0

�1=2
du�

1

ðuþ � u�Þ2

þ
Z ðn�2Þ=2

ðn�3Þ=2
duþ

Z �1=2

�1
du�

1

ðuþ � u�Þ2
�

¼ 1
1
2 ln3

2 ln
ðn� 1Þ2
nðnþ 2Þ : (9.15)

For large values of n one finds

PRB0Gn ’ 4

ln3

1

n2
: (9.16)

Note that the result (9.16) differs from the corresponding
quotiented big-billiard (or BKL) result which is
Pn1 ’ 1

ln2
1
n2
1

. This difference shows that the natural notion

of small-billiard era cannot be precisely mapped on the
usual notion of BKL eras.

B. Quotiented small billiard

The direct, seemingly natural red-return map approach
to the small billiard discussed in the previous subsection
leads to a rather complex description of its dynamics. In
particular, the fact that the n-epoch boxes RGn and RBn

defined in the previous subsection have curved boundaries
would make it difficult to define a small-billiard analog of
the nice continued-fraction BKL description of the (big
billiard) era dynamics. Here, we wish to show how, starting
from the definition of the small-billiard, one can recover its
deep relation with the big billiard, and uncover the tech-
nically simple BKL-like description of its dynamics. To
start with, let us show several ways of relating the small-
billiard dynamics to the big-billiard one. First, we can see
this relation by using a graphical representation of the
big-billiard dynamics which has been introduced by
BKL. Namely, we mean the plot of the three logarithmic
scale factors 
 � �1 � � lna, � � �2 � � lnb, � �
�3 � � lnc as functions of �. Modulo a conventional

change of sign in the definition of 
, �, � (introduced
here to ensure that 
, �, � are always � 0), this represen-
tation was, e.g., used in Fig. 2 of the review [4]. In terms of
this graphical representation, the dynamics of the variables

0, �0, �0 of the small billiard is simply related to that of
the variables 
, �, � of the big billiard in the following
way: starting from a BKL graph of 
ð�Þ, �ð�Þ, �ð�Þ [in
which the three lines 
ð�Þ, �ð�Þ, �ð�Þ can cross and
keep (nearly) constant slopes except when one of
them touches, from above, the horizontal axis (gravitation
wall)] one can define the corresponding graph of

0ð�Þ, �0ð�Þ, �0ð�Þ simply by defining 
0ð�Þ, for each
�, as 
0ð�Þ � inf½
ð�Þ; �ð�Þ; �ð�Þ�, �0ð�Þ as �0ð�Þ �
sup½
ð�Þ; �ð�Þ; �ð�Þ�, and �0ð�Þ as the remaining middle
curve among the three curves 
ð�Þ, �ð�Þ, �ð�Þ. In other
words, 
0ð�Þ is defined as the lower envelope of the three
original 
, �, � curves, �0ð�Þ the upper envelope, and
�0ð�Þ the intermediate curve. The three curves 
0ð�Þ,
�0ð�Þ, �0ð�Þ satisfy 
0ð�Þ � �0ð�Þ � �0ð�Þ and keep con-
stant slopes expect when either two of them ‘‘collide’’
(symmetry wall), or when the lower one, i.e. 
0ð�Þ collides
with the 
0 ¼ 0 axis (
0-gravitational wall). One easily
sees that 
0, �0, �0 are the logarithmic scale factors of a
small billiard (with gravitational wall 
0 ¼ 0 and symme-
try walls 
0 ¼ �0 and �0 ¼ �0). In other words, a suitable
(time-dependent) reordering of the three big-billiard vari-
ables 
, �, � transforms the big-billiard dynamics in the
small-billiard one. Reciprocally, starting from the graph
giving the three curves 
0ð�Þ, �0ð�Þ, �0ð�Þ of a small-
billiard dynamics one can, starting from an arbitrary iden-
tification of 
, �, � with 
0, �0, �0 at some initial time,
extend the definition of the 
ð�Þ, �ð�Þ, �ð�Þ curves by the
condition that the only changes of slopes of these curves
happen when one of them touches the zero axis. This
graphical reasoning shows that there is an essential equiva-
lence between the two billiards. Note in passing that this
graphical approach can also clarify why the definition used
in the previous subsection of the red-return eras introduces
an artificial difference between the two billiards. Indeed,
the red-return eras are defined by the collisions �0ð�Þ ¼
�0ð�Þ between the two upper curves. By contrast, the usual
big-billiard eras are defined by a different condition con-
sisting in finding when the oscillations between the cross-
ing curves 
ð�Þ and �ð�Þ cease to give rise to oscillations
between either
 and � or� and �. The difference between
these two definitions of eras give rise to the technical
differences found in the previous subsection.
A second way of relating the two dynamics consists of

introducing some further quotienting of the small billiard.
Explicitly, if we replace the small billiard by its kaleido-
scopic version (as explained above in the big-billiard case),
i.e. by replacing the single moving ball of the small billiard
by its six images with respect to the symmetry walls, we
end up with a quotiented small billiard where the symmetry
walls have no effect (because of the equivalence of the S3
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orbits) and where the only effective collisions take place
on the gravitational walls. Finally, we conclude that the
symmetry-wall-quotiented small-billiard coincides with
the symmetry-wall-quotiented big-billiard. This shows
again that, modulo some discrete relabellings, the two
billiards are essentially identical.

X. BRIEF CONCLUDING REMARKS

In this work, we have analyzed several aspects of chaotic
cosmological billiards, in (3þ 1)-dimensional gravity, and
of their statistical behavior as one approaches the cosmo-
logical singularity. We have reviewed how the dynamics of
the diagonal degrees of freedom (logarithmic scale factors
�a) of the spatial metric near the singularity is conven-
iently described by Lorentzian, or (after projection)
hyperbolic-space billiards. We emphasized that the
hyperbolic-space billiard table for the usual, Bianchi-IX
abc system is an ideal triangle (with three vanishing an-
gles), which contains six copies of the small billiard that is
naturally related to the Weyl chamber of an hyperbolic
Kac-Moody algebra; see Fig. 2. We reviewed several useful
facts about integral invariants in Hamiltonian systems, and
showed how their application to cosmological billiards
allowed one to derive several forms and measures that
are invariant under both the continuous and the discrete
billiard dynamics. Contrary to previous treatments of cos-
mological billiards (starting with the classic work of
Belinski, Khalatnikov and Lifshitz), we did not use the
six-fold symmetry group (S3) of the Bianchi-IX a, b, c
system to symmetry-quotient its dynamics. This led us to
defining a richer hopscotch dynamics between several
subregions of the two-dimensional phase-space ðu�; uþÞ
parametrizing successive Kasner epochs. Several aspects
of this hopscotch dynamics have been discussed in detail:
(i) the existence of a non-normalizable measure on the two-
dimensional ðu�; uþÞ hopscotch court; (ii) the existence of
a non-normalizable measure on the single variable uþ, i.e.
on the Kasner circle parametrizing the exponents of suc-
cessive Kasner epochs; (iii) the existence of a normalizable
measure on the subset of the hopscotch court describing the
first epochs of successive eras; (iv) the link between the
unquotiented hopscotch dynamics, and its quotiented ver-
sion, equivalent to the usual BKL dynamics. Several sta-
tistical features of the hopscotch dynamics have been
discussed, e.g. (1) the joint probability Pn1;n2 for two

successive eras to have specified lengths n1 and n2, and
the fact that the random variables n1 and n2 are not
statistically independent; (2) the anisotropic behavior of
the hopscotch dynamics, i.e. the fact that the successive
corners, between which the billiard ball representing the
metric bounces, are statistically correlated. We briefly dis-
cussed the link between periodic orbits in the unquotiented
hopscotch court, and the usually discussed periodic orbits
in the quotiented, BKL description. Finally, we discussed
the relation between the billiard dynamics within the full

ideal triangle associated with the (diagonal) Bianchi-IX
model, and the dynamics between the small billiard that
naturally arises in the treatment of the gravitational dy-
namics that uses an Iwasawa decomposition of the spatial
metric.
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APPENDIX: INTEGRAL INVARIANTS
IN HAMILTONIAN SYSTEMS

As a complement to Section IV, we recall here some
(not always well known) facts about integral invariants
in Hamiltonian systems. When considering a general
(possible time-dependent) Hamiltonian dynamics with
(Hamiltonian) action (4.1), one defines the Poincaré-
Cartan one-form

�ð1Þ
PC

:¼ pidq
i �Hðq; p; tÞdt; (A1)

defined in the (2nþ 1)-dimensional extended phase space

Xð2nþ1Þ ¼ fðqi; pi; tÞg. The Poincaré-Cartan one-form (A1)
then defines a relative integral invariant of the unparame-
trized Hamiltonian flow. This means that the integral

IðCÞ ¼
I

C
�ð1Þ

PC (A2)

of �ð1Þ over any closed curve C in extended phase
space remains the same if one displaces C in an arbitrary
manner along the unparametrized flow lines of the
Hamiltonian dynamics. [By unparametrized flow lines

we mean here the unparametrized lines in Xð2nþ1Þ whose
tangents are everywhere parallel to the Hamiltonian flow,
i.e. proportional (without being necessarily equal) to
ð@H=@pi;�@H=@qi; 1Þ.] An equivalent formulation of
this property is to say that the Poincaré-Cartan two-form

!ð2Þ
PC

:¼ �d�ð1Þ
PC ¼ dqi ^ dpi � dt ^ dHðq; p; tÞ (A3)

is an absolute integral invariant of the unparametrized

Hamiltonian flow, i.e. that the integral of !ð2Þ over an
arbitrary two-surface � (with boundary) is invariant as �
is moved, in an arbitrary manner, along the unparametrized
flow lines. Note that these invariance properties are
stronger than those that are usually stated, which only refer
to the invariance of the simpler ‘‘Liouville’’ forms in the

unextended phase space Xð2nÞ ¼ fðqi; piÞg,
�ð1Þ

L
:¼ pidq

i; (A4a)

!ð2Þ
L

:¼ �d�ð1Þ
L ¼ dqi ^ dpi; (A4b)

under the time-parametrized Hamiltonian flow
ð@H=@p;�@H=@q; 1Þ. Moreover, the absolute invariance

STATISTICAL PROPERTIES OF COSMOLOGICAL BILLIARDS PHYSICAL REVIEW D 83, 044038 (2011)

044038-35



of the two-form !ð2Þ
PC, Eq. (A3), allows one to construct an

invariant measure on any (2n)-dimensional transverse sec-
tion moving along the unparametrized Hamiltonian flow,
namely

�ð2nÞ
PC

:¼ cðnÞð!ð2Þ
PCÞ^n

� cðnÞ!ð2Þ
PC ^ . . . ^!ð2Þ

PC ðwithn factorsÞ: (A5)

Here cðnÞ is a numerical factor which can be taken to be

ð�Þnðn�1Þ=2ðn!Þ�1 if one wishes to recover the usual nor-
malization. In the case when one restricts oneself to dis-
placements along the time-parametrized Hamiltonian flow

one can replace the extended phase space form�ð2nÞ
PC by the

Liouville measure

�ð2nÞ
L

:¼ cðnÞð!ð2Þ
L Þ^n

¼ dq1 ^ dq2 ^ . . . ^ dqn ^ dp1 ^ dp2 ^ . . . ^ dpn

(A6)

on the unextended phase space Xð2nÞ ¼ fðqi; piÞg.
In addition, if one is considering a time-independent

Hamiltonian Hðp; qÞ, and if one wishes to restrict oneself
to the dynamics on a specific (2n� 1)-dimensional energy

hypersurface, say Eð2n�1Þ
E , satisfying Hðp; qÞ ¼ E in unex-

tended phase space Xð2nÞ, the above results simplify in that
one can drop the H-dependent contribution in (A1) and
(A3) [because dHðq; pÞ ¼ 0 on the energy shell] and

conclude that the simpler Liouville-type two-form !ð2Þ
L ,

Eq. (A4b), is invariant not only under the usual time-
parametrized Hamiltonian flows _q ¼ @pH, _p ¼ �@qH in

Eð2n�1Þ, but also under more general many-fingered time
flows _q ¼ F@pH, _p ¼ �F@qH, involving an arbitrarily

varying time-rescaling function Fðq; p; tÞ. This leads to
introducing two possible measures associated to the dy-

namics on the energy-surface Eð2n�1Þ
E . A first measure is the

standard energy-shell reduced Liouville measure

�ð2n�1Þ
L;E ¼ �ð2nÞ

L �ðHðq; pÞ � EÞ; (A7)

which is a (2n� 1)-form, and yields a smooth measure on

the (2n� 1)-dimensional energy shell Eð2n�1Þ.
A second possible construction (which is linked to the

general theory of the reduction of phase spaces with

symmetry) is to use the invariance of the two-form !ð2Þ
PC,

Eq. (A3), or simply !ð2Þ
L , Eq. (A4b), under arbitrary ‘‘glid-

ings’’ along the Hamiltonian flow (which takes place

within Eð2n�1Þ) to define both a reduced (symplectic)
two-form

!ð2Þ
red

:¼ ½!ð2Þ
L �

Qð2n�2Þ
E

(A8)

and a corresponding measure

�ð2n�2Þ
red

:¼ cðn� 1Þð!ð2Þ
redÞ^ðn�1Þ (A9)

on the (2n� 2)-dimensional quotient space Qð2n�2Þ
E ¼

Eð2n�1Þ
E =F H (where F H denotes the unparametrized

Hamiltonian flow on Eð2n�2Þ
E ). In other words,

Eð2n�1Þ
E =F H is the space of unparametrized Hamiltonian

motions on Eð2n�1Þ
E . A concrete representation of this quo-

tient space can be obtained by considering any transverse

section ofF H on Eð2n�1Þ, i.e. any initial conditions forF H.
Note that this transverse section does not need to be taken
at some fixed time t, but can have an arbitrary slope in

extended phase space. The invariance of !ð2Þ
PC ¼ !ð2Þ

L (on

Eð2n�1Þ) under F H then guarantees that the (2n� 2)-form

(A8) lifts to the quotient space Qð2n�2Þ
E ¼ Eð2n�1Þ

E =F H, i.e.
defines a measure on the (2n� 1)-dimensional space of
(unparametrized) motions with energy E.
Let us mention that there is a simple link between the

reduced (2n� 2)-form �ð2n�2Þ
red , Eq. (A8) and the usually

considered energy-shell reduced Liouville measure

�ð2n�2Þ
L;E , Eq. (A7). First, note that these forms define mea-

sures on different spaces:�ð2n�1Þ
L;E ‘‘lives’’ on the (2n� 1)-

dimensional energy surface Eð2n�1Þ
E , while �ð2n�2Þ

red lives on

the (2n� 2)-dimensional quotientQð2n�1Þ
E of Eð2n�1Þ

E by the
Hamiltonian flow F H. To see the link between these
constructs, we can introduce (at least locally) in the full,

ambient (2n)-dimensional phase space Xð2nÞ ¼ fðqi; piÞg
a new canonical coordinate system where the n-th
momentum coordinate pnew

n is equal to the Hamiltonian:
Hðpold; qoldÞ ¼ pnew

n . In this new canonical coordinate
system, the n-th conjugate position coordinate qnnew is
such that

dqnnew
dt

¼ @H

@pnew
n

¼ 1; (A10)

while the remaining coordinates ðq�i; p�iÞ, with �i ¼
1; . . . ; n� 1 all satisfy _q

�i
new ¼ 0 ¼ _pnew

�i
, i.e. are invariant

under the Hamiltonian flow F H (considered in unparame-
trized form, i.e. with many-fingered time displacements:
�t ¼ Fðp; qÞ).
If we denote the conjugate pair ðqnnew; pnew

n Þ simply by

ðs; HÞ, and the (n� 1)-other pairs by ð �q�i; �p�iÞ, we see that

the symplectic form !ð2Þ
L , Eq. (A4b), in the ambient phase

space Xð2nÞ reads

!ð2Þ
L ðq; pÞ ¼ !ð2Þ

redð �q; �pÞ þ ds ^ dH; (A11)

where

!ð2Þ
redð �q; �pÞ ¼

X

n�1

�i¼1

d �q
�i ^ d �p�i (A12)

is clearly equal to the reduced symplectic form (A8) on the

quotient space Qð2n�2Þ
E ¼ Eð2n�1Þ

E =F H (independently of
the values of E and s).
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If we now insert (A11) in the general definition (A7) of
the energy-shell-reduced Liouville measure, one easily
sees, using �ðH � EÞdH ¼ 1, that

�ð2n�1Þ
L;E ¼ �ð2n�2Þ

red ^ ds; (A13)

where, as explained above, s is a phase-space coordinate
which is canonically conjugate to the Hamiltonian (which
implies that ds=dt ¼ 1 along the Hamiltonian flow).

So far, we have been considering any autonomous
Hamiltonian system (@H=@t ¼ 0). We can, in particular,
apply the above results to general billiard systems, i.e. to a
Hamiltonian of the form

Hðp; qÞ ¼ X

n

i;j¼1

1

2
gijðqÞpipj þ V1ðqÞ; (A14)

where gijðqÞ is the matrix inverse of some (pseudo-)
Riemannian metric gijðqÞdqidqj, and where the (formal)

potential function V1ðqÞ is equal to zero within some
domain, say B (the billiard table), of the q variables, and
equal to þ1 outside of this domain. In that case, the
general invariance of the reduced symplectic form

!ð2Þ
red under arbitrary, many-fingered time motions on the

energy hypersurface [see Eq. (A11)] can be concretely
used to show that the restriction of the ambient phase

space symplectic form !ð2Þ
L ðq; pÞ on the boundary @B

[with the constraint Hðq; pÞ ¼ E] of the billiard, say

!ð2Þ
restrðqrestr; prestrÞ, is invariant both under each collision

on @B and under each free flight between two successive
collisions. In other words, we are here considering trans-
verse (Poincaré-type) cross sections of the energy-reduced

Hamiltonian flow on Eð2n�1Þ
E , defined, in a ‘‘stroboscopic’’

manner, by the successive collisions. This allows one to
extract from the continuous Hamiltonian flow t [xðtÞ ¼
tðxð0ÞÞ with x � ðq; pÞ], the discrete billiard map say T ,
such that xNþ1 ¼ T ðxNÞ where xN ¼ ðqN; pNÞ is the
phase-space position just after the N-th collision on @B
and T ðxÞ ¼ �ðxÞþ0ðxÞ the stroboscopic Hamiltonian

evolution12 between two successive collisions (including
the reflection effect of the second collision). In other

words, the restrictions !ð2Þ
restrðqrestr; prestrÞ of !ð2Þ

L on the
(2n� 2)-dimensional phase space of ½@B�Hðp;qÞ¼E after

each collision gives us an infinite collection of concrete

realizations of the reduced two-form !ð2Þ
red on the abstract

quotient space Qð2nÞ ¼ Eð2nþ1Þ=F H. It also yields several
absolute integral invariants of the billiard map T , namely

!ð2Þ
restrðqrestr; prestrÞ itself and all its exterior powers, and

notably the reduced measure �ð2n�2Þ
red , Eq. (A9). Note that

the link (A13) between the energy-shell Liouville measure

and the reduced measure �ð2n�2Þ
red (invariant under the

billiard map T ) is well-known in the mathematical litera-
ture on billiards (see, e.g., [30]).
Let us now discuss the various ways in which the above

results can be applied to cosmological billiards. We start
by recalling that the dynamics of the diagonal degrees of
freedom (i.e. the logarithmic scale factors �a entering the
Iwasawa decomposition (2.4)) is described, near a cosmo-
logical singularity, by an action of the general form [21]

S� ¼
Z

dx0
�

1

2 ~N
Gab

_�a _�b � ~NVð�Þ
�

; (A15)

where _�a ¼ d�a

dx0
, and where Vð�Þ is a sum of exponential

walls,

Vð�Þ ¼ X

A

cA expð�2wAð�ÞÞ; (A16)

with linear formswAð�Þ; see Eqs. (2.12), (2.15), and (2.16).
The spatial gradients of the metric and of the other fields
enter only in the coefficient cA of the exponential walls. In
the near-spacelike-singularity limit (BKL limit) the time-
and space-dependent coefficients cAðx0;xÞ tend to some
finite limits so that one can describe the asymptotic dy-
namics of the �aðx0;xÞ at each point of space by means of
the Toda-like billiard (A15) and (A16) (with cA replaced by
their limits). A further approximation (which also holds in
the BKL limit) consists in replacing the exponential walls
(A16) by their formal sharp wall limit, namely

V1ð�Þ ¼
X

A

�1ð�2wAð�ÞÞ; (A17)

where the formal sharp-wall �1-function is defined as:
�1ðxÞ :¼ 0 if x < 0 and �1ðxÞ :¼ þ1 if x > 0. The
action (A15) with Vð�Þ ! V1ð�Þ given by (A17) defines
a Lorentzian-billiard dynamics in the �-space. This dy-
namics can be equivalently described by the Hamiltonian
action

S� ¼
Z

dx0½	a
_�a �H�ð�a;	aÞ�; (A18)

H�ð�;	Þ ¼ ~N

�

1

2
Gab	a	b þ V1ð�Þ

�

; (A19)

which is of the general type (A14) (with a flat Lorentzian-
signature metric Gab). Here, 	a denotes the conjugate
momentum of �a, i.e.

	a ¼ 1
~N
Gab

d�b

dx0
: (A20)

Note that 	a is invariant under the redefinitions of the time
coordinate x0 (which affect both dx0 and ~N � N=

ffiffiffi

g
p

but

leave invariant the product ~Ndx0 / Ndx0).
As the (rescaled) lapse ~N is a Lagrange multiplier in the

action S�, Eq. (A15), we have the well-known Hamiltonian

12Note that the time �ðxÞ between two successive collisions
generally depends on the starting position x, so that we need to
use here the invariance of the (Poincaré-Cartan (A3) or Liouville
(A4b)) two-form under the unparametrized many-fingered
Hamiltonian flow.
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constraint stating that H� must vanish, i.e. that we must

constrain ourselves to the specific energy hypersurface

H�ð�;	Þ ¼ E� ¼ 0: (A21)

We are therefore in the condition where we can apply the
general results recalled above. [For simplicity, we can
assume that we are working in any gauge where ~N is given
as some autonomous function of � and 	. This is the case
both of the �-time gauge ~N ¼ 1, Eq. (2.3), and of the
T-time one ~N ¼ �2 ¼ �Gab�

a�b, Eq. (2.25).] In particu-
lar, we see that

!ð2Þ
� ¼ �d½	ad�

a� ¼ d�a ^ d	a (A22)

is an absolute integral invariant of the Hamiltonian flow, as
well as the corresponding energy-shell measure

�ð2d�1Þ
E�¼0 ¼ cðdÞð!ð2Þ

� Þ^d�ðH�Þ: (A23)

In addition, we can consider the (double) reduction of

the two-form !ð2Þ
� on the quotient space Qð2d�2Þ

� ¼
Eð2d�1Þ
E�¼0 =F H�

,

!ð2Þ
�red ¼ ½d�a ^ d	a�Qð2d�2Þ

�

; (A24)

and the corresponding measure on Qð2d�2Þ
�

�ð2d�2Þ
�red ¼ cðd� 1Þð!ð2Þ

�redÞ^ðd�1Þ: (A25)

The latter reduced measure is related to the Liouville-type
measure (A23) via the general result (A13) where s is a
�-phase-space coordinate which is canonically conjugate
to H�, Eq. (A19). These results are particularly simple if

one uses the �-time gauge where ~N ¼ 1, so that the
Hamiltonian (A19) is the sum of a constant-Lorentzian-
metric kinetic term 1

2G
ab	a	b and of a sharp-wall billiard

potential. The integral invariants we have just discussed
concern the dynamics of the Lorentzian billiard in�-space.
They would be useful if one were studying the full �-space
billiard dynamics. However, in this paper, we are interested
in discussing the projection of the �-billiard on the hyper-
bolic space H d�1, e.g. described by the unit hyperboloid
(2.26) in�-space. This projection is obtained by separating
out the motion along the radial direction �, Eq. (2.23).
Indeed, setting �N � ~N=�2 and � � ln�, the billiard action
(A15) and (A17) can be rewritten as (see, e.g. [14] for the
d ¼ 3 case and [17] for the general case)

S ¼
Z

dx0
�

1

2 �N
ð� _�2 þGab _�a _�bÞ � �NV1ð�Þ

�

; (A26)

where V1ð�Þ ¼
P

A�1ð�2wAð�ÞÞ. (As usual, we are us-
ing here the simplifying fact that, in the limit � ! þ1,
the potential term becomes independent of �, i.e. becomes
T-time-independent.) In the T gauge (2.25), i.e. �N �
~N=�2 ¼ 1, the radial kinetic energy term� 1

2
_�2 decouples

from the angular-motion terms and leads to a uniform

radial motion: d�=dT ¼ const. In that gauge, one can
simply work with the angular action

S� ¼
Z

dT

�

1

2
Gab

d�a

dT

d�b

dT
� V1ð�Þ

�

; (A27)

submitted to the constraint that the (constant) angular-
motion energy

E� ¼ 1

2
Gab

d�a

dT

d�b

dT
þ V1ð�Þ (A28)

be equal to ðd�=dTÞ2 ¼ const.
Note that while the �-space action S�, Eq. (A18), cor-

responded to a phase-space ð�a;	aÞ with 2d dimensions,
the reduced action S�, Eq. (A27), corresponds to a phase

space with 2ðd� 1Þ dimensions. In order to explicitly
describe the reduced dynamics, one needs to choose
some parametrization of the (d� 1) dimensional hyper-
bolic space, say qi, where the index i takes only d� 1
values. The hyperbolic metric on H d�1 will have some
expression, say (i; j ¼ 1; . . . ; d� 1)

Gabd�
ad�b ¼ ds2 ¼ gijðqÞdqidqj; (A29)

and the angular action (A25) will read

S� ¼
Z

dT

�

1

2
gijðqÞdq

i

dT

dqj

dT
� V1ð�ðqÞÞ

�

: (A30)

The conjugate momenta to the qi’s read

pi ¼ gijðqÞ dq
j

dT
; (A31)

while the angular-motion Hamiltonian will read

H�ðqi; piÞ ¼ 1

2
gijðqÞpipj þ V1ð�ðqÞÞ; (A32)

where gijðqÞ denotes the inverse of the (covariant) metric
gijðqÞ.
Similarly to the discussion above, we can now introduce

the (reduced) Poincaré-Cartan one-form,

�ð1Þ
� :¼ pidq

i �H�ðq; pÞdT; (A33)

and the corresponding two-form,

!ð2Þ
� :¼ �d�ð1Þ

� ¼ dqi ^ dpi � dT ^ dH�ðq; pÞ: (A34)

As before �ð1Þ
� [respectively, !ð2Þ

� ] defines a relative (re-
spectively, absolute) integral invariant of the unparame-
trized Hamiltonian flow in extended phase-space ðq; p; TÞ.
And, as before, we can use the absolute invariance of the

two-form!ð2Þ
� to construct an invariant measure. As we are

again in a situation where we can work on a fixed-energy
hypersurface (here H� ¼ E� ¼ const, after eliminating

the uniform radial motion �ðTÞ) we can drop the last

H�-dependent term in !ð2Þ
� , Eq. (A34), and work with

the usual (�-space) symplectic form !ð2Þ
� ¼ dqi ^ dpi.
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As before we end up with having a whole set of integral
invariants of the billiard dynamics in �-space (i.e. on the

hyperboloid H d�1): the two-form !ð2Þ
� itself, and its vari-

ous exterior powers, and its energy-shell restricted measure

�ð2d�3Þ
E�

¼ cðd� 1Þð!ð2Þ
� Þ^ðd�1Þ�ðH�ðp; qÞ � E�Þ: (A35)

Moreover, we can also use the invariance of the reduction

of the symplectic form on the quotient space Qð2d�4Þ
� ¼

Eð2d�3Þ
E�

=F H�
,

!ð2Þ
�red ¼ ½dqi ^ dpi�Qð2d�4Þ

�
(A36)

and its maximal exterior power

�ð2d�4Þ
�red ¼ cðd� 2Þð!ð2Þ

�redÞ^ðd�2Þ: (A37)

In addition, we still have a link of the type (A13) (where s
is a �-phase-space coordinate such that ds=dT ¼ 1
along the Hamiltonian flow), and we also know that the

abstract quotient-space reduced symplectic form !ð2Þ
�red

can be concretely computed by restricting dqi ^ dpi by
two conditions: H�ðq; pÞ ¼ E� and any cross section con-

dition transverse to the Hamiltonian flow. In particular, we
can use the events of collisions on successive walls of the

billiard as cross sections, and thereby prove that !ð2Þ
�collision

and �ð2d�4Þ
�collision are invariants of the discrete �-billiard map

T which connects a collision to the next.
In Sec. IV, we apply these general results to the case of

the BKL cosmological billiards, in d ¼ 3 spatial dimen-
sions, working within the radially-projected picture on the
�-space, i.e. on the hyperbolic plane H 2.
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